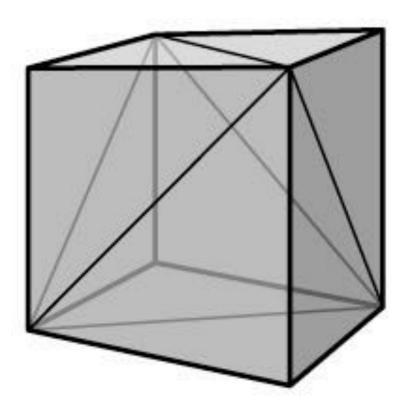
Lecture 7: Digital Geometry Processing

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2023

A small triangle mesh

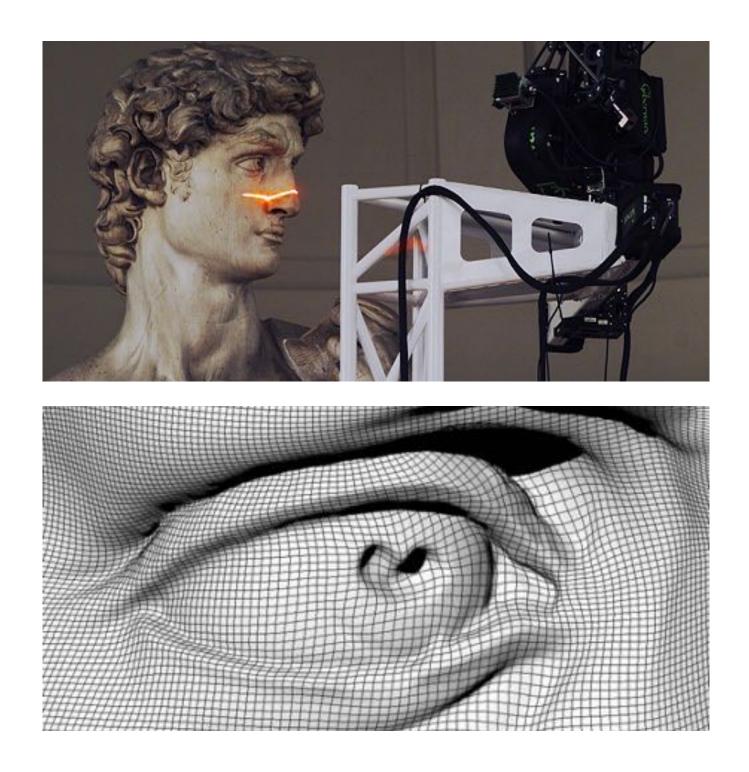


8 vertices, 12 triangles

A large triangle mesh

David

Digital Michelangelo Project 28,184,526 vertices 56,230,343 triangles



Even larger meshes

100

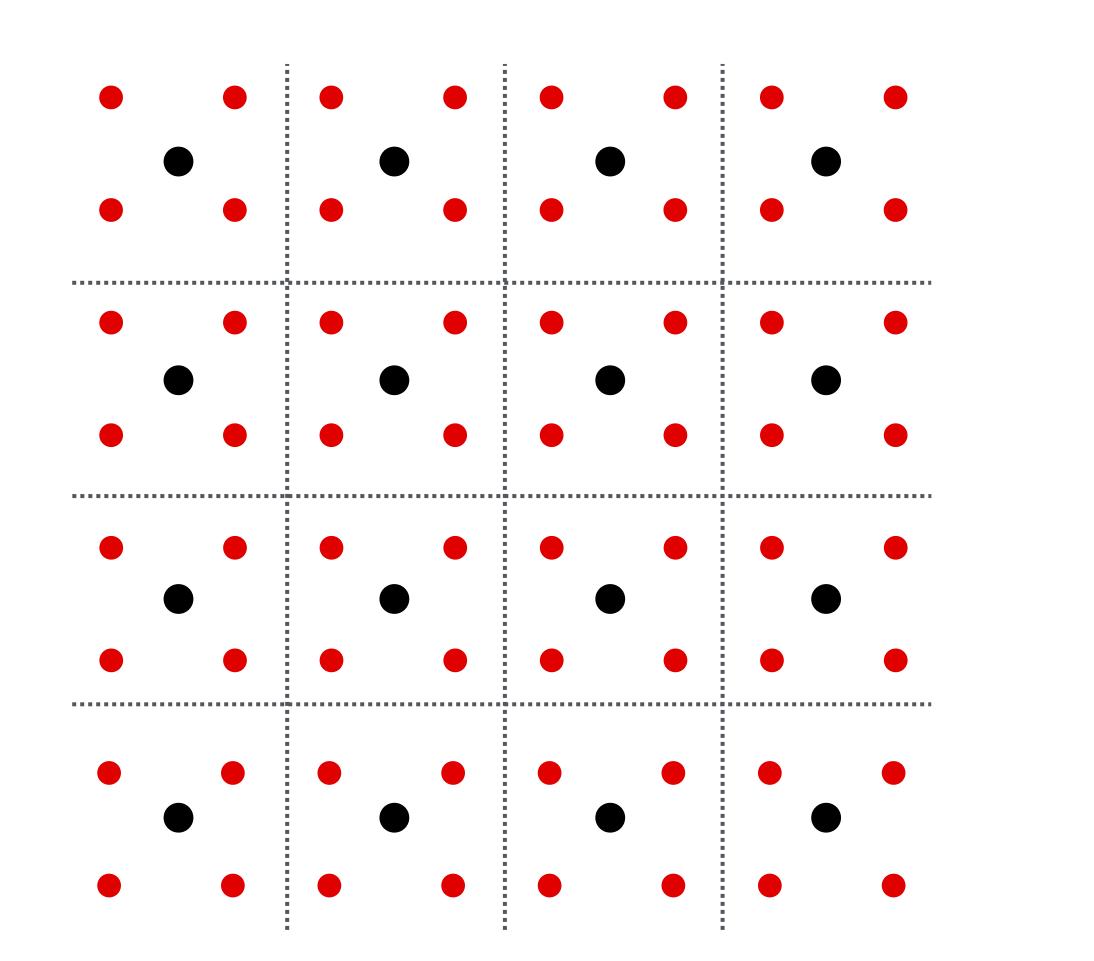
Google Earth Meshes reconstructed from satellite and aerial photography **Trillions of triangles**

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Data LDEO-Columbia, NSF, NOAA Data CSUMB SFML, CA OPC Data MBARI

Googleearth



Recall: image upsampling



Convert representation of signal given by samples taken at black dots (sparse) into a representation given at new set of denser samples (red dots)

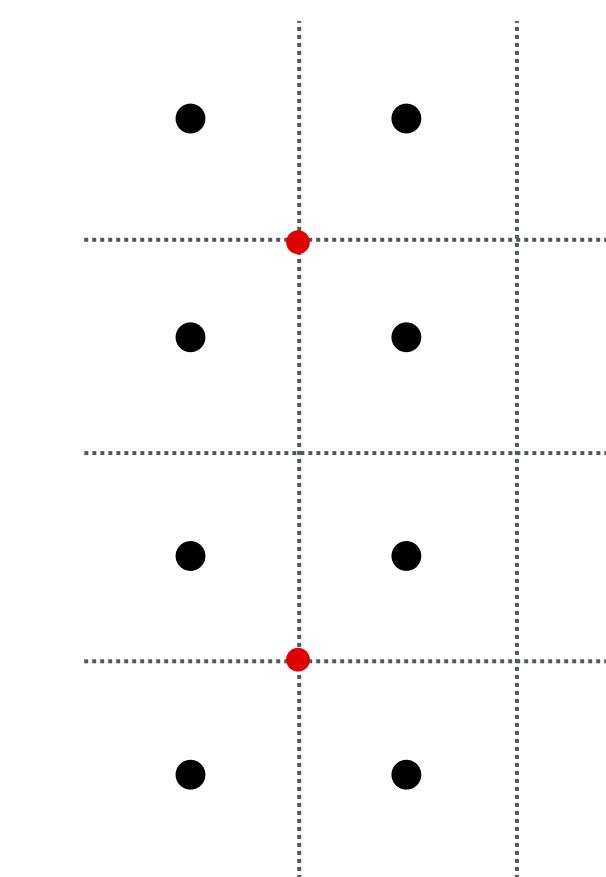
Recall: image upsampling

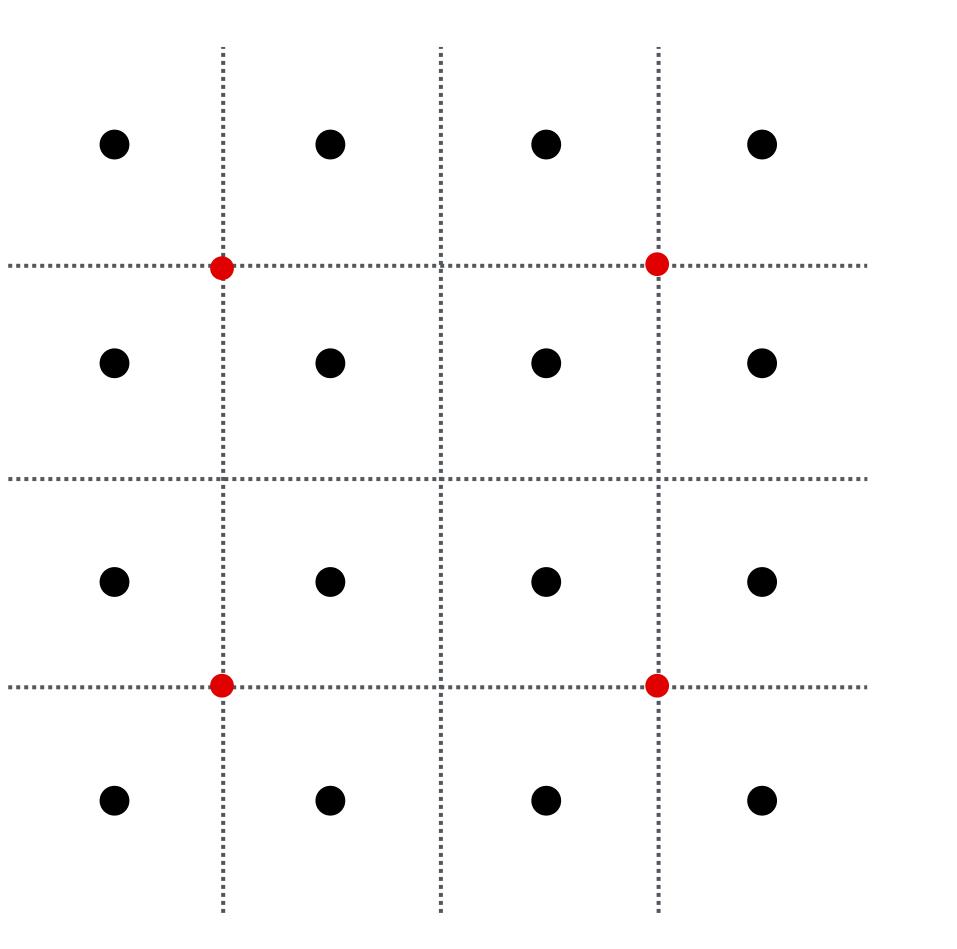
Upsampling via Nearest neighbor interpolation

Recall: image upsampling

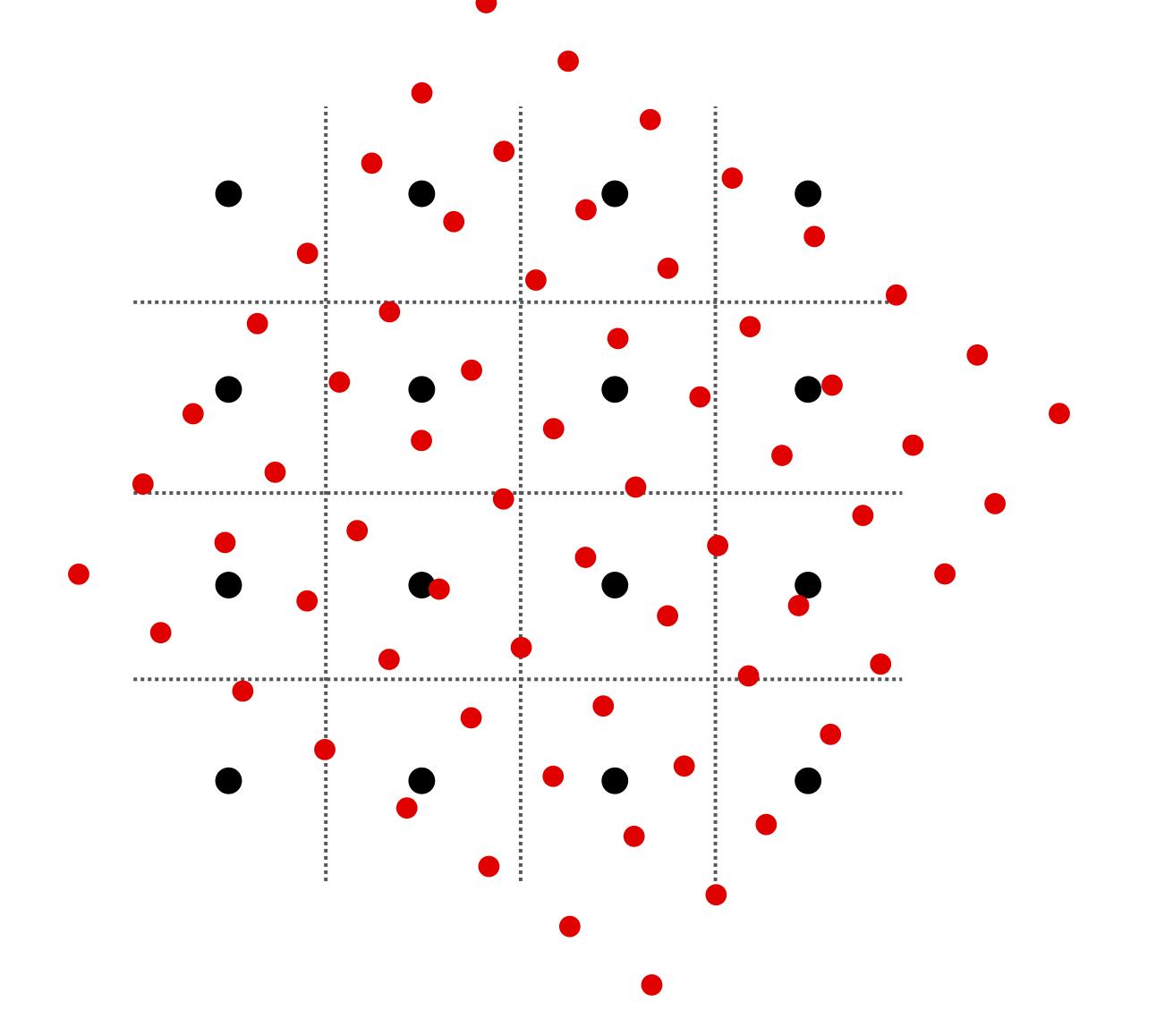
Upsampling via bilinear interpolation

Recall: image downsampling



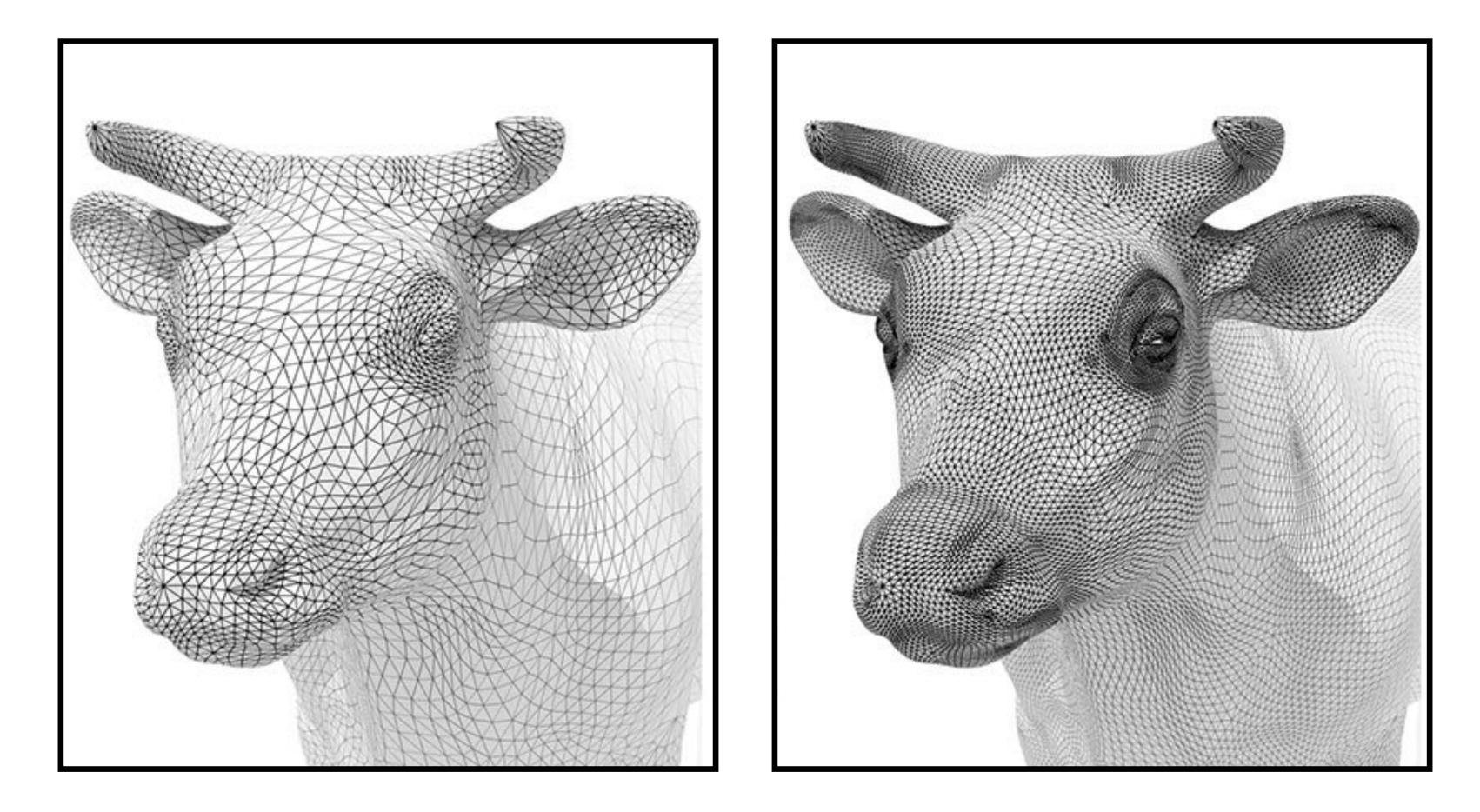


Recall: image resampling



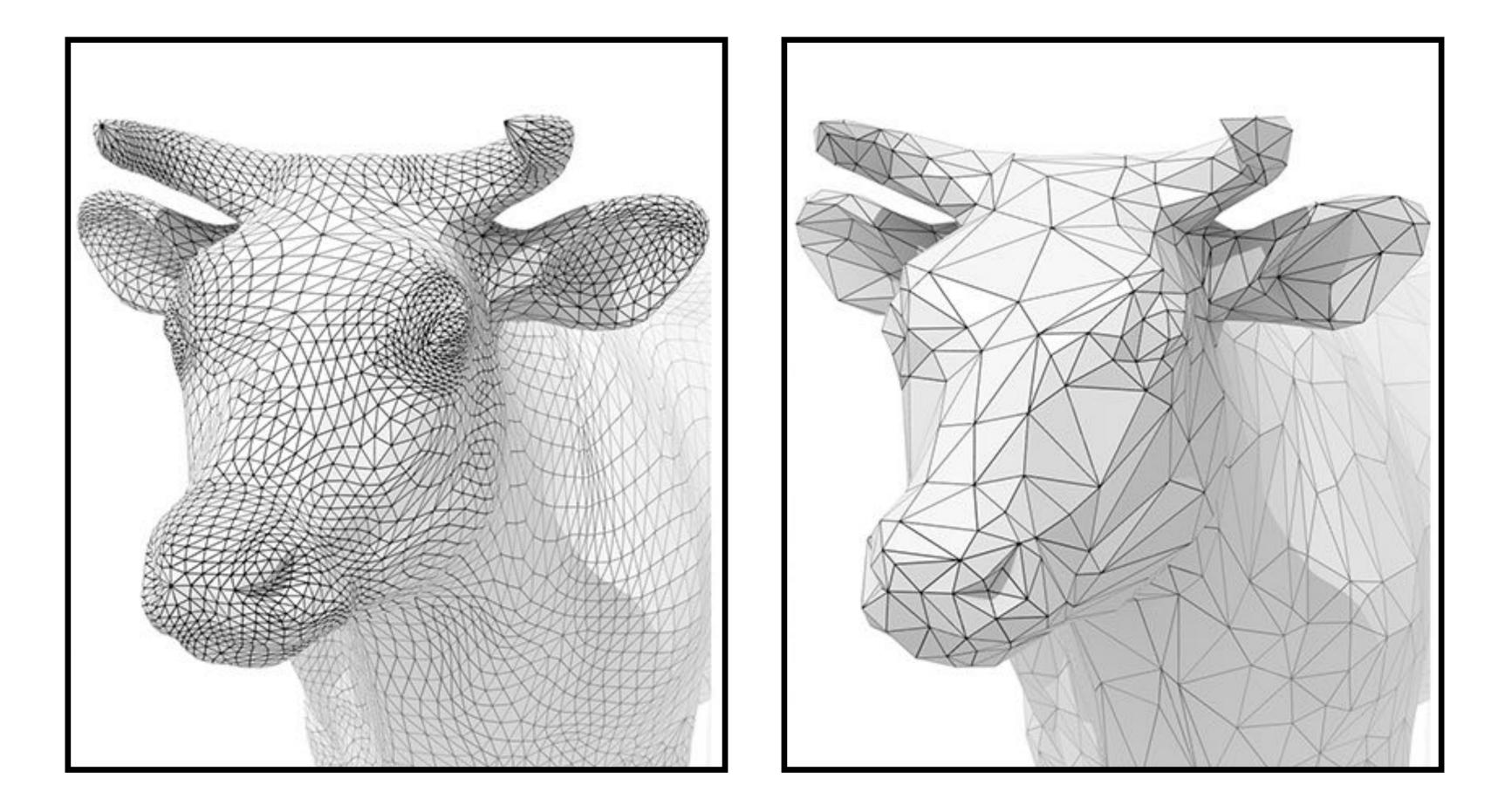
Examples of geometry processing

Mesh upsampling — subdivision



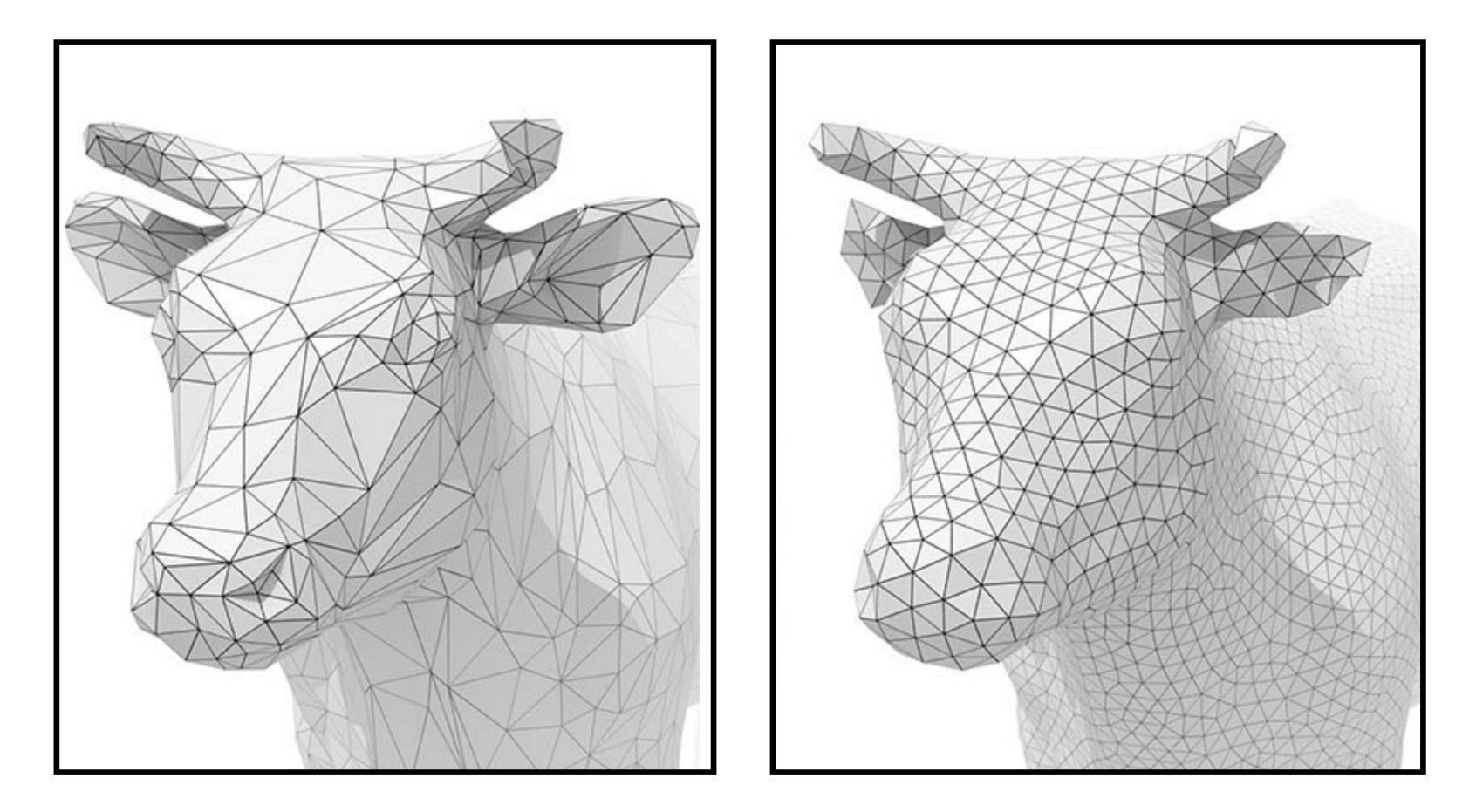
Increase resolution via interpolation

Mesh downsampling — simplification



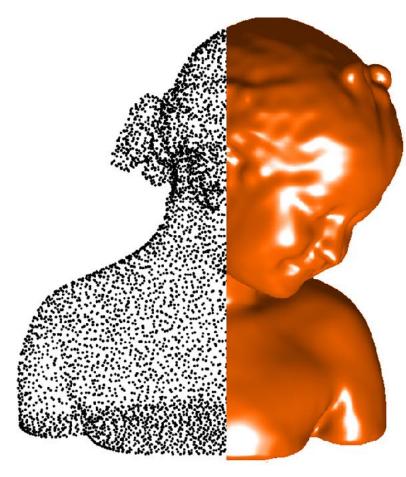
Decrease resolution; try to preserve shape/appearance

Mesh resampling — regularization

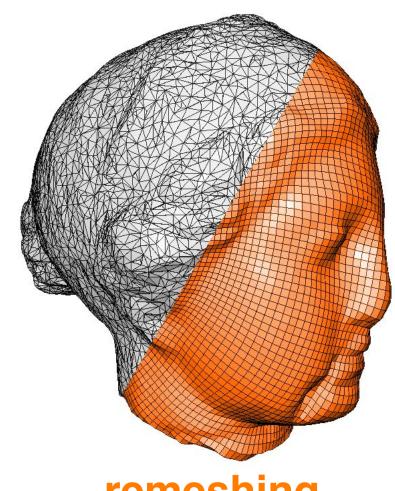


Modify sample distribution to improve quality

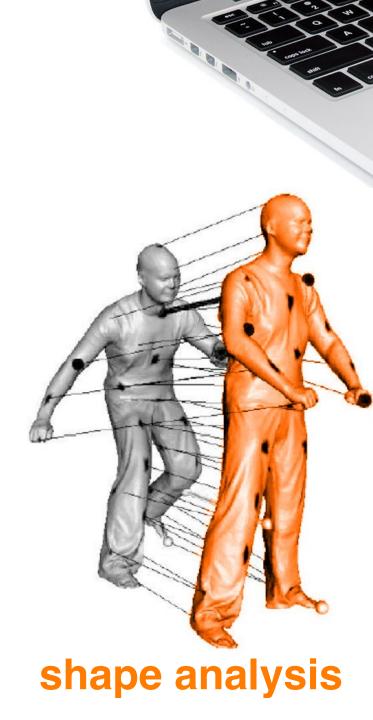
More geometry processing tasks

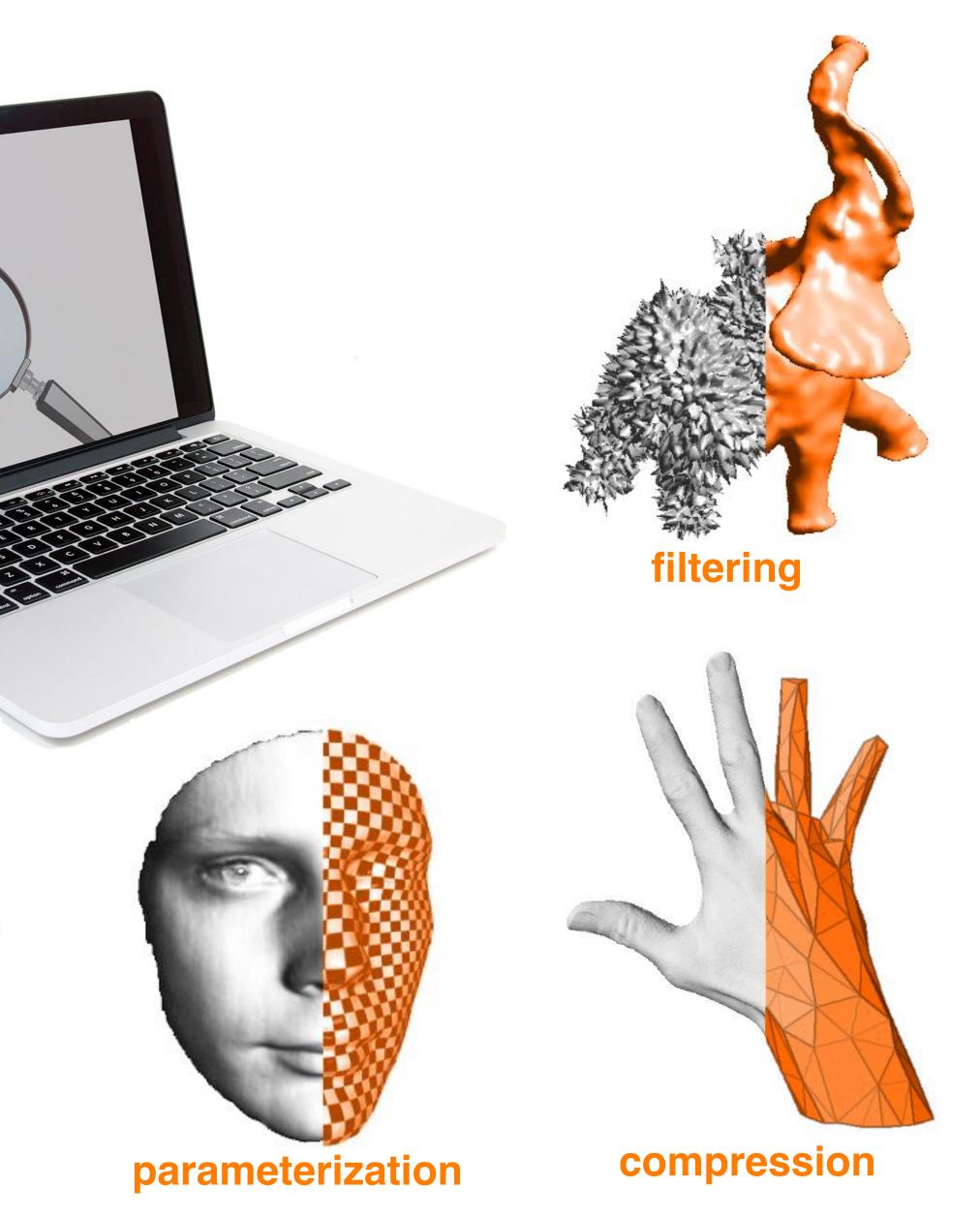


reconstruction



remeshing





Today

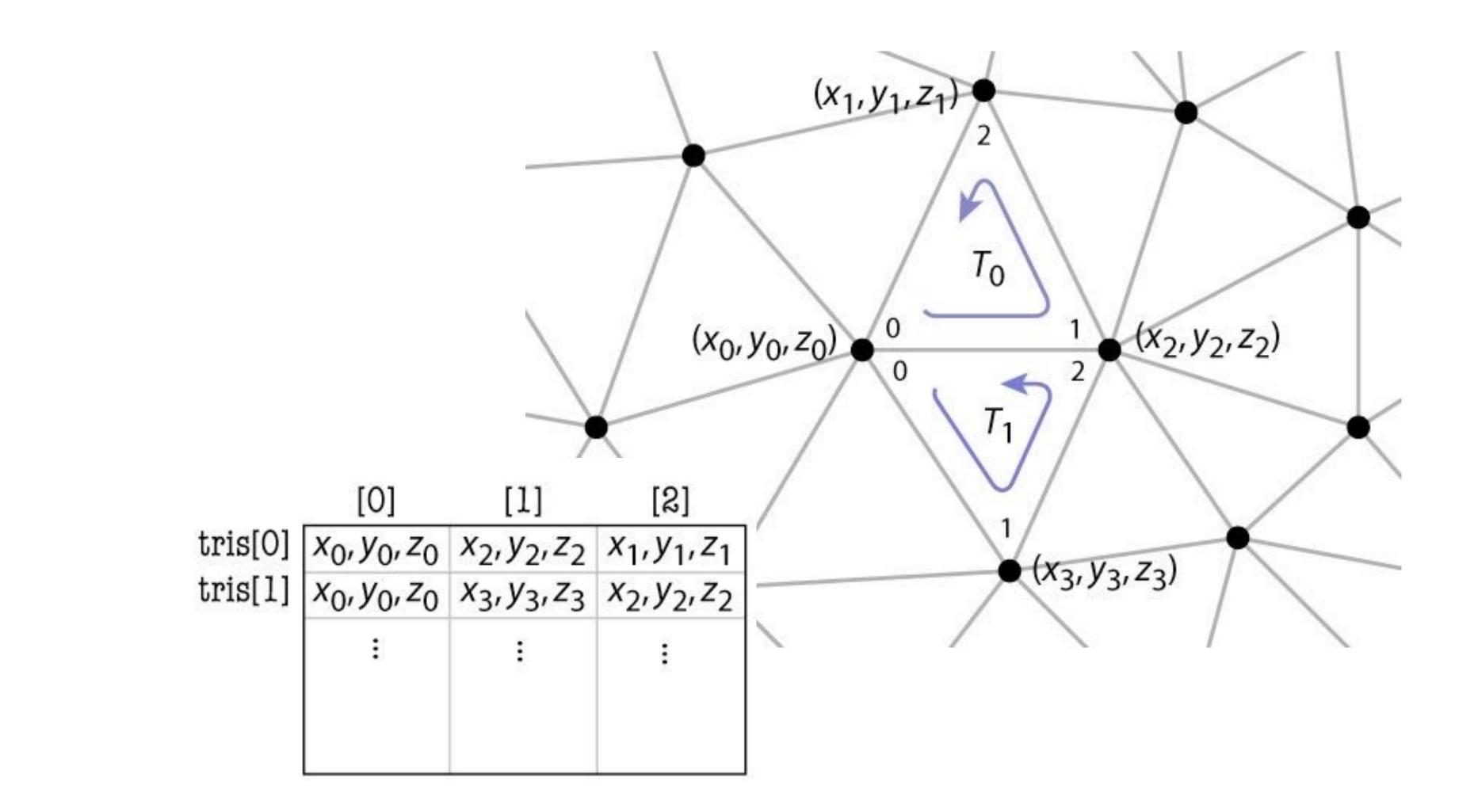
How to represent meshes (data structures)

How to perform a number of basic mesh processing operations

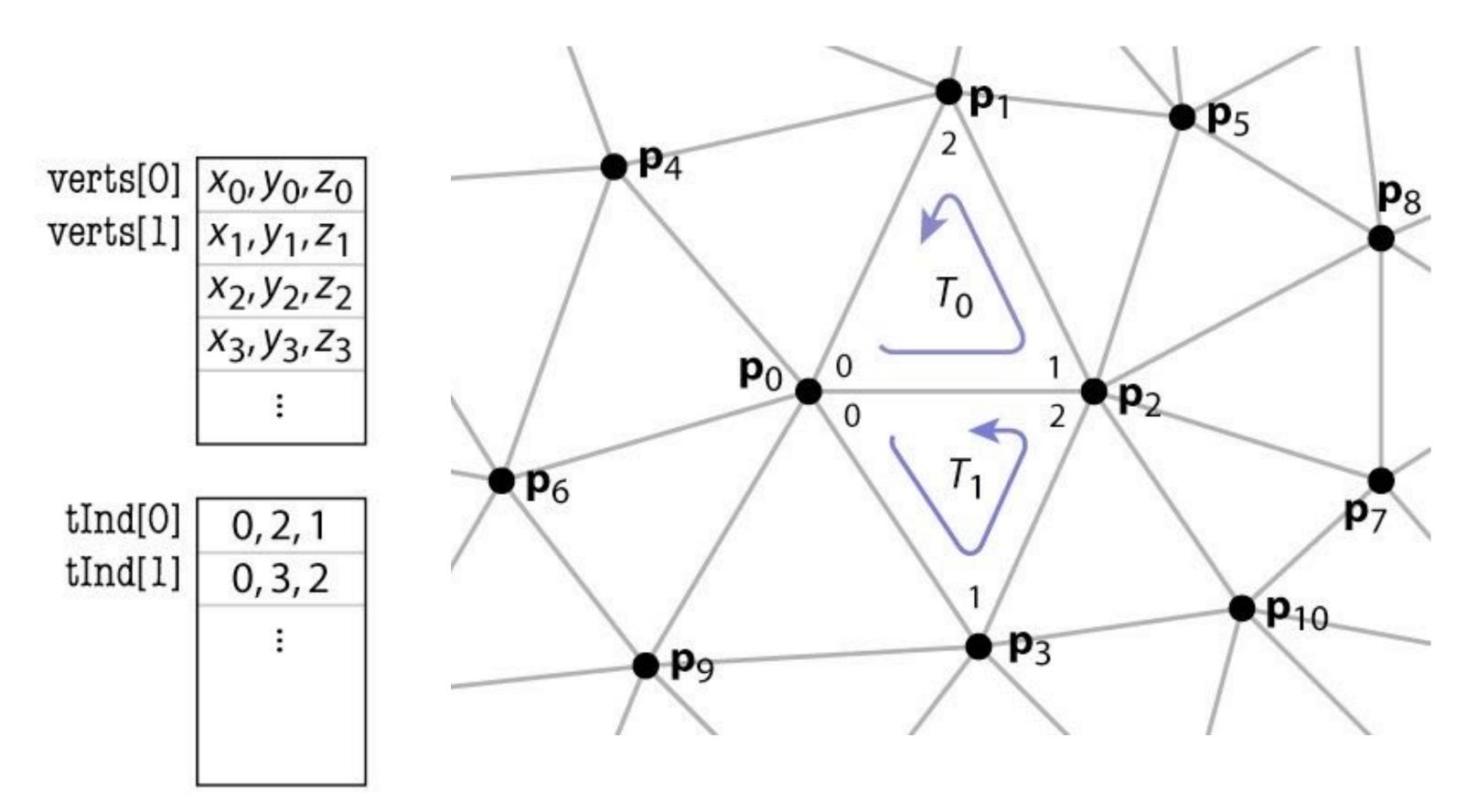
- Subdivision (upsampling)
- Mesh simplification (downsampling)
- Mesh resampling

Mesh representations

Basic mesh representation: list of triangles



Another representation: Lists of vertexes / indexed triangle

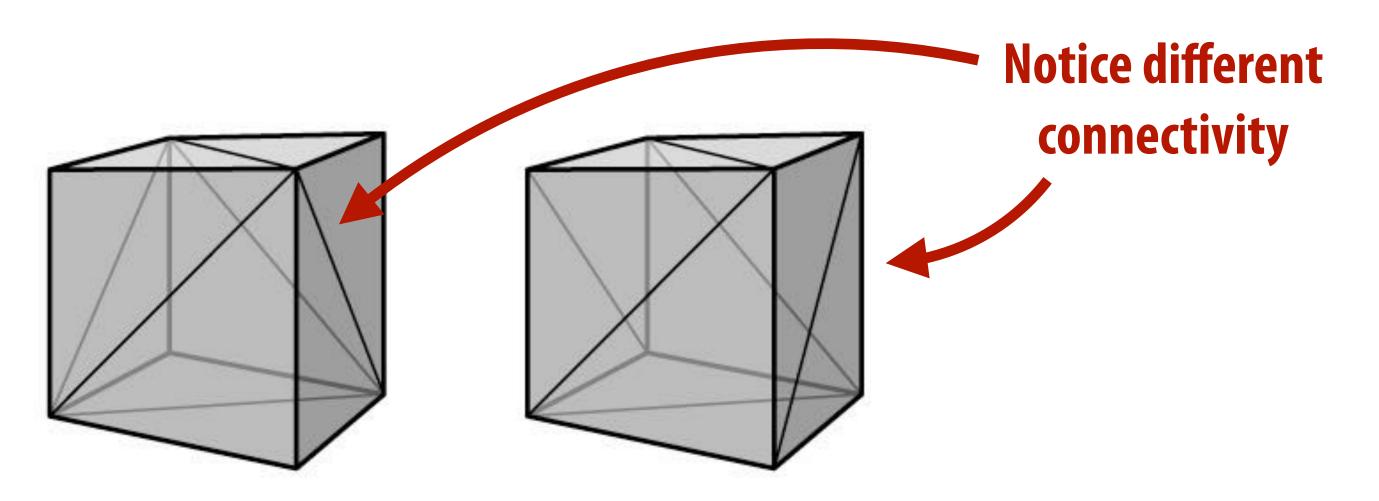


Comparison

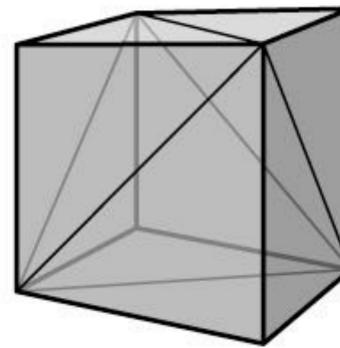
- List of triangles
 - GOOD: simple
 - BAD: contains redundant per-vertex information
- List of vertexes + list of indexed triangles
 - **GOOD:** sharing vertex position information reduces memory usage
 - that vertex in all the polygons to move)

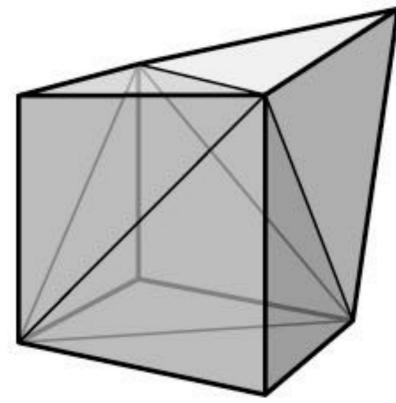
GOOD: ensures integrity of the mesh (changing a vertex's position in 3D space causes

Mesh topology vs surface geometry Same vertex positions, different mesh topology



Same topology, different vertex positions

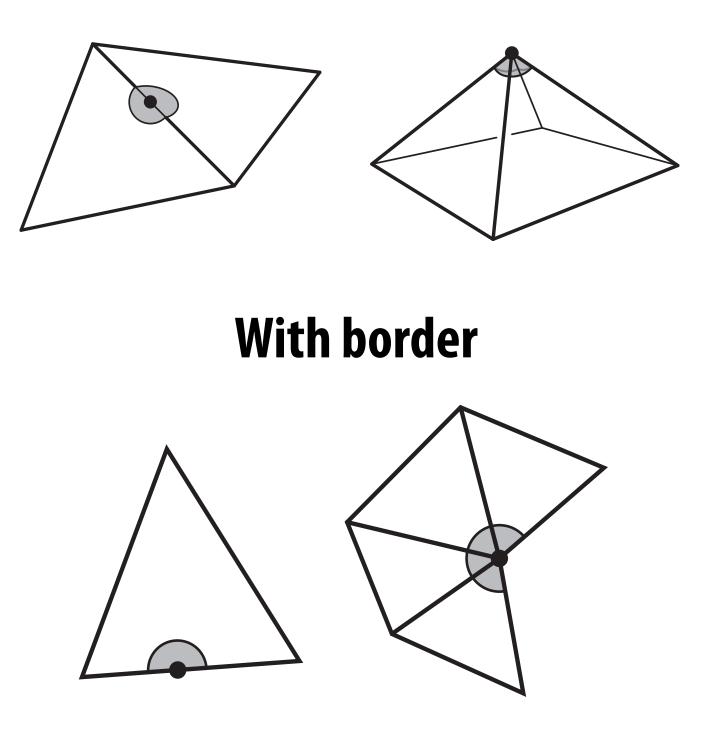




Topological validity: manifold

Recall, a 2D manifold is a surface that when cut with a small sphere always yields a disk (or a half disk on the boundary)

Manifold



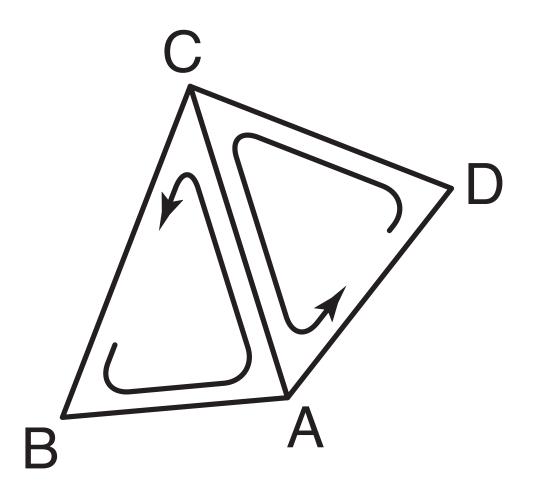


Manifolds have useful properties

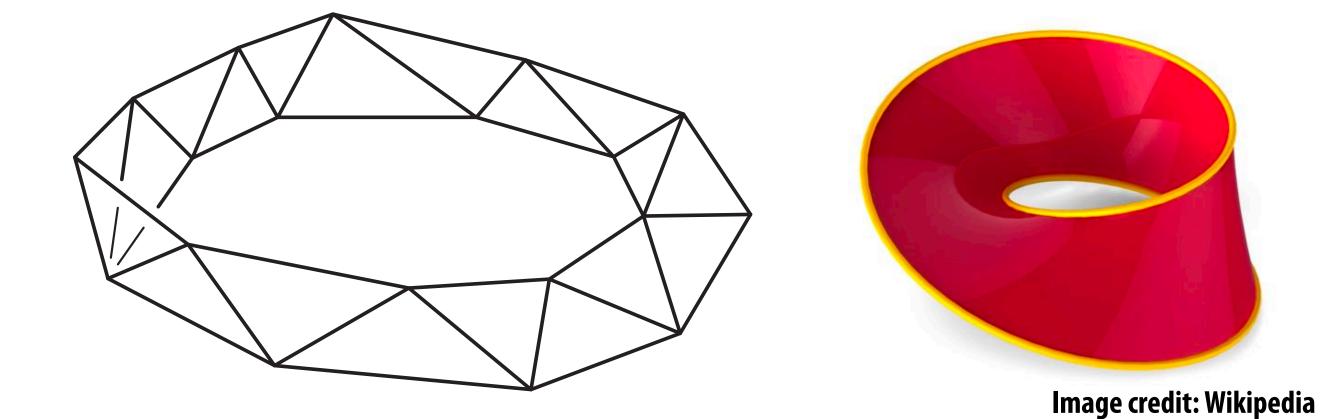
- A 2D manifold is a surface that when cut with a small sphere always yields a disk
- If a mesh is manifold, we can rely on these useful properties: *
 - An edge connects exactly two faces
 - An edge connects exactly two vertices
 - A face consists of a ring of edges and vertices
 - A vertex consists of a ring of edges and faces
 - Euler's polyhedron formula holds: #f #e + #v = 2 (for a surface topologically equivalent to a sphere) (Check for a cube: 6 - 12 + 8 = 2)

Topological validity: orientation consistency

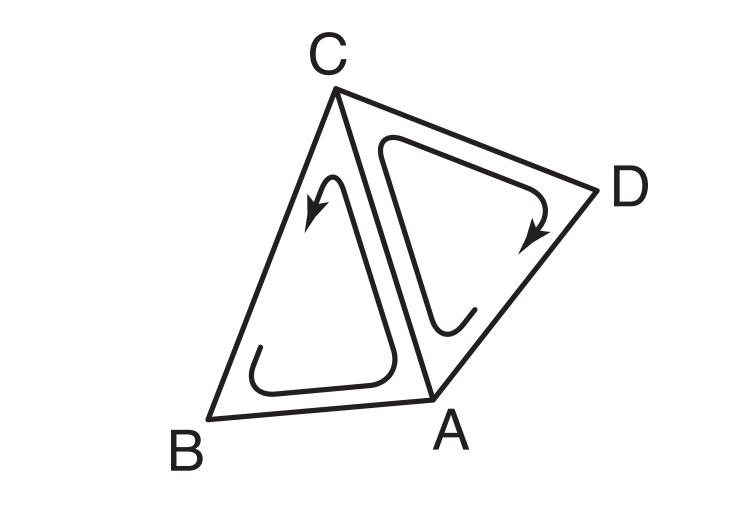
Both facing front



Non-orientable (e.g., Moebius strip)



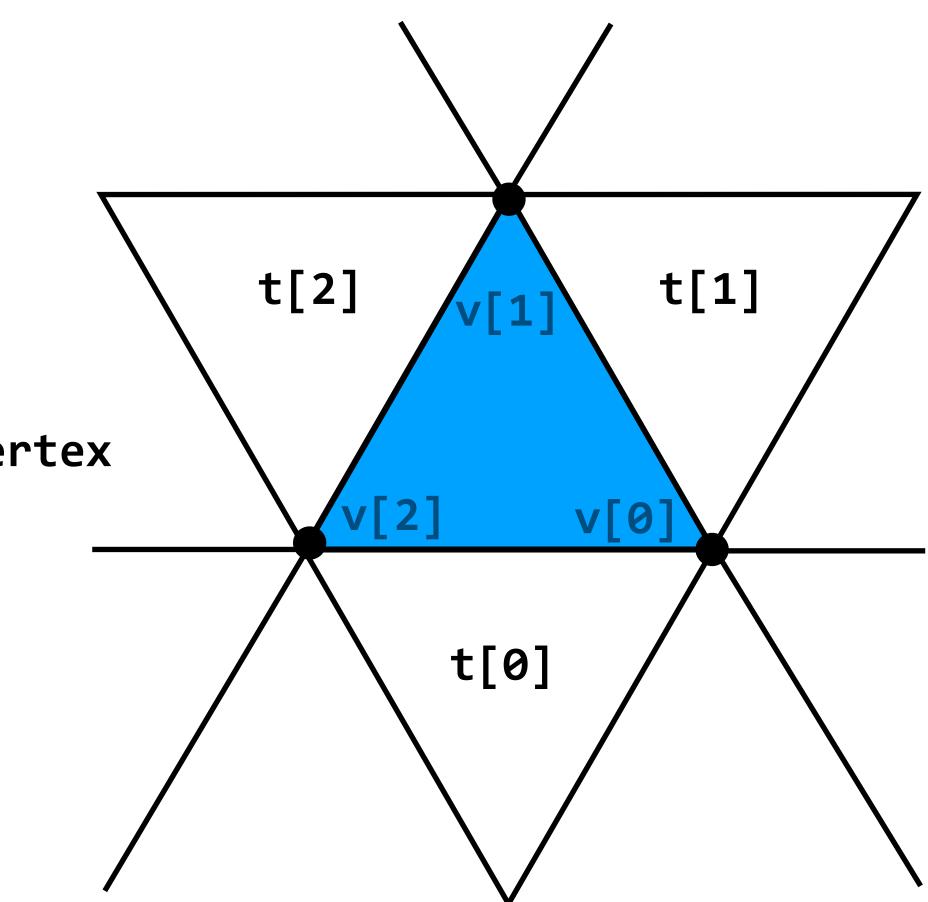
Inconsistent orientations



Simple example: triangle-neighbor data structure

```
// definition of a triangle
struct Tri {
    Vert* v[3];
    Tri* t[3];
}
```

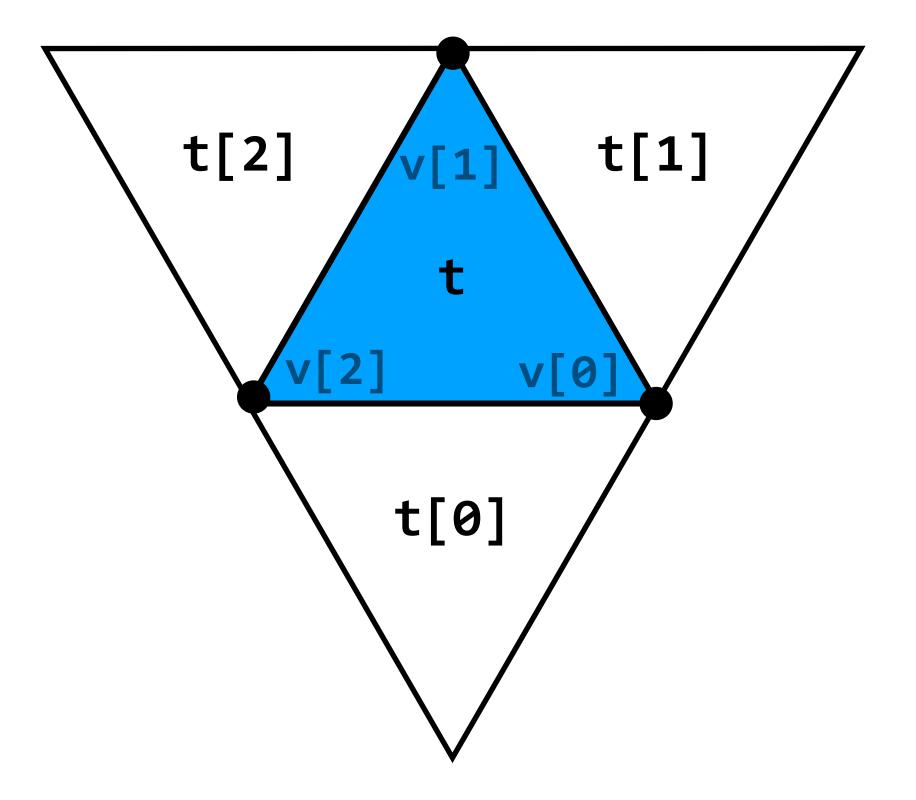
// definition of a triangle vertex
struct Vert {
 Vec3 pos;
 Tri* t;
}



Triangle-neighbor – mesh traversal

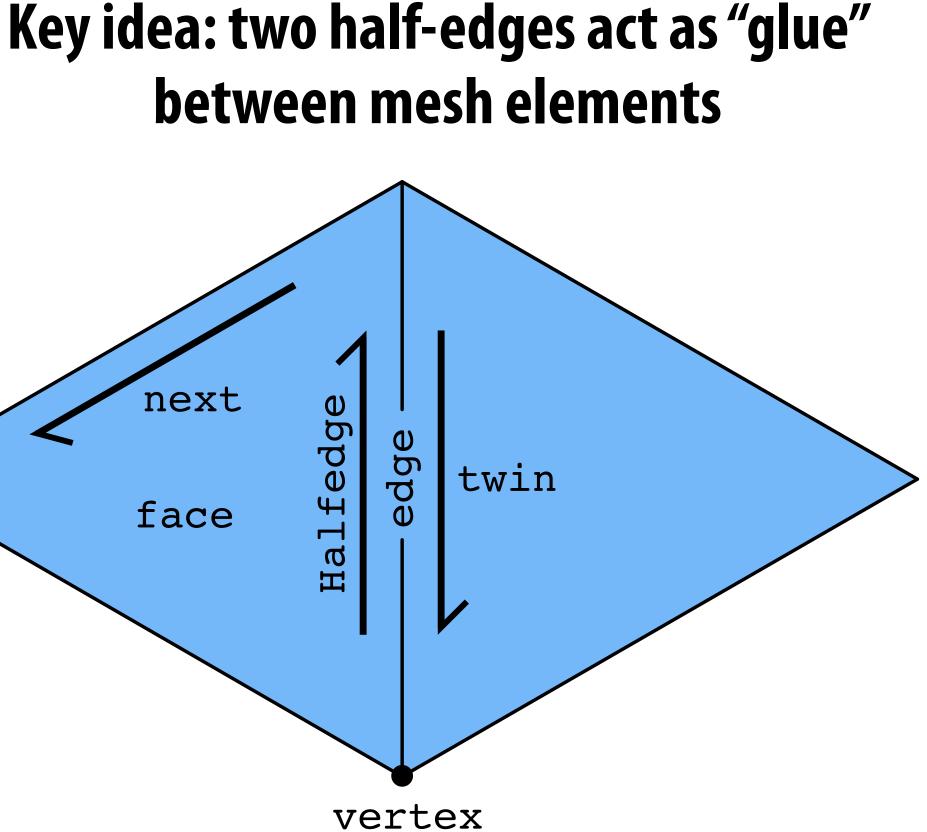
Find next triangle counter-clockwise around vertex v from triangle t

```
Tri* ccw_tri(Vert *v, Tri *t)
{
   if (v == t->v[0])
     return t[0];
   if (v == t->v[1])
     return t[1];
   if (v == t->v[2])
     return t[2];
```



Half-edge data structure

struct Halfedge { Halfedge *twin, Halfedge *next; Vertex *vertex; Edge *edge; Face *face; } struct Vertex { Vec3 pos; Halfedge *halfedge; } struct Edge { Halfedge *halfedge; } struct Face { Halfedge *halfedge; }



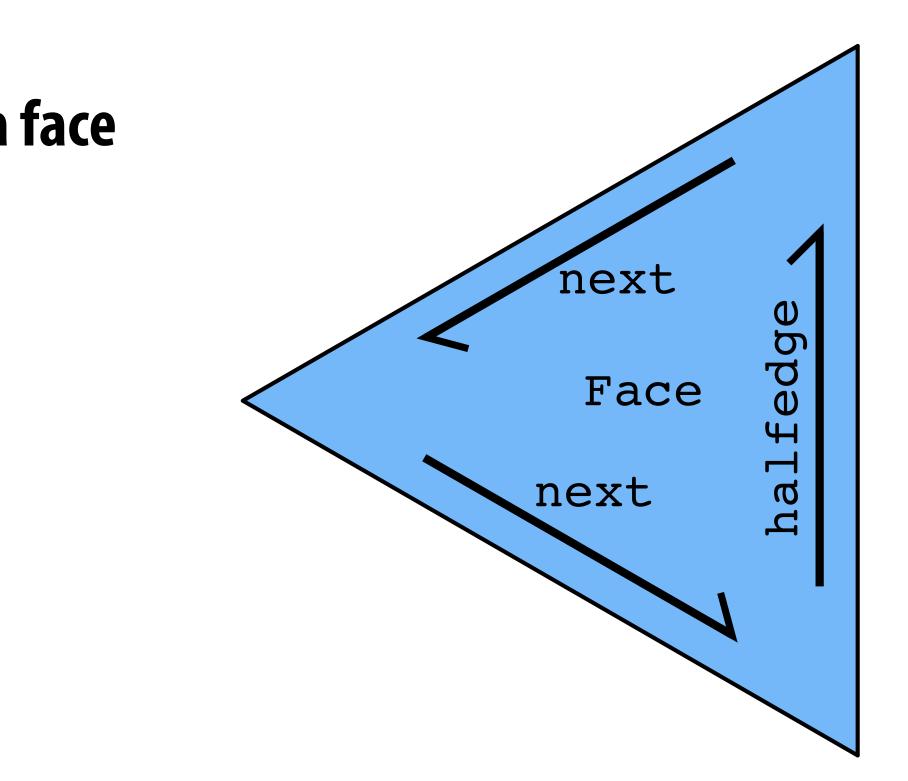
Each vertex, edge and face points to one of its half edges

Half-edge structure facilitates mesh traversal

- Use twin and next pointers to move around mesh
- Process vertex, edge, and/or face pointers

Example 1: process all vertices of a face

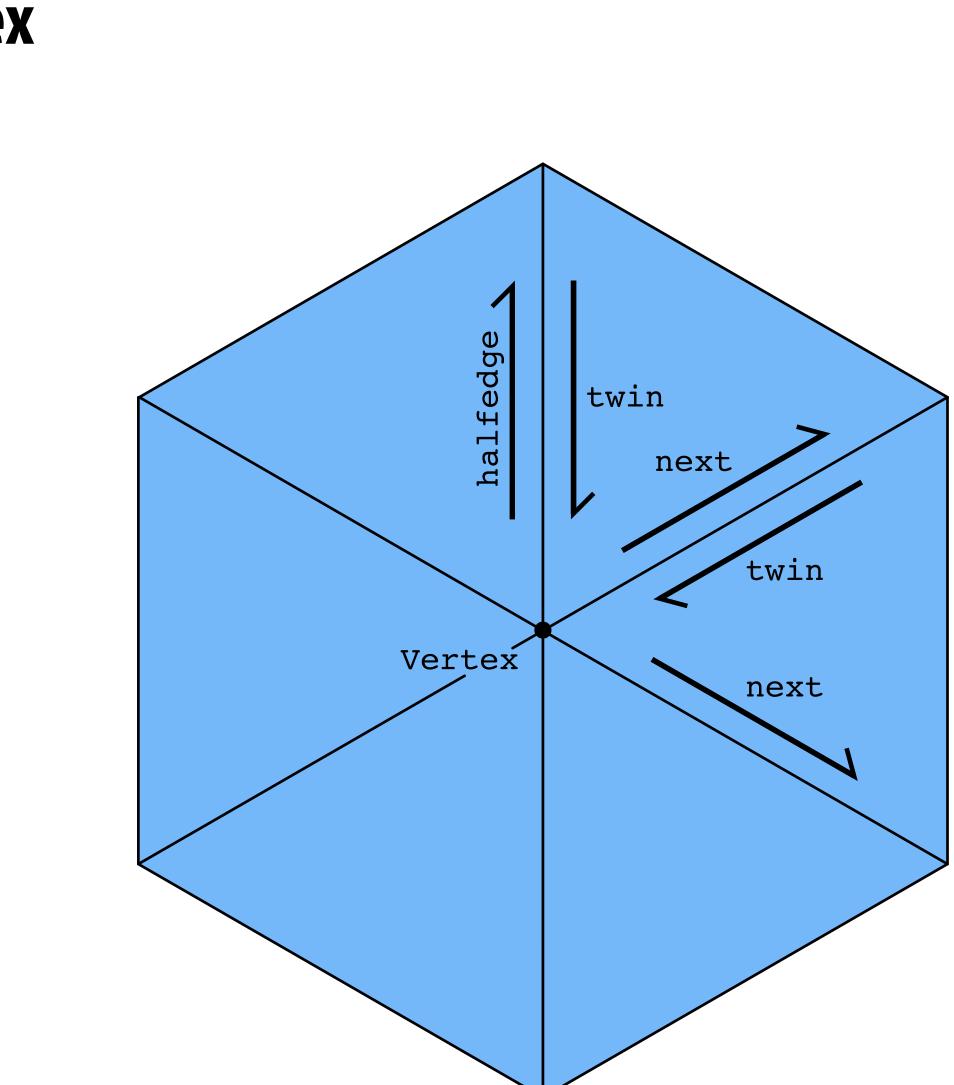
Halfedge* h = f->halfedge; **do** { do_work(h->vertex); h = h->next; } while(h != f->halfedge);



Half-edge structure facilitates mesh traversal

Example 2: process all edges around a vertex

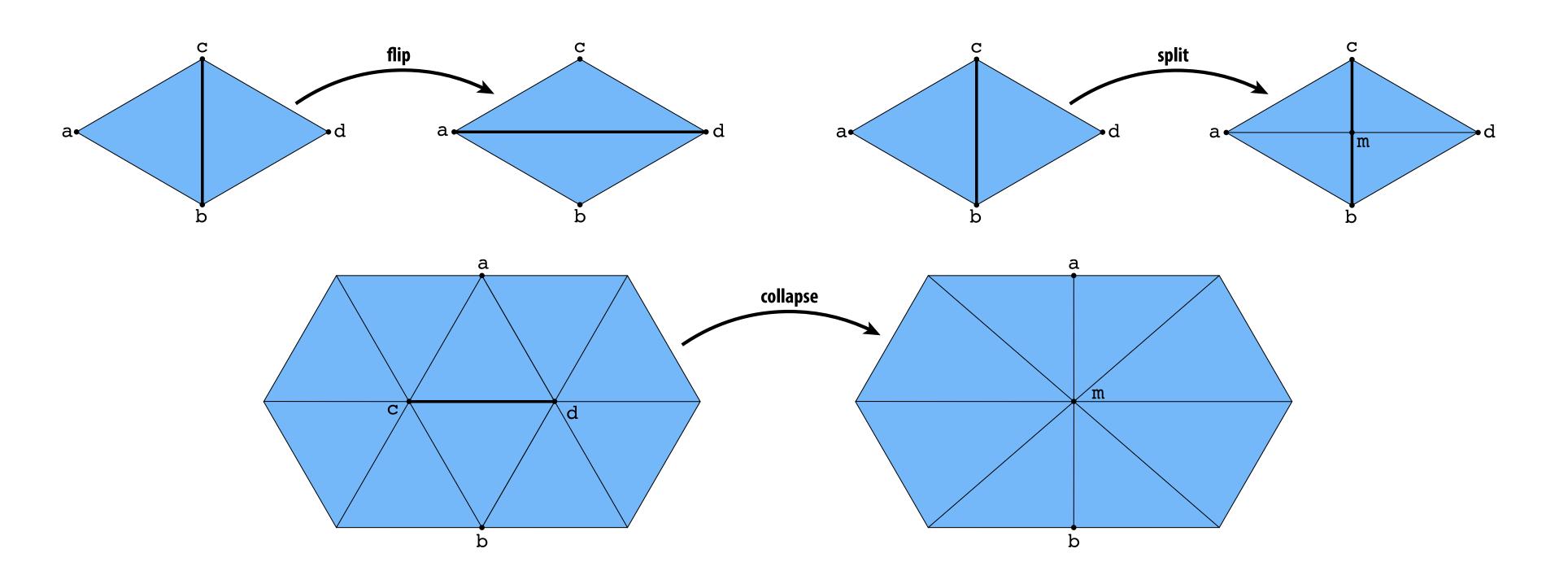
Halfedge* h = v->halfedge; do { do_work(h->edge); h = h->twin->next; } while(h != v->halfedge);



Local mesh operations

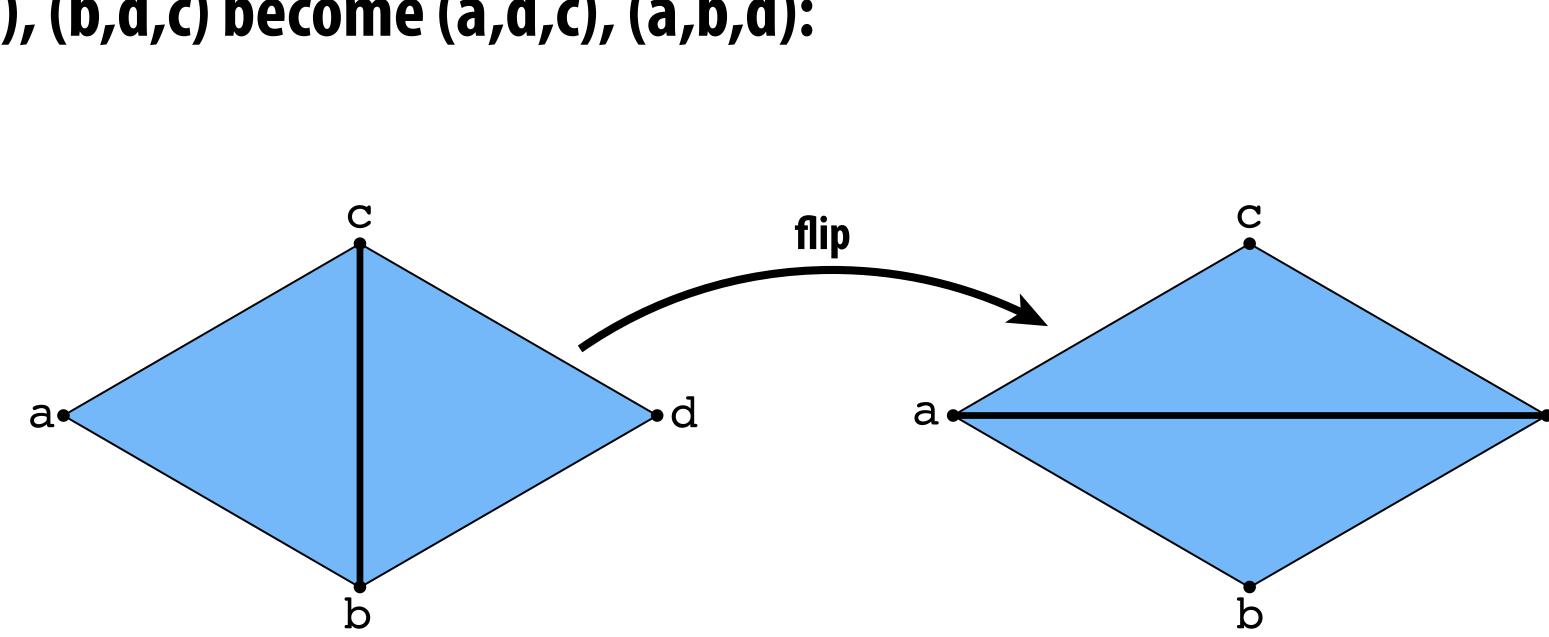
Half-Edge – local mesh editing

- **Consider basic operations for linked list: insert, delete**
- **Basic ops for half-edge mesh: flip, split, collapse edges**



Allocate / delete elements; reassign pointers (Care is needed to preserve mesh manifold property)

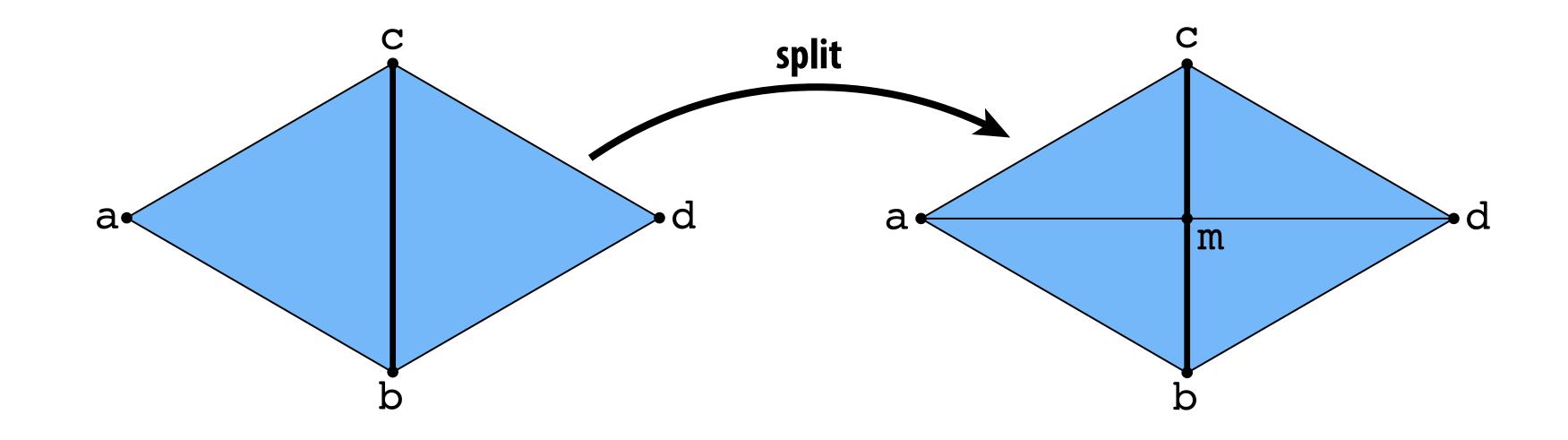
Half-edge – edge flip Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):



Long list of half-edge pointer reassignments However, no mesh elements created/destroyed

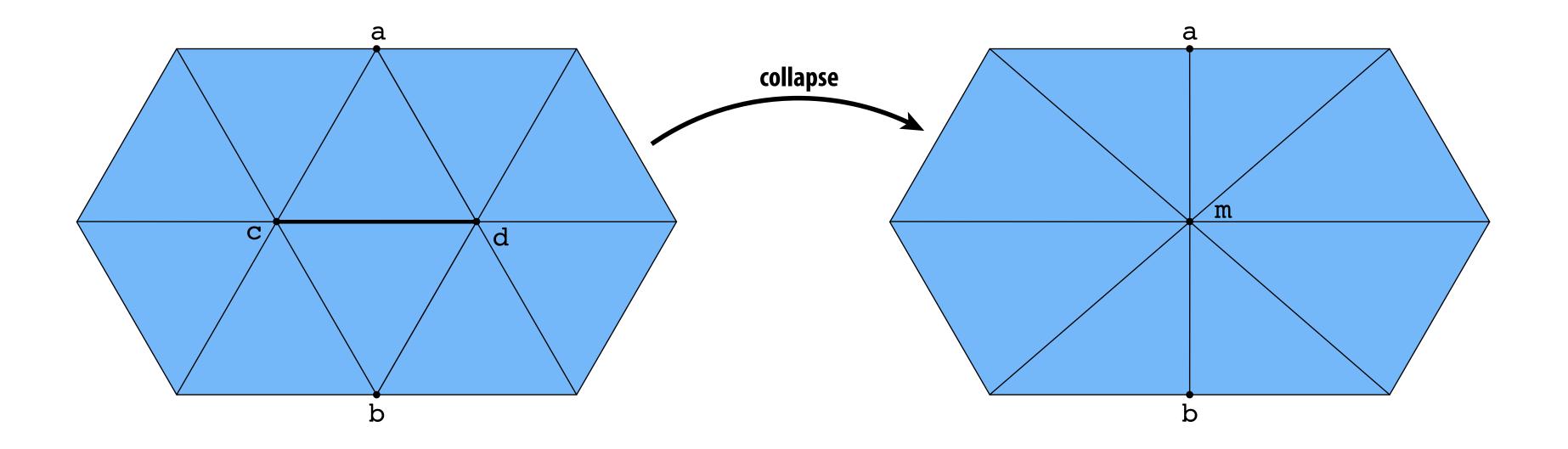
d

Half-edge – edge split Insert midpoint m of edge (c,b), connect to get four triangles:



Must add elements to mesh (new vertex, faces, edges) Again, many half-edge pointer reassignments

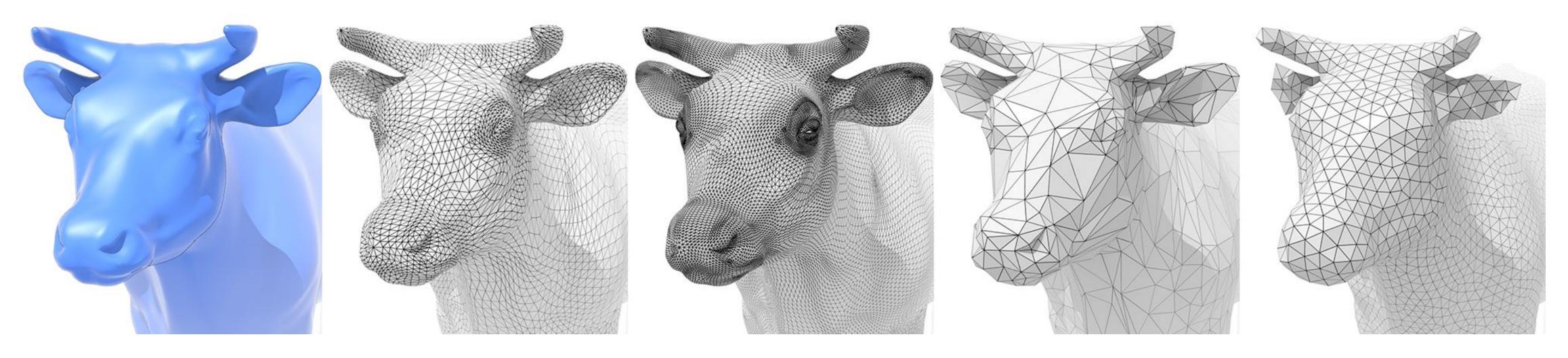
Half-edge – edge collapse Replace edge (c,d) with a single vertex m:



Must delete elements from the mesh Again, many half-edge pointer reassignments

Global mesh operations: geometry processing

- Mesh subdivision (form of subsampling)
- Mesh simplification (form of downsampling)
- Mesh regularization (form of resampling)

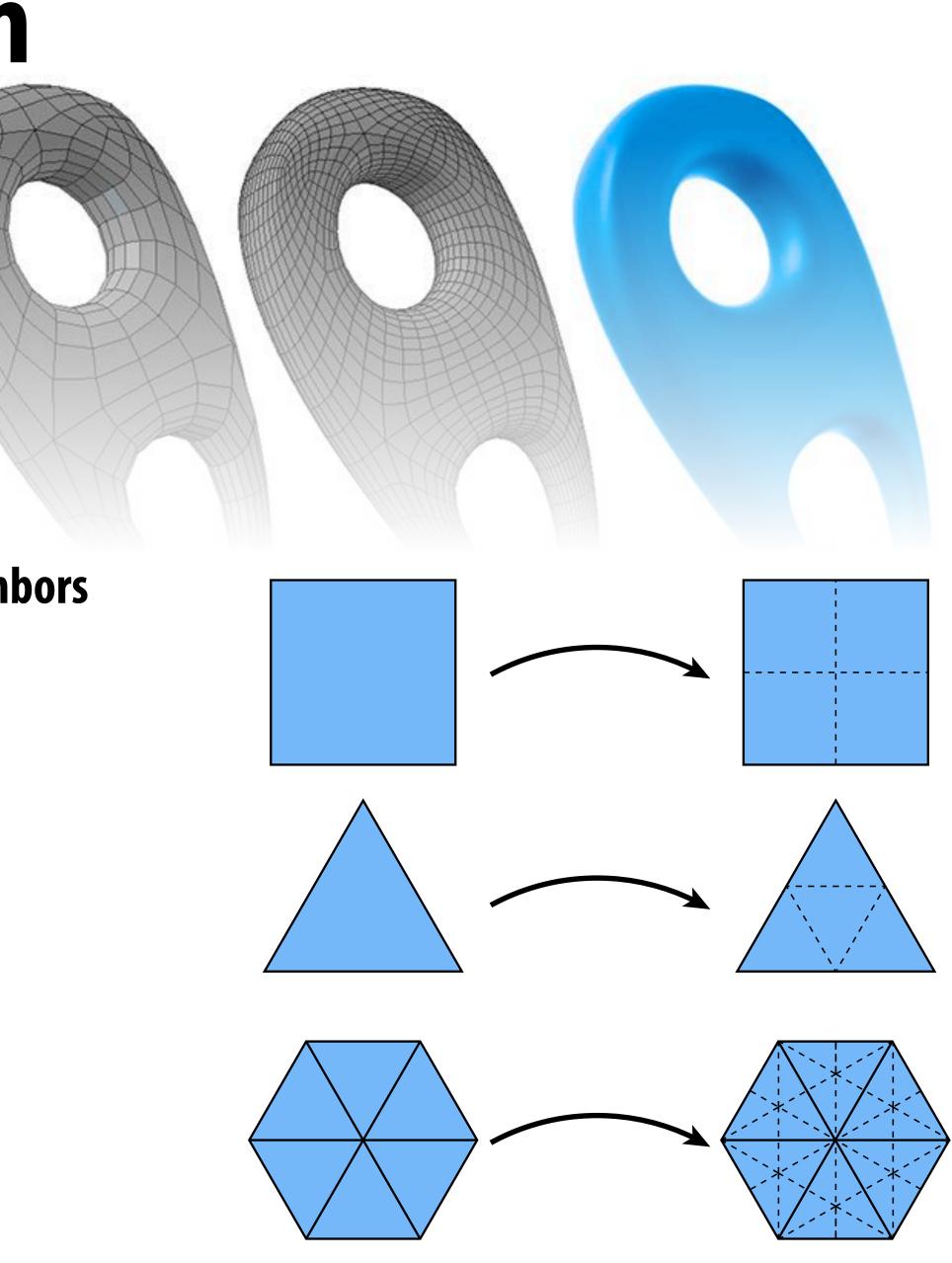


ing))

Subdivision — upsampling a mesh

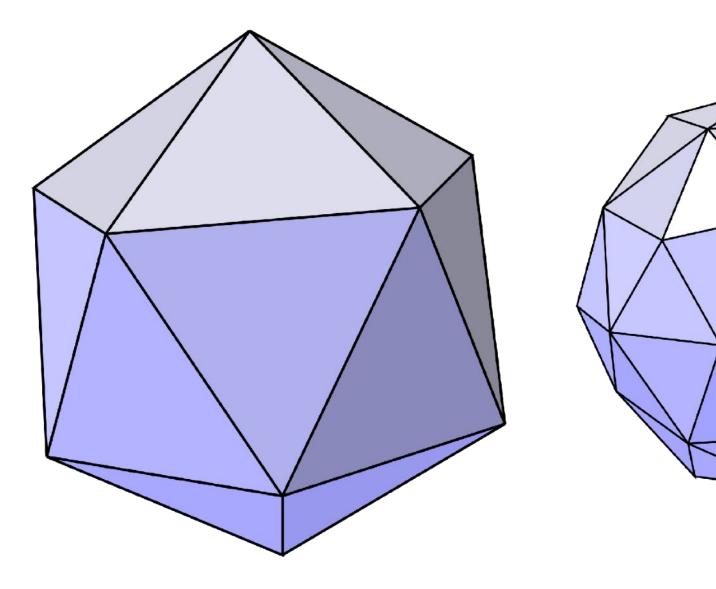
Upsampling via subdivision

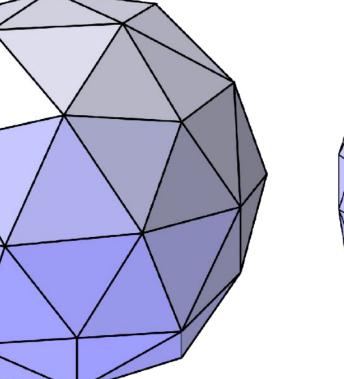
- Repeatedly split each element into smaller pieces
- Replace vertex positions with weighted average of neighbors
- Main considerations:
 - interpolating vs. approximating
 - limit surface continuity (C¹, C², ...)
 - behavior at irregular vertices
- Many options:
 - Quad: Catmull-Clark
 - Triangle: Loop, butterfly, sqrt(3)

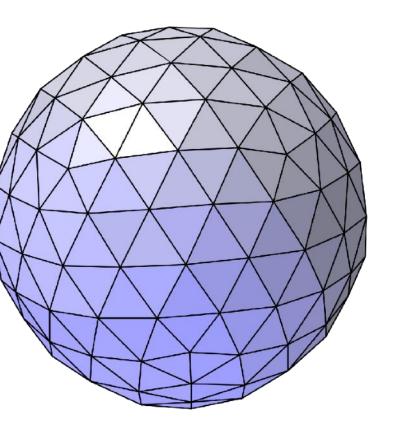


Loop subdivision

Common subdivision rule for triangle meshes "C2" smoothness away from irregular vertices Approximating, not interpolating



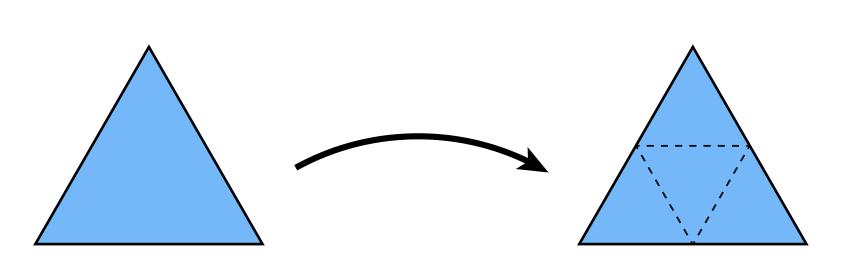




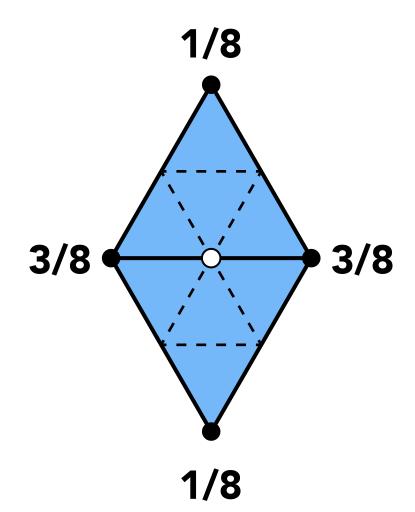
Simon Fuhrman

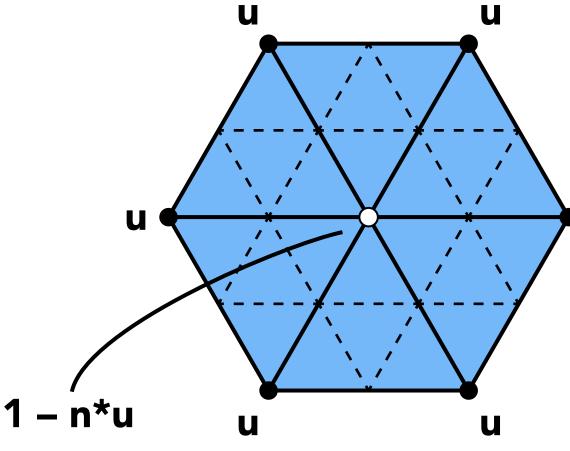
Loop subdivision algorithm

Split each triangle into four



Compute new vertex positions using weighted sum of prior vertex positions:





New vertices

(weighted sum of vertices on split edge, and vertices "across from" edge)

Old vertices

(weighted sum of edge adjacent vertices)

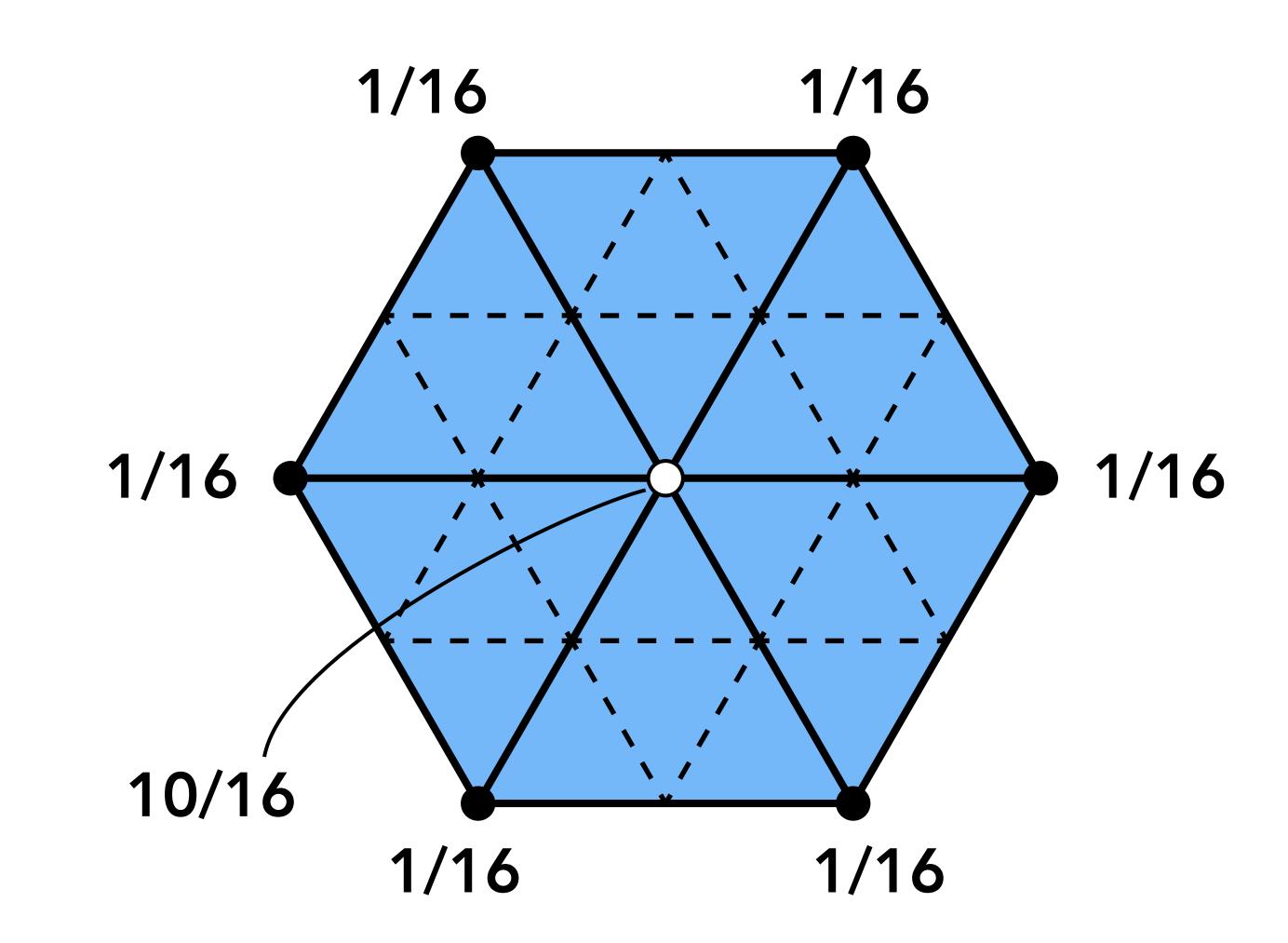
U

n = vertex degree

u = 3/16 if n=3, 3/(8n) otherwise

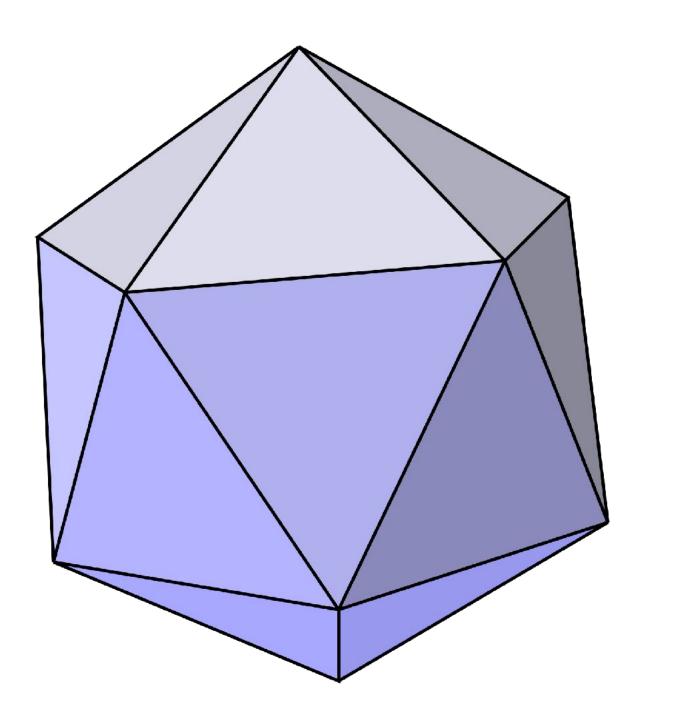
Stanford CS248A, Winter 2023

Loop subdivision algorithm Example, for degree 6 vertices ("regular" vertices)

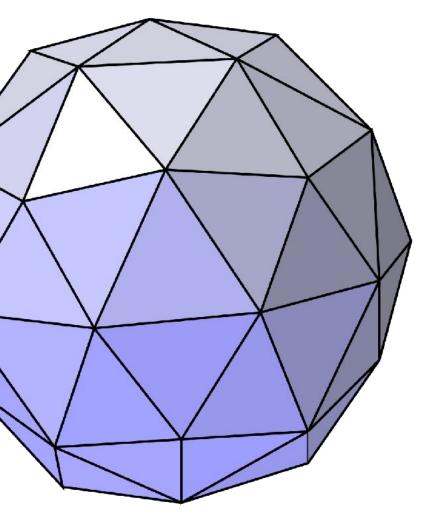


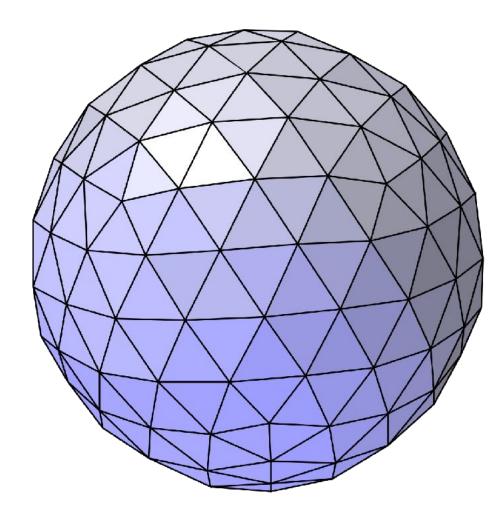
Stanford CS248A, Winter 2023

Loop subdivision results Common subdivision rule for triangle meshes "C2" smoothness away from irregular vertices Approximating, not interpolating



Credit: Simon Fuhrman





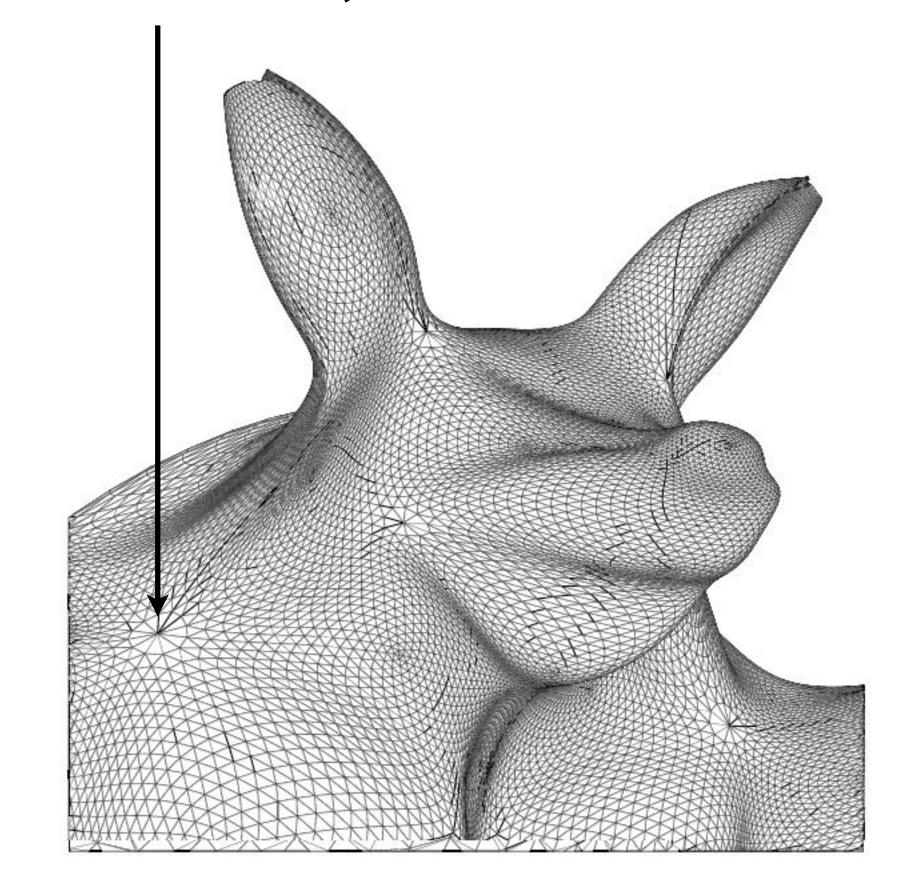
Semi-regular meshes

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6

Must have a few extraordinary points (degree not equal to 6)

Extraordinary vertex



Proof: always an extraordinary vertex

Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles

- E = 3/2 T
 - There are 3 edges per triangle, and each edge is part of 2 triangles
 - Therefore E = 3/2T
- T = 2V 4
 - Euler Convex Polyhedron Formula: T E + V = 2
 - => V = 3/2T T + 2 => T = 2V 4-

If all vertices had 6 triangles, T = 2V

- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, E = 6/2V => 3/2T = 6/2V => T = 2V

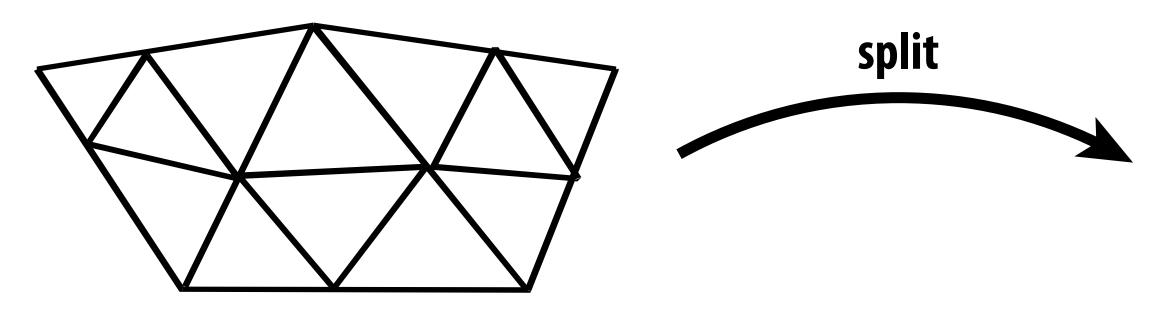
T cannot equal both 2V – 4 and 2V, a contradiction

Therefore, the mesh cannot have 6 triangles for every vertex

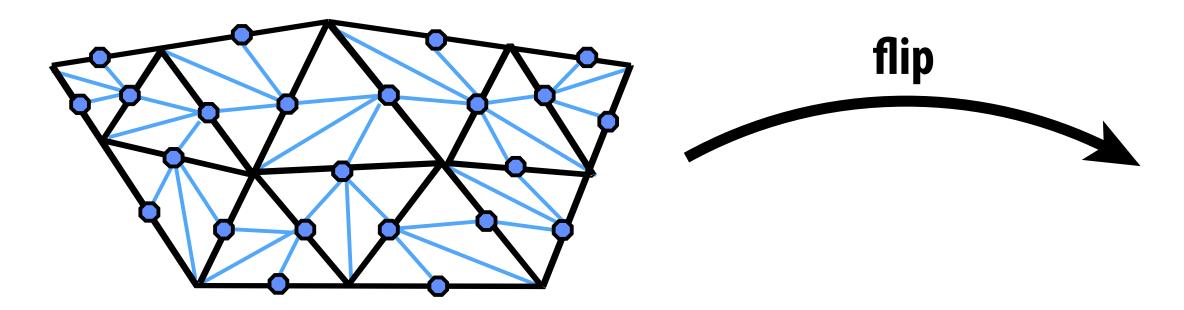
Stanford CS248A, Winter 2023

Loop subdivision via edge operations

First, split edges of original mesh in any order:

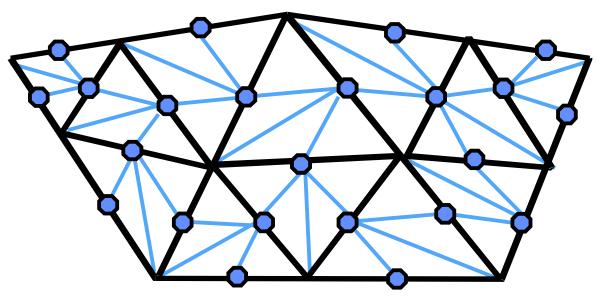


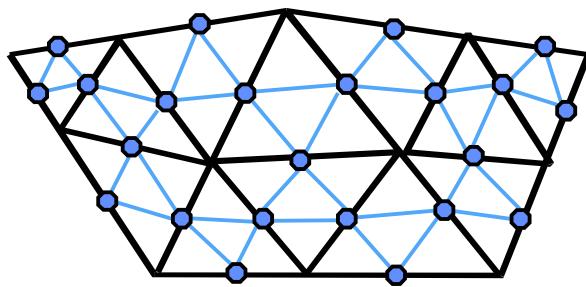
Next, flip new edges that touch a new and old vertex:



(Don't forget to update vertex positions!)

Images cribbed from Keenan Crane, cribbed from Denis Zorin

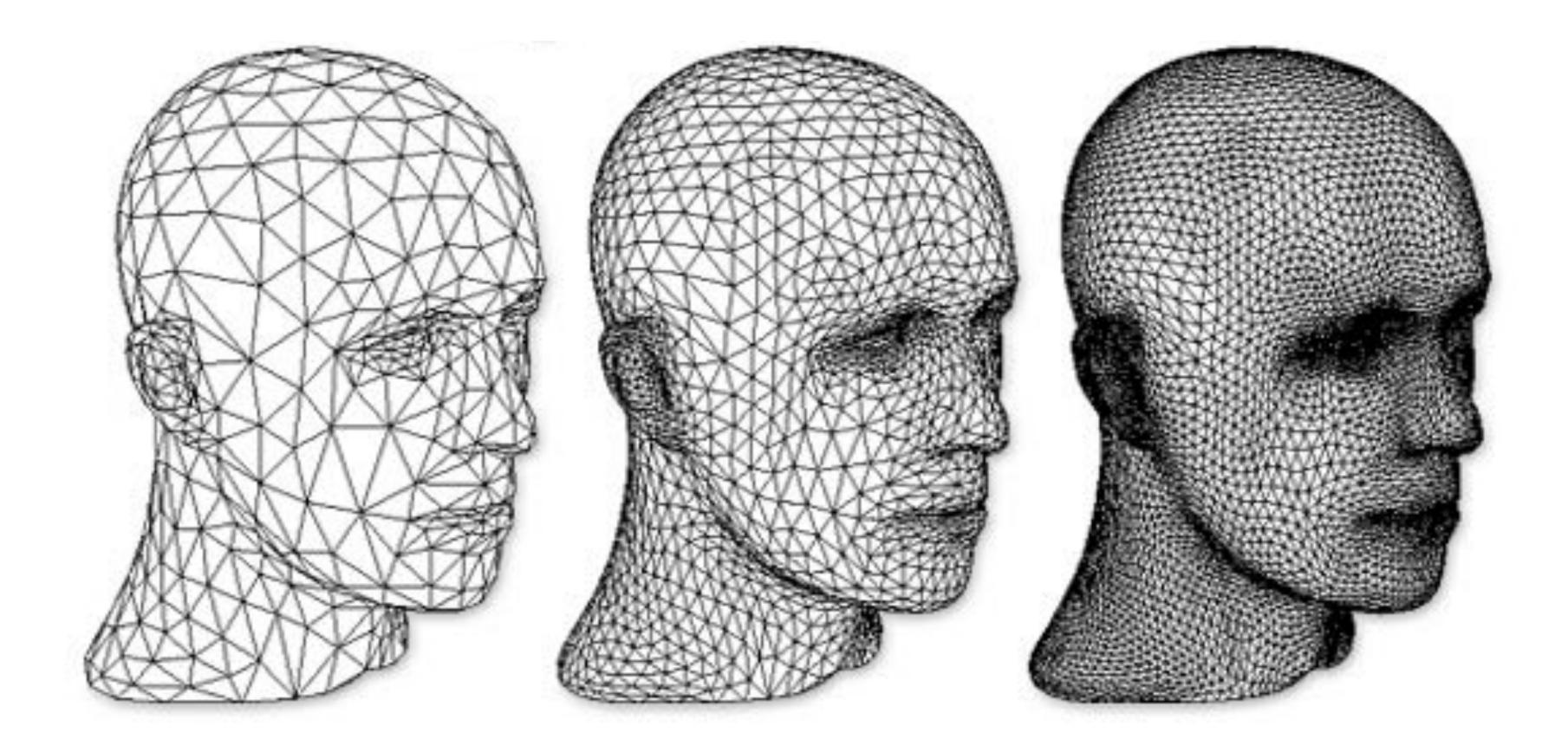




Continuity of loop subdivision surface

- At extraordinary vertices
 - Surface is at least C¹ continuous
- Everywhere else ("ordinary" regions)
 - Surface is C² continuous

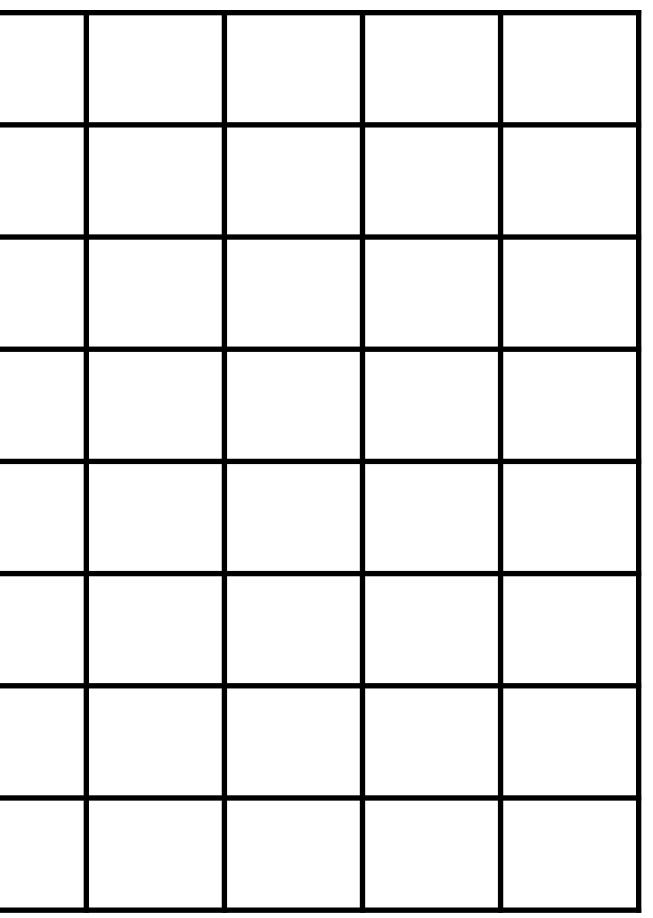
Loop subdivision results



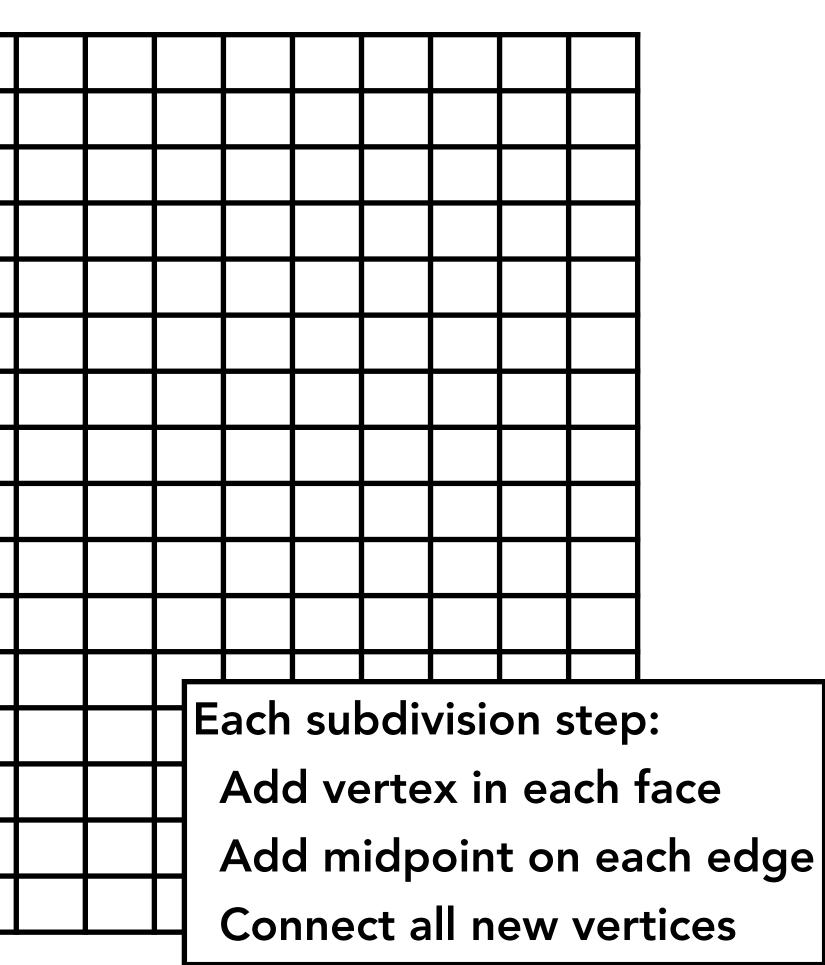
Catmull-Clark Subdivision

Catmull-Clark subdivision (regular quad mesh)

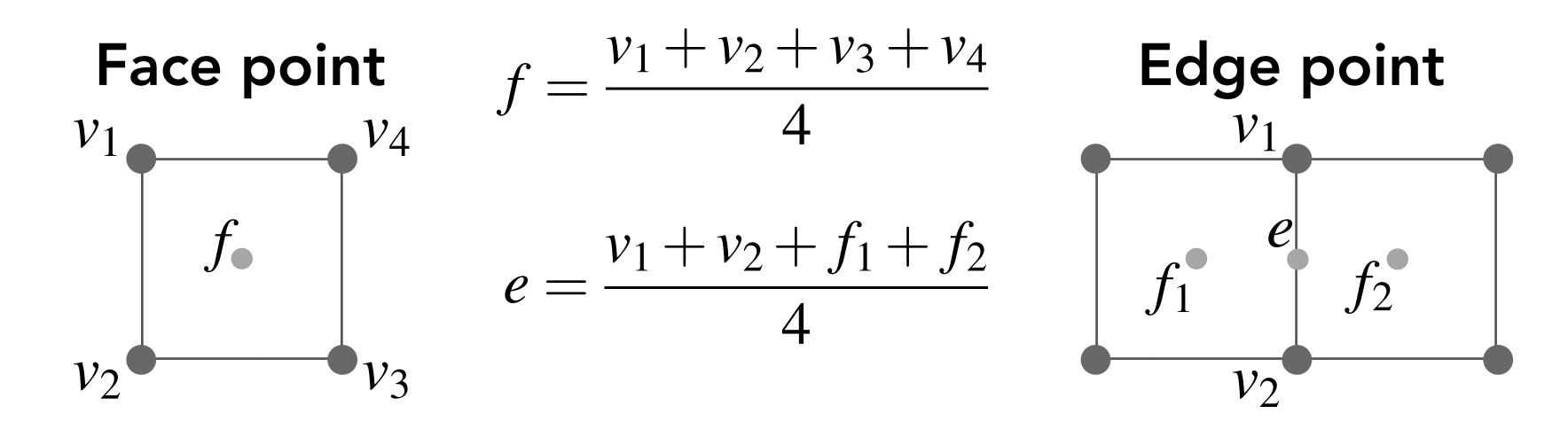
Catmull-Clark subdivision (regular quad mesh)

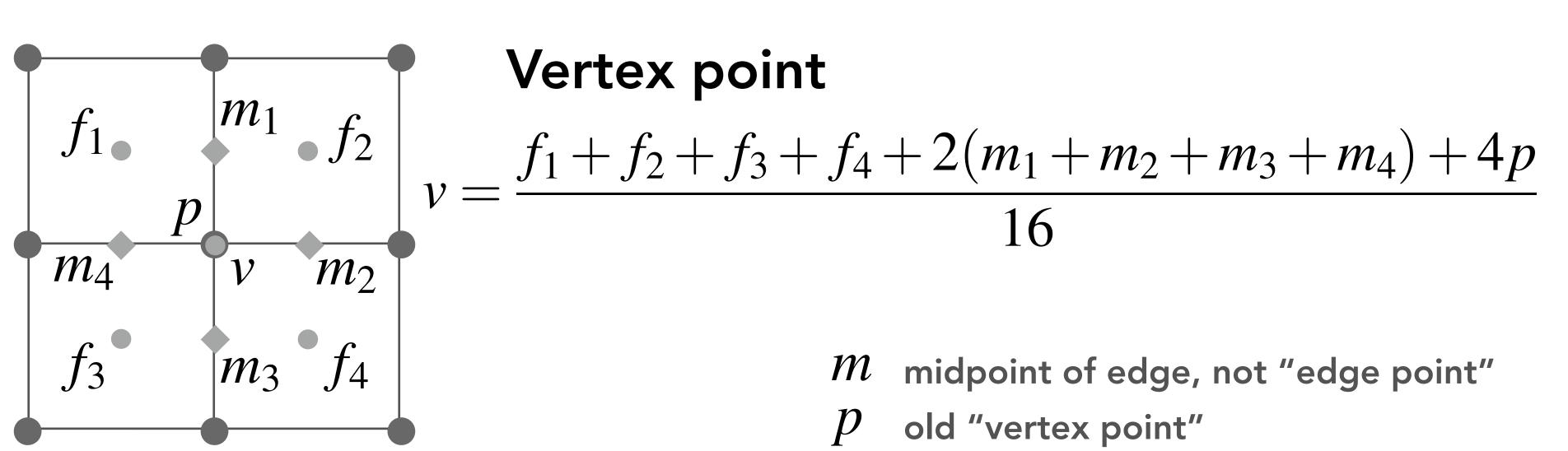


Catmull-Clark subdivision (regular quad mesh)

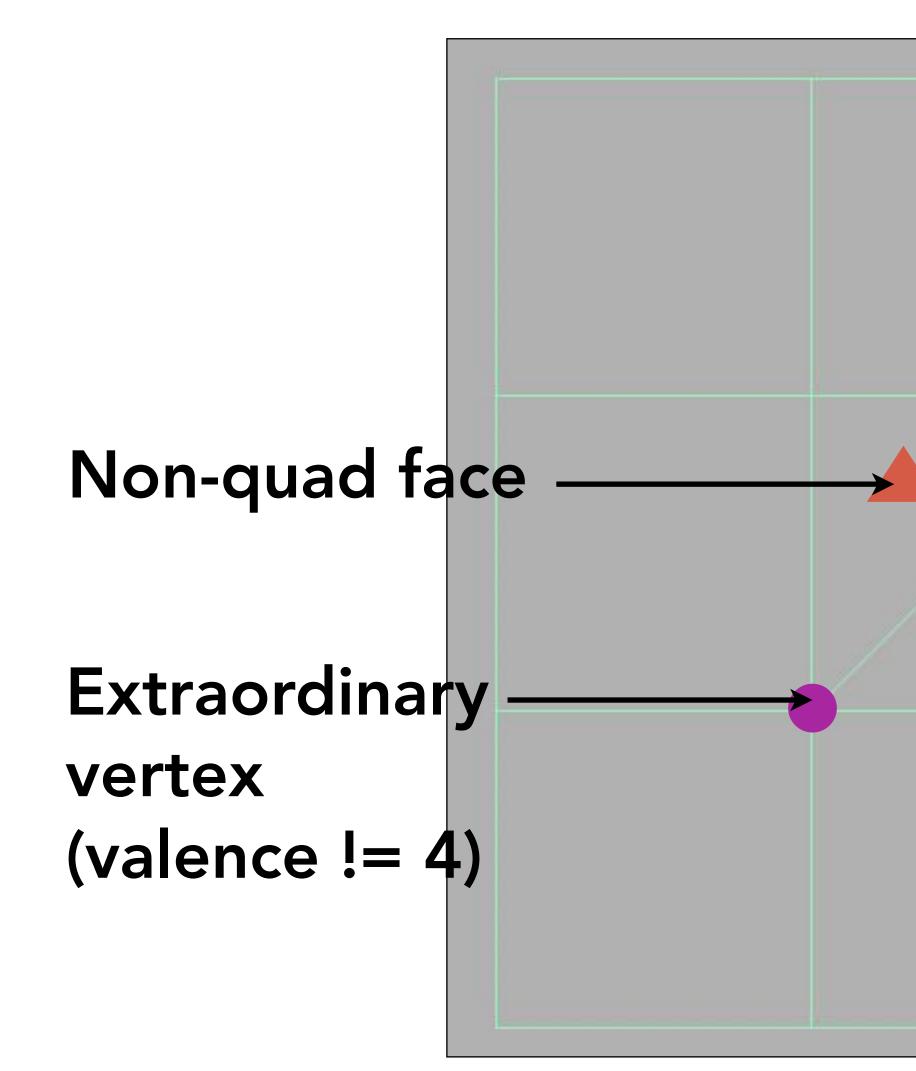


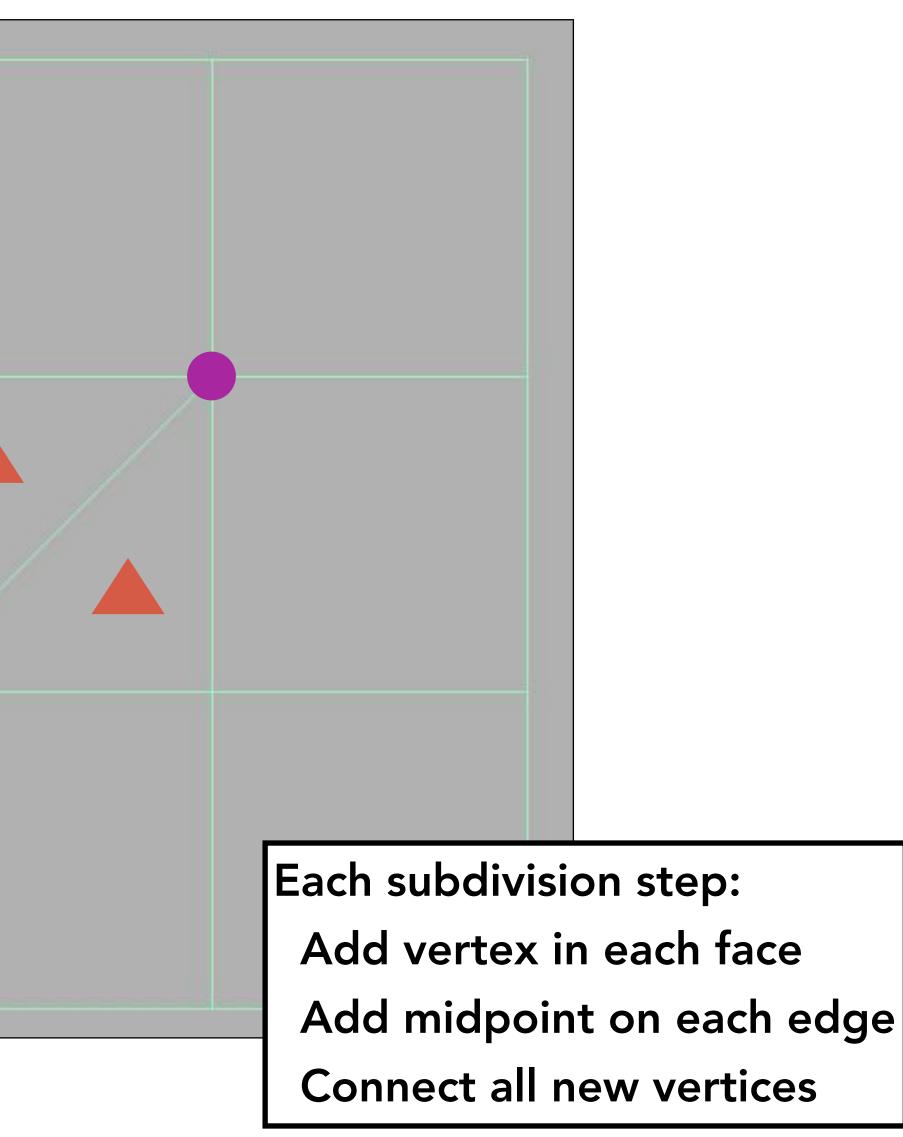
Catmull-Clark vertex update rules (quad mesh)

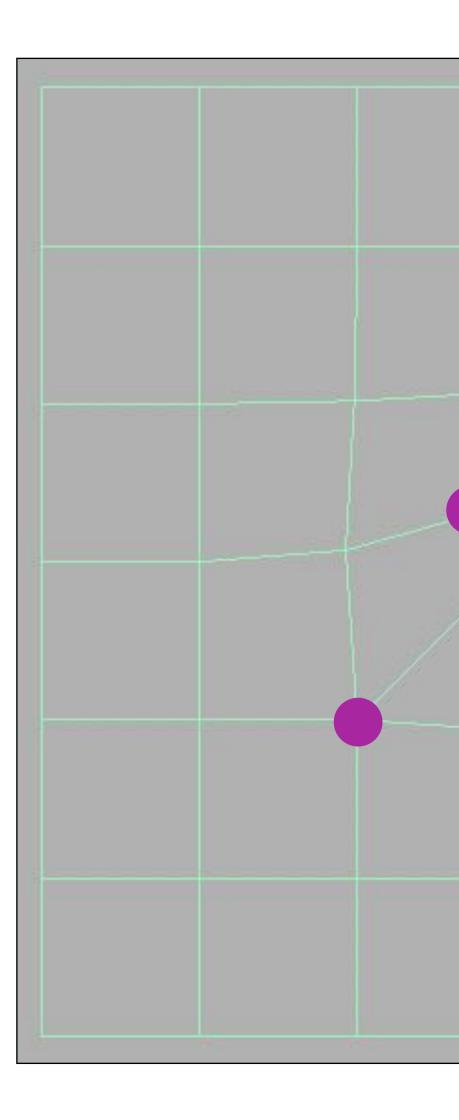


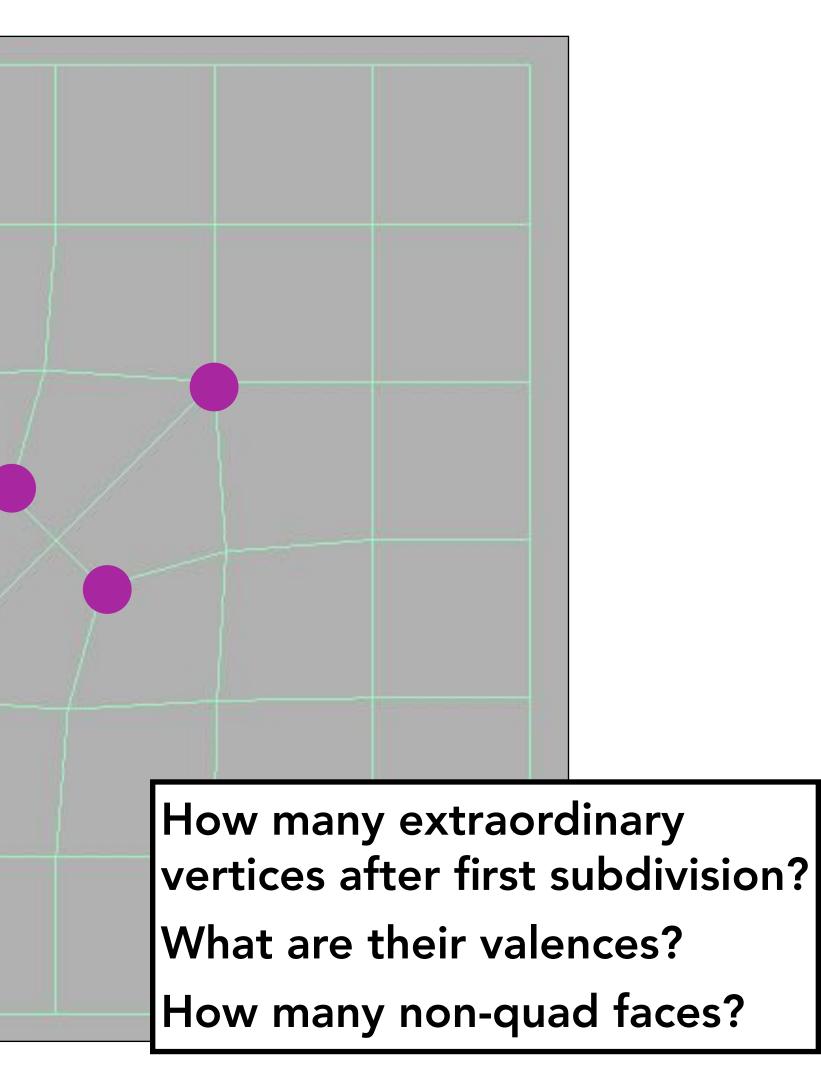


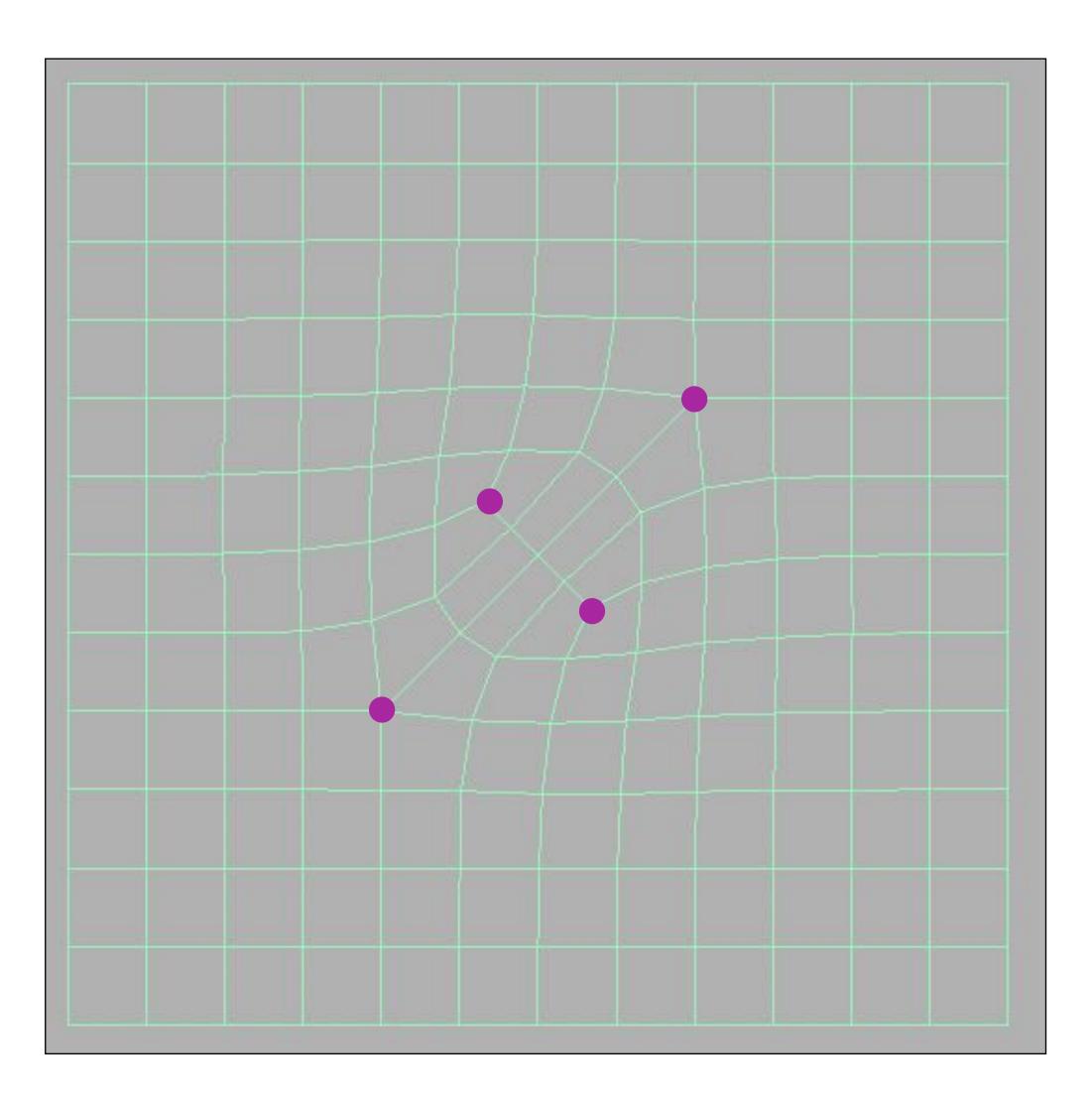
- m midpoint of edge, not "edge point"
- old "vertex point"

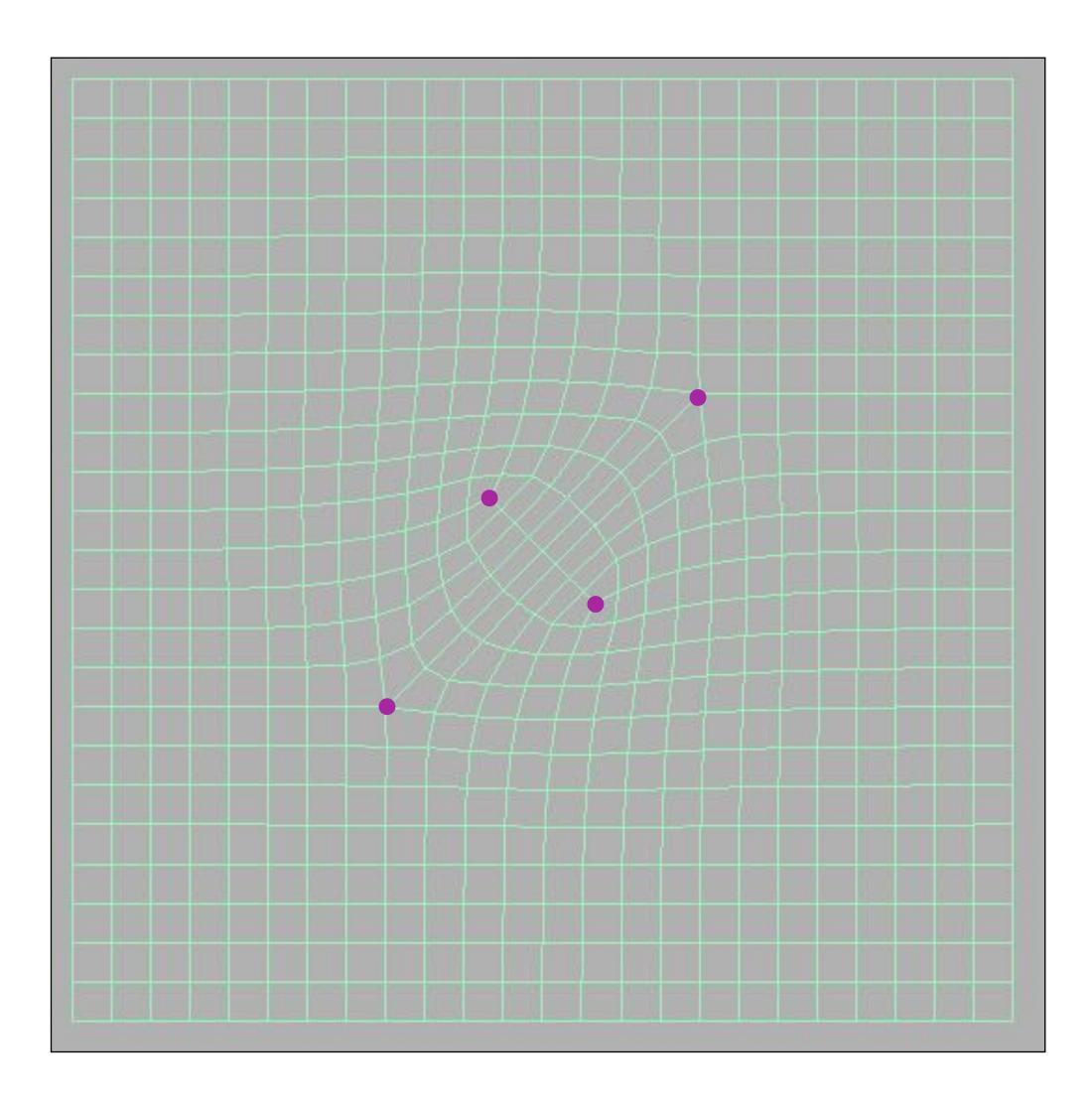












Catmull-Clark vertex update rules (general mesh)

f = average of surrounding vertices

$$e = {f_1 + f_2 + v_1 + v_2 \over 4}$$
 These rule rules for or

$$v = \frac{\bar{f}}{n} + \frac{2\bar{m}}{n} + \frac{p(n-3)}{n}$$

 \bar{m} = average of adjacent midpoints \bar{f} = average of adjacent face points n = valence of vertex p = old "vertex" point es reduce to earlier quad rdinary vertices / faces

Continuity of Catmull-Clark surface

- At extraordinary points
 - Surface is at least C¹ continuous
- Everywhere else ("ordinary" regions)
 Surface is C² continuous

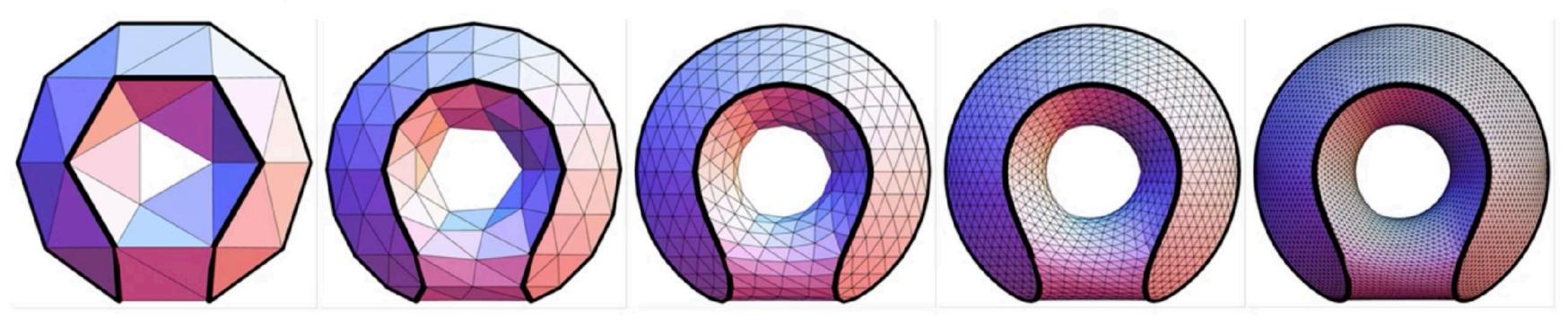


What about sharp creases?

From Pixar Short, "Geri's Game" Hand is modeled as a Catmull Clark surface with creases between skin and fingernail

What about sharp creases?

Loop with Sharp Creases



Catmull-Clark with Sharp Creases

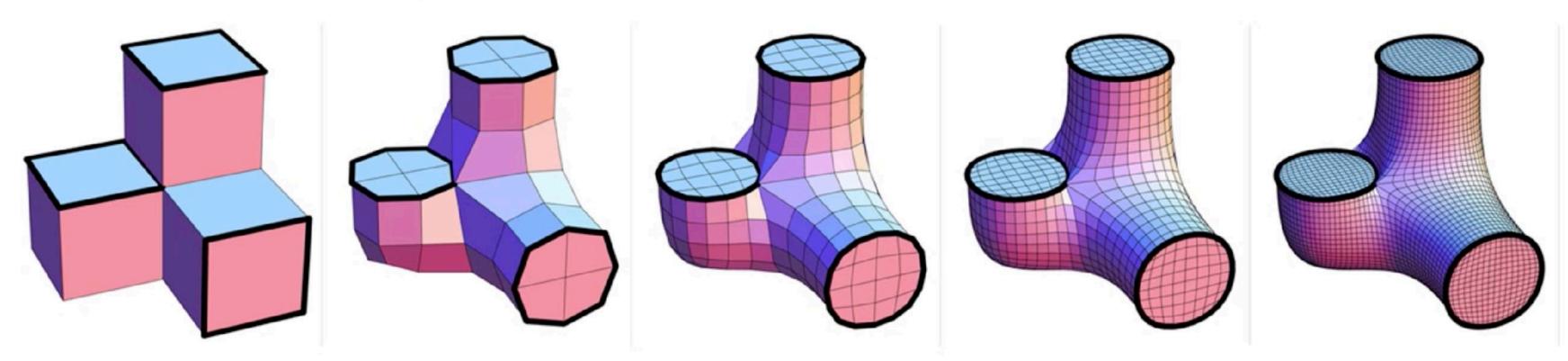
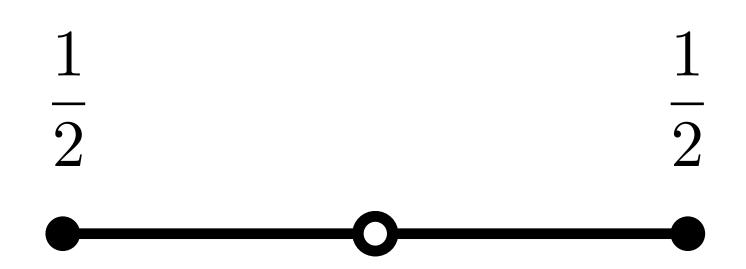


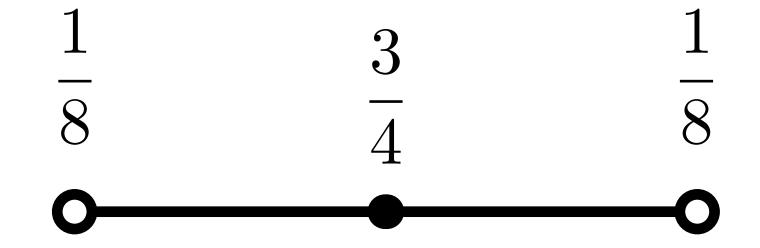
Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Creases and boundaries

- Can create creases in subdivision surfaces by marking certain edges as "sharp". Surface boundary edges can be handled the same way
 - Use different subdivision rules for vertices along these "sharp" edges



Insert new midpoint vertex, weights as shown



Update existing vertices, weights as shown

Subdivision in action ("Geri's Game", Pixar)

- Subdivision used for entire character:
 - Hands and head
 - Clothing, tie, shoes

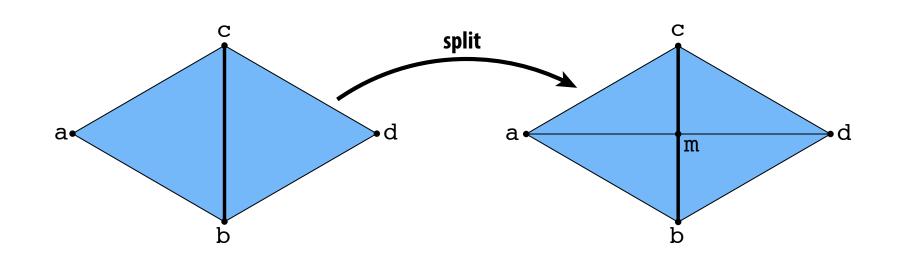
Mesh simplification (downsampling)

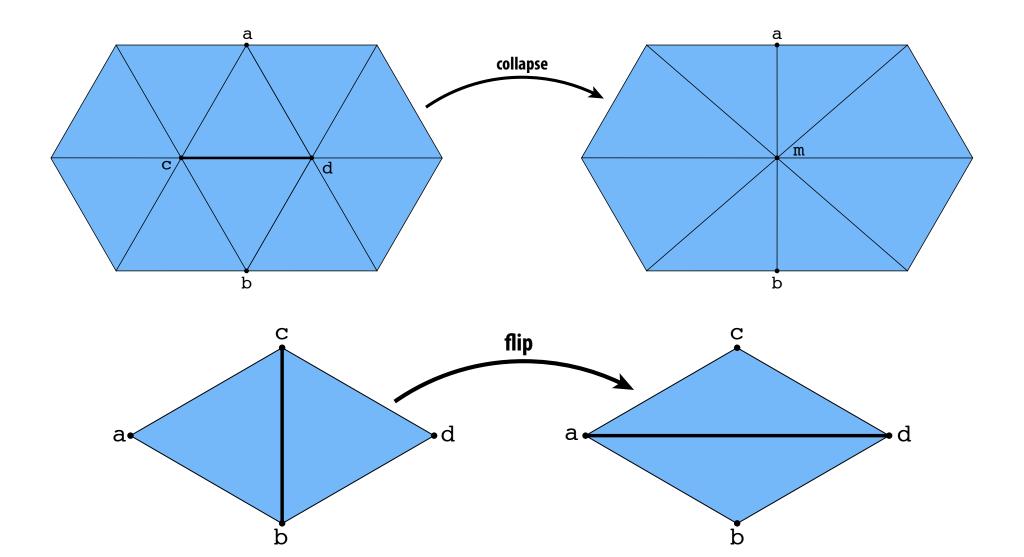
How do we resample meshes? (reminder) Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling:

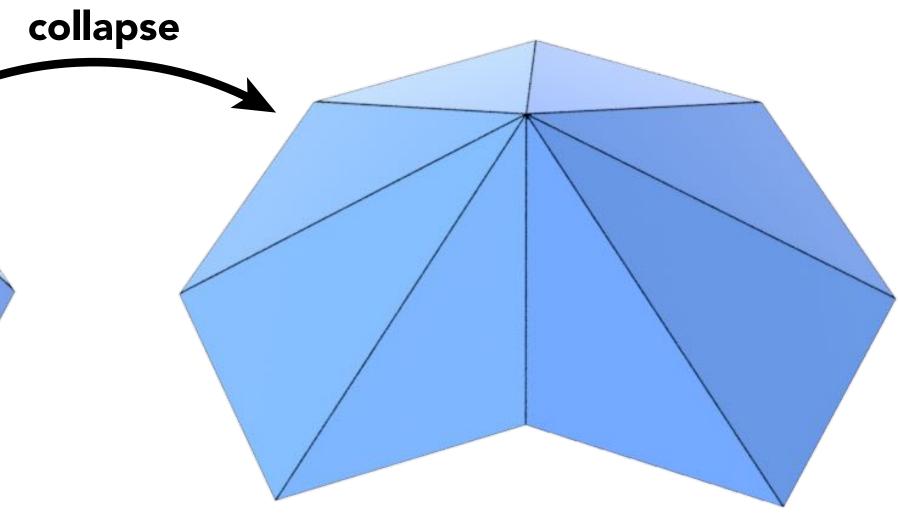
Still need to intelligently decide which edges to modify!





Mesh simplification Goal: reduce number of mesh elements while maintaining overall shape

Estimate: error introduced by collapsing an edge? How much geometric error is introduced by collapsing an edge?



Sketch of Quadric Error Mesh Simplification

Simplification via quadric error

- **Iteratively collapse edges**
- Which edges? Assign score with quadric error metric*
 - nearby triangles
 - Iteratively collapse edge with smallest score
 - Greedy algorithm... great results!

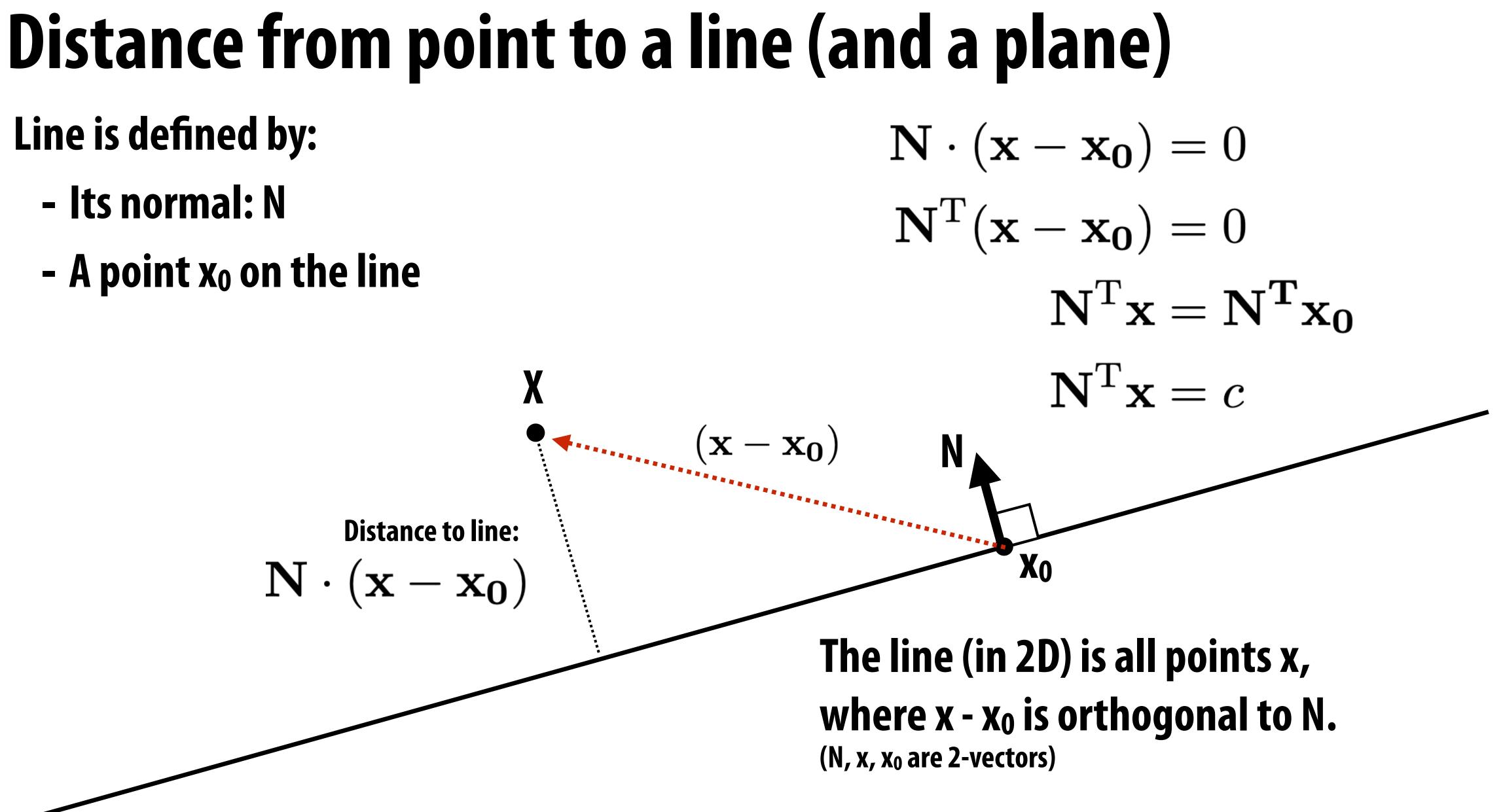
* (Garland & Heckbert 1997)

- Approximate distance to surface as sum of squared distances to planes containing



Line is defined by:

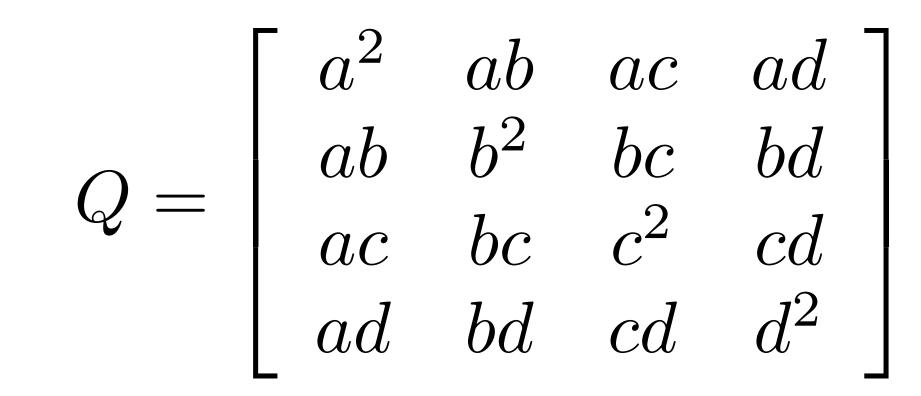
- Its normal: N
- A point x₀ on the line

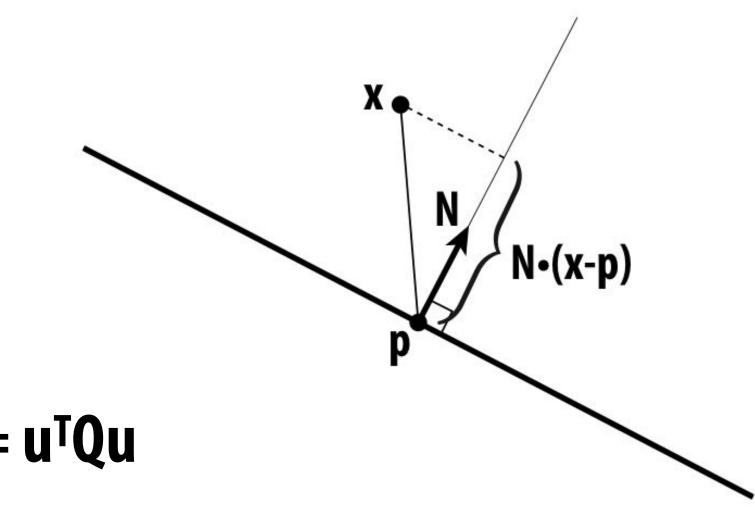


(And a plane (in 3D) is all points x where x - x₀ is orthogonal to N.) $(N, x, x_0 \text{ are } 3 \text{ -vectors})$

Quadric error matrix (encodes squared distance)

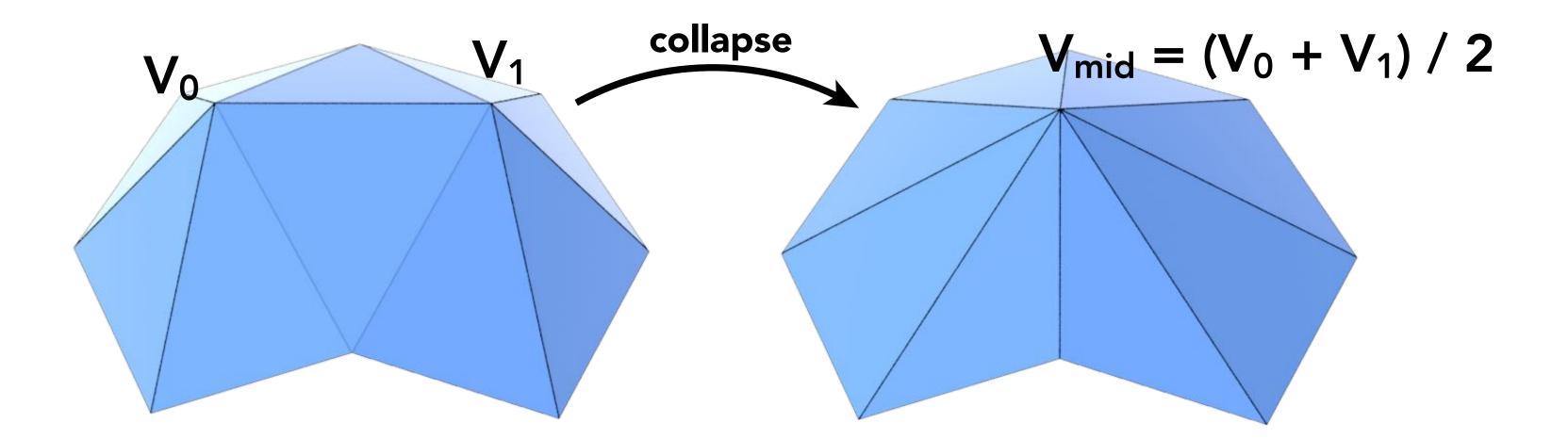
- Suppose we have:
 - a query point (x,y,z)
 - a normal (a,b,c)
 - an offset $d := -(x_p, y_p, z_p) \cdot (a, b, c)$
- Then in homogeneous coordinates, let
 - u := (x, y, z, 1)
 - v := (a, b, c, d)
- Signed distance to plane is then $\mathbf{D} = \mathbf{u}\mathbf{v}^{\mathsf{T}} = \mathbf{v}\mathbf{u}^{\mathsf{T}} = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} + \mathbf{d}$
- Squared distance is $D^2 = (uv^T)(vu^T) = u(v^Tv)u^T := u^TQu$
- Distance is 2nd degree ("quadric") polynomial in x,y,z





Cost of edge collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint V_{mid}, measure quadric error at this point
- **Error at V**_{mid} **given by** $v_{mid}^{T}(Q_0 + Q_1)v_{mid}$
- Intuition: cost is sum of squared differences to original position of triangles now touching V_{mid}

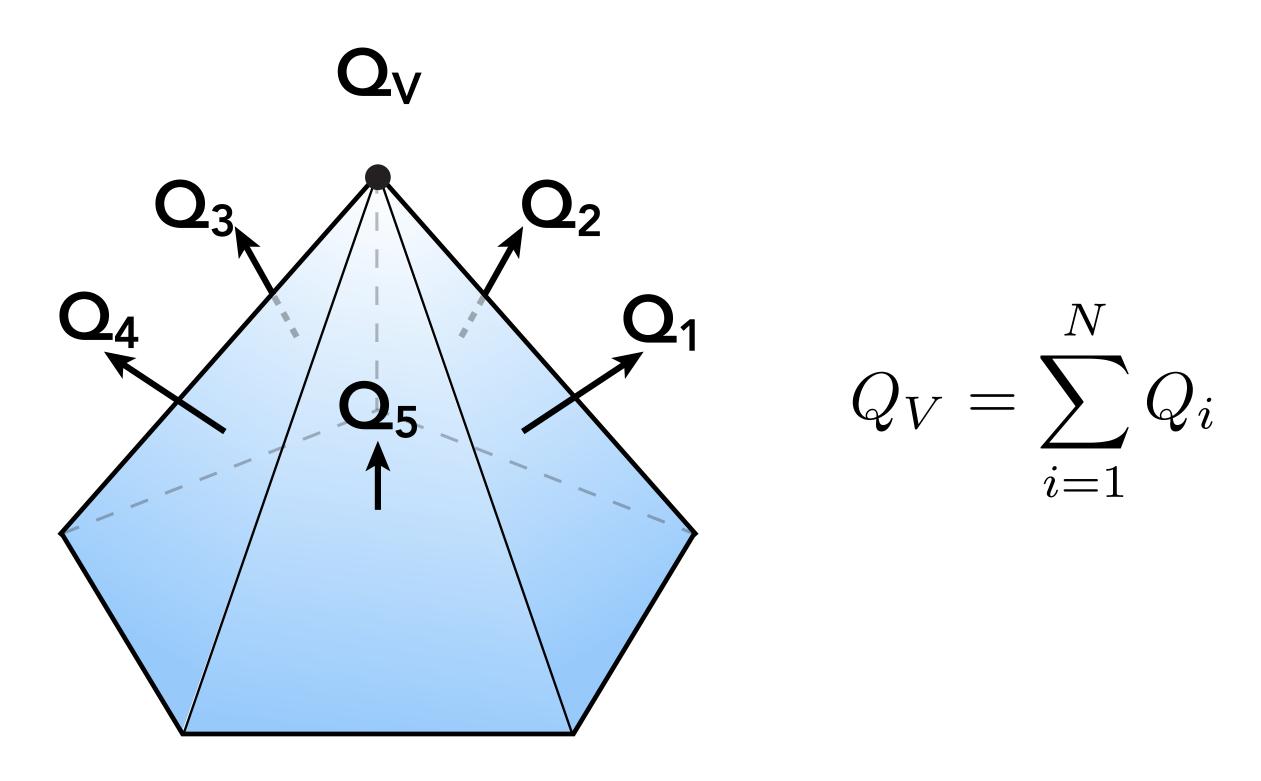


- Better idea: choose point on edge (not necessarily the midpoint) that minimizes quadric error
- More details: Garland & Heckbert 1997

See next slide for Q_i

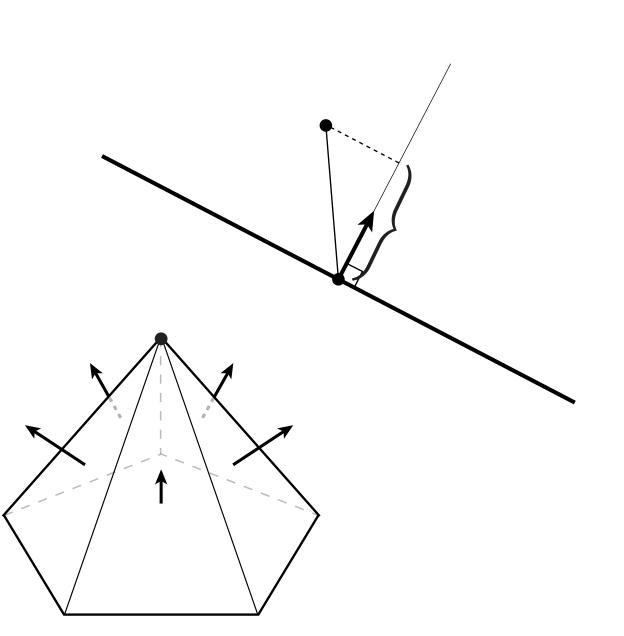
"Quadric error metric at mesh vertex"

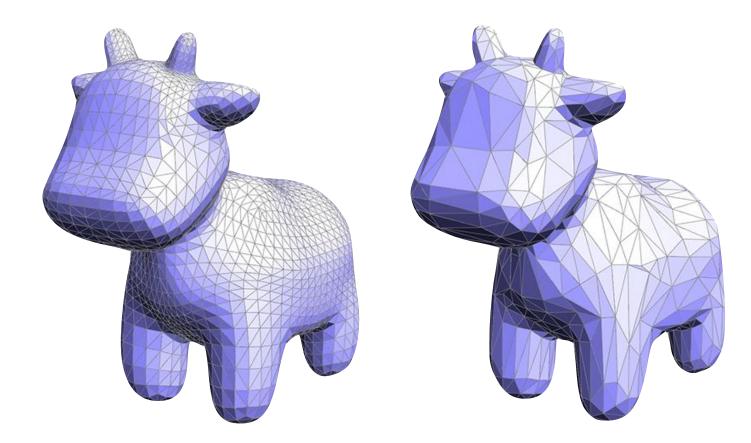
Heuristic: "error metric at vertex V" is sum of squared distances to triangles connected to V Encode this as a single quadric matrix per vertex that is the sum of quadric error matrices for all triangles



Quadric error simplification: algorithm

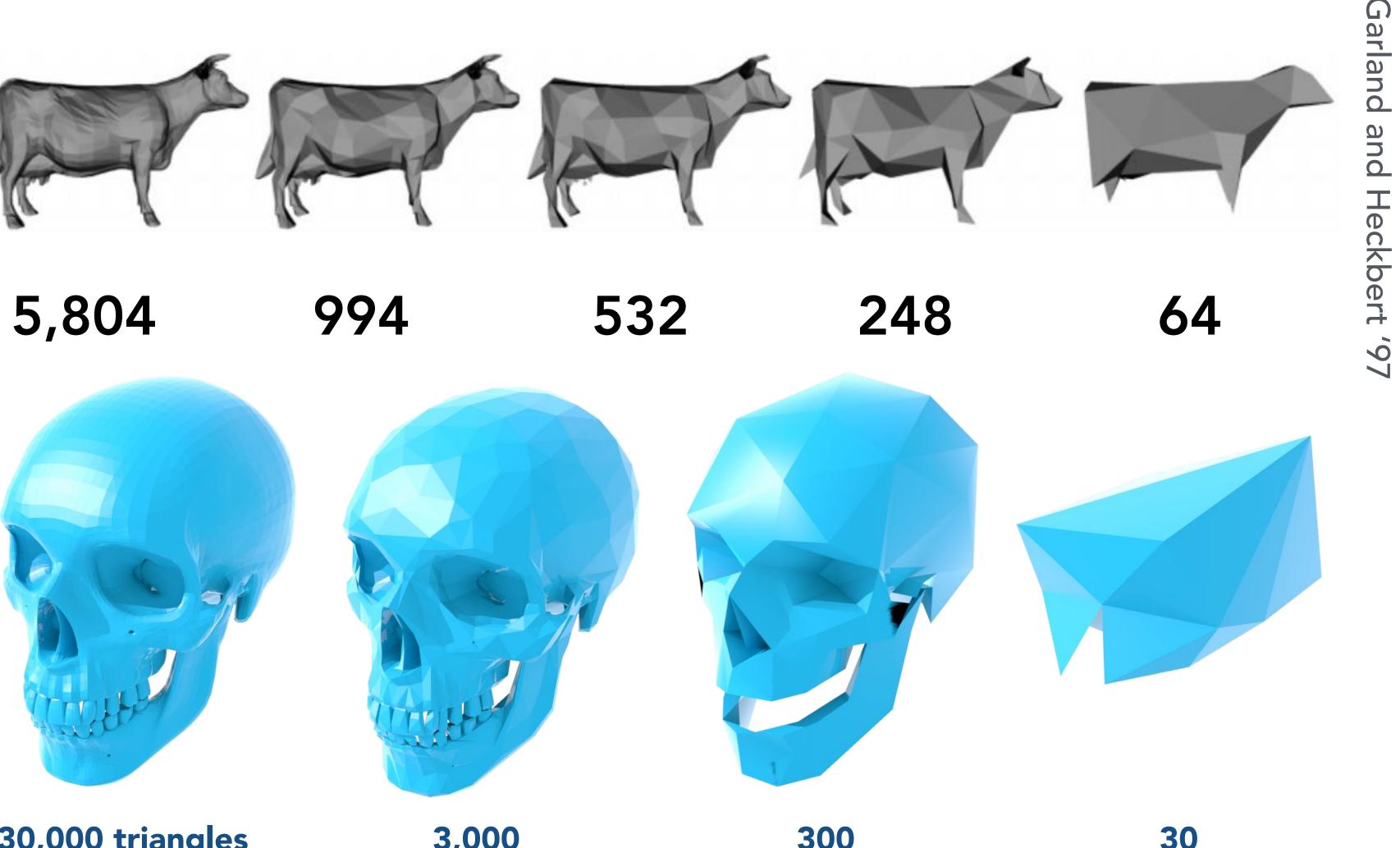
- Compute quadric error matrix Q for each triangle's plane
- Set Q at each vertex to sum of Q's from neighbor triangles
- Set Q at each edge to sum of Q's at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target # of triangles:
 - collapse edge (i,j) with smallest cost to get new vertex m
 - add Q_i and Q_j to get quadric Q_m at vertex m
 - update cost of edges touching vertex m





Quadric error mesh simplification





30,000 triangles

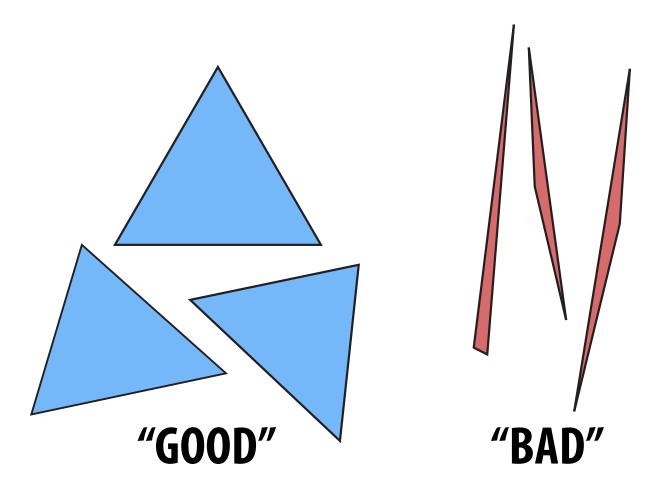
3,000

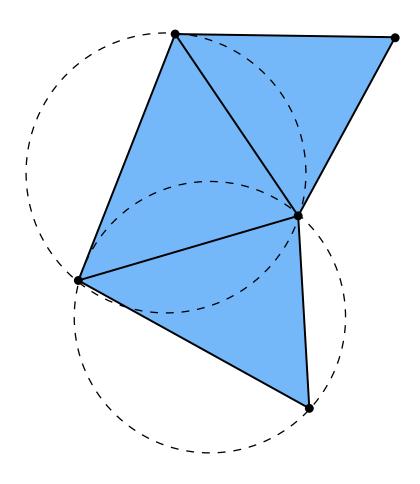
Mesh Regularization

What makes a "good" triangle mesh?

- **One rule of thumb: triangle shape**
- One rule of thumb: triangle shape
- More specific condition: Delaunay
 - "Circumcircle interiors contain no vertices."
- Not always a good condition, but often*
 - Good for simulation
 - Not always best for shape approximation

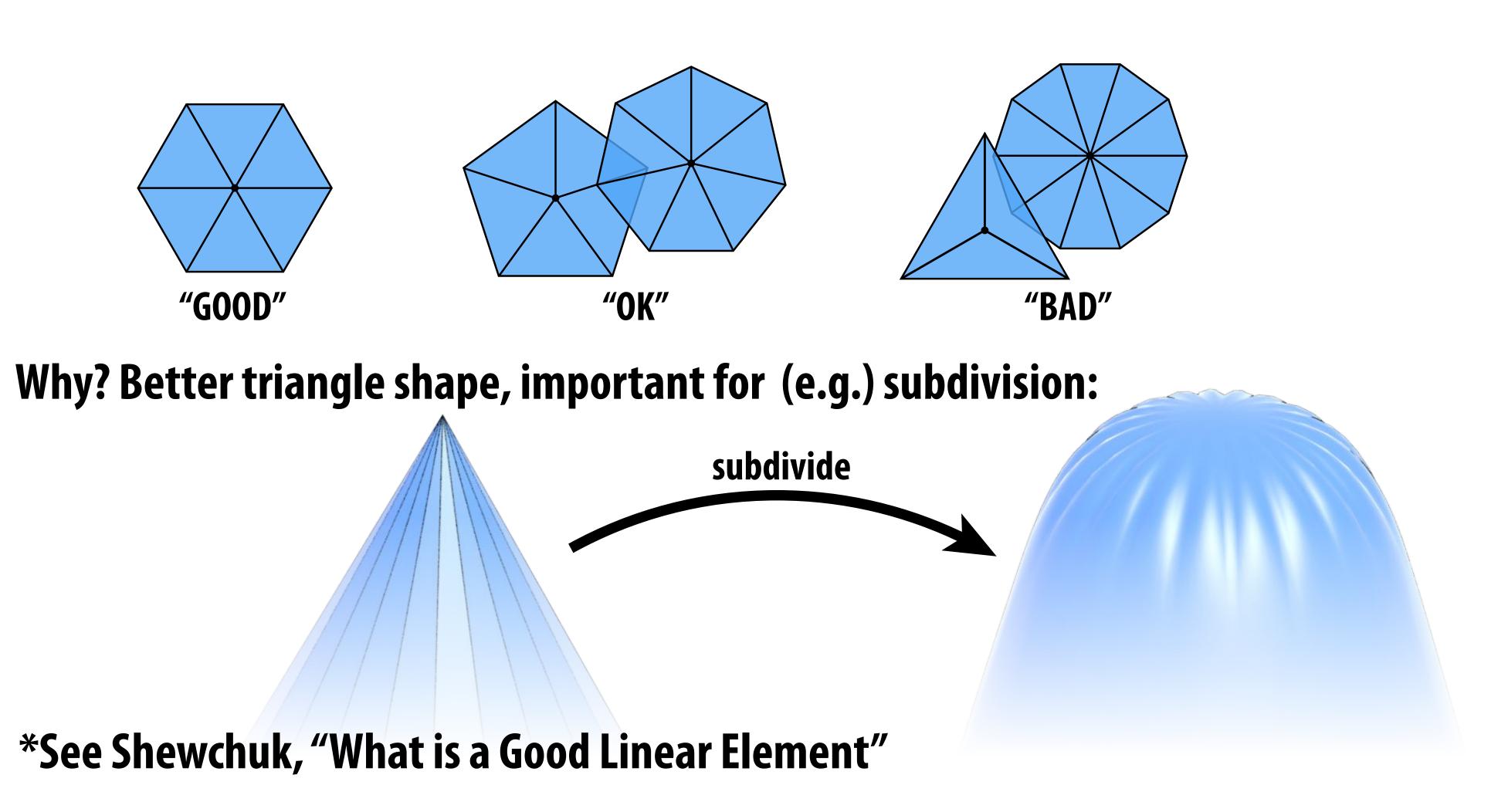
*See Shewchuk, "What is a Good Linear Element"





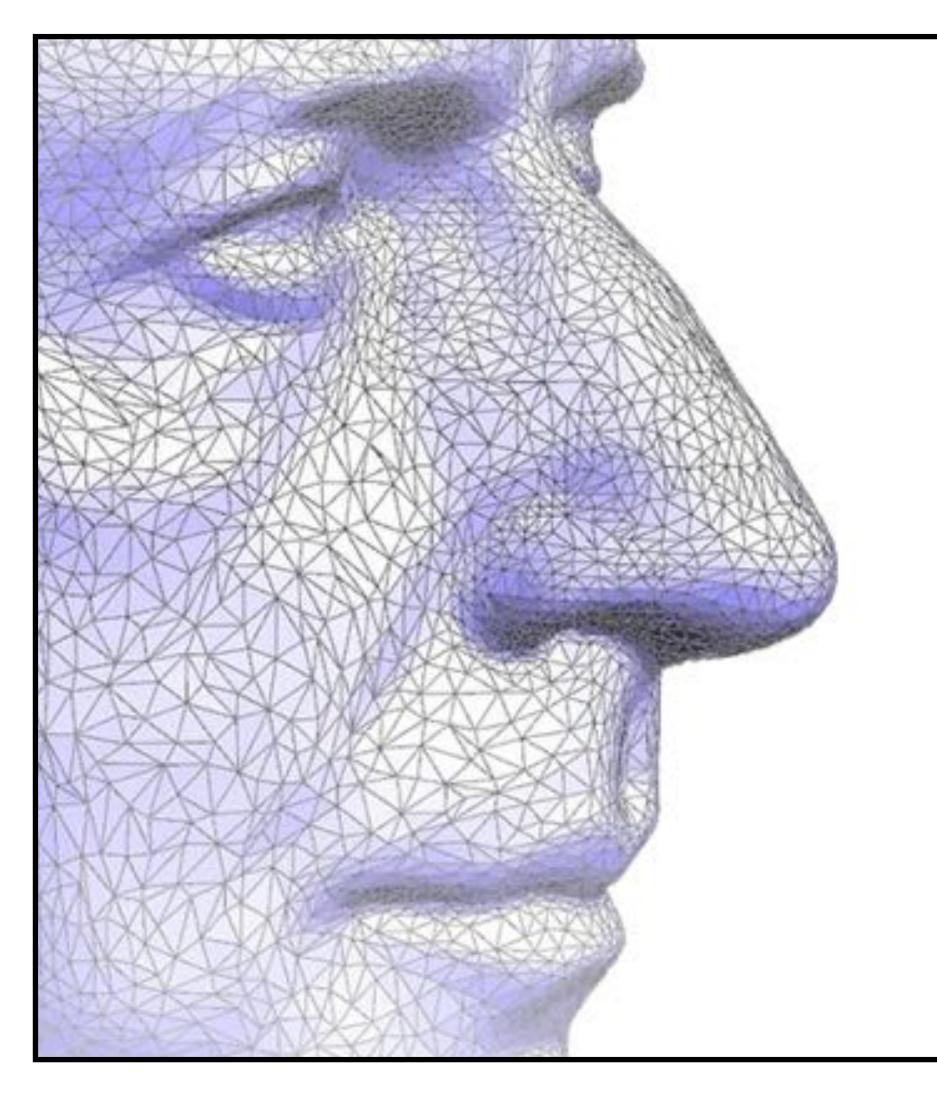
What else constitutes a good mesh?

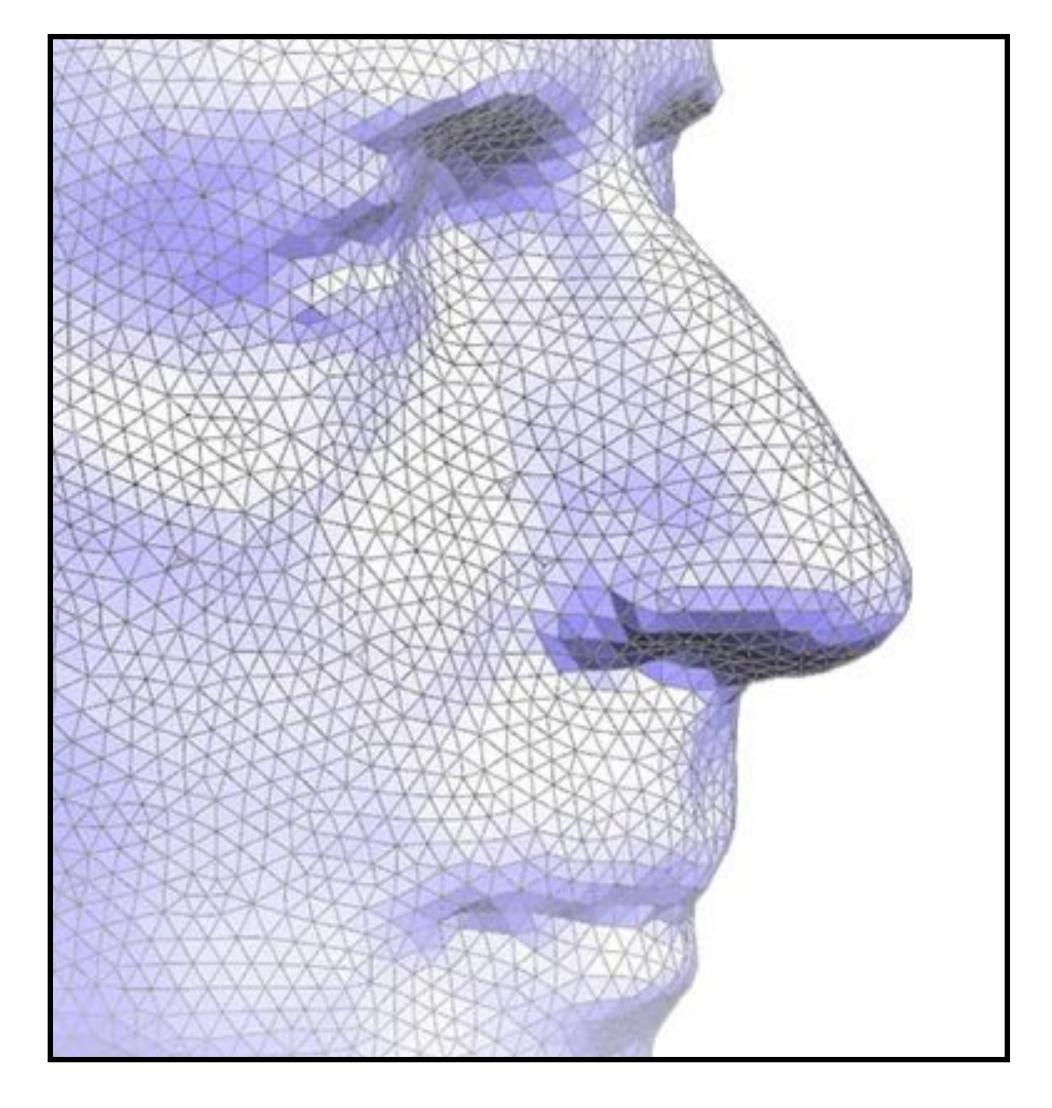
- **Rule of thumb: regular vertex degree**
- **Triangle meshes: ideal is every vertex with valence 6:**



Isotropic remeshing

Goal: try to make triangles uniform in shape and size

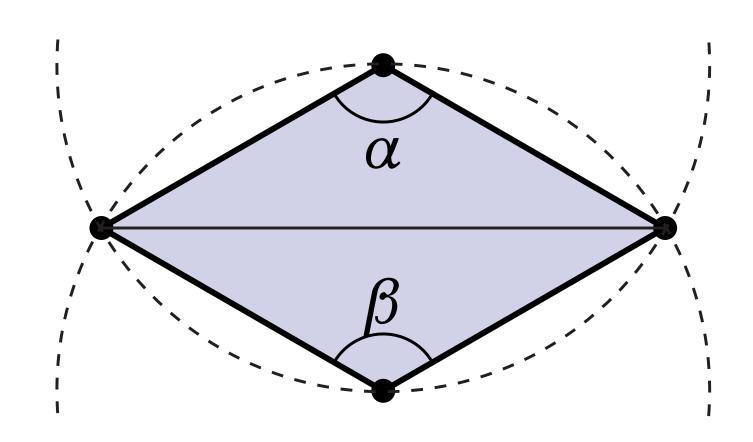




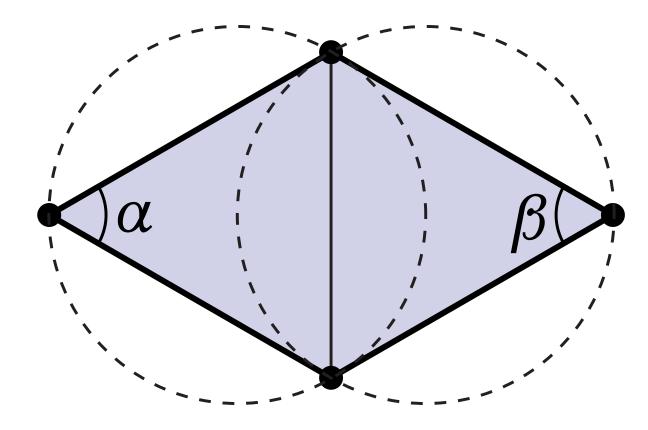


How do we make a mesh "more delaunay"? Already have a good tool: edge flips!

If $\alpha + \beta > \pi$, flip it!



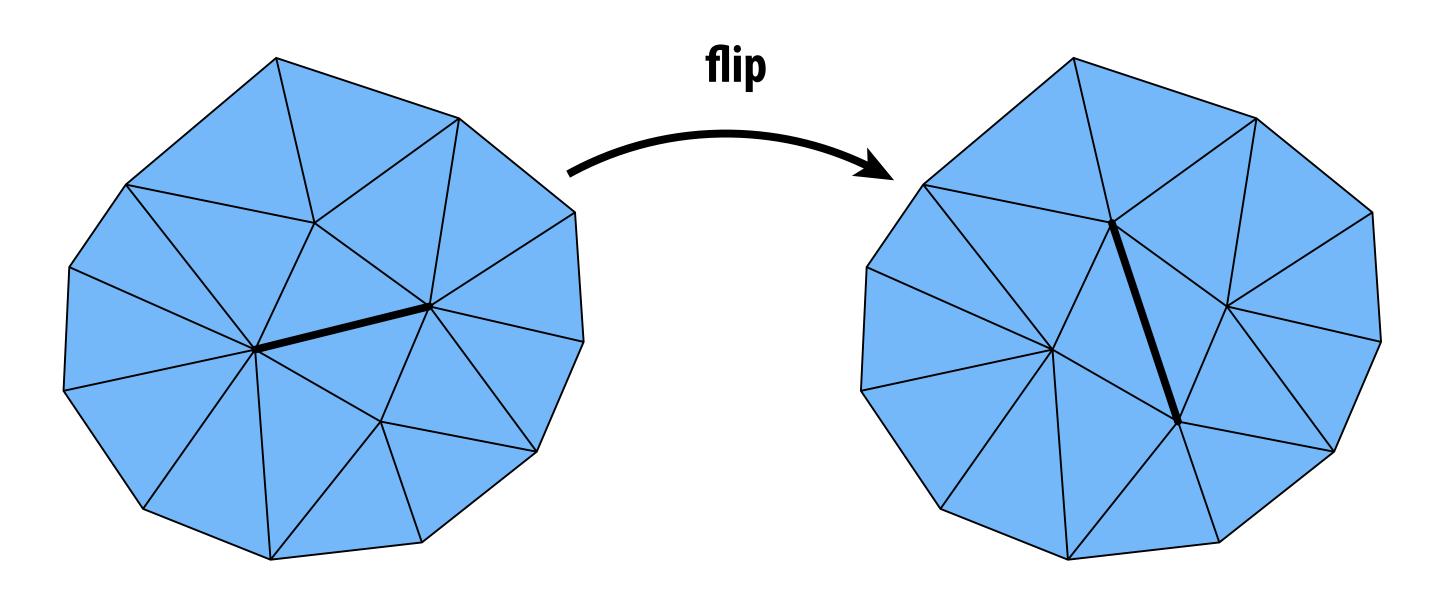
In practice: a simple, effective way to improve mesh quality



Stanford CS248A, Winter 2023

How do we improve degree?

- **Edge flips!**
- If total deviation from degree 6 gets smaller, flip it!

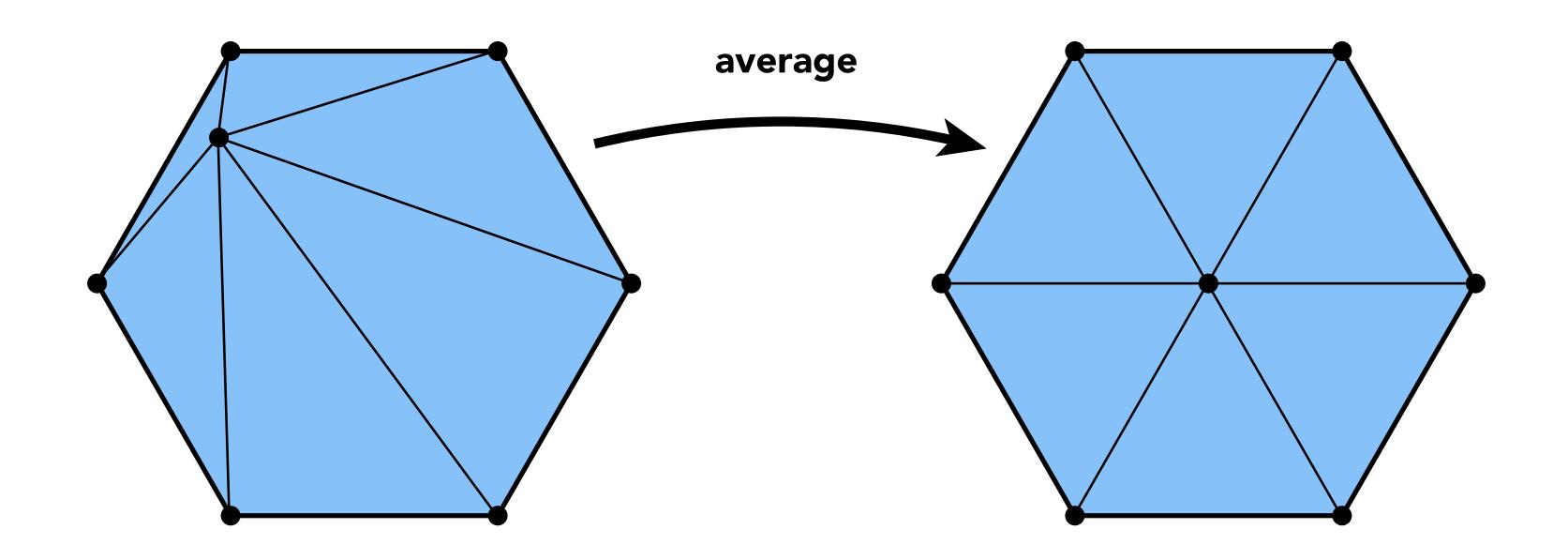


Iterative edge flipping acts like "discrete diffusion" of degree No (known) guarantees; works well in practice

Stanford CS248A, Winter 2023

How do we make triangles "more round"?

- **Delaunay doesn't mean equilateral triangles**
- Can often improve shape by centering vertices:



[See Crane, "Digital Geometry Processing with Discrete Exterior Calculus"]

Isotropic remeshing algorithm*

- **Repeat four steps:**
 - Split edges over 4/3rds mean edge length
 - Collapse edges less than 4/5ths mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

Stanford CS248A, Winter 2023

Things to remember

- **Triangle mesh representations**
 - Triangles vs points+triangles
 - Half-edge structure for mesh traversal and editing
- **Geometry processing basics**
 - Local operations: flip, split, and collapse edges
 - Upsampling by subdivision (Loop, Catmull-Clark)
 - **Downsampling by simplification (Quadric error)**
 - **Regularization by isotropic remeshing**

Acknowledgements

Thanks to Keenan Crane, Ren Ng, Pat Hai presentation resources

Thanks to Keenan Crane, Ren Ng, Pat Hanrahan, James O'Brien, Steve Marschner for

