Lecture 10:

Basics of
 Materials and Lighting

Interactive Computer Graphics
Stanford CS248, Winter 2021

"Shading" in drawing

- Depicting the appearance of the surface
- Due to factors like surface material, lighting conditions

MC Escher pencil sketch

Lighting

Lighting

Credit: Wikipedia (Nasir ol Molk Mosque)

Lighting

Materials: diffuse

Materials: plastic

Materials: red semi-gloss paint

Materials: Ford mystic lacquer paint

Materials: mirror

Materials: gold

Renderer measures light energy along a ray

Renderer measures light energy along a ray

Shading the surface point is computing the amount of light reflected off point toward the camera

Multiple light sources

Mini-tutorial on radiometry (much more in CS348B)

Light is electromagnetic radiation that is visible to eye

What do lights do?

- Physical process converts input energy into photons
- Each photon carries a small amount of energy
- Over some amount of time, light fixture consumes some amount of energy, Joules
- Some input energy is turned into heat, some into photons
- Energy of photons hitting an object ~ exposure
- Film, sensors, sunburn, solar panels, ...
- In graphics we generally assume "steady state" process
- Rate of energy consumption = power, Watts (Joules/second)

Cree 11 W LED light bulb
("60 Watt" incandescent replacement)

Measuring illumination: radiant flux (power)

- Given a sensor, we can count how many photons reach it
- Over a period of time, gives the power received by the sensor
- Given a light, consider counting the number of photons emitted by it
- Over a period of time, gives the power emitted by the light
- Energy carried by a photon:

$$
\begin{aligned}
Q & =\frac{h c}{\lambda} \\
h & \approx 6.626 \times 10^{-34}
\end{aligned}
$$

Measuring illumination: radiant flux (power)

- Flux: energy per unit time (Watts) received by the sensor (or emitted by the light)

$$
\Phi=\lim _{\Delta \rightarrow 0} \frac{\Delta Q}{\Delta t}=\frac{\mathrm{d} Q}{\mathrm{~d} t}\left[\frac{\mathrm{~J}}{\mathrm{~s}}\right]
$$

- Time integral of flux is total radiant energy

$$
Q=\int_{t_{0}}^{t_{1}} \Phi(t) \mathrm{d} t
$$

Spectral power distribution

- Describes distribution of energy by wavelength

Cool White LED

Fluorescent

Warm White LED

Figure credit:

"Warm" vs. "cool" white light LED

Measuring illumination: irradiance

- Flux: time density of energy
- Irradiance: area density of flux

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

$$
\frac{\Phi}{A}
$$

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

$$
E(\mathrm{p})=\lim _{\Delta \rightarrow 0} \frac{\Delta \Phi(\mathrm{p})}{\Delta A}=\frac{\mathrm{d} \Phi(\mathrm{p})}{\mathrm{d} A}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
$$

Beam power in terms of irradiance

Consider beam with flux Φ incident on surface with area A

Projected area

Consider beam with flux Φ incident on angled surface with area A^{\prime}

$A=$ projected area of surface relative to direction of beam

Lambert's Law

Irradiance at surface is proportional to cosine of angle between

 light direction and surface normal.

$$
E=\frac{\Phi}{A^{\prime}}=\frac{\Phi \cos \theta}{A}
$$

Why do we have seasons?

Earth's axis of rotation: $\boldsymbol{\sim} \mathbf{2 3 . 5}{ }^{\circ}$ off axis

Irradiance falloff with distance

Assume light is emitting flux Φ in a uniform angular distribution

Compare irradiance at surface of two spheres:

$$
\begin{aligned}
& E_{1}=\frac{\Phi}{4 \pi r_{1}^{2}} \\
& E_{2}=\frac{\Phi}{4 \pi r_{2}^{2}} \\
& \frac{E_{2}}{E_{1}}=\frac{r_{1}^{2}}{r_{2}^{2}}
\end{aligned}
$$

Why does a room get darker farther from a light source?

Measuring illumination: radiance

Radiance (L) is irradiance per unit direction.

In other words, radiance is energy along a ray defined by origin point p and direction ω

How much light hits the surface at point p

(irradiance at point P1)
$L_{i} \cos \theta$

How much light hits the surface at point p

(irradiance at point P1)
$\sum_{i} L_{i} \cos \theta_{i}$

Types of lights

- Attenuated omnidirectional point light
(emits equally in all directions, intensity falls off with distance: $1 / \mathbf{R}^{2}$ falloff)

- Infinite directional light in direction d
(infinitely far away, all points in scene receive light with radiance L from direction d

Point light with shadows

Spot light

(does not emit equally in all directions)

Or, if spotlight intensity falls off from direction d
$L(\mathbf{w}) \approx \mathbf{w} \cdot \mathbf{d}$

Spot light

Environment light (represented by texture map)

Pixel (\mathbf{x}, \mathbf{y}) stores radiance \mathbf{L} from direction (ϕ, θ)

Review of spherical coordinates

So far. . . we've discussed how to compute the light arriving at a surface point (radiance along incoming ray)

But goal is to compute what fraction of that light is reflected toward a camera!

How much light hits the surface at point p?

(irradiance at point P1)
$\sum_{i} L_{i} \cos \theta_{i}$

How much light is REFLECTED from p toward po?

Bidirectional reflectance distribution function (BRDF)

- Gives fraction of light arriving at surface point P from direction \mathbf{w}_{i} is reflected in direction w_{0}

$$
f\left(\mathbf{p}, \omega_{i}, \omega_{o}\right)
$$

Reflection models

- Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident (same) side without change in frequency
- Choice of reflection function determines surface appearance

What is this material?

Light is scattered equally in all directions

Diffuse / Lambertian material

Uniform colored diffuse BRDF
Albedo (fraction of light reflected) is same for all surface points p

Textured diffuse BRDF
Albedo is spatially varying, and is encoded in texture map.

What is this material?

Glossy material (BRDF)

Copper

Aluminum
[Mitsuba renderer, Wenzel Jakob, 2010]

What is this material?

Perfect specular reflection

[Zátonyi Sándor]

Perfect specular reflection

Calculating direction of specular reflection

Top-down view
(looking down on surface)

$\phi_{o}=\left(\phi_{i}+\pi\right) \bmod 2 \pi$
$\omega_{o}+\omega_{i}=2 \cos \theta \overrightarrow{\mathrm{n}}=2\left(\omega_{i} \cdot \overrightarrow{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}$

$$
\omega_{o}=-\omega_{i}+2\left(\omega_{i} \cdot \overrightarrow{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}
$$

How might you render a specular surface

- Compute direction from surface point p to camera $=w_{0}$
- Given normal at p, compute reflection direction w_{i}
- Light reflected in direction w_{0} is light arriving from direction w_{i}
- How do you measure light arriving from w_{i} ?

One idea...
look up amount in environment map! (more on this later)

Pixel (\mathbf{x}, \mathbf{y}) stores radiance \mathbf{L} from direction (ϕ, θ)

Some basic reflection functions

- Ideal specular

Perfect mirror

- Ideal diffuse

Uniform reflection in all directions

- Glossy specular

Majority of light distributed in reflection direction

- Retro-reflective

Reflects light back toward source

Diagrams illustrate how incoming light energy from

More complex materials

Isotropic / anisotropic materials (BRDFs)

- Key: directionality of underlying surface

Isotropic

Surface (normals)

BRDF (fix wi, vary wo)

Anisotropic BRDFs

Reflection depends on azimuthal angle ϕ
$f_{r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \neq f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)$
Results from oriented microstructure of surface, e.g., brushed metal

Anisotropic BRDF: Nylon

[Westin et al. 1992]

Anisotropic BRDF: Velvet

[Westin et al. 1992]

Anisotropic BRDF: Velvet

What is this material?

Ideal reflective / refractive material (BxDF *)

[Mitsuba renderer, Wenzel Jakob, 2010]

Air <-> water interface

Air <-> glass interface (with absorption)

[^0]
Transmission

In addition to reflecting off surface, light may be transmitted through surface.

Light refracts when it enters a new medium.

Snell's Law

Transmitted angle depends on index of refraction of medium incident ray is in and index of refraction of medium light is entering.

Medium	η^{*}
Vacuum	1.0
Air $($ sea level $)$	1.00029
Water $\left(20^{\circ} \mathrm{C}\right)$	1.333
Glass	$1.5-1.6$
Diamond	2.42

* index of refraction is wavelength dependent (these are averages)

Fresnel reflection

Many real materials: reflectance increases w/ viewing angle

Snell + Fresnel: example

Subsurface scattering

- Visual characteristics of many surfaces caused by light entering at different points than it exits
- Violates a fundamental assumption of the BRDF
- Need to generalize scattering model (BSSRDF)

[Jensen et al 2001]

[Donner et al 2008]

Translucent materials: Jade

Translucent materials: skin

Translucent materialsi leaves

BRDF

BSSRDF

(models subsurface scatterifg of light)

Parameters to Disney BRDF

Pattern generation vs. BRDF

In practice, it is convenient to separate computation of spatially varying BRDF parameters (like albedo, shininess, etc.) from the reflectance function itself

Example 2:
Different textures defining different spatially varying BRDF input parameters

Example 1: albedo value at surface point is given by expression combining multiple textures

Unity's shader graph

graphs/TextureDissolve

Properties			Add
Albedo	63Player_D	\bigcirc	Remove
Normal	Player_NRM	-	Remove
Emission	['Player_E	-	Remove
Metallic	W3:Player_M	○	Remove
Dissolve Amount	-0.2		Remove
Dissolve Texture	聇noise_08	○	Remove
Dissolve Texture T	$\times 1$		Remove
Dissolve Split Widtl	0.1		Remove

[^1]
Fragment processing stage of graphics pipeline evaluates surface appearance

GLSL shader programs

Define behavior of vertex processing and fragment processing stages of pipeline Describe operation on a single vertex (or single fragment)

Example GLSL fragment shader program

```
uniform sampler2D myTexture; }\\mathrm{ Program parameters
uniform vec3 lightDir; $/ light direction
uniform vec3 Li; // light intensity
in vec2 uv;
in vec3 norm;
```



``` (interpolated by rasterizer)
out vec4 fragColor;
                                    Sample surface albedo
void diffuseShader() {
                                    (reflectance color) from texture
    vec3 kd = texture(myTexture, uv);
    vec3 in_light = Li * clamp(dot(-lightDir, norm), 0.0, 1.0);
    fragColor = vec4(kd * in_light, 1.0);
}
    Diffuse brdf: f(wo, wi) = kd
    incoming light reflected equally in all directions
    Output color
    (fraction reflected = kd)
```

Shader function executes once per fragment.

Outputs color of surface at sample point corresponding to fragment.
(this shader performs a texture lookup to obtain the surface's material color at this point, then performs a simple lighting computation)

Summary

- Appearance of a surface is determined by:
- The amount of light reaching the surface from different directions
- Surface irradiance: the amount of light arriving at a surface point
- Radiance: the amount of light arriving at a surface point from a given direction
- The reflectance properties of the surface:
- BRDF $\left(w_{i}, w_{0}\right)$: the fraction of energy from direction w_{i} reflected in direction w_{0}
- CS348B covers the physics of lighting and material models in great detail!

Acknowledgements

- Thanks to Keenan Crane, Ren Ng, Pat Hanrahan and Matt Pharr for presentation resources

[^0]: * X stands in for reflectance " r ", scattering, transmission, etc.

[^1]: Player

