Lecture 7:

Digital Geometry Processing

Interactive Computer Graphics
Stanford CS248, Winter 2022
A small triangle mesh

8 vertices, 12 triangles
A large triangle mesh

David
Digital Michelangelo Project
28,184,526 vertices
56,230,343 triangles
Even larger meshes

Google Earth
Meshes reconstructed from satellite and aerial photography
Trillions of triangles
Recall: image upsampling

Convert representation of signal given by samples taken at black dots (sparse) into a representation given at new set of denser samples (red dots)
Recall: image upsampling

Upsampling via Nearest neighbor interpolation
Recall: image upsampling

Upsampling via bilinear interpolation
Recall: image downsampling
Recall: image resampling
Examples of geometry processing
Mesh upsampling — subdivision

Increase resolution via interpolation
Mesh downsampling — simplification

Decrease resolution; try to preserve shape/appearance
Mesh resampling — regularization

Modify sample distribution to improve quality
More geometry processing tasks

- reconstruction
- remeshing
- shape analysis
- parameterization
- filtering
- compression
Today

- How to represent meshes (data structures)

- How to perform a number of basic mesh processing operations
 - Subdivision (upsampling)
 - Mesh simplification (downsampling)
 - Mesh resampling
Mesh representations
Basic mesh representation: list of triangles

```
tris[0]  tris[1]
[0]      [1]      [2]
```

- tris[0]:
 - x_0, y_0, z_0
 - x_2, y_2, z_2
 - x_1, y_1, z_1

- tris[1]:
 - x_0, y_0, z_0
 - x_3, y_3, z_3
 - x_2, y_2, z_2

Points:
- (x_0, y_0, z_0)
- (x_1, y_1, z_1)
- (x_2, y_2, z_2)
- (x_3, y_3, z_3)
Another representation:
Lists of vertexes / indexed triangle

\[
\begin{align*}
\text{verts[0]} & \quad x_0, y_0, z_0 \\
\text{verts[1]} & \quad x_1, y_1, z_1 \\
& \quad x_2, y_2, z_2 \\
& \quad x_3, y_3, z_3 \\
& \quad \vdots \\
\text{tInd[0]} & \quad 0, 2, 1 \\
\text{tInd[1]} & \quad 0, 3, 2 \\
& \quad \vdots
\end{align*}
\]
Comparison

- **List of triangles**
 - **GOOD**: simple
 - **BAD**: contains redundant per-vertex information

- **List of vertexes + list of indexed triangles**
 - **GOOD**: sharing vertex position information reduces memory usage
 - **GOOD**: ensures integrity of the mesh (changing a vertex’s position in 3D space causes that vertex in all the polygons to move)
Mesh topology vs surface geometry

Same vertex positions, different mesh topology

Notice different connectivity

Same topology, different vertex positions
Topological validity: manifold

- Recall, a 2D manifold is a surface that when cut with a small sphere always yields a disk (or a half disk on the boundary)
Manifolds have useful properties

- A 2D manifold is a surface that when cut with a small sphere always yields a disk
- If a mesh is manifold, we can rely on these useful properties:
 - An edge connects exactly two faces
 - An edge connects exactly two vertices
 - A face consists of a ring of edges and vertices
 - A vertex consists of a ring of edges and faces
 - Euler’s polyhedron formula holds: $\#f - \#e + \#v = 2$
 (for a surface topologically equivalent to a sphere)
 (Check for a cube: $6 - 12 + 8 = 2$)

* Some of these properties only apply to non-border mesh regions
Topological validity: orientation consistency

Both facing front

Inconsistent orientations

Non-orientable (e.g., Moebius strip)

Simple example: triangle-neighbor data structure

// definition of a triangle
struct Tri {
 Vert* v[3];
 Tri* t[3];
}

// definition of a triangle vertex
struct Vert {
 Vec3 pos;
 Tri* t;
}
Triangle-neighbor – mesh traversal

Find next triangle counter-clockwise around vertex v from triangle t

```c
Tri* ccw_tri(Vert *v, Tri *t) {
    if (v == t->v[0])
        return t[0];
    if (v == t->v[1])
        return t[1];
    if (v == t->v[2])
        return t[2];
}
```
Half-edge data structure

struct Halfedge {
 Halfedge *twin,
 Halfedge *next;
 Vertex *vertex;
 Edge *edge;
 Face *face;
}

struct Vertex {
 Vec3 pos;
 Halfedge *halfedge;
}

struct Edge {
 Halfedge *halfedge;
}

struct Face {
 Halfedge *halfedge;
}

Key idea: two half-edges act as “glue” between mesh elements

Each vertex, edge and face points to one of its half edges
Half-edge structure facilitates mesh traversal

- Use twin and next pointers to move around mesh
- Process vertex, edge, and/or face pointers

Example 1: process all vertices of a face

```c
Halfedge* h = f->halfedge;
do {
    do_work(h->vertex);
    h = h->next;
} while( h != f->halfedge );
```
Half-edge structure facilitates mesh traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {
 do_work(h->edge);
 h = h->twin->next;
}
while(h != v->halfedge);
Local mesh operations
Half-Edge – local mesh editing

- Consider basic operations for linked list: insert, delete
- Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers
(Care is needed to preserve mesh manifold property)
Half-edge – edge flip

Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

- Long list of half-edge pointer reassignments
- However, no mesh elements created/destroyed
Half-edge – edge split

Insert midpoint m of edge (c,b), connect to get four triangles:

- Must add elements to mesh (new vertex, faces, edges)
- Again, many half-edge pointer reassignments
Half-edge – edge collapse

Replace edge (c,d) with a single vertex m:

- Must delete elements from the mesh
- Again, many half-edge pointer reassignments
Global mesh operations: geometry processing

- Mesh subdivision (form of subsampling)
- Mesh simplification (form of downsampling)
- Mesh regularization (form of resampling)
Subdivision — upsampling a mesh
Upsampling via subdivision

- Repeatedly split each element into smaller pieces
- Replace vertex positions with weighted average of neighbors

Main considerations:
- interpolating vs. approximating
- limit surface continuity (C^1, C^2, ...)
- behavior at irregular vertices

Many options:
- Quad: Catmull-Clark
- Triangle: Loop, butterfly, $\sqrt{3}$
Loop subdivision

Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating
Loop subdivision algorithm

- Split each triangle into four

- Compute new vertex positions using weighted sum of prior vertex positions:

New vertices
(weighted sum of vertices on split edge, and vertices “across from” edge)

Old vertices
(weighted sum of edge adjacent vertices)

\[n = \text{vertex degree} \]
\[u = \frac{3}{16} \text{ if } n=3, \frac{3}{8n} \text{ otherwise} \]
Loop subdivision algorithm

Example, for degree 6 vertices ("regular" vertices)
Loop subdivision results

Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating

Credit: Simon Fuhrman
Semi-regular meshes

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6

Must have a few extraordinary points (degree not equal to 6)
Proof: always an extraordinary vertex

Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles

\[E = \frac{3}{2} T \]
- There are 3 edges per triangle, and each edge is part of 2 triangles
- Therefore $E = \frac{3}{2}T$

\[T = 2V - 4 \]
- Euler Convex Polyhedron Formula: $T - E + V = 2$
- $\Rightarrow V = \frac{3}{2} T - T + 2 \Rightarrow T = 2V - 4$

If all vertices had 6 triangles, $T = 2V$
- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, $E = \frac{6}{2}V \Rightarrow \frac{3}{2}T = \frac{6}{2}V \Rightarrow T = 2V$

T cannot equal both $2V - 4$ and $2V$, a contradiction
- Therefore, the mesh cannot have 6 triangles for every vertex
Loop subdivision via edge operations

First, split edges of original mesh in any order:

Next, flip new edges that touch a new and old vertex:

(Don’t forget to update vertex positions!)
Continuity of loop subdivision surface

- At extraordinary vertices
 - Surface is at least C^1 continuous

- Everywhere else ("ordinary" regions)
 - Surface is C^2 continuous
Loop subdivision results
Catmull-Clark Subdivision
Catmull-Clark subdivision (regular quad mesh)
Catmull-Clark subdivision (regular quad mesh)
Catmull-Clark subdivision (regular quad mesh)

Each subdivision step:
- Add vertex in each face
- Add midpoint on each edge
- Connect all new vertices
Catmull-Clark vertex update rules (quad mesh)

Face point

\[f = \frac{v_1 + v_2 + v_3 + v_4}{4} \]

Edge point

\[e = \frac{v_1 + v_2 + f_1 + f_2}{4} \]

Vertex point

\[v = \frac{f_1 + f_2 + f_3 + f_4 + 2(m_1 + m_2 + m_3 + m_4) + 4p}{16} \]

- \(m \) midpoint of edge, not "edge point"
- \(p \) old "vertex point"
Catmull-Clark subdivision (general mesh)

Each subdivision step:
- Add vertex in each face
- Add midpoint on each edge
- Connect all new vertices

Non-quad face

Extraordinary vertex (valence ≠ 4)
Catmull-Clark subdivision (general mesh)

How many extraordinary vertices after first subdivision?
What are their valences?
How many non-quad faces?
Catmull-Clark subdivision (general mesh)
Catmull-Clark subdivision (general mesh)
Catmull-Clark vertex update rules (general mesh)

\[f = \text{average of surrounding vertices} \]

\[e = \frac{f_1 + f_2 + v_1 + v_2}{4} \]

These rules reduce to earlier quad rules for ordinary vertices / faces

\[v = \frac{\bar{f}}{n} + \frac{2\bar{m}}{n} + \frac{p(n-3)}{n} \]

\[\bar{m} = \text{average of adjacent midpoints} \]
\[\bar{f} = \text{average of adjacent face points} \]
\[n = \text{valence of vertex} \]
\[p = \text{old "vertex" point} \]
Continuity of Catmull-Clark surface

- At extraordinary points
 - Surface is at least C^1 continuous

- Everywhere else (“ordinary” regions)
 - Surface is C^2 continuous
What about sharp creases?

From Pixar Short, “Geri’s Game”
Hand is modeled as a Catmull Clark surface with creases between skin and fingernail
What about sharp creases?

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases
Creases and boundaries

- Can create creases in subdivision surfaces by marking certain edges as “sharp”. Surface boundary edges can be handled the same way.
 - Use different subdivision rules for vertices along these “sharp” edges.

![Diagram showing crease creation](image)

- Insert new midpoint vertex, weights as shown.
- Update existing vertices, weights as shown.
Subdivision in action (“Geri’s Game”, Pixar)

- Subdivision used for entire character:
 - Hands and head
 - Clothing, tie, shoes
Mesh simplification (downsampling)
How do we resample meshes? (reminder)

- Edge split is (local) upsampling:

- Edge collapse is (local) downsampling:

- Edge flip is (local) resampling:

- Still need to intelligently decide which edges to modify!
Mesh simplification

Goal: reduce number of mesh elements while maintaining overall shape

30,000 triangles
3,000
300
30
Estimate: error introduced by collapsing an edge?

How much geometric error is introduced by collapsing an edge?
Sketch of Quadric Error
Mesh Simplification
Simplification via quadric error

- Iteratively collapse edges
- Which edges? Assign score with quadric error metric*
 - Approximate distance to surface as sum of squared distances to planes containing nearby triangles
 - Iteratively collapse edge with smallest score
 - Greedy algorithm... great results!

* (Garland & Heckbert 1997)
Distance from point to a line (and a plane)

Line is defined by:
- Its normal: \(N \)
- A point \(x_0 \) on the line

The line (in 2D) is all points \(x \), where \(x - x_0 \) is orthogonal to \(N \).
(And a plane (in 3D) is all points \(x \) where \(x - x_0 \) is orthogonal to \(N \).)

(N, \(x \), \(x_0 \) are 2-vectors)

Distance to line:
\[N \cdot (x - x_0) = 0 \]
\[N^T(x - x_0) = 0 \]
\[N^T x = N^T x_0 \]
\[N^T x = c \]
Quadric error matrix (encodes squared distance)

- Suppose we have:
 - a query point \((x,y,z)\)
 - a normal \((a,b,c)\)
 - an offset \(d := -(x_p,y_p,z_p) \cdot (a,b,c)\)

- Then in homogeneous coordinates, let
 - \(u := (x,y,z,1)\)
 - \(v := (a,b,c,d)\)

- Signed distance to plane is then
 \[D = u^T v = v^T u = ax + by + cz + d \]

- Squared distance is \(D^2 = (u^T v)(v^T u) = u^T (v v^T) u := u^T Q u\)

- Distance is 2\(^\text{nd}\) degree ("quadric") polynomial in \(x,y,z\)
Cost of edge collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint V_{mid}, measure quadric error at this point
- Error at V_{mid} given by $v_{\text{mid}}^T(Q_0 + Q_1)v_{\text{mid}}$
- Intuition: cost is sum of squared differences to original position of triangles now touching V_{mid}

Better idea: choose point on edge (not necessarily the midpoint) that minimizes quadric error

More details: Garland & Heckbert 1997
"Quadric error metric at mesh vertex"

Heuristic: “error metric at vertex V” is sum of squared distances to triangles connected to V

Encode this as a single quadric matrix per vertex that is the sum of quadric error matrices for all triangles

$$Q_V = \sum_{i=1}^{N} Q_i$$
Quadric error simplification: algorithm

- Compute quadric error matrix Q for each triangle’s plane
- Set Q at each vertex to sum of Q’s from neighbor triangles
- Set Q at each edge to sum of Q’s at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target # of triangles:
 - collapse edge (i,j) with smallest cost to get new vertex m
 - add Q_i and Q_j to get quadric Q_m at vertex m
 - update cost of edges touching vertex m
Quadric error mesh simplification

Garland and Heckbert '97

30,000 triangles
3,000
300
30
Mesh Regularization
What makes a “good” triangle mesh?

- One rule of thumb: triangle shape
- One rule of thumb: triangle shape
- More specific condition: Delaunay
 - “Circumcircle interiors contain no vertices.”
- Not always a good condition, but often*
 - Good for simulation
 - Not always best for shape approximation

*See Shewchuk, “What is a Good Linear Element”
What else constitutes a good mesh?

- Rule of thumb: regular vertex degree
- Triangle meshes: ideal is every vertex with valence 6:

 "GOOD"
 "OK"
 "BAD"

Why? Better triangle shape, important for (e.g.) subdivision:

See Shewchuk, “What is a Good Linear Element”
Isotropic remeshing

Goal: try to make triangles uniform in shape and size
How do we make a mesh “more Delaunay”?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!

- In practice: a simple, effective way to improve mesh quality*

*uh, but may be a worse geometric approximation
How do we improve degree?

- Edge flips!
- If total deviation from degree 6 gets smaller, flip it!

Iterative edge flipping acts like “discrete diffusion” of degree

No (known) guarantees; works well in practice
How do we make triangles “more round”?

- Delaunay doesn’t mean equilateral triangles
- Can often improve shape by centering vertices:

[See Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]
Isotropc remeshing algorithm*

- Repeat four steps:
 - Split edges over \(4/3\)rd mean edge length
 - Collapse edges less than \(4/5\)th mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

* Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”
Things to remember

- Triangle mesh representations
 - Triangles vs points+triangles
 - Half-edge structure for mesh traversal and editing

- Geometry processing basics
 - Local operations: flip, split, and collapse edges
 - Upsampling by subdivision (Loop, Catmull-Clark)
 - Downsampling by simplification (Quadric error)
 - Regularization by isotropic remeshing
Acknowledgements

- Thanks to Keenan Crane, Ren Ng, Pat Hanrahan, James O’Brien, Steve Marschner for presentation resources