
Interactive Computer Graphics
Stanford CS248, Winter 2022

Lecture 11:

Modern Rendering Techniques
Using the Graphics Pipeline

Stanford CS248, Winter 2022Screenshot: Red Dead Redemption

Stanford CS248, Winter 2022Screenshot: Far Cry 5

Stanford CS248, Winter 2022Screenshot: Battle!eld V

Stanford CS248, Winter 2022

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re"ection is visible on a surface?

Last week: ray-scene queries

Virtual
Sensor

Stanford CS248, Winter 2022

Rasterization algorithm for “camera ray”- scene queries
Rasterization is a e#cient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

(Note: not actually uniform distribution in angle… angle between rays is smaller away from view direction)

Stanford CS248, Winter 2022

Review: basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth bu$er

“Given a triangle, !nd the samples it covers”
(!nding the samples is relatively easy since they are distributed uniformly on screen)

More e#cient hierarchical rasterization:
For each TILE of image
 If triangle overlaps tile, check all samples in tile

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Stanford CS248, Winter 2022

Review: basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Stanford CS248, Winter 2022

Theme of this part of the lecture:
A surprising number of advanced lighting e$ects can be e"ciently approximated using the
basic primitives of the rasterization pipeline, without the need to actually ray trace the
scene geometry:

▪ Rasterization

▪ Texture mapping

▪ Depth bu$er for occlusion

Stanford CS248, Winter 2022

OpenGL/Direct3D graphics pipeline
* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized coordinate space

Input: vertices in 3D space1

2

3
4

Stanford CS248, Winter 2022

Review: how much light hits the surface at point p

Pinhole x

y

p0

L1

N

(This is light per unit surface area at point P… irradiance at point P)

✓1
p

✓2

L2

X

i

Li cos ✓i

Stanford CS248, Winter 2022

How much light is REFLECTED from p toward p0

Pinhole x

y

p0

L1

N
✓1

p
✓2

L2

!o = normalize(p0 � p)

L(p,!o) =
X

i

f(p,!i,!o)Li cos ✓i

!1

!2

Stanford CS248, Winter 2022

Some basic re"ection functions
Ideal specular

Ideal di$use

Glossy specular

Retro-re"ective

Diagrams illustrate how incoming light energy from
given direction is re"ected in various directions.

Perfect mirror

Uniform re"ection in all directions

Re"ects light back toward source

Majority of light distributed in re"ection direction

L(p,!o) =
X

i

f(p,!i,!o)Li cos ✓i

Stanford CS248, Winter 2022

Shadows

Stanford CS248, Winter 2022

Shadows

Image credit: Grand Theft Auto V

Stanford CS248, Winter 2022

How much light is REFLECTED from p toward p0

Pinhole x

y

p0

L1

N
✓1

p
✓2

L2

!1

!2

L(p,!o) =
X

i

f(p,!i,!o)V (p,Li)Li cos ✓i

Visibility term:
1, if p is visible from Li
0, otherwise

V (p,Li) =

(

Stanford CS248, Winter 2022

Review: How to compute if a surface is in shadow?

x

P

L1

L2

Stanford CS248, Winter 2022

Review: How to compute using ray tracing
Trace ray from point P to location Li of light source
If ray hits scene object before reaching light
source… then P is in shadow

x

P

L1

L2

V (p,Li) =

(

Image credit: Grand Theft Auto V Stanford CS248, Winter 2022

Convince yourself this algorithm produces “hard shadows” like these
(what you’d see on a sunny day)

Stanford CS248, Winter 2022

Or this…

Stanford CS248, Winter 2022

Point lights generate “hard shadows”
(Either a point is in shadow or it’s not)

x

P

Li1, if p is visible from Li
0, otherwise

V (p,Li) =

(

Stanford CS248, Winter 2022

What if you didn’t have a ray tracer,
just a rasterizer?

Stanford CS248, Winter 2022

We want to shade these points (aka fragments)

L1

Camera
position

What “shadow rays” do you need to compute shading for this scene?

Surface

Stanford CS248, Winter 2022

Shadow mapping (part of assignment 3)

Image credits: Segal et al. 92, NVIDIA

“Shadow map” = depth map from perspective of a point light.
(Stores closest intersection along each shadow ray in a texture)

[Williams 78]

Raytracing [Whitted 1980] and related techniques can accurately
render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

1. Place camera at position of the scene’s point light source
2. Render scene to compute depth to closest object to light along a uniformly spaces

set of “shadow rays” (note: answer is stored in depth bu$er after rendering)
3. Store precomputed shadow ray intersection results in a texture map

Precomputed
shadow rays

Stanford CS248, Winter 2022

Result of shadow texture lookup approximates visibility result when
shading fragment at P

P

L1 Precomputed shadow rays shown in red:
Distance to closest object in scene has been precomputed and
stored in “shadow map”

Camera
position Surface

Bilinear interpolation of shadow map values (red line) only
approximates distance to closest surface point in all directions
from the camera

Stanford CS248, Winter 2022

Interpolation error

P1

L1

Camera
position Surface

P2

(Not in shadow)

(Not actually in shadow,
but in shadow according to shadow map)

P1P2

Shadow map
(depth map computed from L1)

Stanford CS248, Winter 2022Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between
surface point and light directly using ray tracing)

Shadow aliasing due to shadow map undersampling

Stanford CS248, Winter 2022

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Area light

Soft shadow
boundary

Credit: Jaime Velasco (https://all3dp.com/2/blender-lighting-simply-explained/)

Area light

Penumbra
(Region of partial shadow)

Umbra
(Region of complete shadow)

Credit: Jaime Velasco (https://all3dp.com/2/blender-lighting-simply-explained/)

Stanford CS248, Winter 2022

Shadow cast by an area light (via ray tracing…)
Choose a point Plight on the light source
If ray hits scene object before reaching
light source… then P is in shadow
from Plight
Repeat for multiple points on the light
to estimate fraction of light occluded
from P.
In other words… we treat the area
light as a bunch of point sources
distributed over the extent of the light
source

x

P1

Notice that a fraction of the light from an area light
toward a point P may reach that point (partial occlusion)

(Partially lit)

Plight

Stanford CS248, Winter 2022

Percentage closer !ltering (PCF) — hack!
Instead of sample shadow map once, perform multiple lookups around desired
texture coordinate

Tabulate fraction of lookups that are in shadow, modulate light intensity
accordingly

Hard shadows
(one lookup per fragment)

PCF shadows
(16 lookups per fragment)

shadow map values
(consider case where distance

from light to surface is 0.5)

Stanford CS248, Winter 2022

What PCF computes

x

P

PL

The fraction of these rays that are shorter than |P-PL|

!

Stanford CS248, Winter 2022

Shadow cast by an area light

x

P

Actual illumination at P is given by
fraction of these rays that are occluded.

Image credit: Grand Theft Auto V Stanford CS248, Winter 2022

Q. Why isn’t the surface in shadow completely black?
Answer: Assumption that some amount of “ambient light” (light scattered from o$ surfaces)
hits every surface. Here… ambient light is just a constant.

Image credit: Brennan Shacklett

Stanford CS248, Winter 2022

Ambient occlusion This scene contains an environment light source that has equal
illumination from all directions. (overcast day)

All surfaces are di$use re"ectors.
Without accounting for shadows, all surfaces should be the same color.

Stanford CS248, Winter 2022

Hack: ambient occlusion

Vd(!1) = 0

Vd(!2) = 1

Vd(!1) = 0

Vd(!2) = 1

!1

!2

Idea:
Precompute “fraction of hemisphere” that is occluded within distance d from a point.
Store this fraction in a texture map
When shading, attenuate environment lighting by this fraction

d

Stanford CS248, Winter 2022

“Screen-space” ambient occlusion in games

p
Depth bu$er values

1. Render scene to depth bu$er
2. For each pixel p (“ray trace” the depth bu$er to estimate local

occlusion of hemisphere - use a few samples per pixel)
3. Blur the the occlusion map to reduce noise
4. When shading pixels, darken direct environment lighting by

occlusion amount

Stanford CS248, Winter 2022

Ambient occlusion

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Lighting modulated by ambient occlusion

Direct Lighting (no self-shadowing computations)

Stanford CS248, Winter 2022

Re"ections

Stanford CS248, Winter 2022

What is wrong with this picture?

Stanford CS248, Winter 2022

Re"ections

Image credit: NVIDIA

Stanford CS248, Winter 2022

Re"ections

Stanford CS248, Winter 2022

Recall: perfect mirror material

Stanford CS248, Winter 2022

Recall: perfect mirror re"ection

x

P1

P2

P3

Light re"ected from P1 in direction of P0 is
incident on P1 from re"ection about surface
at P1.

p0

Stanford CS248, Winter 2022

Rasterization: “camera” position can be re"ection point
Environment mapping:
place ray origin at re"ective object

Yields approximation to true re"ection
results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of re"ective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror re"ection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Stanford CS248, Winter 2022

Environment map vs. ray traced re"ections

Image credit: Control
https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Stanford CS248, Winter 2022

Environment map vs. ray traced re"ections

Image credit: Control
https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Stanford CS248, Winter 2022

Interre"ections

Stanford CS248, Winter 2022

Di$use interre"ections

Image credit: Henrik Wann Jensen

Why is this point not black?

Why is this gray wall tinted red?

Stanford CS248, Winter 2022

Precomputed lighting
Precompute lighting for a scene o%ine (possible for
static lights)
- O%ine computations can perform advanced

shadowing, inter re"ection computations

“Bake” results of lighting into texture map

Light map

Rendered result

Stanford CS248, Winter 2022

Precomputed lighting in Unity Engine

Image credit: Unity / Alex Lovett

Visualization of light map texture coordinates

Stanford CS248, Winter 2022

Growing interest in real-time ray tracing
I’ve just shown you an array of di$erent techniques for approximating di$erent advanced lighting phenomenon
using a rasterizer
Challenges:
- Di$erent algorithm for each e$ect (code complexity)
- Algorithms may not compose
- They are only approximations to the physically correct solution (“hacks!”)
Traditionally, tracing rays to solve these problems was too costly for real-time use
- That may be changing soon…

This image was ray traced in real-time on a (very
high end) GPU

Learn more in
CS348B!

Stanford CS248, Winter 2022

Why ray tracing is expensive

Stanford CS248, Winter 2022

4 area light samples
(high variance in irradiance estimate)

Stanford CS248, Winter 2022

16 area light samples
(lower variance in irradiance estimate)

Stanford CS248, Winter 2022

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Stanford CS348K, Spring 2021

One sample per pixel

Stanford CS348K, Spring 2021

32 samples per pixel

Stanford CS348K, Spring 2021

1024 samples per pixel

Stanford CS248, Winter 2022

Need to shoot many rays per pixel to accurately simulate
advanced lighting e$ects

Want to preserve interactive rendering
"

Stanford CS248, Winter 2022

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS248, Winter 2022

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS248, Winter 2022

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS248, Winter 2022

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS248, Winter 2022

Custom GPU hardware for RT + better RL algorithms
+ DNN-based denoting

NVIDIA GeForce RTX 3080 GPU

Stanford CS348K, Spring 2021

This image was rendered in real-time on a single high-end GPU

Stanford CS348K, Spring 2021

So was this

Stanford CS248, Winter 2022

Supersampling in a deferred shading system
In assignment 1, you anti-aliased rendering via supersampling
- Stored N color samples and N depth samples per pixel

Deferred shading makes supersampling challenging due to large amount of information that
must be stored per pixel
- 3840 x 2160 (4K display)
- 8 samples per pixel
- 20 bytes per G-bu$er sample

= 670MB G-bu$er
(80 GB/sec of memory bandwidth just to read and write the G-bu$er at 30 fps)

Stanford CS248, Winter 2022

Morphological anti-aliasing (MLAA)
Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

[Reshetov 09]

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing.

Stanford CS248, Winter 2022

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After !ltering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]

Stanford CS248, Winter 2022

Modern trend: learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/

Stanford CS248, Winter 2022https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/

Learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Learned AA (DLSS)Traditional Heuristic (TXAA)

Stanford CS248, Winter 2022

Summary: deferred shading
Very popular technique in modern games
Creative use of graphics pipeline
- Create a G-bu$er, not a !nal image
Two major motivations
- Convenience and simplicity of separating geometry processing logic/costs from shading costs
- Potential for high performance under complex lighting and shading conditions

- Shade only once per sample despite triangle overlap
- Often more amenable to “screen-space shading techniques”

- e.g., screen space ambient occlusion

