Image Compression and Basic Image Processing

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2023

Lecture 16:

Color spaces demo (Finishing up from last time)

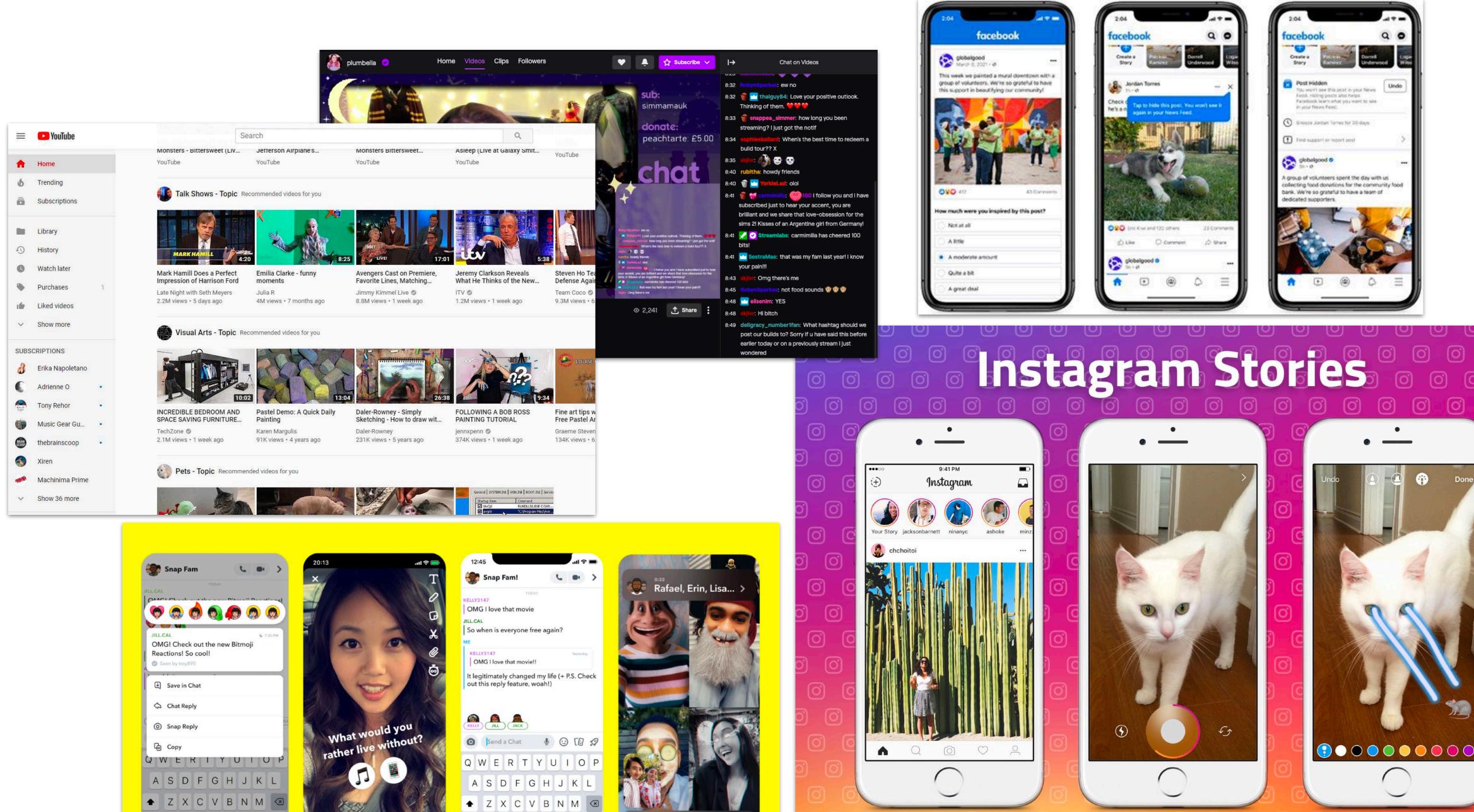
Recurring themes in the course

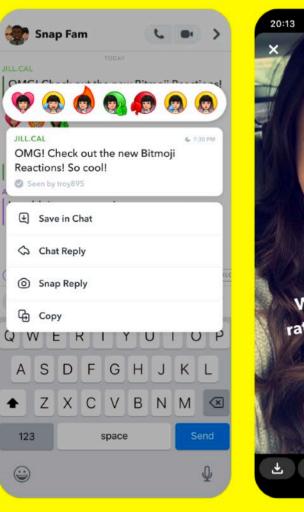
- Choosing the right representation for a task
 - e.g., choosing the right basis
 - **Exploiting human perception for computational efficiency**
 - Errors/approximations in algorithms can be tolerable if humans do not notice
- Convolution as a useful operator
 - To remove high frequency content from images
 - What else can we do with convolution?

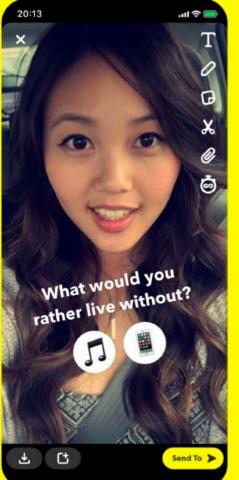
Stanford CS248A, Winter 2023

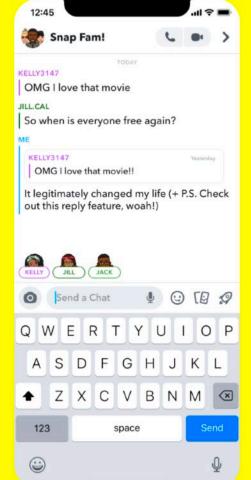
Image Compression

Picture taken on my iPhone (12 MPixel sensor) 4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image JPG compressed image = 2.9 MB



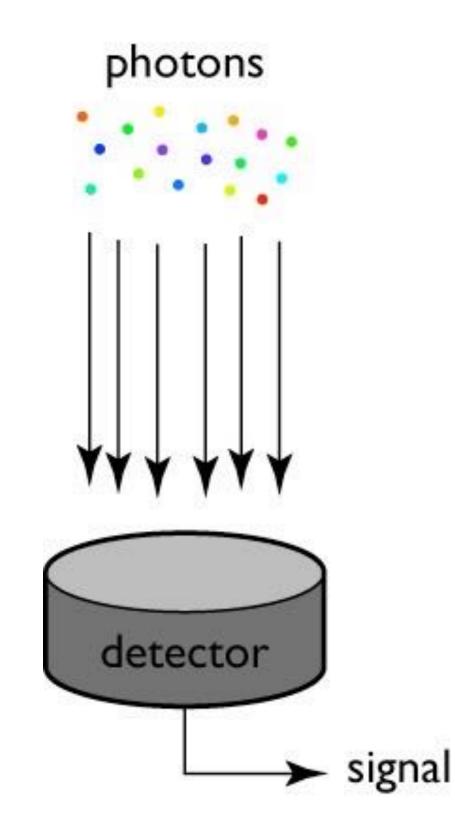






Review from last time

Sensor's response is proportional to amount of light arriving at sensor



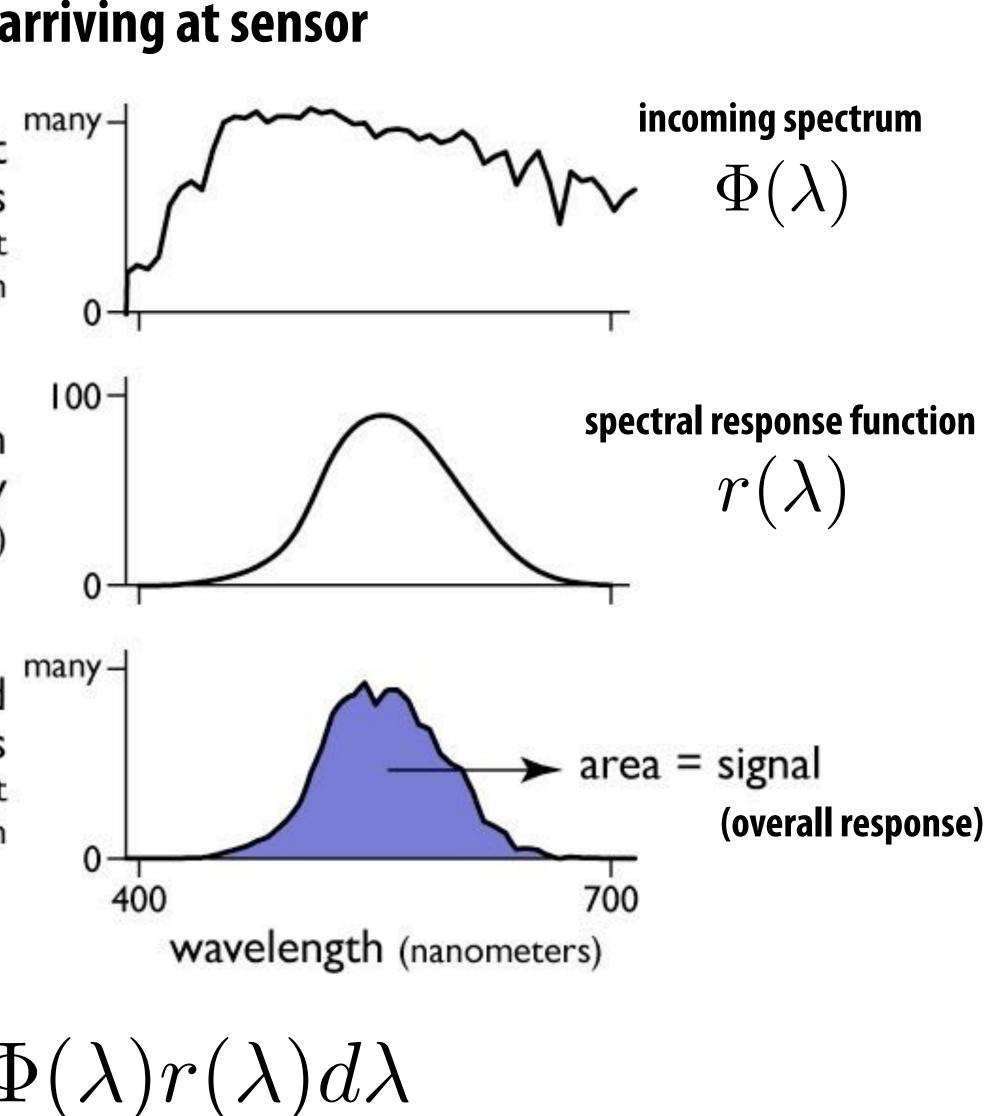
incident photons per unit wavelength

detection efficiency (percent)

detected photons per unit wavelength

 $R = \int_{\lambda} \Phi(\lambda) r(\lambda) d\lambda$

Figure credit: Steve Marschner



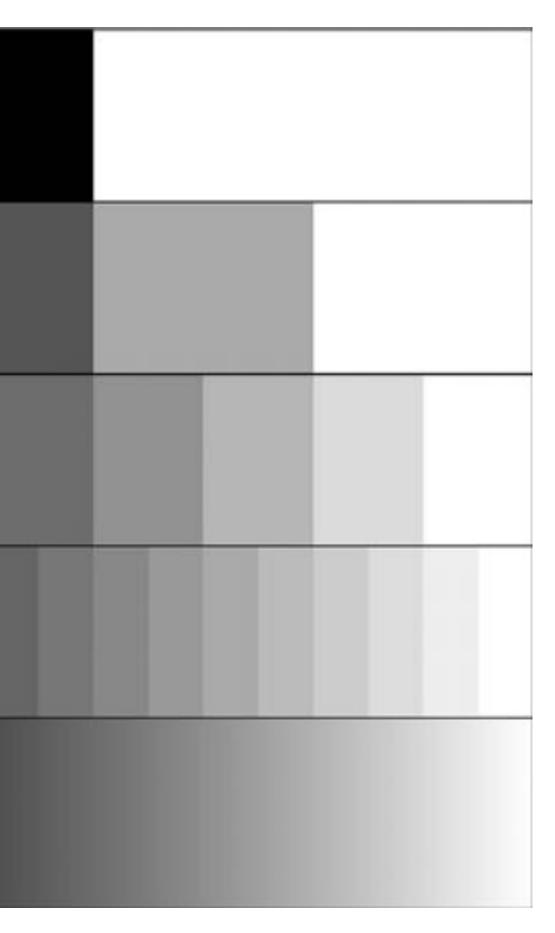
Stanford CS248A, Winter 2023

Encoding numbers

- More bits \rightarrow can represent more unique numbers
- 8 bits \rightarrow 256 unique numbers (0-255)

1 bit	
2 bit	
3 bit	
4 bit	
8 bit	

[Credit: lambert and waters]



Stanford CS248A, Winter 2023

Luminance (brightness)

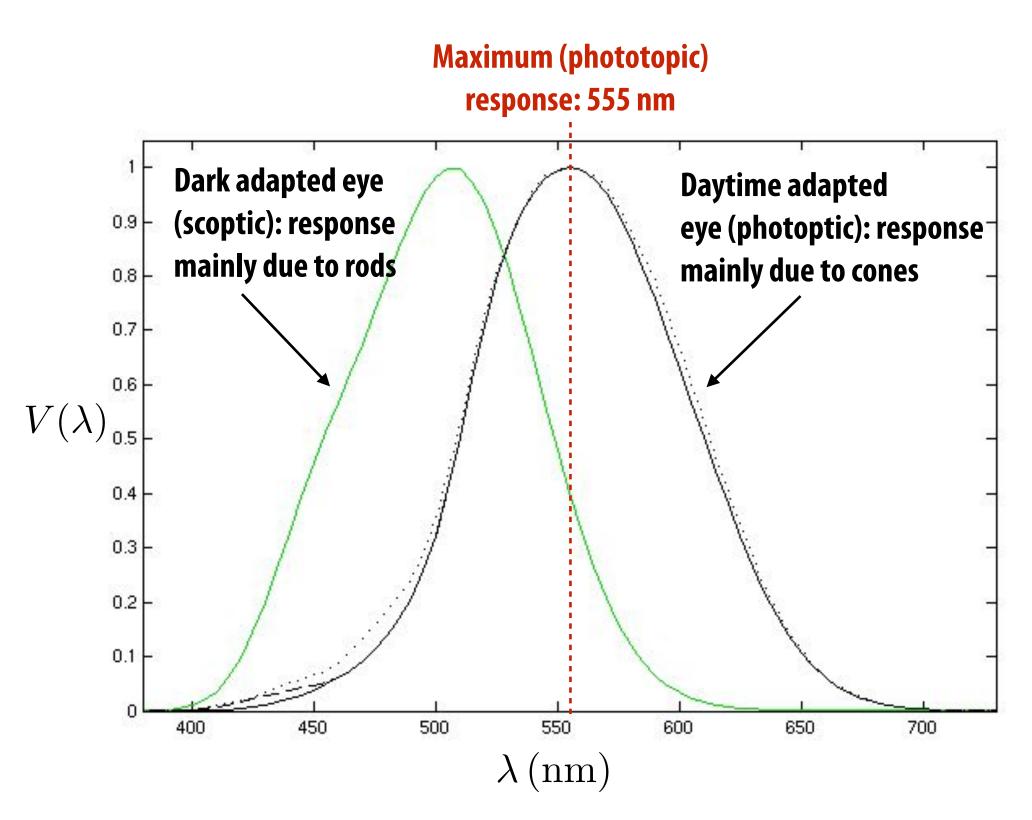
Product of radiance and the eye's luminous efficiency

$$Y = \int \Phi(\lambda) V(\lambda) \, \mathrm{d}\lambda$$

Luminous efficiency is measure of how bright light at a given wavelength is perceived by a human (due to the eye's response to light at that wavelength)

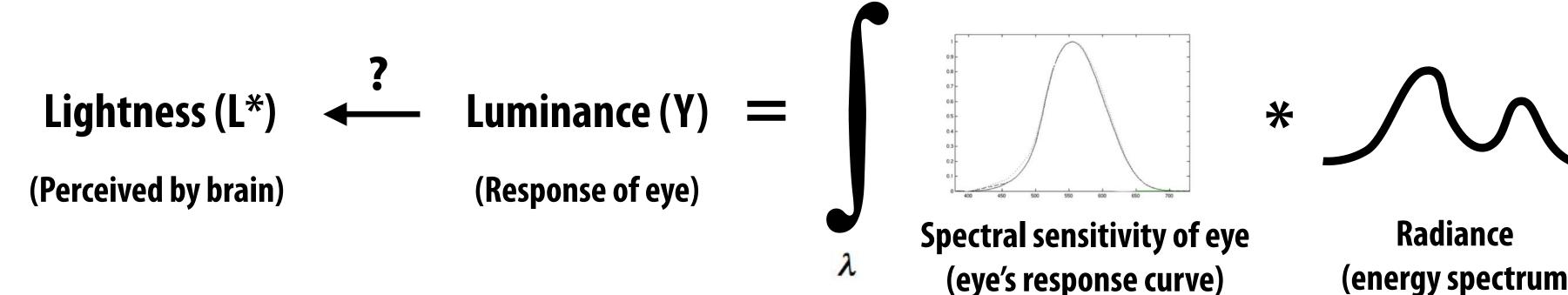
- How to measure the eye's response curve $V(\lambda)$?
 - 555 nm source (photopic case)
 - Notice: the sensitivity of photopic eye is maximized at ~ 555 nm

https://upload.wikimedia.org/wikipedia/commons/a/a0/Luminosity.png



Adjust power of monochromatic light source of wavelength λ until it matches the brightness of reference

Lightness (<u>perceived</u> brightness) aka luma



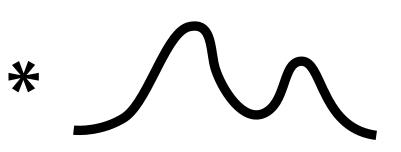
Dark adapted eye: $L^* \propto Y^{0.4}$

Bright adapted eye: $L^* \propto Y^{0.5}$

In a dark room, you turn on a light with luminance: Y_1 You turn on a second light that is identical to the first. Total output is now: $Y_2 = 2Y_1$

Total output appears $2^{0.4} = 1.319$ times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y')



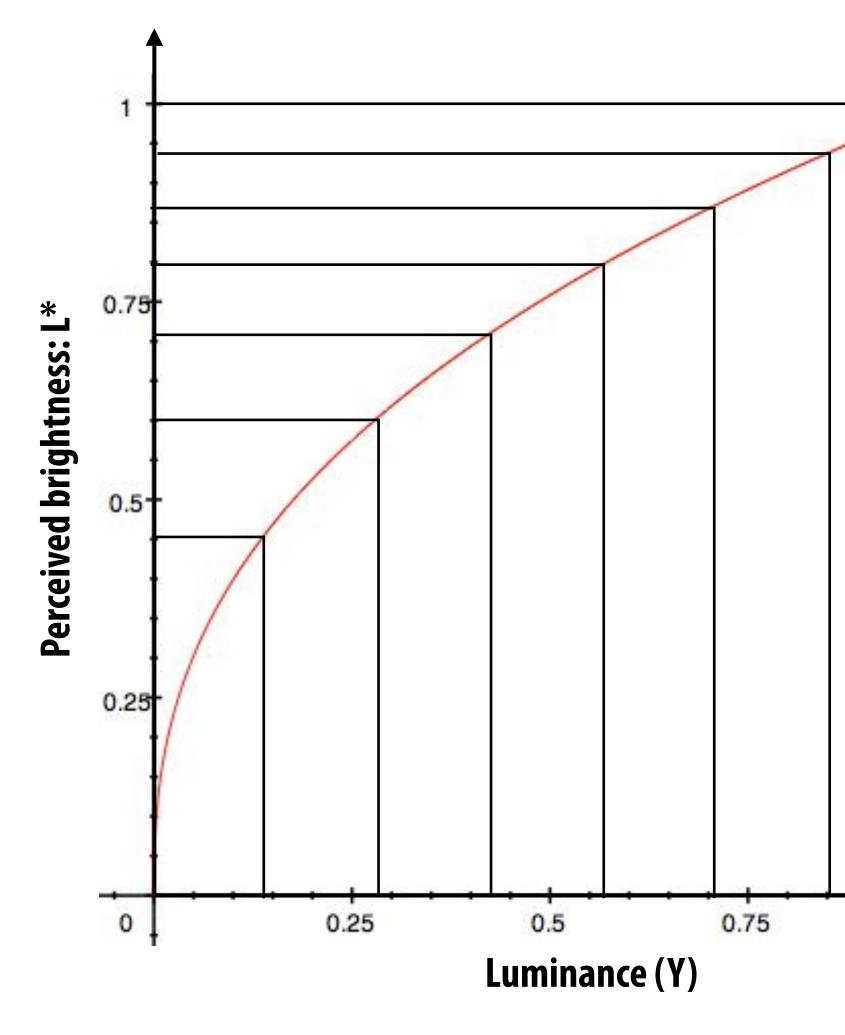
Radiance (energy spectrum from scene)

Idea 1:

What is the most efficient way to encode intensity values as a byte?

Idea: encode based on how the brain *perceives brightness*, not based on the response of eye

Consider an image with pixel values encoding luminance (linear in energy hitting sensor)



 $L^* = Y^{.45}$

1

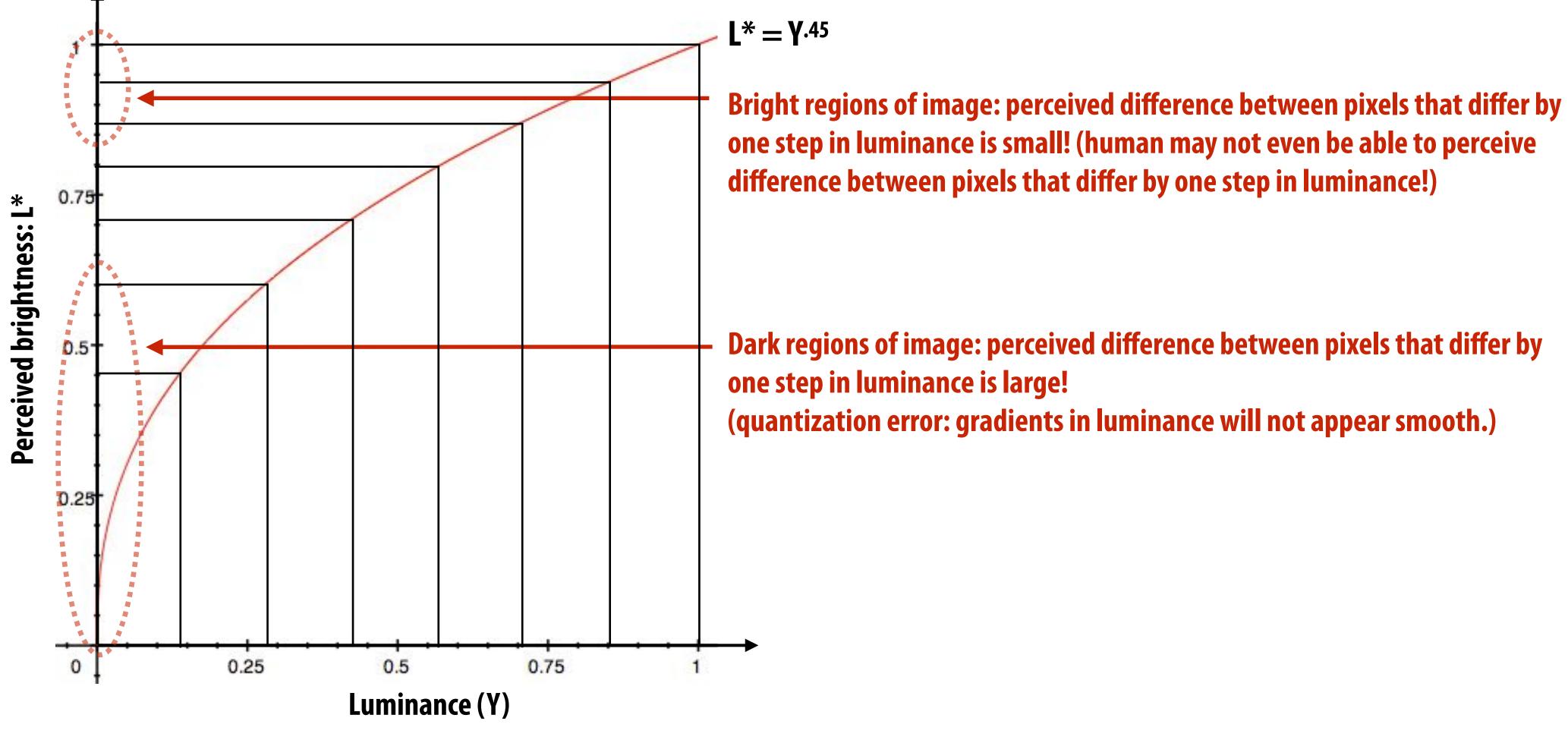
In this visualization: Pixel can represent 8 unique luminance values (3-bits/pixel)

Here: lines indicate luminance associated with each unique pixel value

Note that "spacing" of pixel values is linear in luminance (pixel value encode equally spaced sensor responses)

Problem: quantization error

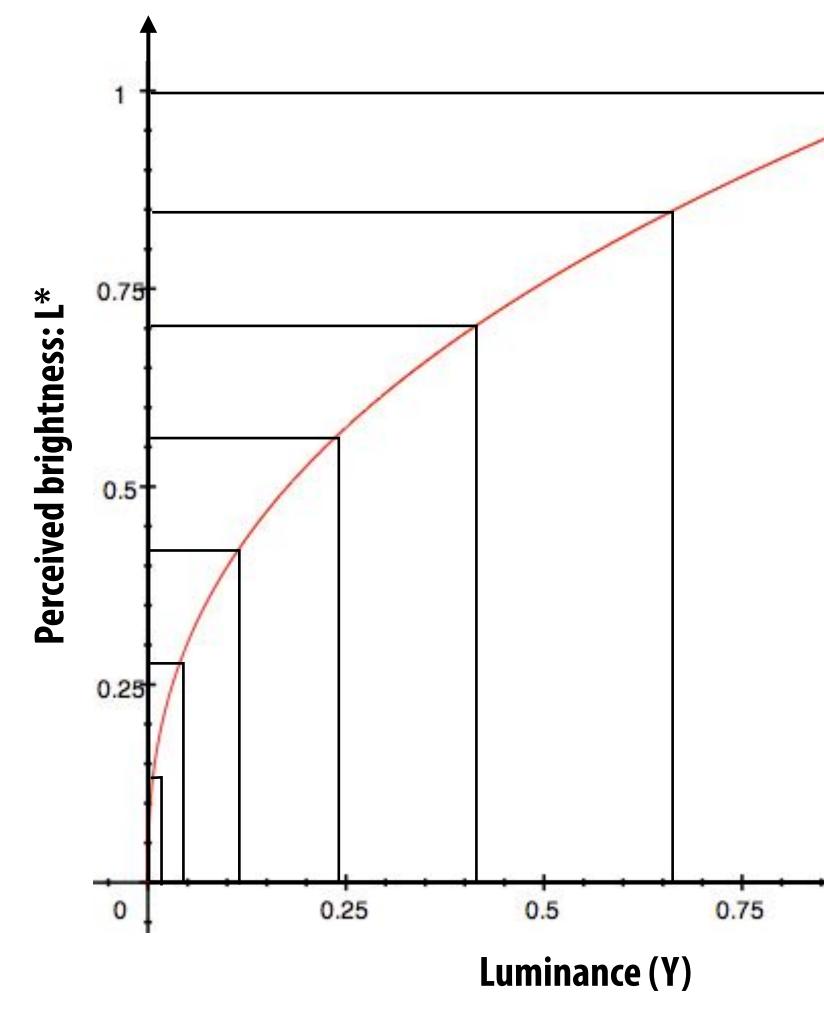
Many common image formats store 8 bits per channel (256 unique values) Insufficient precision to represent brightness in darker regions of image

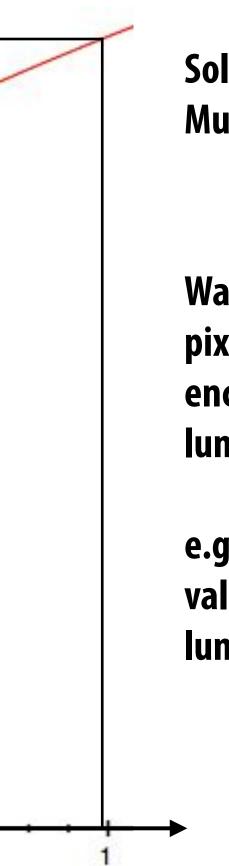


Rule of thumb: human eye cannot differentiate <1% differences in luminance

Store lightness, not luminance

Idea: distribute representable pixel values evenly with respect to lightness (perceived brightness), not evenly in luminance (make more efficient use of available bits)





Solution: pixel stores Y^{0.45} Must compute (pixel_value)^{2.2} prior to display on LCD

Warning: must take caution with subsequent pixel processing operations once pixels are encoded in a space that is not linear in luminance.

e.g., When adding images should you add pixel values that are encoded as lightness or as **luminance**?

[Everything on this slide is dark to make it easier to see the differences]

Equal steps (in luminance)

Equal steps (in brightness)

Idea 2:

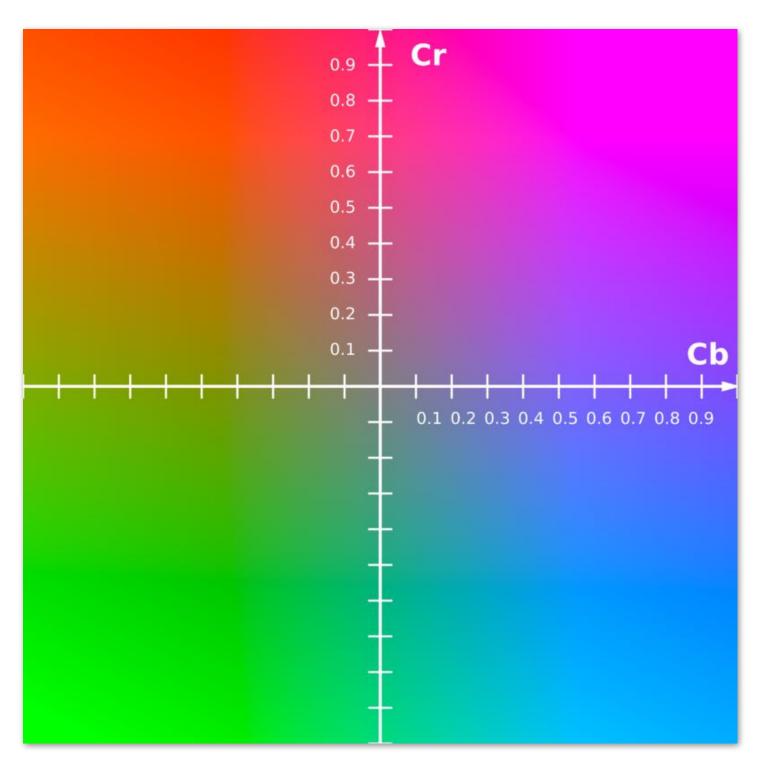
Chrominance ("chroma") subsampling

- - So it is sufficient to sample chroma more sparsely in space

The human visual system is less sensitive to detail in chromaticity than in luminance

Y'CbCr color space

Y' = luma: perceived luminance (non-linear) **Cb** = **blue-yellow deviation from gray** Cr = red-cyan deviation from gray

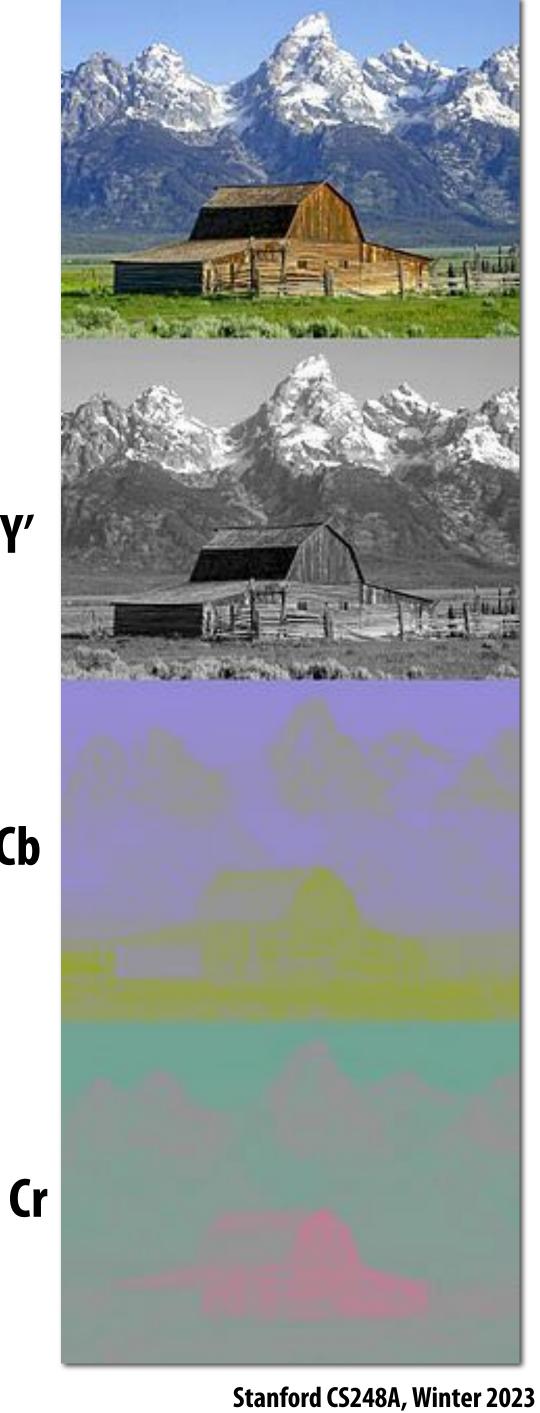


CbCr plane at a fixed value of Y'

Conversion from R'G'B' to **Y'CbCr**:

Y' =	16 +	$\frac{65.738\cdot R_D'}{256}+$	$\frac{129.057\cdot G_D'}{256}+$	$\frac{25.064\cdot B_D'}{256}$
$C_B =$	128 +	$\frac{-37.945\cdot R_D'}{256}-$	$\frac{74.494\cdot G_D'}{256}+$	$\frac{112.439\cdot B_D'}{256}$
$C_R =$	128 +	$\frac{112.439\cdot R_D'}{256}-$	$\frac{94.154\cdot G_D'}{256}-$	$\frac{18.285 \cdot B_D'}{256}$

Non-linear RGB (primed notation indicates perceptual (non-linear) space)



V'

Cb

Original picture of Kayvon

Contents of CbCr color channels downsampled by a factor of 20 in each dimension (400x reduction in number of samples)

Stanford CS248A, Winter 2023

Full resolution sampling of luma (Y')

Reconstructed result (looks pretty good)

Stanford CS248A, Winter 2023

Chroma subsampling

Y'CbCr is an efficient representation for storage (and trans CbCr without significant loss in perceived visual quality

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y' 10	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀
Y' ₀₁ Cb ₀₁ Cr ₀₁	Y′ ₁₁	Y' ₂₁ Cb ₂₁ Cr ₂₁	Y′ ₃₁

4:2:2 representation:

Store Y' at full resolution Store Cb, Cr at full vertical resolution, but only half horizontal resolution

X:Y:Z notation:

 $\mathbf{X} = \mathbf{width} \ \mathbf{of} \ \mathbf{block}$

- Y = number of chroma samples in first row
- Z = number of chroma samples in second row

Y'CbCr is an efficient representation for storage (and transmission) because Y' can be stored at higher resolution than

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y' ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀
Y′ ₀₁	Υ′ ₁₁	Y′ 21	Y' ₃₁

4:2:0 representation:

Store Y' at full resolution Store Cb, Cr at half resolution in both dimensions

Real-world 4:2:0 examples: most JPG images and H.264 video

Idea 3:

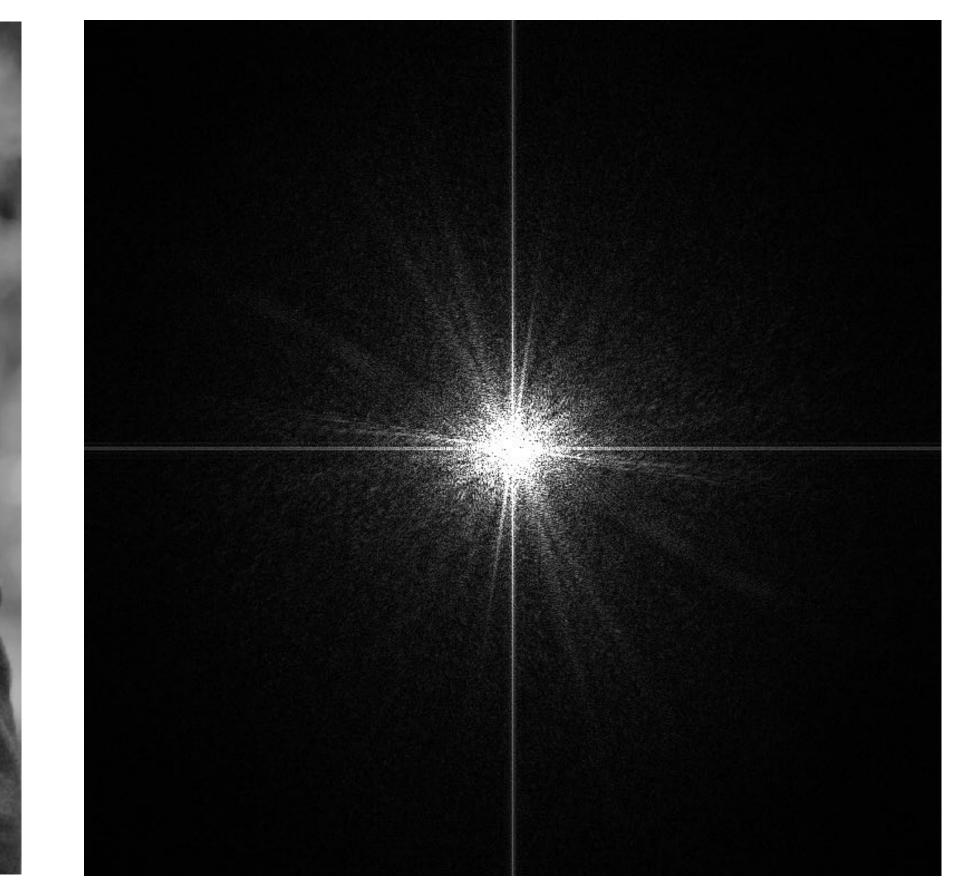
- Low frequency content is predominant in the real world
- be acceptable to sacrifice accuracy in representing higher frequencies

The human visual system is less sensitive to high frequency sources of error in images

So a good compression scheme needs to accurately represent lower frequencies, but it can

Recall: frequency content of images

Spatial domain result



Spectrum of image

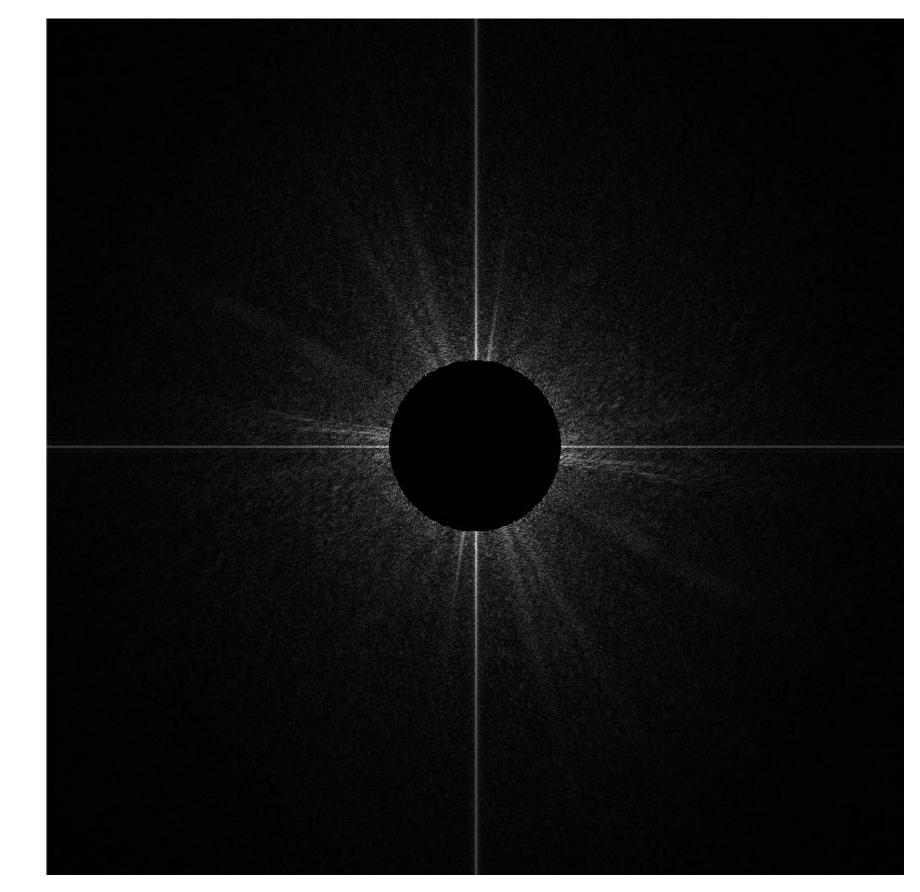
Recall: frequency content of images

Spatial domain result

Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

Recall: frequency content of images

Spatial domain result (strongest edges)



Spectrum (after high-pass filter) All frequencies below threshold have 0 magnitude

(with noise added)

(with more noise added)

Original image

Noise added (increases high frequency content)

More noise added

What is a good representation for manipulating frequency content of images?

	-12 _T
	-18
	-24
	-30
	-36
	-42
~	-48
(dBFS	-54
E de	-60
	-66
S	-72
	-78
	-84
	-90
	-96
	-102
	-108

Hint:

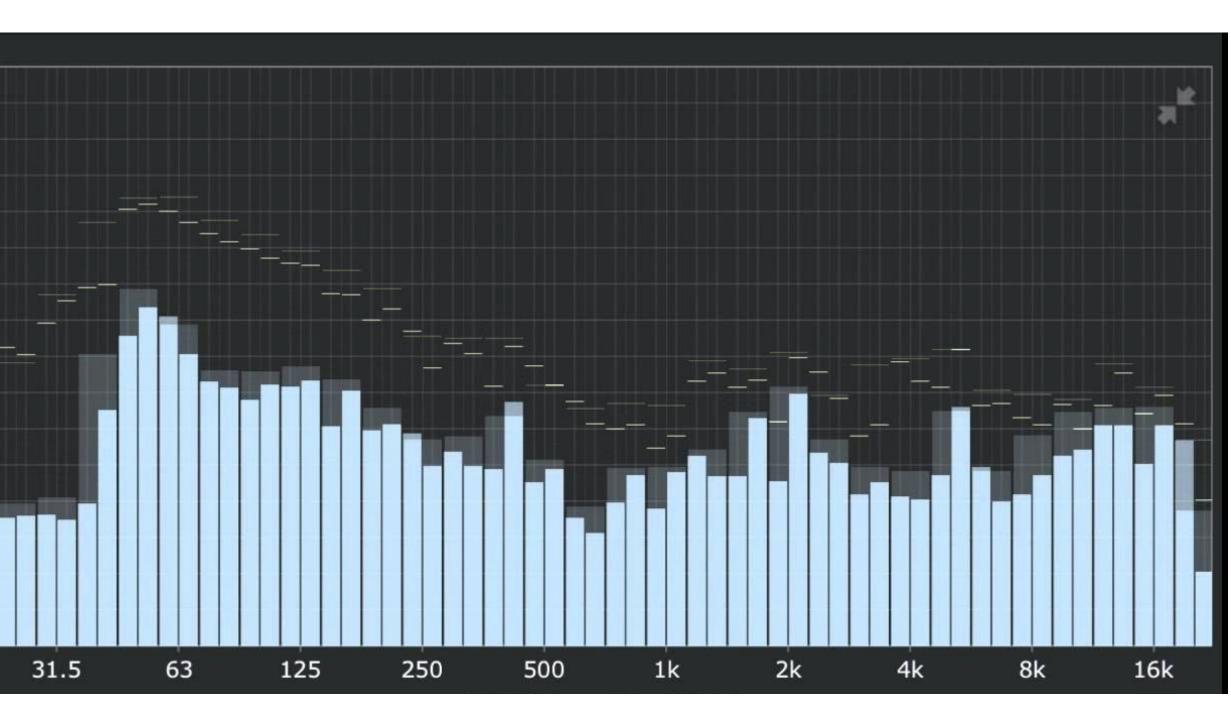
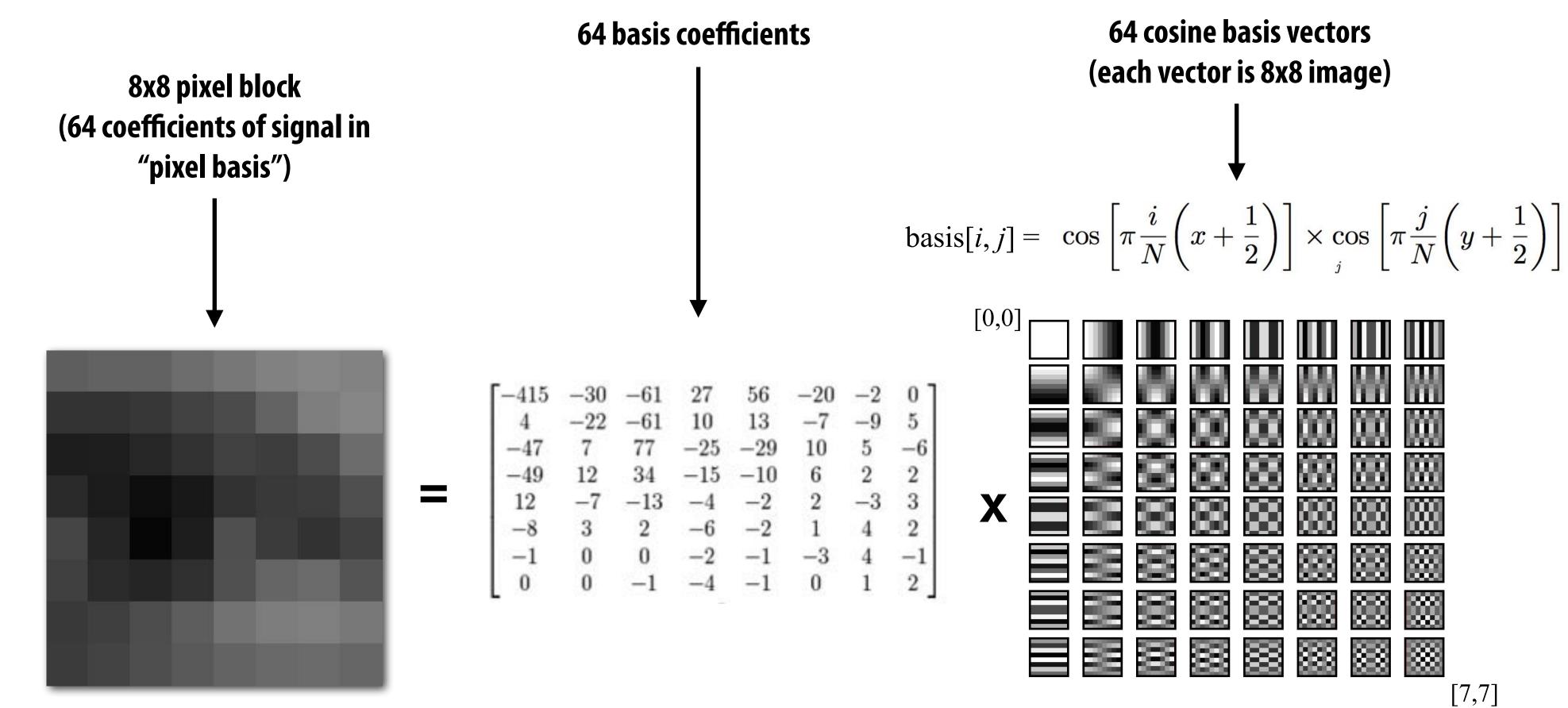


Image transform coding using the discrete cosign transform (DCT)

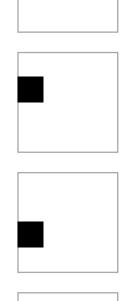


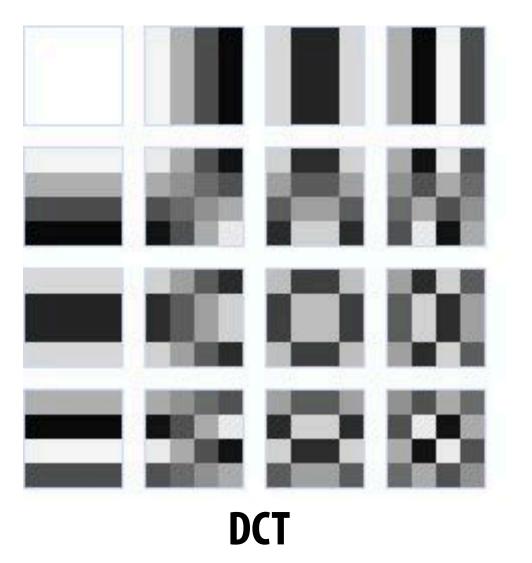
In practice: DCT is applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

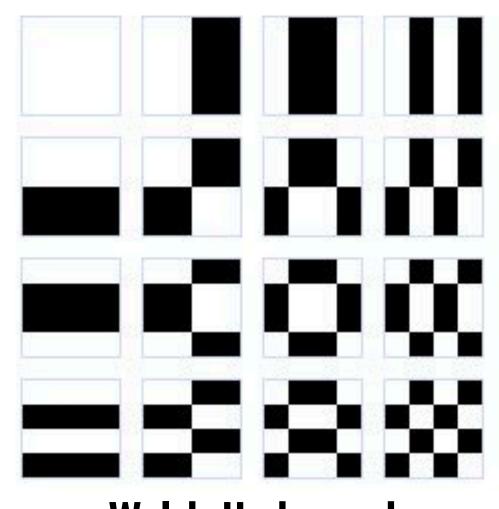
Examples of other bases

This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

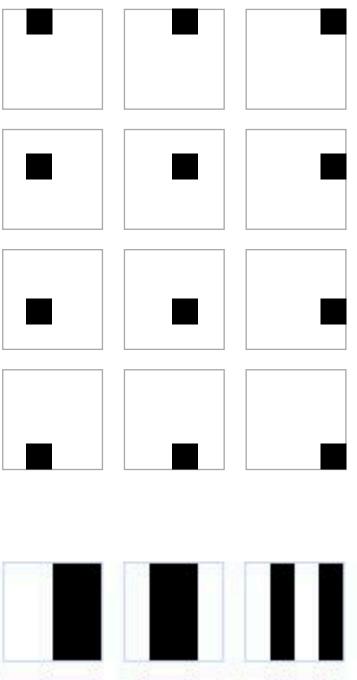
Pixel Basis (Compact: each coefficient in representation only effects a single pixel of output)



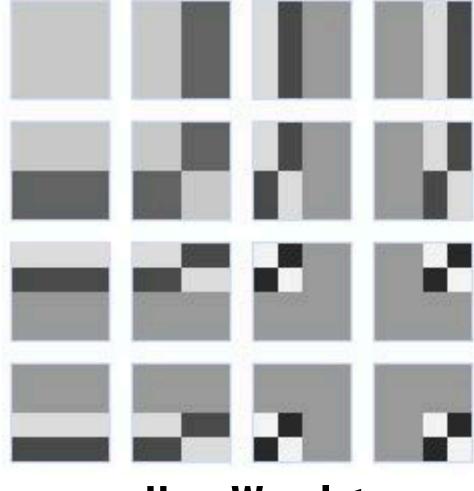




[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]



Walsh-Hadamard



Haar Wavelet

Quantization

-415	-30	-61	27	56	-20	-2	0]
4	-22	-61	10	13	-7	-9	5
-47	7	77	-25	-29	10		-6
-49	12	34	-15	-10	6	2	2
12	-7	-13	-4	-2	2	-3	3
-8	3	2	-6	$^{-2}$	1	4	2
-1	0	0	$^{-2}$	$^{-1}$	-3	4	-1
0	0	-1	-4	-1	0	1	2

Result of DCT (representation of image in cosine basis)

Quantization produces small values for coefficients (only few bits needed per coefficient) Quantization zeros out many coefficients

[Credit: Wikipedia, Pat Hanrahan]

[16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

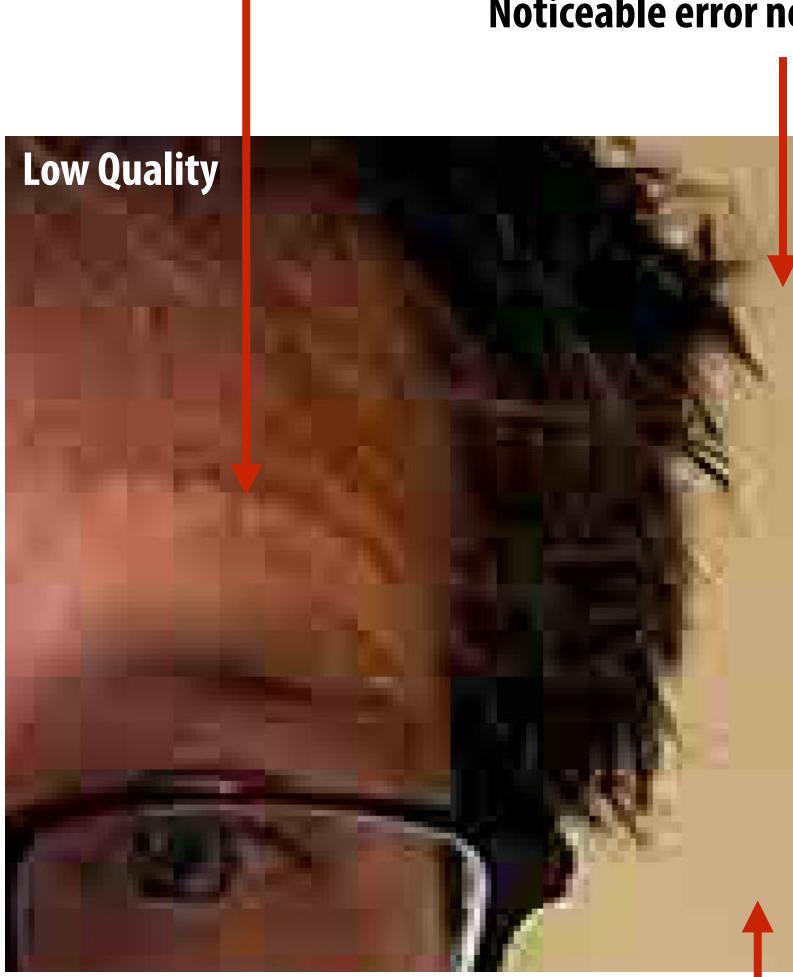
Quantization Matrix

Changing JPEG quality setting in your favorite photo app modifies this matrix ("lower quality" = higher values for elements in quantization matrix)

	JPEG Options			
Matte: None	<u></u>	ОК		
- Image Options	3	Cancel		
Quality: 9	High ᅌ	Preview		
small file	large file	836.3K		

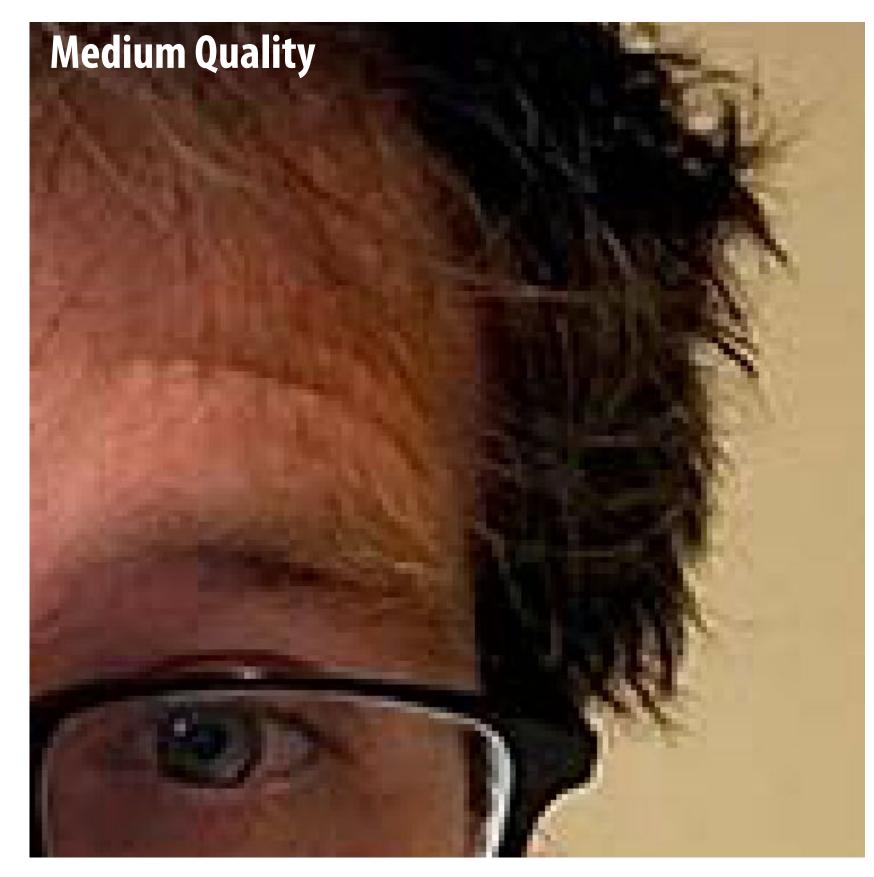
JPEG compression artifacts

Noticeable 8x8 pixel block boundaries



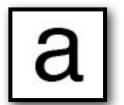
Low-frequency regions of image represented accurately even under high compression

Noticeable error near high gradients



Stanford CS248A, Winter 2023

JPEG compression artifacts



Original Image (actual size)

Original Image

Quality Level 3

Quality Level 9

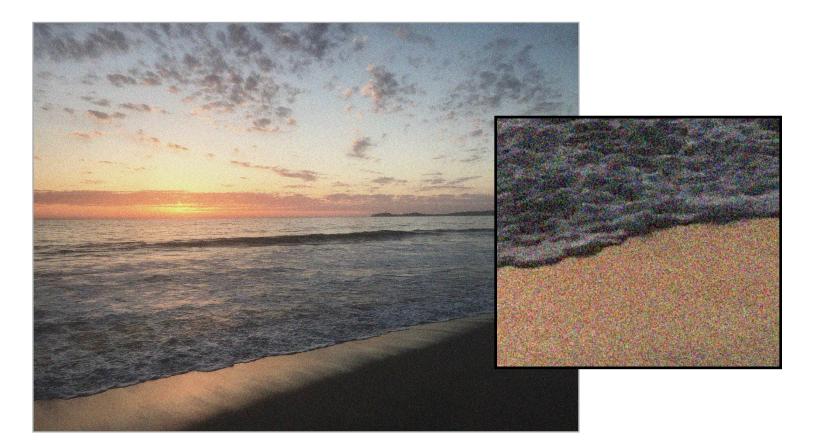
Quality Level 6

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?

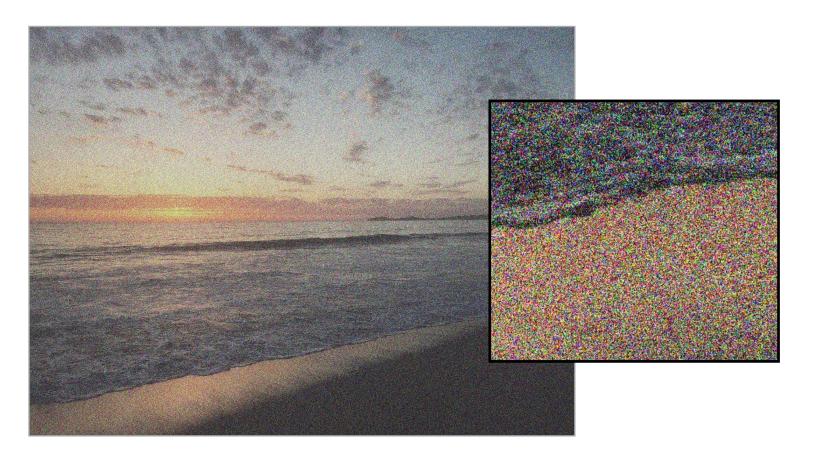
Quality Level 1

Images with high frequency content do not exhibit as high of compression ratios. Why?

Original image: 2.9MB JPG



Medium noise: 22.6 MB JPG

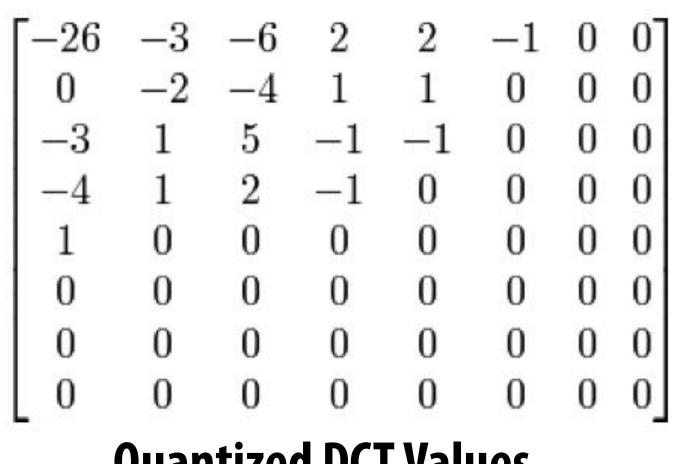


High noise: 28.9 MB JPG **Photoshop JPG compression level = 10** used for all compressed images

Uncompressed image: 4032 x 3024 x 24 bytes/pixel = 36.6 MB

Stanford CS248A, Winter 2023

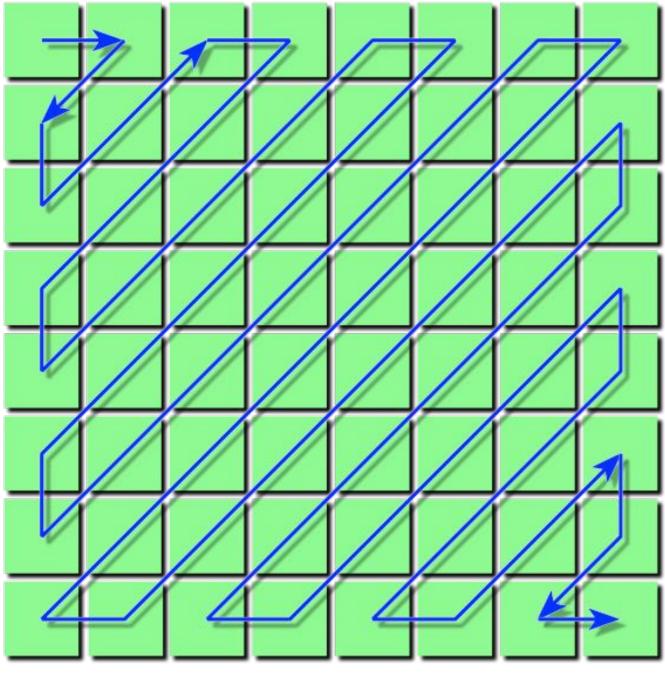
Lossless compression of quantized DCT values



Quantized DCT Values

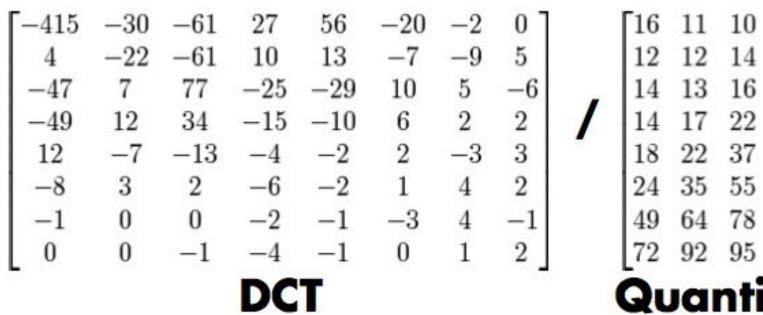
Entropy encoding: (lossless) Reorder values Run-length encode (RLE) 0's Huffman encode non-zero values

Image credit: Wikipedia



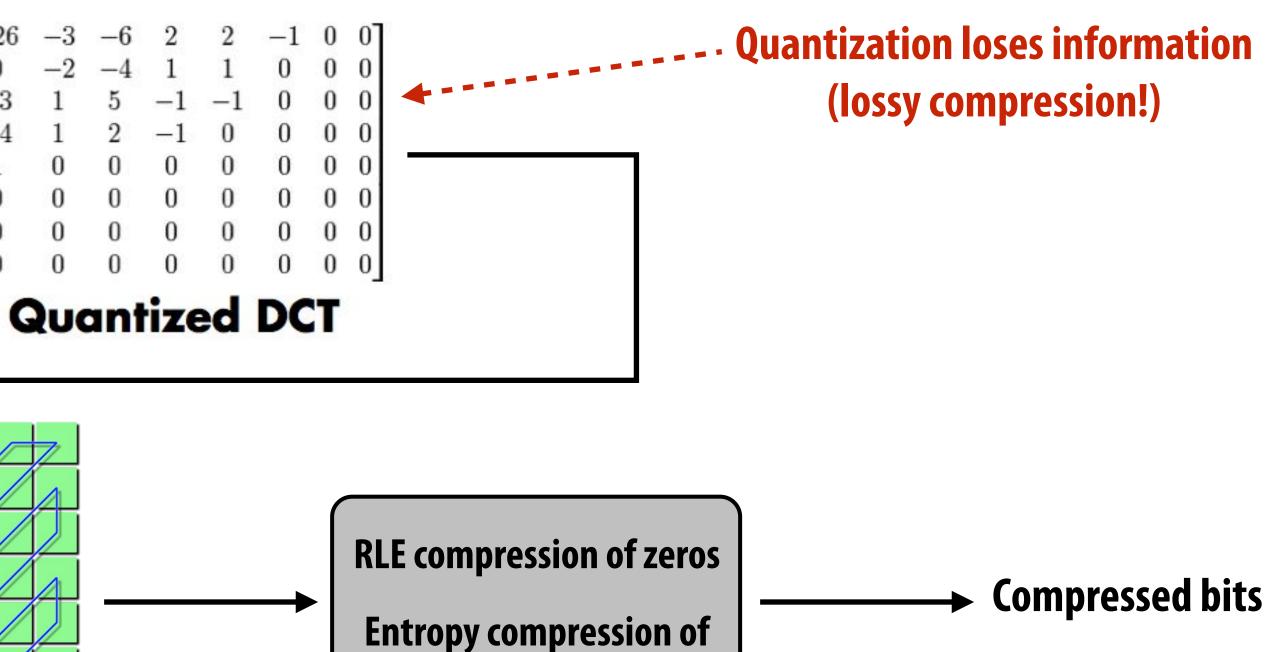
Reordering

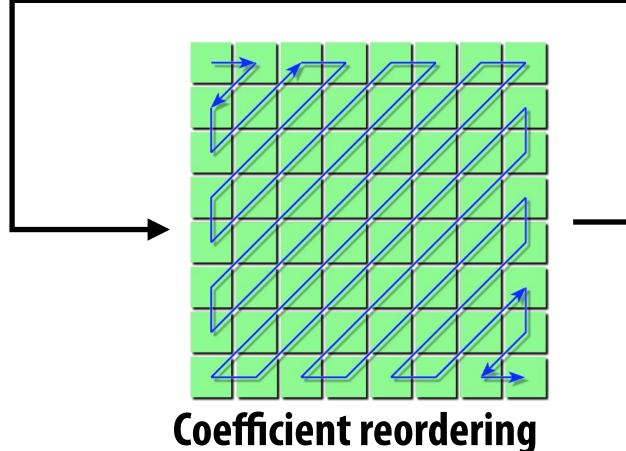
JPEG compression summary



=

23		-		-	-	
	[-26]	-3	-6	2	2	_
	0	-2	-4	1	1	0
	-3	1	5	-1	-1	0
	-4	1	2	-1	0	0
	1	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	C
	0	0	0	0	0	0
				-	_	





Credit: Pat Hanrahan

0	16	24	40	51	61	
4	19	26	58	60	55	
6	24	40	57	69	56	
2	29	51	87	80	62	
7	56	68	109	103	77	
5	64	81	104	113	92	
8	87	103	121	120	101	
5	98	112	100	103	99	
				-	• -	

Quantization Matrix

Lossless compression!

non-zeros

JPEG compression summary **Convert image to Y'CbCr** (information loss occurs here) Downsample CbCr (to 4:2:2 or 4:2:0) For each color channel (Y', Cb, Cr): For each 8x8 block of values **Compute DCT** (information loss occurs here) **Quantize results Reorder values Run-length encode 0-spans** Huffman encode non-zero values

Stanford CS248A, Winter 2023

Key idea: exploit characteristics of human perception to build efficient image storage and image processing systems

- chrominance channels (4:2:0)
- values uniformly in perceptual space)
- - Images of the real world are dominated by low-frequency components

Separation of luminance from chrominance in color representation (Y'CrCb) allows reduced resolution in

Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable)

JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies - Human brain is more tolerant of errors in high frequency image components than in low frequency ones

Video compression: example

Video compression adds two main ideas

- Exploiting redundancy:
 - Intra-frame redundancy: value of pixels in neighboring regions of a frame are good <u>predictor</u> of values for other pixels in the frame (spatial redundancy)
 - Inter-frame redundancy: pixels from nearby frames in time are a good <u>predictor</u> for the current frame's pixels (temporal redundancy)

Motion vector visualization

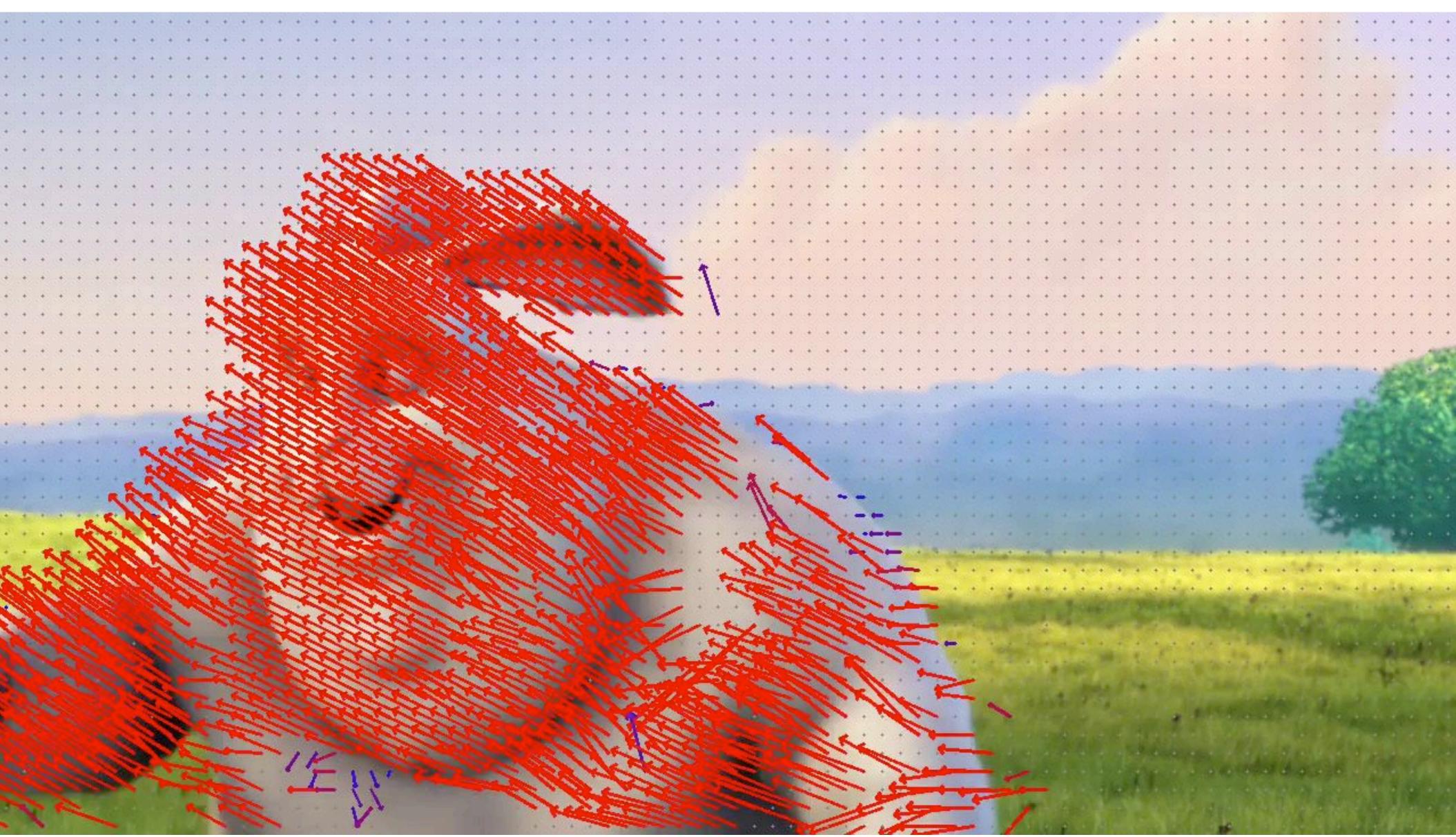
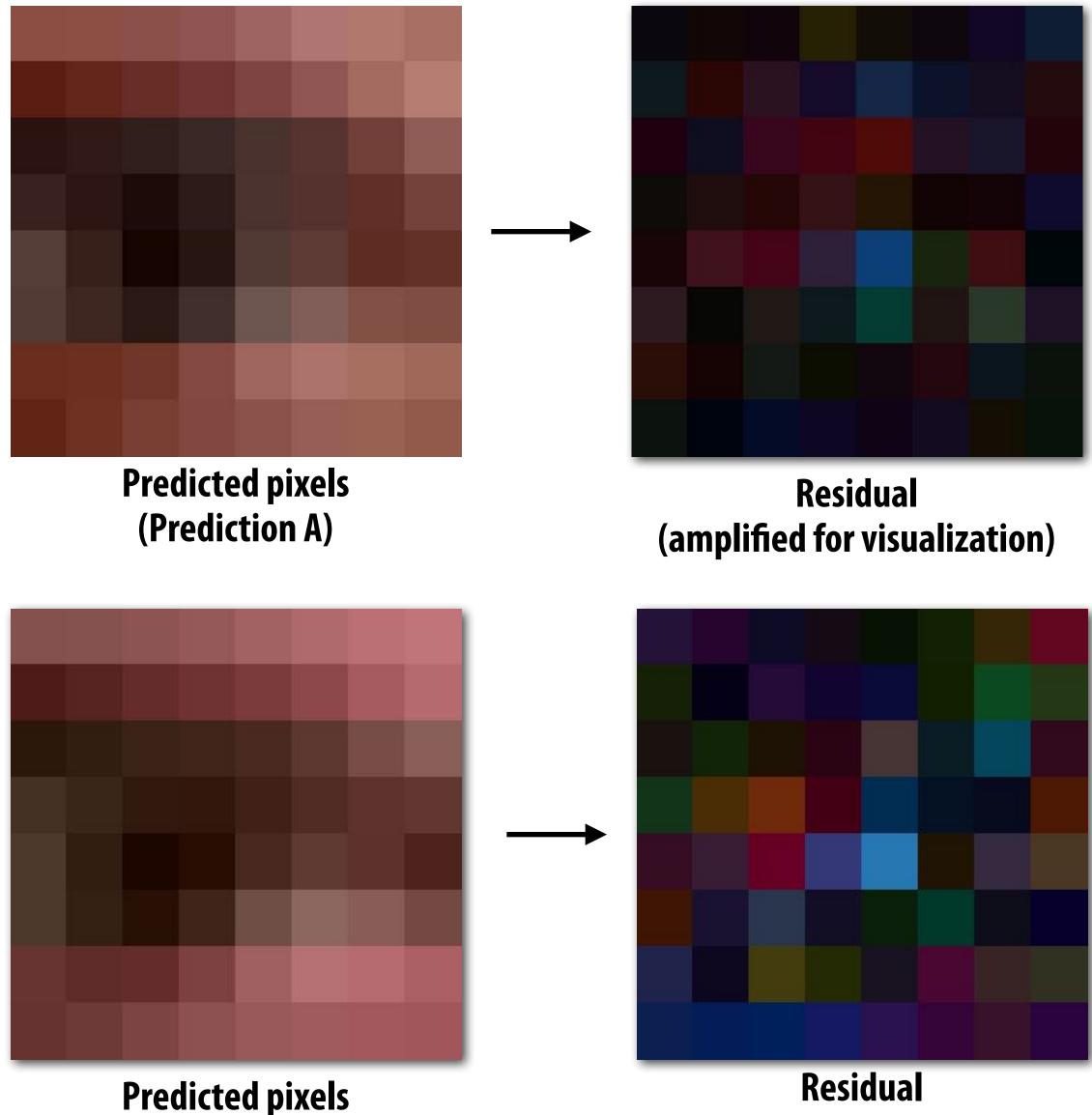


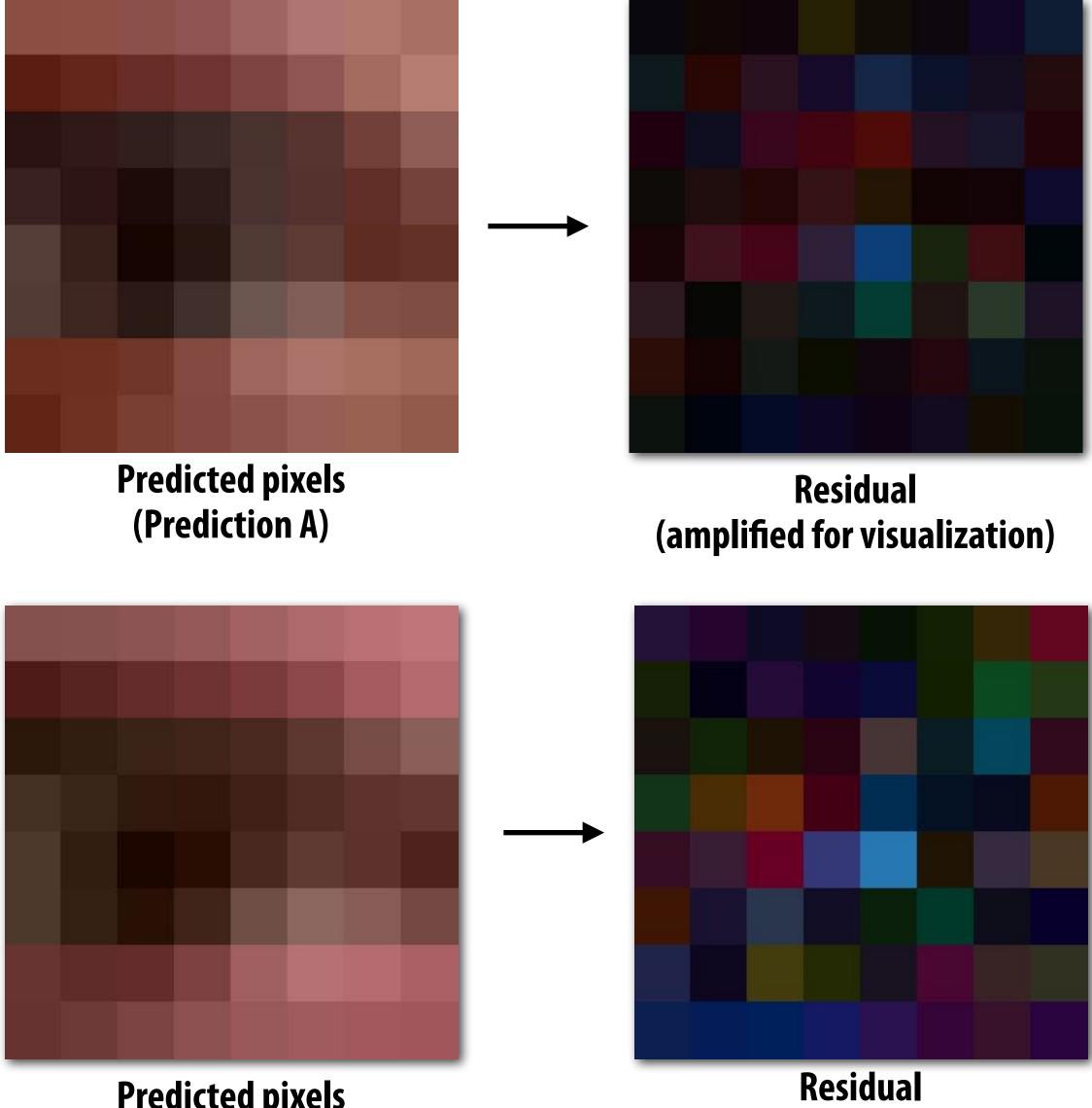
Image credit: Keyi Zhang

Residual: difference between predicted image and original image

Original pixels

In video compression schemes, the residual image is compressed using lossy compression techniques like those described in the earlier part of this lecture. Better predictions lead to smaller and more compressible residuals!





(Prediction B)

(amplified for visualization)

Stanford CS248A, Winter 2023

Video compression overview

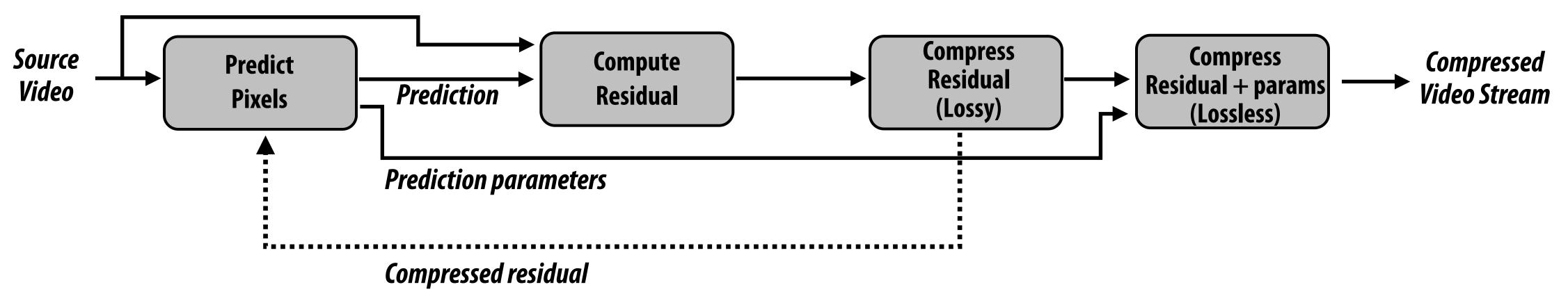


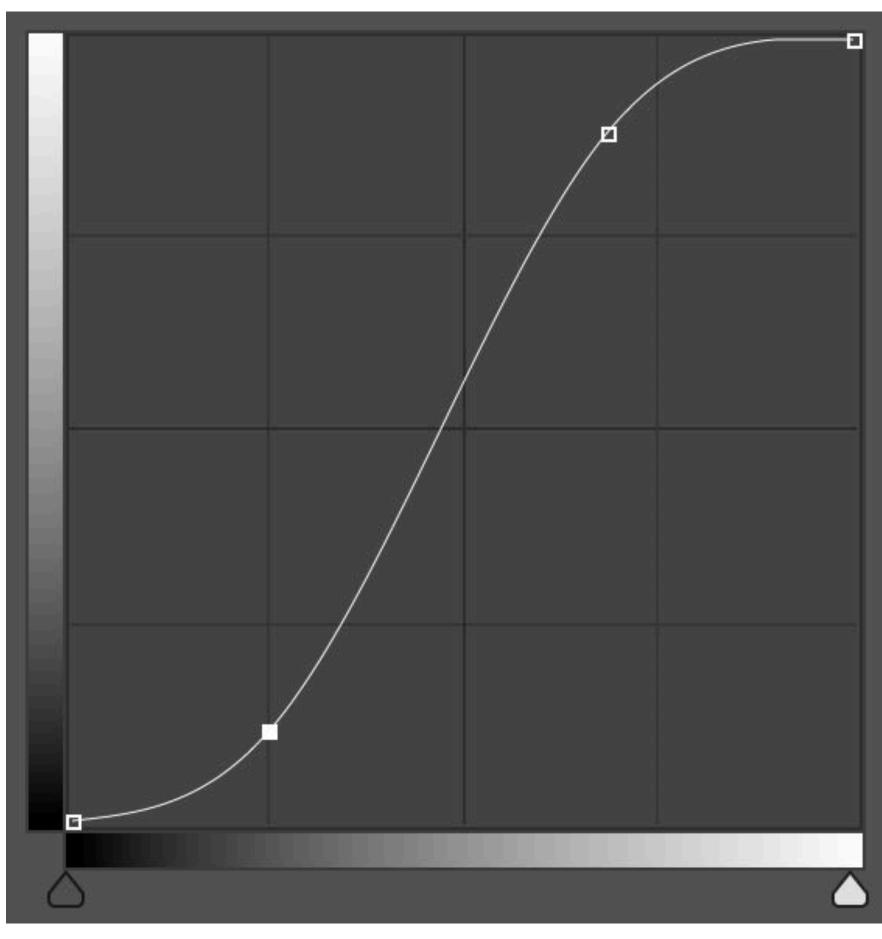


Image processing basics

Increase contrast

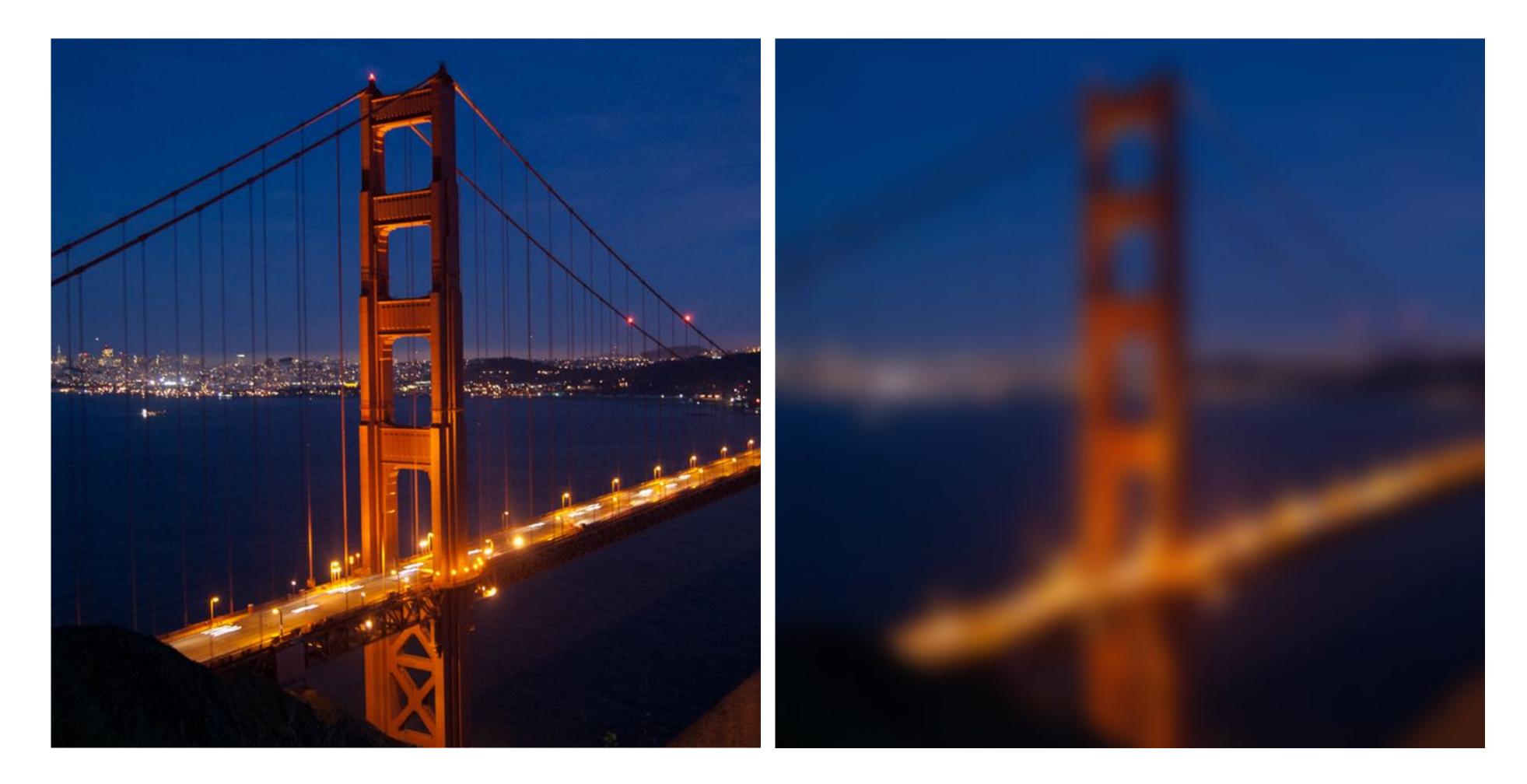
Increasing contrast with "S curve" Per-pixel operation: output(x,y) = f(input(x,y))

Output pixel intensity



Input pixel intensity

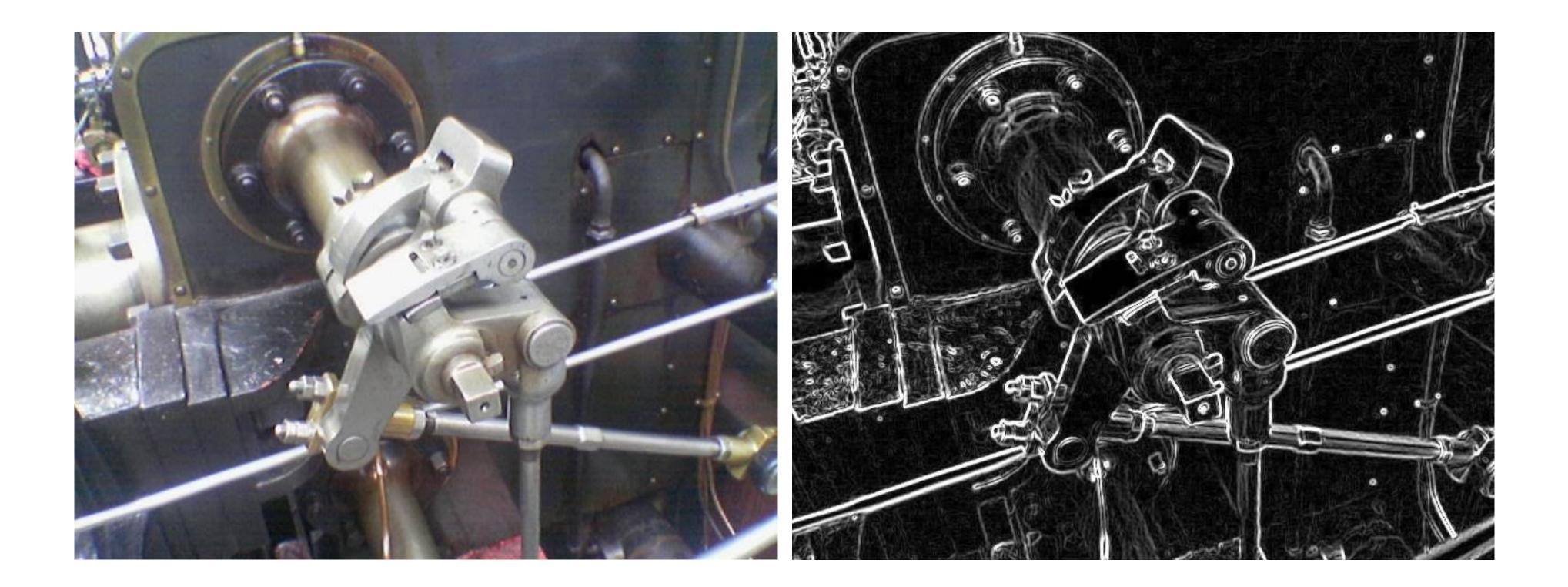
Image Invert: out(x,y) = 1 - in(x,y)



Blur

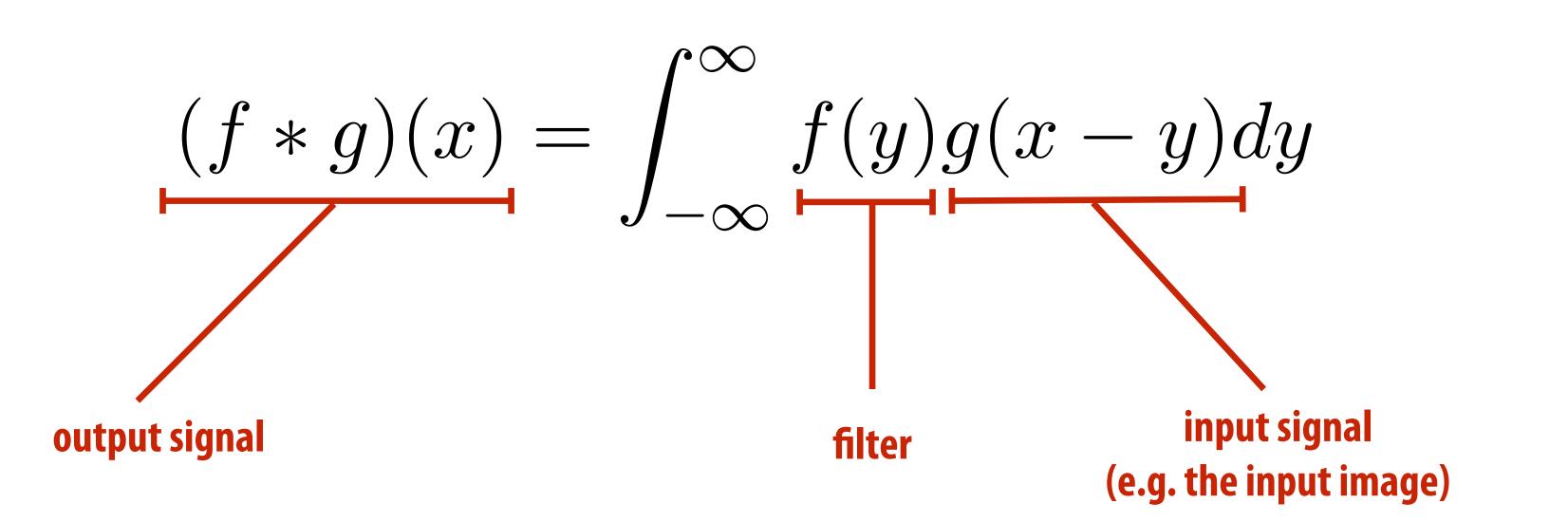
Sharpen

Edge detection



A "smarter" blur (doesn't blur over edges)

Review: convolution

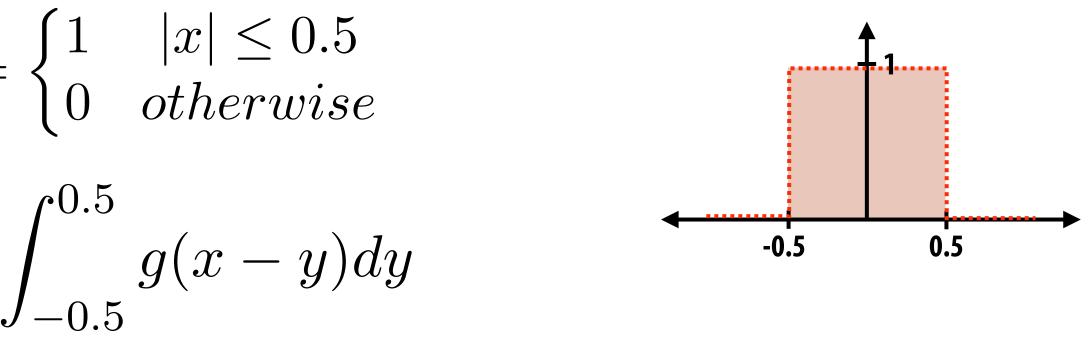


It may be helpful to consider the effect of convolution with the simple unit-area "box" function:

$$f(x) = \left\{ \begin{array}{l} \end{array} \right.$$

$$(f \ast g)(x) = \int_{-}^{\cdot}$$

f * g is a "blurred" version of g where the output at x is the average value of the input between x-0.5 to x+0.5



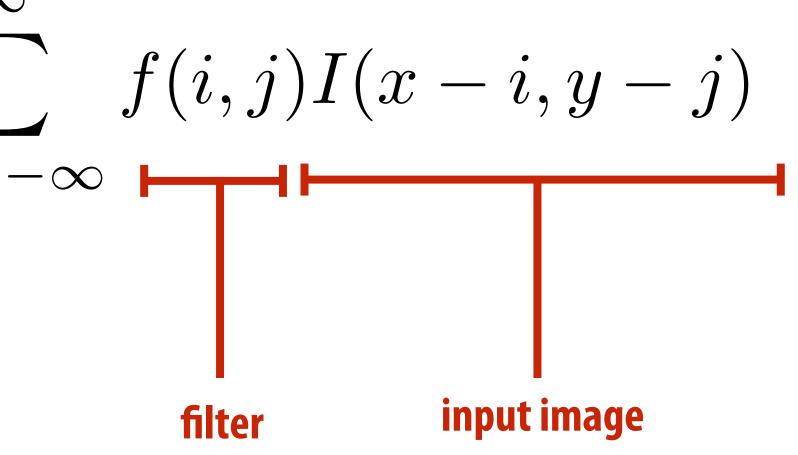
Discrete 2D convolution

$$(f * g)(x, y) = \sum_{i,j=-}^{\infty}$$

Consider f(i, j) that is nonzero only when: $-1 \leq i, j \leq 1$ Then: $(f * I)(x, y) = \sum_{i,j=-1}^{1} I$

And we can represent f(i,j) as a 3x3 matrix of values where:

$$f(i,j) = \mathbf{F}_{i,j}$$



$$f(i,j)I(x-i,y-j)$$

(often called: "filter weights", "filter kernel")

Simple 3x3 box blur

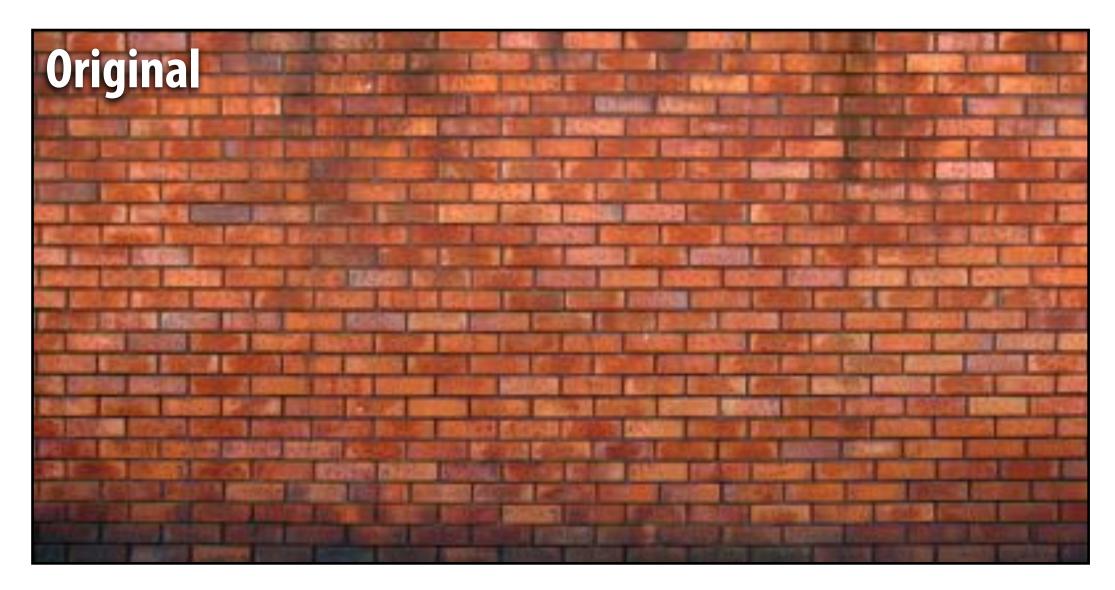
float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

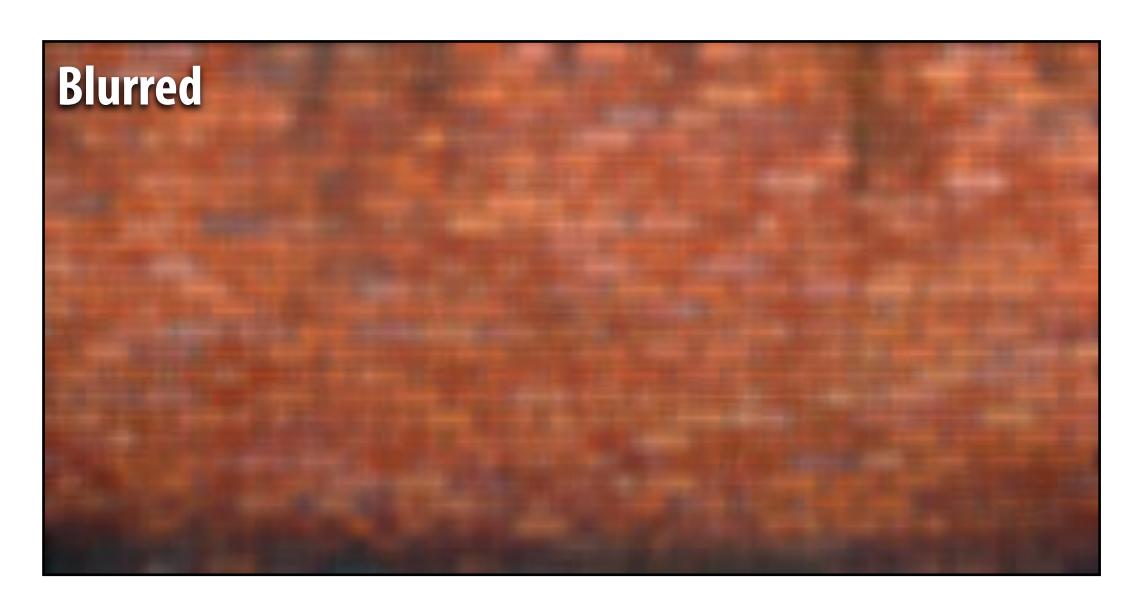
```
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1./9, 1./9, 1./9,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1./9, 1./9, 1./9;
```

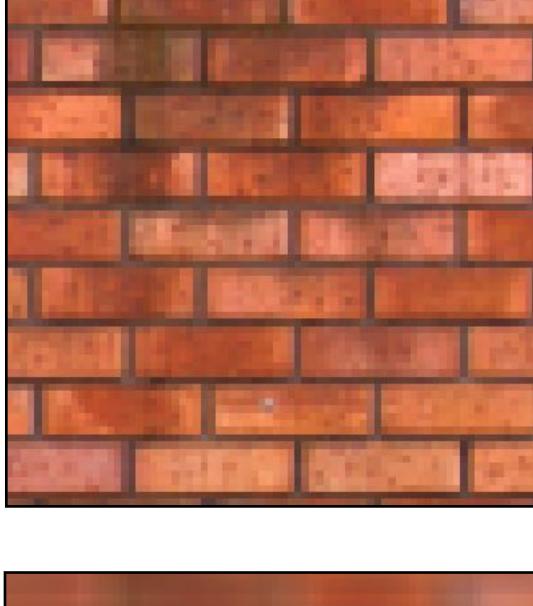
```
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
          for (int ii=0; ii<3; ii++)</pre>
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

For now: ignore boundary pixels and assume output image is smaller than input (makes convolution loop bounds much simpler to write)

7x7 box blur







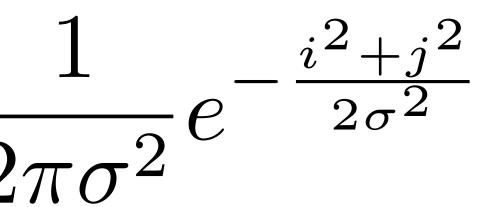
Gaussian blur

Obtain filter coefficients by sampling 2D Gaussian function

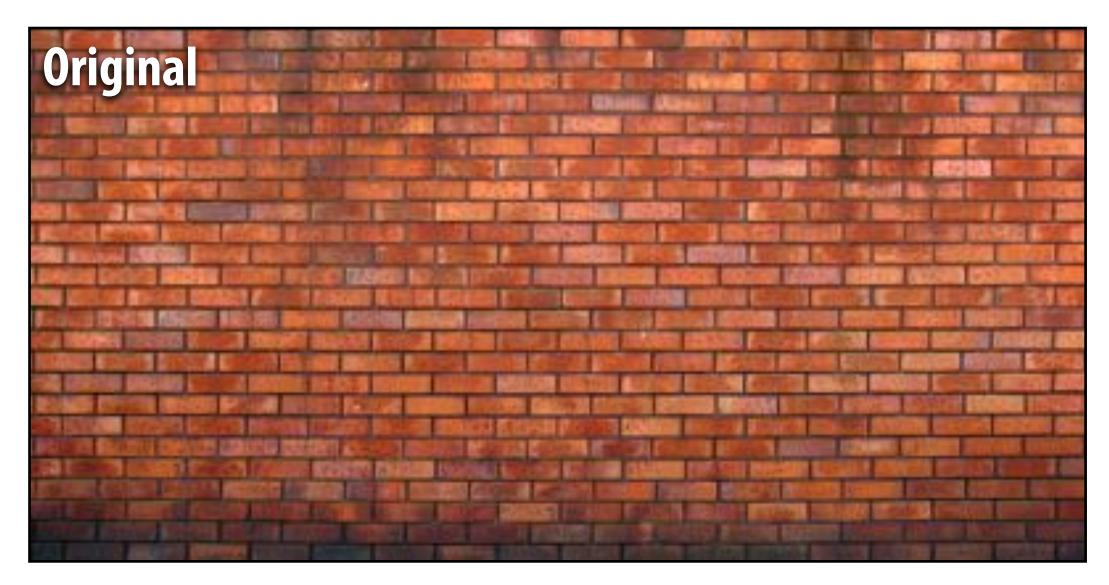
$$f(i,j) = \frac{1}{2\tau}$$

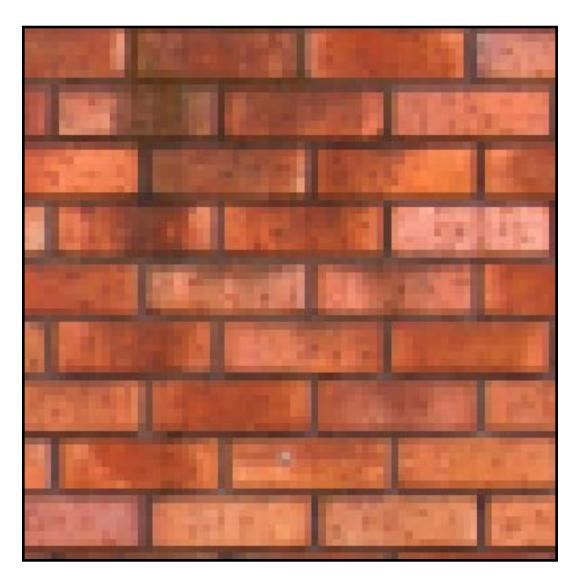
- Produces weighted sum of neighboring pixels (contribution) falls off with distance)
 - In practice: truncate filter beyond certain distance for efficiency

[.075	.124	.075
.124	.204	.124
.075	.124	.075



7x7 gaussian blur





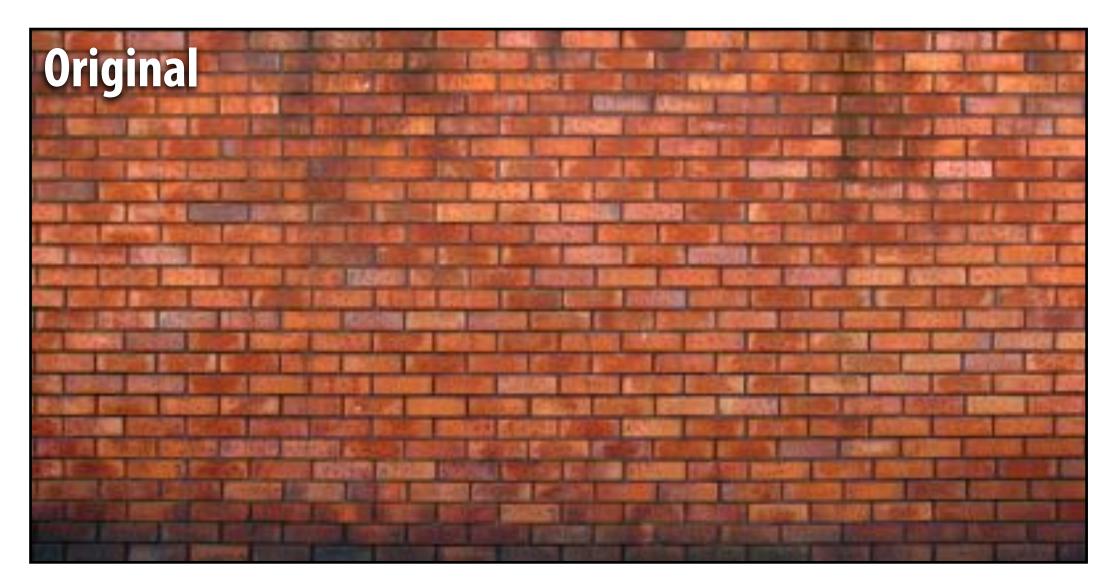
What does convolution with this filter do?

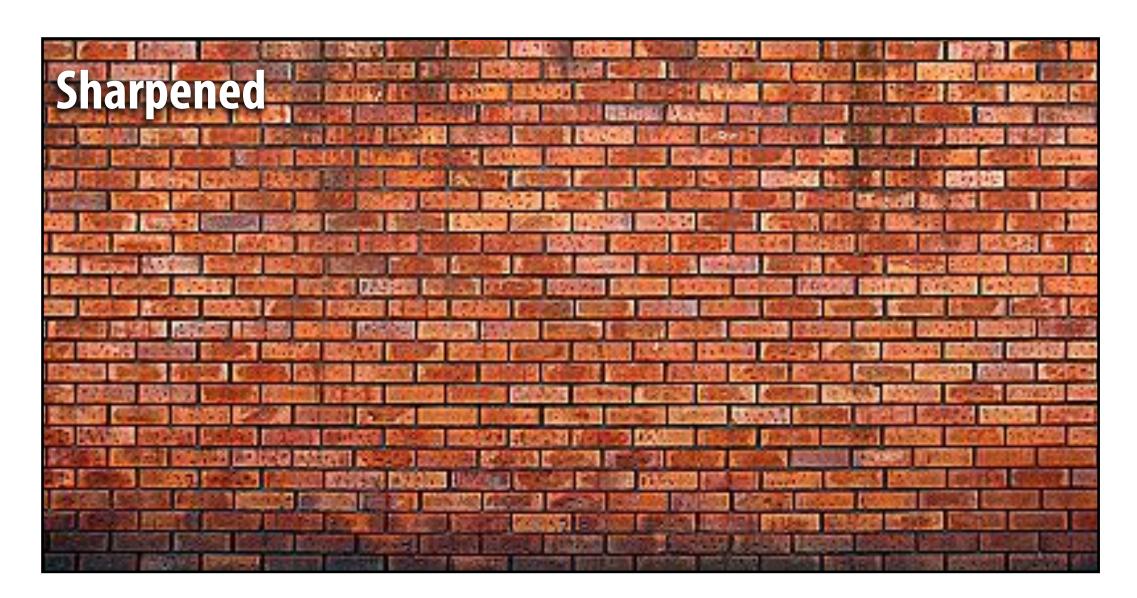
$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

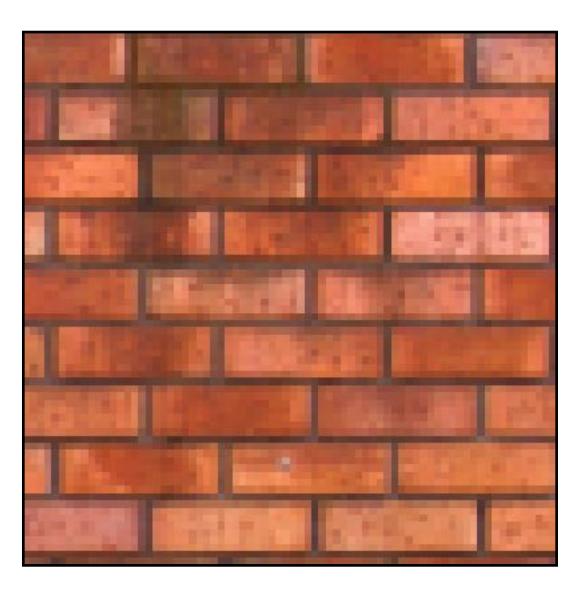
Sharpens image!

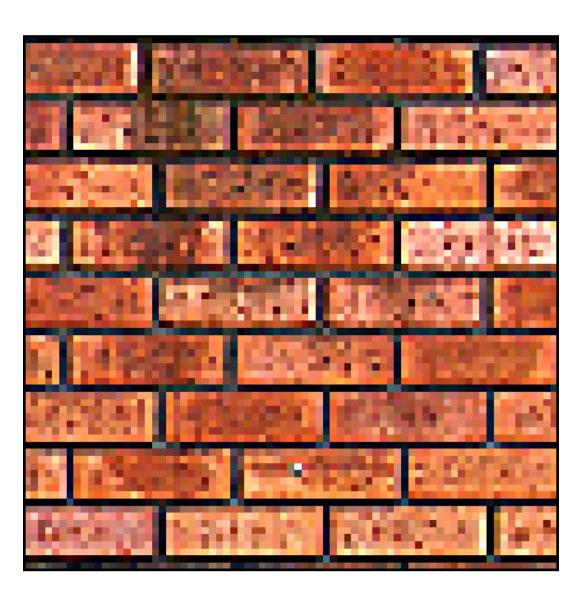
Stanford CS248A, Winter 2023

3x3 sharpen filter



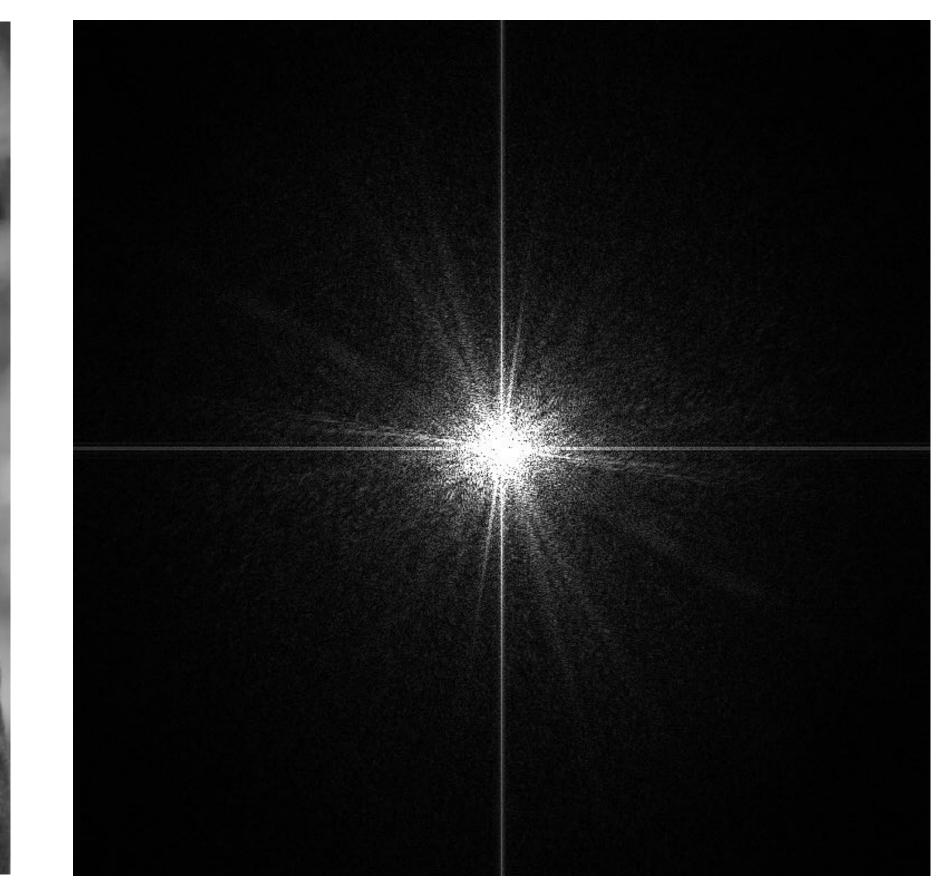






Recall: blurring is removing high frequency content

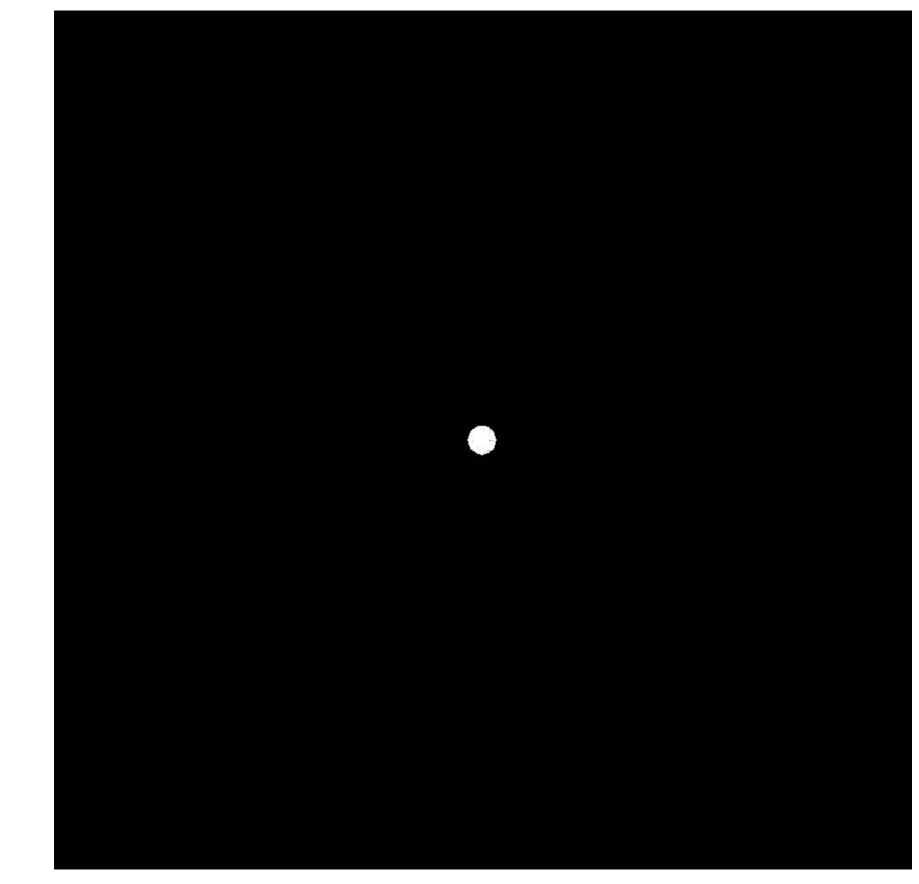
Spatial domain result



Spectrum

Recall: blurring is removing high frequency content

Spatial domain result



Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

Stanford CS248A, Winter 2023

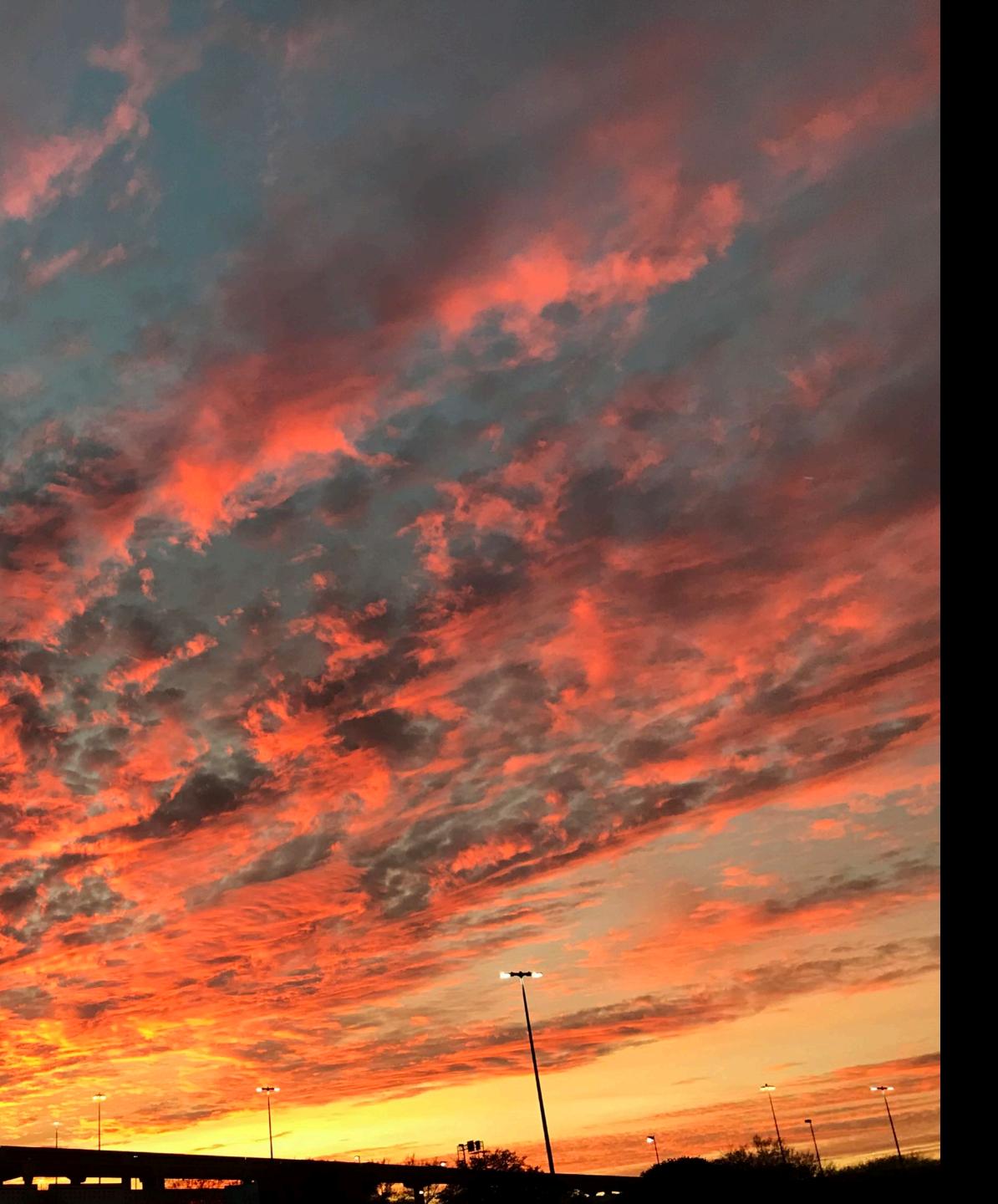
Sharpening is adding high frequencies

- Let I be the original image
- High frequencies in image I = I blur(I)
- Sharpened image = I + (I-blur(I))

"Add high frequency content"

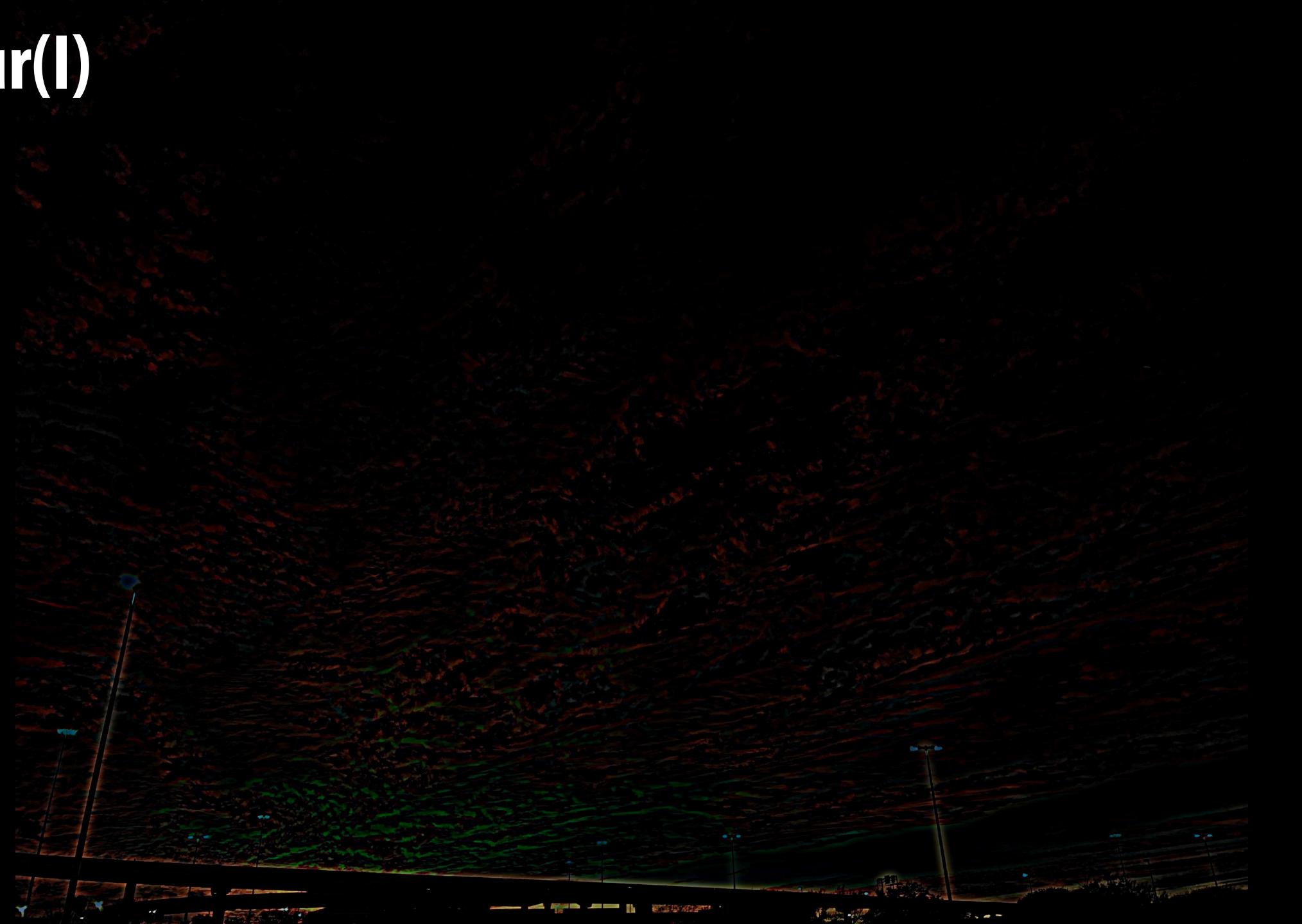
Original image (I)

Image credit: Kayvon's parents

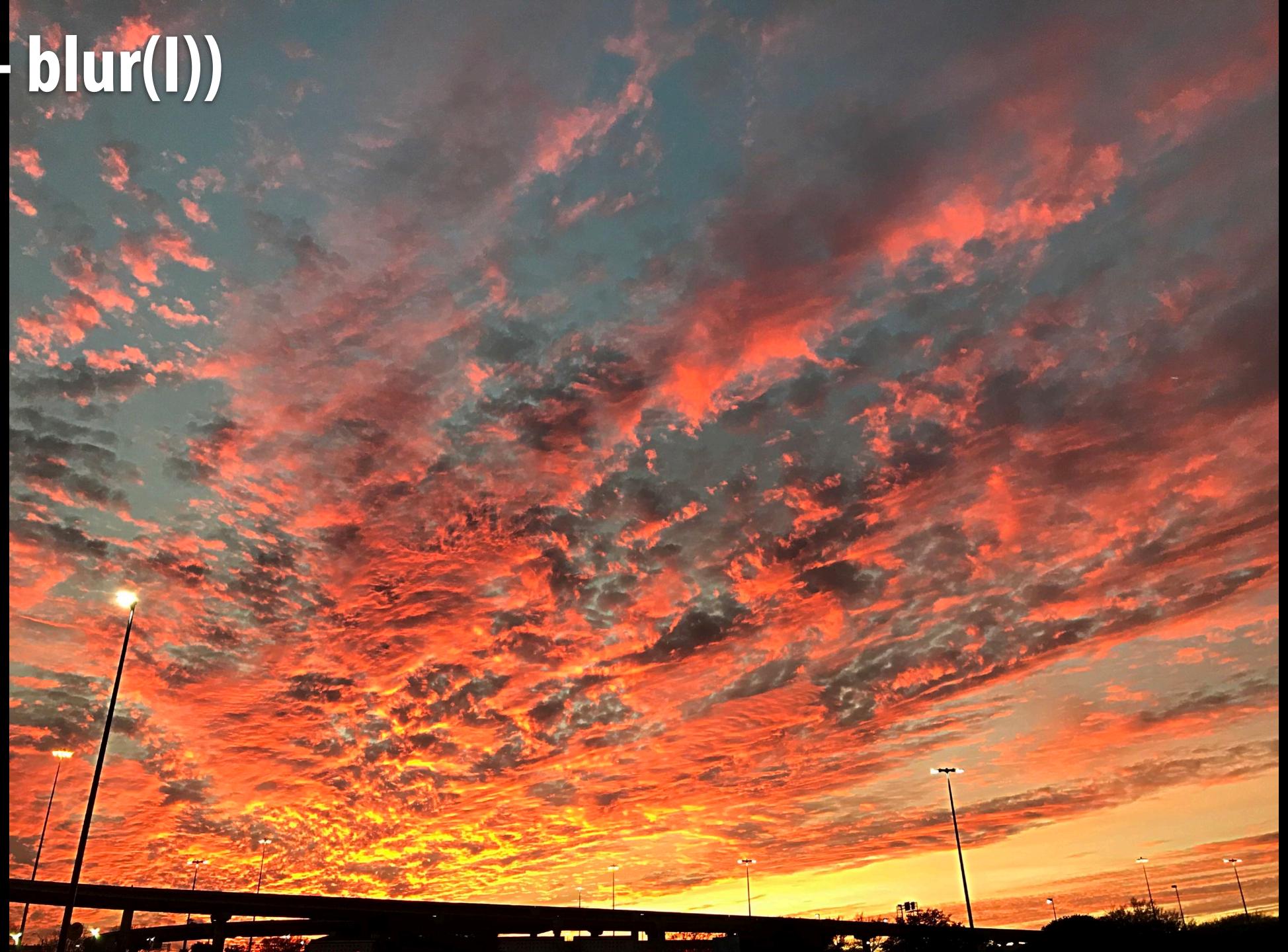


Blur(I)

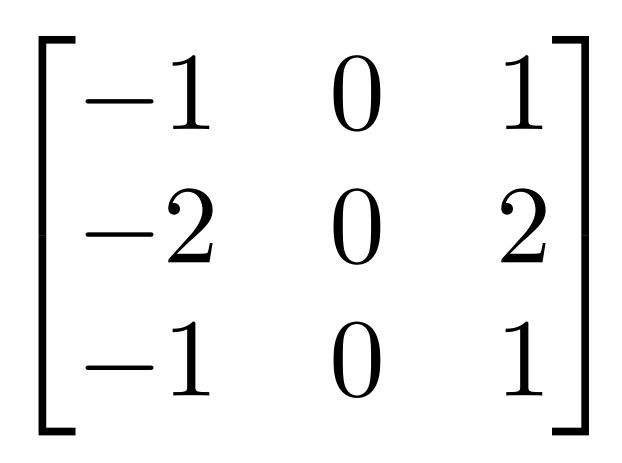
- blur(l)



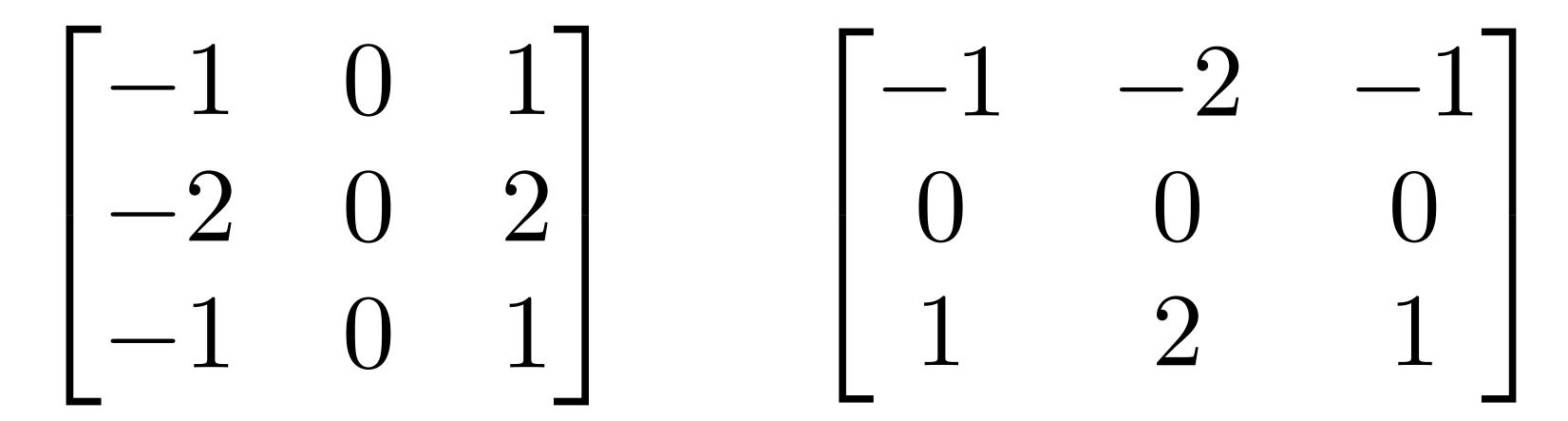
H = blur(I)



What does convolution with these filters do?



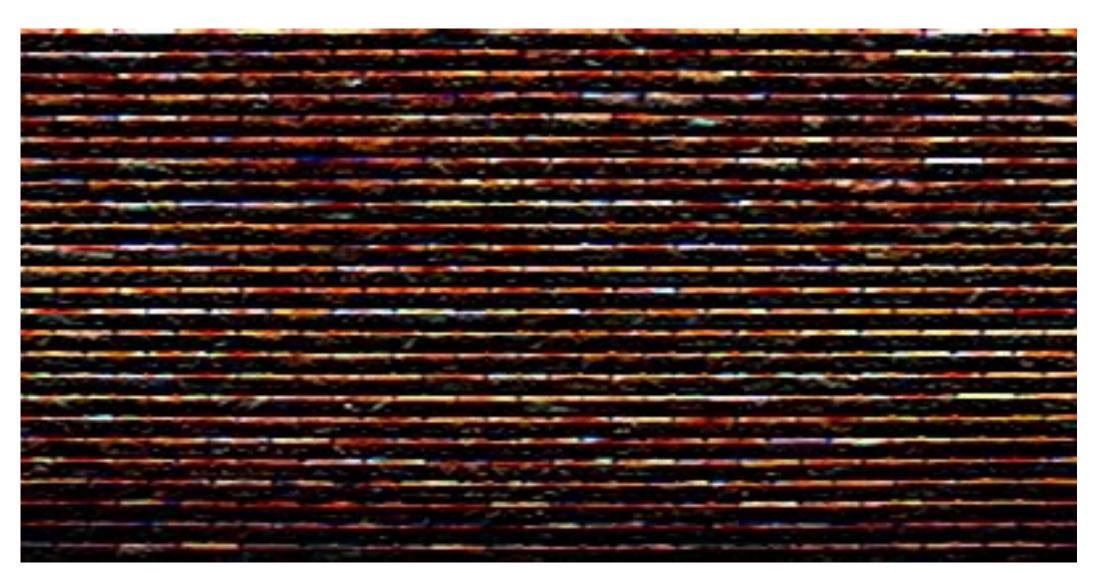
Extracts horizontal gradients



Extracts vertical gradients

Stanford CS248A, Winter 2023

Gradient detection filters



Horizontal gradients

Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

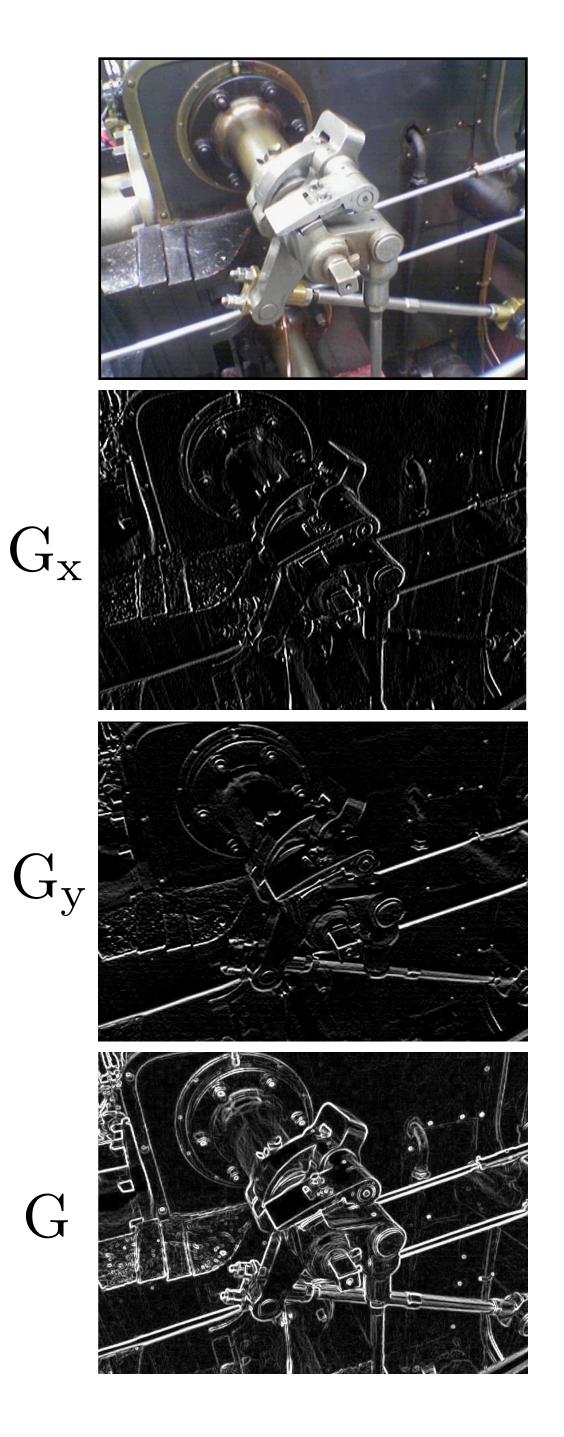
Sobel edge detection

Compute gradient response images

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$
$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$



Pixel-wise operation on images

Cost of convolution with N x N filter?

float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

```
float weights[] = {1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9};
```

```
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
          for (int ii=0; ii<3; ii++)</pre>
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

In this 3x3 box blur example: Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N² x WIDTH x HEIGHT

Separable filter

2D box blur

- product of 1D filters (they are separable!)

A filter is separable if can be written as the outer product of two other filters. Example: a

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as

Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Stanford CS248A, Winter 2023

Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Total work per image for NxN filter: 2N x WIDTH x HEIGHT

Preview of next time...

Bilateral filter

Do not smooth over hard edges, but smooth when there are not hard edges. Original

Example use of bilateral filter: removing noise while preserving image edges

https://www.thebest3d.com/howler/11/new-in-version-11-bilateral-noise-filter.html

After bilateral filter

Stanford CS248A, Winter 2023

Bilateral filter

Original

http://opencvpython.blogspot.com/2012/06/smoothing-techniques-in-opencv.html

After bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Summary

Last two lectures: representing images

- **Choice of color space (different representations of color)**
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate representation of high frequency components)
- **Basic image processing operations**
 - Image filtering via convolution (e.g., blur, sharpen, simple edge-detection) Non-linear, data-dependent filters (avoid blurring over strong edges, etc.)

 - Per-pixel operations out(x,y) = f(in(x,y)) (e.g., contrast enhancement)

