Lecture 11:

Modern Rendering Techniques
Using the Graphics Pipeline

Interactive Computer Graphics
Stanford (5248, Winter 2022

e = »
77 ;

TN . e

-y
: -
- -
- »
—— <
-
-
il
e ~
o -
&
rd
= - -
~
.‘I !
o 3 J
1. \
PNy
| .
| vV .
‘ 3 » - : ,
| 1l] ! 4
A ” ! | W/ ¢ - .
! : N Sl i 3
4 . ‘ \‘ »*
| £,
| \ s\
|\ \l \ \ .
-~ b
- \
\
>\, " N
.
= i

Screenshot; Red Dead Redemption. .~ {1 . ’

.

¥

VR

2

. \(.s
> —s . .“
‘\},:

R 4
<.

—_ -
-
=

‘

e]

- - -

.

e

] —
EEErn e

BATTLEFIELD V

Screenshot: Battlefield V

Last week: ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?

Virtual
Sensor

Stanford (5248, Winter 2022

Rasterization algorithm for “camera ray”- scene queries

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection
(Note: not actually uniform distribution in angle. .. angle between rays is smaller away from view direction)

Stanford (5248, Winter 2022

Review: basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project _triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are distributed uniformly on screen)

More efficient hierarchical rasterization:
For each TILE of image
If triangle overlaps tile, check all samples in tile

Stanford (5248, Winter 2022

Review: basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|]

for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) {
if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”

Stanford (5248, Winter 2022

Theme of this part of the lecture:

A surprising number of advanced lighting effects can be efficiently approximated using the
basic primitives of the rasterization pipeline, without the need to actually ray trace the
scene geometry:

m Rasterization
m Texture mapping
m Depth buffer for occlusion

Stanford (5248, Winter 2022

OpenGL/Direct3D graphics pipeline

* Several stages of the modern OpenGL pipeline are omitted

°3
°1 —
l— °4 |nput: vertices in 3D space
©2
Operations on /Ertexibrocessing
vertices T E
Vertex stream ; ° ;
l : © . Verticesin positioned in normalized coordinate space

Operations on Primitive Processing i]

primitives
(triangles, lines, etc.) Primitivestream | = reeeeeeeeeeeeeeeeeeeen

Fragment Generation . Triangles positioned on screen

(Rasterization)

Operations on Fragment streaml
fragments %:. Fragments (one fragment per covered sample)
Fragmentierocessing

Shaded fragment streaml % ? Shaded fragments

Operations on Screen sample operations
(depth and color) eeranneen s :

screen samples

Output: image (pixels)

Stanford (5248, Winter 2022

Review: how much light hits the surface at point p
(This is light per unit surface area at point P... irradiance at point P)

Z L, cos 0,)

Po

Pinhole

Stanford (5248, Winter 2022

How much light is REFLECTED from p toward po

L(p,wo) = Y [f(p,wi,wo)L;cos;

i
w, = normalize(pg — P)

i |

Po

®
Pinhole

Stanford (5248, Winter 2022

Some basic reflection functions s, w:, w.)

m Ideal specular
Perfect mirror

m |deal diffuse

Uniform reflection in all directions

m Glossy specular
Majority of light distributed in reflection direction

m Retro-reflective
Reflects light back toward source

Diagrams illustrate how incoming light energy from

given direction is reflected in various directions.
Stanford (5248, Winter 2022

Shadows

Stanford (5248, Winter 2022

How much light is REFLECTED from p toward po

L(p,w,) = Z f(p,wi,ws)V (P, Li)L; cos 8;

Visibility term: /

Vip.L;) = 1, if pis visible from L;
27 0, otherwise

Po

®
Pinhole

Stanford (5248, Winter 2022

Review: How to compute if a surface is in shadow?

ik |

Stanford (5248, Winter 2022

Review: How to compute V (p, L;) using ray tracing

m Trace ray from point P to location L; of light source . L
m [fray hits scene object before reaching light =
source. .. then Pis in shadow L, =

(%

Q)

Stanford (5248, Winter 2022

Convfnce yoursel \h\hor“ﬂf
(what you e /o

Or this...

Point lights generate “hard shadows”
(Either a point is in shadow or it’s not)

1, if pis visible from L; L;
0, otherwise °

V(p7 Ll) — {

A

Stanford (5248, Winter 2022

What if you didn’t have a ray tracer,
just a rasterizer?

Stanford (5248, Winter 2022

We want to shade these points (aka fragments)
What “shadow rays” do you need to compute shading for this scene?

Surface
Camera

position

Stanford (5248, Winter 2022

Shadow mapping (part of assignment 3)

[Williams 78]

Place camera at position of the scene’s point light source

Render scene to compute depth to closest object to light along a uniformly spaces

set of “shadow rays” (note: answer is stored in depth buffer after rendering)
Store precomputed shadow ray intersection results in a texture map

“Shadow map” = depth map from perspective of a point light.
(Stores closest intersection along each shadow ray in a texture)

Image credits: Segal et al. 92, NVIDIA

Precomputed
shadow rays

Stanford (5248, Winter 2022

Result of shadow texture lookup approximates visibility result when
shading fragment at P

Precomputed shadow rays shown in red:
. Distance to closest object in scene has been precomputed and
,}(:t...

> e /) 1/4
Cae, storedain snaaow ma
C 23S RICYONIL N
SR NMSGORLST
“‘ * .. L 4 L 4 ..
ee8,% ” s
f 3 s] 8
A ALY * "o, Yo e, ¥,
c . “?‘ o Ve Ty Y, te,
-" . * * o, 0, e,
“ b ' s e 0% o *% . ¥ “ao
— L R “Q‘ * 2 2
—~— s o Ce * 0’ P rs ¥,
' a % ° “’0’0 ‘e, Yo, ‘e, . x
— . “ * *e * L 4 .. L ..
L * * * L 4 V'3 N
s v e %0, o * . “a,
s * o0 ‘. ¢ % , 4,
s oo S * S v, Y
. o0 . S s L ol
. 4 N
. ® oo * g 4 4 !]
. % o, .
. e ¢ e * S %% e Yo,
. o oo S L4 . v 4,
s % e e . *® ‘e * Ya,
. ¢ o ¢ * S * LS o,
. e o ¢ . . . 4, *a
. . e o * * LN ., a, a,
. . . o °* * . ., o, e,
. . s o+ °* * LN S ., o,
'Y . ¢ * P L4 4 4,
. . s o °* . . S v, 4,
. . . o+ % ., LR ., v, e,
. e * o S S . % v,
* . . * e > LN ‘e ‘% e,
. . o % o . . ‘e nd v,
. * . . ‘Q * S ‘e Ya,
'S ¢ s o * . v,
[] [] Y * * L 2 L 4 ..
L 3 * * 'S L &
°. . o % % *e e
% . o e e . y
. . . ¢ o *
. * * * *
. . . * . 0.
. [N . ¢ o .
. 3 . . * *
Py * * * *
. . o © .
Py A d * P * *
L) * * * *
* PS *
. * LS
* LS *
Py * *
. . * -
. . S * TS
. . PN * IS
. . * " *
. . * * .
. . . * *
. . * . *
. . ¢ . IS
[N
P . . * *
* * *
. . * .
. % . IS *
. . 0‘ ., .,
“ \d . * .
. ¢‘ . * *
. . *s . ¢
. . . . *
. ° * L 2 *
L . . “ *
. . * * *
. ¢ * *
. A . *
. . . * S
. * * .
* . *
L) * * .‘
. >y * * LS
. * * *
. * ¢ . TS
. . .
e *
. * . .
. . * .
. . *
. . * L 4
L * *
. . “
. “ .
.
. “
“ .
. .
L)
.
.
.

Stanford (5248, Winter 2022

Interpolation error

Bilinear interpolation of shadow map values (red line) only

approximates distance to closest surface point in all directions

from the camera

Camera
position
o

Shadow map
(depth map computed from L)

Surface

(Not actually in shadow,
but in shadow according to shadow map)

P,
P

(Not in shadow)

Stanford (5248, Winter 2022

Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between
surface point and light directly using ray tracing)

Image credit: Johnson et al. TOG 2005 Stanford (5248, Winter 2022

Soft shadows

Hard shadows Soft shadows
(created by point light source) (created by ?7?)

Image credit: Pixar Stanford (5248, Winter 2022

Area light

i PO

o |

hting-simply-eXf

TN

-
) 4N
.

a
-y

X
)

: ﬂg

L

om/2/blel
Bda® asbih d.0 e

L 8
.
UL

https://al

.
-

.-
A

-

-

-
<
e
~— _
« i
—
; - .
;

o |
o

> 'AV
redi
L -

-

A
:
. ¥

e
i
=4
(g~
<)
S
<X

ly-eXpl
i P

D)

L = Ta. o

i Ay .- ‘:]ILI '

H!':

s
. a

5

PR v
Sda® ot 4.0 Saedn

/Jal

tp

Jz L
(ht
e W

~
>

'
<3

e
@

\. " A '2. |.

Shadow cast by an area light (via ray tracing...)

m Choose a point Pjignt on the light source

. . . * o Notice that a fraction of the light from an area light
m Ifray hits scene object before reaching , , , ,
light source. .. then Pis in shadow Plight toward a point P may reach that point (partial occlusion)
from Piignt o ° .
m Repeat for multiple points on the light
to estimate fraction of light occluded o
fromP.

m Inotherwords... we treat the area
light as a bunch of point sources
distributed over the extent of the light
source

Stanford (5248, Winter 2022

Percentage closer filtering (PCF) — hack!

Instead of sample shadow map once, perform multiple lookups around desired
texture coordinate

Tabulate fraction of lookups that are in shadow, modulate light intensity
accordingly

shadow map values
(consider case where distance
from light to surface is 0.5)

ol B = I B = I B == I i = I = I i =

= O 1 0|0 | 0| O

= Q0 | OO

00

G

= QI I 0|0 O

0

= e = O O O

e = = N

0

0|0

= e

T R T T
= e e | e e | e

- ol

Hard shadows PCF shadows

(one lookup per fragment) (16 lookups per fragment)

Stanford (5248, Winter 2022

What PCF aom p Utes The fraction of these rays that are shorter than |P-P,|

P

=

Stanford (5248, Winter 2022

Shadow cast by an area light

¢ Actual illumination at P is given by
fraction of these rays that are occluded.

)

Stanford (5248, Winter 2022

Y — i .

/ y 5
Do fE /
ha oW complételyibiaekey
lig "*Ul'htscaﬁered-fmn/(ffsurf ._@// L

- Q.Wh}l isn’t\tl{e\\su\m‘\fa?c?‘%hﬁ

Answer: Assump\tion,t{at some amo

t of “ambie

G N WAL MY
hits e\)erysurface.- Here..mblentﬂght\ls,jgg.a ons@ UL - E 2

| =4 \ ':f'\

~ ”’ : /§
0 N y
> Tmagesefedit: Grand Theft Aufo V.. . a
 Andas” —

——

Image credit: Brennan Shacklett

iy

"

This scene contains an environment light source that has equa

m b i e nt Occ I u S i 0 n illumination from all directions. (overcast day)

All surfaces are diffuse reflectors.

° ° " & ’
Without accounting for shadows, all surfaces should e'the same color.

el P

Stanford (5248, Winter 2022

Hack: ambient occlusion

|dea:
Precompute “fraction of hemisphere” that is occluded within distance d from a point.

Store this fraction in a texture map
When shading, attenuate environment lighting by this fraction

Stanford (5248, Winter 2022

“Screen-space” ambient occlusion in games

1. Render scene to depth buffer
2. For each pixel p (“ray trace” the depth buffer to estimate local

R
.
.

...
....
... “
L J .
L 4 .
L J .
... .
....
L]

occlusion of hemisphere - use a few samples per pixel) T T
3. Blur the the occlusion map to reduce noise p
4. When shading pixels, darken direct environment lighting by Depth buffer values

occlusion amount

without ambient occlusion : : :
e Stanford (5248, Winter 2022

Ambient occlusion

Direct Lighting (no self-shadowing computations)

R

Stanford (5248, Winter 2022

Reflections

Stanford (5248, Winter 2022

What is wrong with this picture?

CS248: Shader Assignment

Stanford (5248, Winter 2022

Reflections

Image credit: NVIDIA Stanford (5248, Winter 2022

Reflections

RTX ALPHA

Stanford (5248, Winter 2022

Recall: perfect mirror material

Stanford (5248, Winter 2022

Recall: perfect mirror reflection

Light reflected from P, in direction of Py is
incident on P; from reflection about surface
at P1.

Stanford (5248, Winter 2022

Rasterization: “camera” position can be reflection point

Environment mapping:
place ray origin at reflective object

Scene rendered 6 times, with ray
origin at center of reflective box

(produces “cube-map”)

Yields approximation to true reflection
results. Why?

Cube map: —
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Stanford (5248, Winter 2022

Environment map vs. ray traced reflections

L
-
-~

?

RIXOEE

https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Image credit: Control Stanford (5248, Winter 2022

Environment map vs. ray traced reflections

~“RTX‘MEDIUM

https://www.techspot.com/article/1934-the-state-of-ray-tracing/

Image credit: Control Stanford (5248, Winter 2022

Interreflections

Stanford (5248, Winter 2022

Diffuse interreflections

Why is this gray wall tinted red?

-

Image credit: Henrik Wann Jensen Stanford (5248, Winter 2022

Rendered result

Precomputed lighting

m Precompute lighting for a scene offline (possible for
static lights)

- Offline computations can perform advanced
shadowing, inter reflection computations

m “Bake”results of lighting into texture map

Light map

Stanford (5248, Winter 2022

Precomputed lighting in Unity Engine

<— Visualization of light map texture coordinates

Image credit: Unity / Alex Lovett Stanford (5248, Winter 2022

Growing interest in real-time ray tracing

m ['vejust shown you an array of different techniques for approximating different advanced lighting phenomenon
using a rasterizer

m Challenges:
- Different algorithm for each effect (code complexity)

- Algorithms may not compose
- They are only approximations to the physically correct solution (“hacks!”)
m Traditionally, tracing rays to solve these problems was too costly for real-time use

- That may be changing soon...

<— This image was ray traced in real-time on a (very
high end) GPU

Learn more in
(5348B!

Stanford (5248, Winter 2022

Why ray tracing is expensive

Stanford (5248, Winter 2022

4 area light samples e
(high variance in irradiance estimate)

d (5248, Winter 2022

16 area light samples —
(lower variance in irradiance estimate)

d (5248, Winter 2022

Sampling light paths

Image credit: Wann Jensen, Hanrahan - Stanford (5248, Winter 2022

. -
XSS
gl

P N T RN
z-"}/" >-:Nd

L
SR e
’v

L
g

1024 samples per pixel

o
£
-
4
o5 =
-
9.
#
S
‘

Need to shoot many rays per pixel to accurately simulate
advanced lighting effects

Want to preserve interactive rendering

Denoising examples

3L A
‘.-'\"Q 5." £

S Y L

Original

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (5248, Winter 2022

Denoising examples

Denoised

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (5248, Winter 2022

enoising examples

Jn@ﬁ].

i

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (5248, Winter 2022

Denoising examples

-)

A
g

->

,2

_ A~

Jenolsec

o

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (5248, Winter 2022

Custom GPU hardware for RT + better RL algorithms
+ DNN-based denoting

W

IIIIII

NVIDIA GeForce RTX 3080 GPU

This image was rendered in real-time on a single high-end GPU

>

NVIDIA.

So was this

Supersampling in a deferred shading system

m Inassignment 1, you anti-aliased rendering via supersampling
- Stored N color samples and N depth samples per pixel

m Deferred shading makes supersampling challenging due to large amount of information that
must be stored per pixel

- 3840x 2160 (4K display)
- 8 samples per pixel
- 20 bytes per G-buffer sample

= 670MB G-buffer
(80 GB/sec of memory bandwidth just to read and write the G-buffer at 30 fps)

Stanford (5248, Winter 2022

[Reshetov 09]

Morphological anti-aliasing (MLAA)

Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

8 8 .
7k i 7 |
GF- i 6
5 S
4 4
3 3
2 2
1
a b ¢ d e f g h g h
Z-shapes: —T o L—‘ ,—J Z and U shape decomposition into L-shapes:
Ushapes: LI M] [. r
L-shapes: —l_ | [S B

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing. Stanford 5248, Winter 2022

[Reshetov 09]

Morphological anti-aliasing (MLAA)

Aliased image Zoomed views After filtering using MLAA
(one shading sample per pixel) (top: aliased, bottom: after MLAA)

Stanford (5248, Winter 2022

Modern trend: learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

R

,
'V\\
« 1 % :
S

:

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/ Stanford (5248, Winter 2022

Learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Traditional Heuristic (TXAA) Learned AA (DLSS)

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/ Stanford (5248, Winter 2022

Summary: deferred shading

m Verypopular technique in modern games
m Creative use of graphics pipeline

- (Create a G-buffer, not a final image
m Two major motivations

- Convenience and simplicity of separating geometry processing logic/costs from shading costs
- Potential for high performance under complex lighting and shading conditions
- Shade only once per sample despite triangle overlap
- Often more amenable to “screen-space shading techniques”
- e.g., screen space ambient occlusion

Stanford (5248, Winter 2022

