Image Processing Basics

Lecture 17:

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2023

Example image processing operations

Increase contrast

Increasing contrast with "S curve" Per-pixel operation: output(x,y) = f(input(x,y))

Output pixel intensity

Input pixel intensity

Invert

out(x,y) = 1 - in(x,y)

Blur

Sharpen

Edge detection

A "smarter" blur (doesn't blur over edges)

Review: convolution

It may be helpful to consider the effect of convolution with the simple unit-area "box" function:

$$f(x) = \bigg\{$$

$$(f * g)(x) = \int_{-}^{-}$$

f * g is a "blurred" version of g where the output at x is the average value of the input between x-0.5 to x+0.5

Discrete 2D convolution

$$(f * g)(x, y) = \sum_{i,j=-}^{\infty}$$
output image

Consider f(i, j) that is nonzero only when: $-1 \leq i, j \leq 1$ Then: $(f * I)(x, y) = \sum_{i,j=-1}^{1} I$

And we can represent f(i,j) as a 3x3 matrix of values where:

$$f(i,j) = \mathbf{F}_{i,j}$$
 (of

$$f(i,j)I(x-i,y-j)$$

ten called: "filter weights", "filter kernel")

Simple 3x3 box blur

float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9;

```
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
         for (int ii=0; ii<3; ii++)</pre>
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

For now: ignore boundary pixels and assume output image is smaller than input (makes convolution loop bounds simpler to write)

Stanford CS248A, Winter 2023

7x7 box blur

Zoomed view

Gaussian blur

Obtain filter coefficients by sampling 2D Gaussian function

- Produces weighted sum of neighboring pixels (contribution falls off with distance) **— In practice: truncate filter beyond certain distance for efficiency**
 - $\begin{bmatrix} .075 & .124 & .075 \\ .124 & .204 & .124 \\ .075 & .124 & .075 \end{bmatrix}$

7x7 gaussian blur

Zoomed view

What does convolution with this filter do?

$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

Sharpens image!

Stanford CS248A, Winter 2023

What does convolution with this filter do?

Input image

P1	P2	P3		

Post-convolution result

P1	P2	P3		

3x3 sharpen filter $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

Zoomed view

Recall: blurring is removing high frequency content

Spatial domain result

Spectrum

Recall: blurring is removing high frequency content

Spatial domain result

Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

Stanford CS248A, Winter 2023

Sharpening is adding high frequencies

- Let I be the original image
- High frequencies in image I = I blur(I)
- Sharpened image = I + (I-blur(I))

"Add high frequency content"

Original image (I)

Image credit: Kayvon's parents

Blur(I)

- blur(l)

Original image (I)

H = blur(I)

What does convolution with these filters do?

Extracts horizontal gradients

Extracts vertical gradients

Stanford CS248A, Winter 2023

Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

Sobel edge detection

Compute gradient response images

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$
$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$

Pixel-wise operation on images

Cost of convolution with N x N filter?

float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

```
float weights[] = {1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9};
```

```
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
          for (int ii=0; ii<3; ii++)</pre>
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

In this 3x3 box blur example: Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N² x WIDTH x HEIGHT

Separable filter

A filter is separable if can be written as the outer product of two other filters. **Example:** a 2D box blur

- product of 1D filters (they are separable!)

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as

Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Stanford CS248A, Winter 2023

Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Total work per image for NxN filter: 2N x WIDTH x HEIGHT

Bilateral filter Do not smooth over hard edges, but smooth when there are not hard edges. Original **After bilateral filter**

Bilateral filter Example use of bilateral filter: removing noise while preserving image edges

Original

After bilateral filter

Bilateral filter

$$W_p = \sum_{i,j} f(|I(x-i,$$

- f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could itself be a gaussian
 - Or very simple: f(x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of <u>spatial distance</u> and input image <u>pixel intensity difference</u>. (the filter's weights depend on input image content)

Re-weight based on difference in input image pixel values

 $|y-j| - I(x,y)| G_{\sigma}(i,j)$

The bilateral filter is an "edge preserving" filter: down-weight contribution of pixels on the "other side" of strong edges.

Visualization of bilateral filter

Input image

Figure credit: Durand and Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images", SIGGRAPH 2002

Pixels with significantly different intensity as *p* contribute little to filtered result (they are "on the "other side of the edge"

G(): gaussian about input pixel p f(): Influence of support region

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: "A Gentle Introduction to Bilateral Filtering and its Applications" Paris et al.

output

What if we wish to localize image edits both in space and in frequency?

(Adjust certain frequency content of image... in a particular region of the image)

Downsample

- **Step 1: Remove high frequencies (aka blur)**
- Step 2: Sparsely sample pixels (in this example: every other pixel)

Downsample

- **Step 1: Remove high frequencies**
- Step 2: Sparsely sample pixels (in this example: every other pixel)

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];
                    3/64, 9/64, 9/64, 3/64,
                    3/64, 9/64, 9/64, 3/64,
                    1/64, 3/64, 3/64, 1/64};
for (int j=0; j<HEIGHT/2; j++) {</pre>
   for (int i=0; i<WIDTH/2; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<4; jj++)</pre>
          for (int ii=0; ii<4; ii++)</pre>
      output[j*WIDTH/2 + i] = tmp;
```

- float weights[] = $\{1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)$

tmp += input[(2*j+j)*(WIDTH+2) + (2*i+i)] * weights[jj*3 + ii];

Upsample

Via bilinear interpolation of samples from low resolution image

Upsample

Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT]; float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {</pre> for (int i=0; i<2*WIDTH; i++) {</pre> int row = j/2; int col = i/2;float w1 = (i%2) ? .75f : .25f; float w2 = (j%2) ? .75f : .25f;

> output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] + (1.0-w1) * w2 * input[row*WIDTH + col+1] + w1 * (1-w2) * input[(row+1)*WIDTH + col] + (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];

$G_0 = image$ Each image in pyramid contains increasingly low-pass filtered signal

down() = downsample operation

G₀

G₃

G₄

$\mathbf{L}_0 = \mathbf{G}_0 - \mathbf{up}(\mathbf{G}_1)$

[Burt and Adelson 83]

G₀

Each (increasingly numbered) level in Laplacian pyramid represents a band of (increasingly lower) frequency information in the image

$L_0 = G_0 - up(G_1)$

$L_1 = G_1 - up(G_2)$

$L_0 = G_0 - up(G_1)$

 $L_2 = G_2 - up(G_3)$

 $L_1 = G_1 - up(G_2)$

Question: how do you reconstruct original image from its Laplacian pyramid?

$L_0 = G_0 - up(G_1)$

$L_1 = G_1 - up(G_2)$

$L_2 = G_2 - up(G_3)$

 $L_3 = G_3 - up(G_4)$

 $L_4 = G_4 - up(G_5)$

 $\mathbf{L}_5 = \mathbf{G}_5$

Gaussian/Laplacian pyramid summary

- Gaussian and Laplacian pyramids are image representations where each pixel maintains information about frequency content in a region of the image
- $G_i(x,y)$ frequencies up to limit given by *i*
- $L_i(x,y)$ frequencies added to G_{i+1} to get G_i
- Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient L_i(x,y) in Laplacian pyramid

Application: image blending Consider a simple case where we want to blend two patterns:

Problem: not "smooth"

Slide credit: Efros

"Feather" the alpha mask

For a "smoother" look...

$I_{\text{blend}} = \alpha I_{\text{left}} + (1 - \alpha) I_{\text{right}}$

Slide credit: Efros

Effect of feather window size

"Ghosting" visible is feather window (transition) is too large

Slide credit: Efros

Effect of feather window size

Seams visible is feather window (transition) is too small

Slide credit: Efros

What do we want

- feature
- feathering to generate good results

Intuition:

- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy

To avoid seams, transition window should be >= size of largest prominent feature

To avoid ghosting, transition window should be smaller than $\sim 2X$ smallest prominent

In other words, the largest and smallest features need to be within a factor of two for

- Coarse structure of images (large features) should transition slowly between images

Idea: blend laplacian pyramids (not pixels) according to gaussian pyramid of alpha mask

Source apple

Source orange

M

Mask

Blended Laplacian pyramid

Mask G3 Mask G3

Modern application: HDR photography

pixels

Saturated pixels

Credit: P. Debevec

Global tone mapping

- How to convert 12 bit number to 8 bit number?

Measured image values (by camera's sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel

High dynamic range image (HDR) Detail in dark and light images

minim

Image credit: Wikipedia

Local tone adjustment

Pixel values

Weights

Improve picture's aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions (no physical basis for this)

Combined image (unique weights per pixel)

Image credit: Mertens 2007

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks) Notice heavy "banding" since absolute intensity of different exposures is different

Merged result (after blurring weight mask) Notice "halos" near edges
Use of Laplacian pyramid in local tone mapping Compute weights for all Laplacian pyramid levels Merge pyramids (image features) not image pixels Then "flatten" merged pyramid to get final image

Merging Laplacian pyramids

Merged result (after blurring weight mask) Notice "halos" near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Four exposures (weights not shown)

Merged result (based on multi-resolution pyramid merge)

Stanford CS248A, Winter 2023

Summary

- **Convolution is a powerful image processing operation**
 - Different kernels = different effects
- **Data-dependent kernels for edge-aware image processing (Laplacian filter)**
- spatial regions and frequency components of images

Gaussian and Laplacian pyramids: data structures for enabling edits localized to both

