Lecture 11:

Modern Rendering Techniques
Using the Graphics Pipeline

Interactive Computer Graphics
Stanford (5248, Winter 2021

Screenshot: Red Dead Redemption

Stanford (5248, Winter 2021

Stanford (5248, Winter 2021

:FarCry>5

Screenshot

BATTLEFIELD V

Screenshot: Battlefield V Stanford (5248, Winter 2021

Theme of this part of the lecture:

A surprising number of advanced lighting effects can be efficiently
approximated using the basic primitives of rasterization pipeline,
without the need to actually ray trace the scene geometry:

m Rasterization
m Texture mapping
m Depth buffer for occlusion

Stanford (5248, Winter 2021

Rasterization algorithm for triangle visibility

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection
(Note: not uniform distribution in angle... angle between rays is smaller
away from view direction)

Stanford (5248, Winter 2021

Recall: OpenGL/Direct3D graphics pipeline

°1 ..
l— °4 |Input: vertices in 3D space
°2
Operations on JErtexierocessing
vertices osssseeeeesennnnnees ;
Vertex stream : o : . . o . .
l ; © . | Verticesin positioned in normalized
Operations on | coordinate space
primitives o
(triangles, lines, etc.) Frimitive stream """""""""""
Fragment Generation Triangles positioned on screen

(Rasterization) : :
Operations on Fragment stream
fragments %ﬂ Fragments (one fragment per covered sample)

HragmentiErocessing
Shaded f tst
aded fragment s reaml % ? Shaded fragments
Operations on Screen sample operations
(depth and color) pereremesereneienanes :

screen samples : :

Output: image (pixels)

Stanford (5248, Winter 2021

Review: how much light (per unit area) hits the
surface at point p
(irradiance at point P1)

Z L, cos 0,

(g

Po

®
Pinhole

Stanford (5248, Winter 2021

How much light is REFLECTED from p toward po

L(pva) — Z f(pawiawO)Li COS ‘97, L1

W, = normalize(pg — pP)

i |

Po

®
Pinhole

Stanford (5248, Winter 2021

Stanford (5248, Winter 2021

Shadows

Image credit: Grand Theft Auto V

Stanford (5248, Winter 2021

How much light is REFLECTED from p toward po

L(p,wo) = Y _ f(p,wi,wo)V

Visibility term: /

V(p.Ls) = 1,if pis visible from L;
27 0, otherwise

LI)L@ COS 6’@

Po

®
Pinhole

Stanford (5248, Winter 2021

Review: How to compute if a surface is in shadow?

° L1

ik |

Stanford (5248, Winter 2021

Review: How to compute V (p, L;)

m Based on ray tracing... . L
® Trace ray from point P to L, =
location L; of light source ~

(%

m [fray hits scene object

before reaching light
source... thenPisin Q
shadow

Stanford (5248, Winter 2021

Convince yourself this algorithm produces “hard shadows”
like these (what you'd see on a sunny day)

‘ /
.'-“ ‘) ')' » /
. = ‘\ oo 4) A
\ . » i =/ / 7
X | " / -
F = ‘, // /
f -v-' .': > . A//
)
! :
§ ’
13

Image credit: Grand Theft Auto V Stanford (5248, Winter 2021

What if you didn’t have a ray tracer,
just a very fast rasterizer?

Stanford (5248, Winter 2021

You want to shade these points (aka fragments)
What “shadow rays” do you need to compute shading for this scene?

Surface
Camera

position

Stanford (5248, Winter 2021

Shadow mapping (part of assignment 3)

[Williams 78]

1. Place camera at position of a point light source

2. Render scene to compute depth to closest object to lightalong ~ light
uniformly distributed “shadow rays” (note: answer is stored in
depth buffer after rendering) . HER

3. Store precomputed shadow ray intersection results in a texture
(copy depth buffer to single channel “shadow map”)

Precomputed
shadow rays

“Shadow map” = depth map from perspective of a point light.
(Stores closest intersection along each shadow ray in a texture)

Image credits: Segal et al. 92, NVIDIA Stanford (5248, Winter 2021

Result of shadow texture lookup approximates
visibility result when shading fragment at P

Precomputed shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in shadow map

L 4
4 a
" ",
'. 8
¥ b,y
IS ol
v Yo,
. v, I
0.. I a,
. 4,
2
.0 L 4 4 a,
. v a
L 4 2 L 4 ..
4 L 4 .. 4
S e v, Ve,
* 7S .. v, a,
IS L4 & 4 b,y
L 2
* * . Y 4,
< S Z 8 ¥,
. L4 S Y o,
4 L 4 & 2, ¥,
* * L 4 L/ Iy
. . . , o, Y,
* * .. 2 2 2
* o v a
* ¢ * LN ., ‘e, e,
LS * L L 4 .. ry LS
. . 0’ * . S o, o,
0‘ . * ., ° ., °, ",
* P L 4 L 4 a4,
¢ * ‘Q * .Q .i 4,
* PS * V'S P LS
* * * * s a,
[[J * < < L 4 ” ...
o, e e *e L
* * 'S L 4
. * e S %
g . * o *
. * * * L 2
. . * . 0.
. . ¢ o .
. . * * *
Py . * * *
. * * * *
. * *
. * *
. * * - ¢
* * *
* * *
* LS * A4
. ¢ ¢
. *
. . ¢ -
DY *
* *
. . PN " IS
L) . * * 2
. . * * .
. . . * *
. . * . *
. . * . *
P . “ * *
. DY . * *
. * *
. o . . *
. . 0‘ 0‘ ‘.
%
* . * L 2
. . * . *
. 'S PN * .
. . Y . *
.
L) * * “ *
L) L . LS *
. * * *
S * 'S
% . ¢ S
. . . % -
. . A S *
. * .
. * *
L) * * *
. . . . ¢
. . * * ’Q
. . . * *
L 3 < L 2 *
. . * .
. . *
A Y * *
. . “
. .
. . %
. .
. 'x
\ .
. .
L)
.
.
.

Stanford (5248, Winter 2021

Interpolation error

Bilinear interpolation of shadow map values (red line) only approximates distance to

closest surface pointinall d

Camera
position
®

irections from the camera

Surface

(Not in shadow, but in
Pz shadow according to
P, shadow map)

(Not in shadow)

Stanford (5248, Winter 2021

Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between
surface point and light directly using ray tracing)

Image credit: Johnson et al. T0G 2005 Stanford 5248, Winter 2021

Soft shadows

Hard shadows Soft shadows
(created by point light source) (created by 77?)

Image credit: Pixar Stanford (5248, Winter 2021

Shadow cast by an area light

° Notice that a fraction of the light from
. an area light may reach a point.
® ®
@
P; (Partially lit)
®

P;

(Fully lit)

Stanford (5248, Winter 2021

Sampling based algorithm

Goal: estimate the amount of ‘PL .
light from area source arriving

at a surface point P Q

® Forall samples:
- Randomly pick a point P, on the area light:
- Determine if surface point P is in shadow with respect to P,
- Compute contribution to illumination from P,

Stanford (5248, Winter 2021

Percentage closer filtering (PCF) — hack!

shadow map values

N (consider case where distance
Inste.ad of sample shadow m?p once, perform from light to surface is 0.5
multiple lookups around desired texture 0 0fo/0lo/o]o o1
coordinate 0| 0| 05fs00li0liOulet | 1] 1

0.0.0 0 0|1 1_1'1

m Tabulate fraction of lookups that are in shadow, gz g g ‘1’ I i 1 1

modulate light intensity accordingly o o [SNCHEEEE | 1 |1
(111121 |1]1]1
Hard Shadows PCF Shadows

(one lookup per fragment) (16 lookups per fragment) Stanford (5248, Winter 2021

What PCF com PUtES The fraction of these rays that
are shorter than |P-P,| @

P

=

Stanford (5248, Winter 2021

Shadow cast by an area light

¢ Actual illumination at P is given by
fraction of these rays that are occluded.

)

Stanford (5248, Winter 2021

Q. Why isn’t the surface in shadow completely black?

A. Assumption that some amount of “ambient light” (light scattered from off surfaces) hits every surface. Here... ambient light is just a constant.

Image credit: Grand Theft Auto V

Stanford (5248, Winter 2021

This scene contains an environment light source that has

Am b I e nt OCC I u S I O n equal illumination from all directions. (overcast day)
—

All surfaces are diffuse reflectors.

Without accounting for shadows, all surfaces ~
should be the same color:

%

Hack: ambient occlusion

|dea:
Precompute “fraction of hemisphere” that is occluded within distance d from a point.

When shading, attenuate environment lighting by this amount.

Stanford (5248, Winter 2021

“Screen-space” ambient occlusion in games

1. Render scene to depth buffer

2. For each pixel p (“ray trace” the depth buffer to
estimate local occlusion of hemisphere - use a
few samples per pixel)

3. Blur the the occlusion map to reduce noise

4. When shading pixels, darken direct
environment lighting by occlusion amount

without ambient occlusion

R
.
.

v,
....
- Y
.. “
Yo, *
'... .

....
a

*
S
IR *
- os*
* *
4, * **
e, * .
a, . "t
LI . R
L J * .
o, .
a, * “
..’ Py

Depth buffer values

with ambient occlusion
Stanford (5248, Winter 2021

Ambient occlusion

ulclo

Stanford (5248, Winter 2021

Reflections

Stanford (5248, Winter 2021

What is wrong with this picture?

CS248: Shader Assignment

Stanford (5248, Winter 2021

Reflections

Image credit: NVIDIA Stanford (5248, Winter 2021

ections

RTX ALPHA

Stanford (5248, Winter 2021

Recall: perfect mirror material

Stanford (5248, Winter 2021

Recall: perfect mirror reflection

Light reflected from P; in
direction of Py is incident on P;
from reflection about surface

normal at P,.

Stanford (5248, Winter 2021

Rasterization: “camera” position can be reflection point

Environment manning: Scene rendered 6 times, with ray
¢ o o o origin at center of reflective box
place ray origin at reflective object (produces “cube-map”)

Yields approximation to true
reflection results. Why?

Cube map: —
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Center of projection

Image credit: http://en.wikipedia.org/wiki/Cube_mapping Stanford (5248, Winter 2021

Environment map vs. ray traced reflections

RIXOEE

https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Image credit: Control Stanford (5248, Winter 2021

Environment map vs. ray traced reflections

" RITX<MEDIUM

https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Image credit: Control Stanford (5248, Winter 2021

Interreflections

Stanford (5248, Winter 2021

Diffuse interreflections

Why is this gray wall tinted red?

-

Image credit: Henrik Wann Jensen Stanford (5248, Winter 2021

Precomputed lighting

B Precompute lighting for a scene
offline (possible for static lights)

- Offline computations can
perform advanced shadowing,
inter reflection computations

m “Bake” results of lighting into
texture map

Rendered result

Light map

Stanford (5248, Winter 2021

Precomputed lighting in Unity Engine

<— Visualization of light map texture coordinates

Image credit: Unity / Alex Lovett Stanford (5248, Winter 2021

Growing interest in real-time ray tracing

I've just shown you an array of different techniques for approximating different
advanced lighting phenomenon using a rasterizer

Challenges:

- Different algorithm for each effect (code complexity)

- Algorithms may not compose

- They are only approximations to the physically correct solution (“hacks!”)
Traditionally, tracing rays to solve these problems was too costly for real-time use
- That may be changing soon...

<«— This image was ray traced in real-
time on a (very high end) GPU

Learn more in
(5348B!

Stanford (5248, Winter 2021

4 area light samples R
(high variance in irradiance estimate)

16 area light samples ——
(lower variance in irradiance estimate)

Ray tracing performance challenge

To simulate advanced effects in a ray tracer, renderer must trace
many rays per pixel to reduce variance (noise)

Stanford (5248, Winter 2021

Deferred Shading

Stanford (5248, Winter 2021

The graphics pipeline

“Forward” rendering
‘

S

Rasterization
(Fragment Generation)

Typical use of fragment processing stage:
evaluate application-defined function from
surface inputs to surface color (reflectance)

Frame-Buffer Ops
Frame Buffer

Stanford (5248, Winter 2021

Deferred shading: two steps

Step 1: Do not use traditional pipeline to generate RGB image

Fragment shader now outputs surface properties (future shading inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information about the surface geometry
visible at each pixel (called a “g-buffer”, for geometry buffer)

Vertex Generation

Wz

l

Rasterization

(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Albedo (Reflectance) - Depth

“G-buffer”

Normal
Stanford (5248, Winter 2021

G-buffer =“geometry” buffer

Depth

YR

Normal
Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (5248, Winter 2021

Example G-buffer layout

Graphics pipeline configured to render to four RGBA output buffers + depth
(32-bits per pixel, per buffer)

/

G8 A8
Depth 24bpp Stencil

Lighting Accumulation RGB Intensity

Normal X (FP16) Normal Y (FP16)
Motion Vectors XY Spec-Power Spec-Intensity

Diffuse Albedo RGB Sun-Occlusion
Source: W. Engel, “Light-Prepass Renderer Mark 11" SIGGRAPH 2009 Talks

Intuitive to consider G-buffer as one big render target with “fat” pixels
In the example above: 32 x 5 =160 bits = 20 bytes per pixel

96-160 hits per pixel is common in games

Stanford (5248, Winter 2021

Compressed G-buffer layout

G-buffer layout in Bungie’s Destiny (2014)
8 /s (8 /8

Albedo Color RGB Ambient Occlusion RTO
Normal XYZ * (Biased Specular Smoothness) Material ID RT1

Depth st ps

m Material information is compressed
using indirection
- Store material ID in G-buffer
- Material parameters other than
albedo (specular shape/roughness/

color) stored in table indexed by
material ID

Example material ID visualization
Source: N Tatarchuk: SIGGRAPH 2014 Courses, Matt Hoffman Stanford (5248, Winter 2021

Two-pass deferred shading algorithm

m Pass 1: G-buffer generation pass e

- Render complete scene geometry using
traditional pipeline

- Write visible geometry information to G-buffer

After all geometry processing is done...

m Pass 2: shading/lighting pass

For each G-buffer sample (x,y):
- Read G-buffer data for current sample (x,y)

- Compute shading by accumulating contribution
to reflectance of all lights

- Output final surface color for sample (x,y)

Shading/lighting computations are “deferred” until all
geometry processing is complete...

Final Image
Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (5248, Winter 2021

Why is deferred shading so popular in
modern games?

Stanford (5248, Winter 2021

Motivation: why deferred shading?

m Two performance reasons:

m Shading is expensive: deferred shading shades only visible

fragments

- Exactly one shade per output screen sample, regardless of the number of
triangles in the scene (minimal amount of work + predictable shading
performance that is independent of scene size or triangle submission order)

m Forward rendering shades small triangles inefficiently

Stanford (5248, Winter 2021

GPUs shade at the granularity of 2x2 fragments

(“quad fragment” is the minimum granularity of rasterization output and shading)

Enables cheap computation of

texture coordinate differentials

(cheap: derivative computation
leverages shading work that must be
done by adjacent fragment anyway)

All quad fragments are shaded

independently

(communication is between fragments
in a quad fragment, no communication
required between quad fragments)

O
O

Stanford (5248, Winter 2021

Implication: multiple fragments get shaded for pixels

near triangle boundaries
Shading computations per pixel

Small triangles result in extra shading

Shaded quad fragments per pixel

(early-zis enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)

100 pixel-area triangles 10 pixel-area triangles 1 pixel-area triangles

-+

- N W £ U1 O N O

Want to sample appearance approximately once per surface per pixel (assuming correct texture filtering)
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad fragments)
Stanford (5248, Winter 2021

Motivation: why deferred shading?

m Shade only visible surface fragments

m Forward rendering shades small triangles inefficiently (quad-
fragment granularity)

m Scalability to increasingly complex lighting environments

Stanford (5248, Winter 2021

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk] Stanford (5248, Winter 2021

Forward rendering: naive multiple-light shader

struct LightDefinition {
int type;

uniform sampler2D myTex;

uniform sampler2DArray myEnvMaps[MAX_NUM_LIGHTS];
uniform sampler2DArray myShadowMaps[MAX NUM LIGHTS];
LightDefinition 1ightList[MAX_NUM_LIGHTS];

int numLights;

in vec3 norm;
in vec3 uv;
out vec4 fragColor;

void main() {
vec3 kd = texture(myTex, uv);
vec4 result = vec4(o, 0, 0, 0);
for (int i=0; i<numLights; i++) {
result += ..

fragColor = result;

stanford (5248, Winter 2021

Rendering as a triple “for” loop

Naive forward rasterization-based renderer:

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
bind all relevant light data in buffers: light descriptors, shadow maps, etc.
for each triangle t in scene: // loop 1: triangles
t_proj = project_triangle(t)
for each sample s in frame buffer: // loop 2: visibility samples
if (t_proj covers s)

accumulate contribution of light 1 to surface appearance

if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

Triangles are outermost loop: Efficient rasterization techniques (tiled,
hierarchical, bounding boxes) serve to reduce

T x S complexity of finding covered samples.

Stanford (5248, Winter 2021

Rendering as a triple “for” loop

Naive forward rasterization-based renderer:

initialize z closest[] to INFINITY // store closest surface-so-far for all samples
initialize color|] // store scene color for all samples
bind all relevant shadow maps, etc.
for each triangle t in scene: // loop 1: triangles
t_proj = project_triangle(t)
for each sample s in frame buffer: // loop 2: visibility samples
if (t_proj covers s)

accumulate contribution of light 1 to surface appearance

if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

F X L loop: # fragments X # lights
In practice: not all lights illuminate all surfaces

Would like to be more efficient in computing these interactions
(just like we were efficient computing triangle/visibility sample interactions)
Stanford (5248, Winter 2021

Naive many-light shader with culling

struct LightDefinition {
int type;

B Large footprint:

Assets for all lights (shadow maps, environment
maps, etc.) must be allocated and bound to pipeline
uniform sampler2D myTex;
uniform sampler2DArray myEnvMaps[MAX_NUM_LIGHTS];
uniform sampler2DArray myShadowMaps[MAX_NUM_LIGHT

LightDefinition 1lightList[MAX_NUM_LIGHTS];
int numLights;

SIMD execution divergence:

in vec3 norm; 1.Different outcomes for “is illuminated” predicate

in vec3 uv;
out vec4 fragColor; 2.Different logic to perform predicate
/ (based on light type)
void shader() {
vec3 kd = texture(myTex, uv); 3.Different logicin loop body (based on light type,
vecd result = float4(o, 0, 0, 0); shadowed/unshadowed, etc.)
for (int i=0; i<numLights; i++) {

if (this fragment is illuminated by current light) {
if (lightList[i].type == SPOTLIGHT)
result += // eval contribution of light here
else if (lightList[i].type == POINTLIGHT) Work inefﬁcient:
result += // eval contribution of light here
else if ...

O(F x L) work
}
F = number of fragments
} _ .
fragColor = result; L = number of lights

}

Predicate evaluated for each fragment/light pair:

Stanford (5248, Winter 2021

Forward rendering: techniques for scaling to many lights

m Goal: avoid performing F x L “is-illuminated” checks

m One solution: application maintains per-object light lists

- Each scene object maintains list of lights that illuminate it

- (PU computes this list each frame by intersecting light volumes with
scene geometry
(light-geometry interactions computed per light-object pair, not light-
fragment pair)

Stanford (5248, Winter 2021

Light lists
Example: compute lists based on conservative bounding volumes
for lights and scene objects

L3

L4

Resulting per-object lists:
Obj1: 11

Obj 2: L2

Obj 3:12

Obj4:12,1L4

Obj5:13,L4

Stanford (5248, Winter 2021

Recall: rendering as a triple for-loop

Naive forward rasterization-based renderer:

initialize z closest[] to INFINITY // store closest surface-so-far for all samples
initialize color|] // store scene color for all samples
bind all relevant shadow maps, etc.
for each triangle t in scene: // loop 1: triangles
t_proj = project_triangle(t)
for each sample s in frame buffer: // loop 2: visibility samples
if (t_proj covers s)
for each light 1 in scene: // loop 3: lights
accumulate contribution of light 1 to surface appearance
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

Stanford (5248, Winter 2021

Reordering triangles for light coherence

In this example, shader code is specialized to use exactly 4 lights:

initialize z closest[] to INFINITY // store closest surface-so-far for all samples
initialize color|] // store scene color for all samples
bind all relevant shadow maps, etc.
for each group of triangles with the same number of lights: // loop O: groups of triangles
bind specific shader for number of lights
for each triangle t in group: // loop 1: triangles
t_proj = project_triangle(t)
for each sample s in frame buffer: // loop 2: visibility samples
if (t_proj covers s)
for lights © through 3: // loop 3: lights (specialized for 4 lights)
accumulate contribution of light 1 to surface appearance
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

Stanford (5248, Winter 2021

Forward rendering: techniques for scaling to many lights

m Application maintains light lists
- Computed conservatively per frame

m Option 1: draw scene in many small batches

- First generate data structures for all lights: e.qg., shadow maps
- Before drawing each object, only send data for relevant lights to graphics
pipeline
- Programmer writes different variants of shader that are specialized for
different numbers of lights (4-light version, 8-light version...)
- Implications:
- Good: very efficient shaders with fewer conditionals
- Bad: many “small” draw commands to sent to GPUs

Stanford (5248, Winter 2021

“Multi-pass” rendering for light coherence

initialize z closest[] to INFINITY // store closest surface-so-far for all samples
initialize color|] // store scene color for all samples

assume z buffer is initialized using a z prepass.
for each light 1in scene: //loopl:lights
bind single light shader specific to current light type
bind relevant shadow map, etc.
for each triangle t 1lit by light: // loop 2: triangles
t _proj = project_triangle(t)
for each sample s in frame buffer: // loop 3: visibility samples
if (t_proj covers s)
accumulate contribution of light 1 to surface appearance // specialized to 1 light
if (depth of t == z_closest[s])
update color[s]

Reorder loops: draw scene once per light
Each pass, only draw triangles illuminated by current light (per-light object lists)

Shader accumulates illumination of visible fragments from current light into frame buffer

Stanford (5248, Winter 2021

Forward rendering: techniques for scaling to many lights

m Application maintains light lists

m QOption 1: draw scene in many small batches

- First generate data structures for all lights: e.g., shadow maps
- Compute per-object light lists, before drawing each object, only bind data for relevant lights

- Precompile specialized shaders for different sets of bound lights (4-light version, etc...)
- For each object:

- Render object with specialized shader for relevant lights
- Good: can use specialized fragment shader for current type/number of lights

- Bad: many draw comments to GPU (draw command = single object, or small group of objects
with the same number of lights)

m (Option 2: multi-pass rendering

- Compute per-light lists (for each light, compute illuminated objects)
= For each light:
- Compute necessary data structures (e.g., shadow maps)
= Render scene with additive blending (only render geometry illuminated by light)
= Good: Minimal footprint for light data
= Good: can use specialized fragment shader for current type/number of lights

- Bad: significant overheads: redundant geometry processing, many G-buffer accesses,
redundant execution of common shading sub-expressions in fragment shader

Stream
over
scene
geometry

Stream
over
lights

Stanford (5248, Winter 2021

Basic many light deferred shading algorithm

initialize z_closest[] to INFINITY // store closest-surface-so-far for all sample
initialize gbuffer|] // store surface information for all samples
for each triangle t in scene: // loop 1: triangles
t _proj = project_triangle(t) Phase 1:
for each sample s in frame buffer: // loop 2: visibility samples Gene::te
G-buffer

if (t_proj covers s)
emit geometry information
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and gbuffer|[s]

initialize color|] // store color for all samples

bind single light shader specific to current light type

bind relevant shadow map, etc. Phase 2:
for each sample s in frame buffer: // loop 2: visibility samples Shade
load gbuffer[s] G-buffer
accumulate contribution of current light to surface appearance into color|[s]
B Good

— Only process scene geometry once (only in phase 1)
— Quter loop of phase 2 is over lights:
— Avoids light data footprint issues (stream over lights)
— Continues to avoid divergent execution in fragment shader
— Recall other deferred benefits: only shade visibility samples (and no more)

N ?
Bad . Stanford (5248, Winter 2021

Basic many light deferred shading algorithm

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize gbuffer|] // store surface information for all samples
for each triangle t in scene: // loop 1: triangles

t _proj = project_triangle(t)

for each sample s in frame buffer: // loop 2: visibility samples

if (t_proj covers s)
emit geometry information
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and gbuffer|[s]

initialize color|] // store color for all samples

bind single light shader specific to current light type
bind relevant shadow map, etc.
for each sample s in frame buffer: // loop 2: visibility samples

load gbuffer|[s]
accumulate contribution of current light to surface appearance into color|[s]

® Bad:
— High G-buffer footprint: G-buffer has large footprint (especially when G-buffer is supersampled!)
— High bandwidth costs (read G-buffer each pass, output to frame buffer)
— Exactly one shading computation per frame-buffer sample
— Does not support transparency (need multiple fragments per pixel)
— Supersampling for anti-aliasing becomes expensive

Stanford (5248, Winter 2021

Reducing deferred shading bandwidth costs

B Only perform shading computations for G-buffer samples illuminated by light

- Technique 1: rasterize geometry of light volume (only generate fragments for covered G-buffer samples)

- Light-fragment interaction predicate is evaluated by rasterizer, not in shader

- Technique 2: (PU computes screen-aligned quad covered by light volume, renders quad

- Many other techniques for culling light/G-buffer sample interactions

/

Light volume geometty —MM8M@Mm™@™M ¥ ™

If volume is convex, rendering only the front-facing
triangles of the light volume will generate fragments in
the yellow shaded region

(these are the only g-buffer samples that can be effected
by the light)

Stanford (5248, Winter 2021

Scene with 256 lights

Stanford (5248, Winter 2021

Visualization of light-sample interaction count

Per-light culling is performed using a screen-aligned quad per light
(depth of quad is nearest point in light volume: early Z will cull fragments behind scene geometry)

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen Stanford (5248, Winter 2021

Screen tiled-based light culling

Main idea: build list of lights that effect each screen tile (not each object)
Project light volume, then intersect in 2D with tiles

PgpO— — . TRy e o \N
: = RN 3 L |
fl bl = U | b\ 4
) .) * wistd PO R b
4 - -
[(- [
- - -« -y
v — Bl — = 13
. ! i = . -} - & 4
SN
- 'y ~
_— — 1 Py o .
i BB e Zel o =
L ! - = e e
————— o e . . B T
—_— ———— . —————— e — e - = g - . —_ et
- — . e
- =
Vi
‘h...
Wl

IIow boxes: screen-aligned light volume bounding boxes

Blue boxes: screen tile boundaries
Image credit: HMREngine: http://www.hmrengine.com/blog/?p=399 Stanford €5248, Winter 2021

Tile-based deferred shading: better light culling efficiency

(16x16 granularity of light culling is apparent in figure)

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen Stanford (5248, Winter 2021

Challenge: anti-aliasing geometry
in a deferred renderer

Stanford (5248, Winter 2021

Supersampling in a deferred shading system

m |nassignment 1, you anti-aliased rendering via supersampling

Stored N color samples and N depth samples per pixel

m Deferred shading makes supersampling challenging due to large
amount of information that must be stored per pixel

3840 x 2160 (4K display)
8 samples per pixel

20 bytes per G-buffer sample

= 670MB G-buffer
(80 GB/sec of memory bandwidth just to read and write the G-buffer at 30 fps)

Stanford (5248, Winter 2021

Morphological anti-aliasing (MLAA) seeonos

Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

8 8 .

7F 7’_*““ |

GF— 6

S S

: c o

3 ‘ 3

2 2

1 1

a b ¢ d e f g h g h

Z-shapes:] o l—-| I—j Z and U shape decomposition into L-shapes:
Ushapes: L1 M |1 [. r
L-shapes: —L | | [S 1

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing.
Stanford (5248, Winter 2021

Morphological anti-aliasing (MLAA) seeonos

Aliased image Zoomed views After filtering using MLAA
(one shading sample per pixel) (top: aliased, bottom: after MLAA)

Stanford (5248, Winter 2021

Modern trend: learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Stanford (5248, Winter 2021

Learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Traditional Heuristic (TXAA) Learned AA (DLSS)

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/ Stanford (5248, Winter 2021

Summary: deferred shading

® Very popular technique in modern games
m (reative use of graphics pipeline
- (Create a G-buffer, not a final image

B Two major motivations

- (Convenience and simplicity of separating geometry processing logic/
costs from shading costs

- Potential for high performance under complex lighting and shading
conditions

- Shade only once per sample despite triangle overlap
- Often more amenable to “screen-space shading techniques”

- e.g., screen space ambient occlusion

Stanford (5248, Winter 2021

