
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2023

Lecture 17:

Image Processing Basics

Stanford CS248A, Winter 2023

Example image processing operations

Stanford CS248A, Winter 2023

Increase contrast

Stanford CS248A, Winter 2023

Increasing contrast with “S curve”
Per-pixel operation:
output(x,y) = f(input(x,y))

Input pixel intensity
Ou

tp
ut

 pi
xe

l in
te

ns
ity

Stanford CS248A, Winter 2023

Invert

out(x,y) = 1 - in(x,y)

Stanford CS248A, Winter 2023

Blur

Stanford CS248A, Winter 2023

Sharpen

Stanford CS248A, Winter 2023

Edge detection

Stanford CS248A, Winter 2023

A “smarter” blur (doesn’t blur over edges)

Stanford CS248A, Winter 2023

Review: convolution

output signal input signal
(e.g. the input image)

!lter
(or “kernel”)

It may be helpful to consider the e"ect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “blurred” version of g where the output at x is the average value of the input between x-0.5 to x+0.5

-0.5 0.5

1

Stanford CS248A, Winter 2023

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image!lter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1 i, j 1

Then:

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “!lter weights”, “!lter kernel”)

(f ⇤ I)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

Stanford CS248A, Winter 2023

Simple 3x3 box blur
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and assume output image is smaller
than input (makes convolution loop bounds simpler to write)

Stanford CS248A, Winter 2023

7x7 box blur
Original

Blurred

Zoomed view

Stanford CS248A, Winter 2023

Gaussian blur
Obtain !lter coe#cients by sampling 2D Gaussian function

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution falls o" with distance)
- In practice: truncate !lter beyond certain distance for e#ciency

Stanford CS248A, Winter 2023

7x7 gaussian blur
Original

Blurred

Zoomed view

Stanford CS248A, Winter 2023

What does convolution with this !lter do?
2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

Stanford CS248A, Winter 2023

What does convolution with this !lter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5 P1 P2 P3

Input image

P1 P2 P3

Post-convolution result

Stanford CS248A, Winter 2023

3x3 sharpen !lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5
Zoomed view

Stanford CS248A, Winter 2023

Recall: blurring is removing high frequency content

SpectrumSpatial domain result

Stanford CS248A, Winter 2023

Spectrum (after low-pass !lter)
All frequencies above cuto" have 0 magnitude

Spatial domain result

Recall: blurring is removing high frequency content

Stanford CS248A, Winter 2023

Sharpening is adding high frequencies
Let I be the original image
High frequencies in image I = I - blur(I)
Sharpened image = I + (I-blur(I))

“Add high frequency content”

Stanford CS248A, Winter 2023

Original image (I)

Image credit:
Kayvon’s parents

Stanford CS248A, Winter 2023

Blur(I)

Stanford CS248A, Winter 2023

I - blur(I)

Stanford CS248A, Winter 2023

Original image (I)

Stanford CS248A, Winter 2023

I + (I - blur(I))

Stanford CS248A, Winter 2023

What does convolution with these !lters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

Stanford CS248A, Winter 2023

Gradient detection !lters
Horizontal gradients

Vertical gradients

Note: you can think of a !lter as a “detector” of a
pattern, and the magnitude of a pixel in the output
image as the “response” of the !lter to the region
surrounding each pixel in the input image (this is a
common interpretation in computer vision)

Stanford CS248A, Winter 2023

Sobel edge detection
Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

Stanford CS248A, Winter 2023

Cost of convolution with N x N !lter?
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N !lter: N2 x WIDTH x HEIGHT

Stanford CS248A, Winter 2023

Separable !lter
A !lter is separable if can be written as the outer product of two other !lters.
Example: a 2D box blur

- Exercise: write 2D gaussian and vertical/horizontal gradient detection !lters as
product of 1D !lters (they are separable!)

Key property: 2D convolution with separable !lter can be written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

Stanford CS248A, Winter 2023

Implementation of 2D box blur via two 1D convolutions
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image for NxN !lter:
2N x WIDTH x HEIGHT

Stanford CS248A, Winter 2023

Bilateral !lter
Do not smooth over hard edges, but smooth when there are not hard edges.

Original After bilateral !lter

Stanford CS248A, Winter 2023

Bilateral !lter
Example use of bilateral !lter: removing noise while preserving image edges

Original After bilateral !lter

Stanford CS248A, Winter 2023

Bilateral !lter

The bilateral !lter is an “edge preserving” !lter: down-weight contribution of pixels on the “other side” of strong edges.
f (x) de!nes what “strong edge means”
Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di"erence.
(the !lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di"erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

1

Wp
=

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)

Normalization
(weights should sum to 1)

Wp =

<latexit sha1_base64="WgldZ98st8OhWZgd/JkPpRg1nRk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKohch6MVjBPOAZAmzk9lkzDyWmVkhLPkHLx4U8er/ePNvnCR70MSChqKqm+6uKOHMWN//9gorq2vrG8XN0tb2zu5eef+gaVSqCW0QxZVuR9hQziRtWGY5bSeaYhFx2opGt1O/9US1YUo+2HFCQ4EHksWMYOukZquXoGvUK1f8qj8DWiZBTiqQo94rf3X7iqSCSks4NqYT+IkNM6wtI5xOSt3U0ASTER7QjqMSC2rCbHbtBJ04pY9ipV1Ji2bq74kMC2PGInKdAtuhWfSm4n9eJ7XxVZgxmaSWSjJfFKccWYWmr6M+05RYPnYEE83crYgMscbEuoBKLoRg8eVl0jyrBufVi/vzSu0mj6MIR3AMpxDAJdTgDurQAAKP8Ayv8OYp78V79z7mrQUvnzmEP/A+fwBrro5h</latexit>

Stanford CS248A, Winter 2023

Visualization of bilateral !lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi!cantly di"erent intensity as p contribute little
to !ltered result (they are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: !lter weights for pixel p Filtered output image

Stanford CS248A, Winter 2023

Bilateral !lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

Stanford CS248A, Winter 2023

What if we wish to localize image edits
both in space and in frequency?

(Adjust certain frequency content of
image… in a particular region of the image)

Stanford CS348K, Spring 2022

Downsample
Step 1: Remove high frequencies (aka blur)
Step 2: Sparsely sample pixels (in this example: every other pixel)

Stanford CS248A, Winter 2023

Downsample
Step 1: Remove high frequencies
Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
 3/64, 9/64, 9/64, 3/64,
 3/64, 9/64, 9/64, 3/64,
 1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
 for (int i=0; i<WIDTH/2; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<4; jj++)
 for (int ii=0; ii<4; ii++)
 tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH/2 + i] = tmp;
 }
}

Stanford CS248A, Winter 2023

Upsample
Via bilinear interpolation of samples from low resolution image

Stanford CS248A, Winter 2023

Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
 for (int i=0; i<2*WIDTH; i++) {
 int row = j/2;
 int col = i/2;
 float w1 = (i%2) ? .75f : .25f;
 float w2 = (j%2) ? .75f : .25f;

 output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
 (1.0-w1) * w2 * input[row*WIDTH + col+1] +
 w1 * (1-w2) * input[(row+1)*WIDTH + col] +
 (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];
 }
}

Stanford CS248A, Winter 2023

Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass !ltered signal

down() = downsample operation

Stanford CS248A, Winter 2023

Gaussian pyramid

G0

Stanford CS248A, Winter 2023

Gaussian pyramid

G1

Stanford CS248A, Winter 2023

G2

Gaussian pyramid

Stanford CS248A, Winter 2023

Gaussian pyramid

G3

Stanford CS248A, Winter 2023

Gaussian pyramid

G4

Stanford CS248A, Winter 2023

Gaussian pyramid

G5

Stanford CS248A, Winter 2023

Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in Laplacian pyramid
represents a band of (increasingly lower) frequency
information in the image

Stanford CS248A, Winter 2023

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

Stanford CS248A, Winter 2023

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you reconstruct original image
from its Laplacian pyramid?

Stanford CS248A, Winter 2023

L0 = G0 - up(G1)

Laplacian pyramid

Stanford CS248A, Winter 2023

L1 = G1 - up(G2)

Laplacian pyramid

Stanford CS248A, Winter 2023

L2 = G2 - up(G3)

Laplacian pyramid

Stanford CS248A, Winter 2023

L3 = G3 - up(G4)

Laplacian pyramid

Stanford CS248A, Winter 2023

L4 = G4 - up(G5)

Laplacian pyramid

Stanford CS248A, Winter 2023

L5 = G5

Laplacian pyramid

Stanford CS248A, Winter 2023

Gaussian/Laplacian pyramid summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

Gi(x,y) — frequencies up to limit given by i

Li(x,y) — frequencies added to Gi+1 to get Gi

Notice: to boost the band of frequencies in image around pixel (x,y), increase coe#cient
Li(x,y) in Laplacian pyramid

Stanford CS248A, Winter 2023

Application: image blending
Consider a simple case where we want to blend two patterns:

Problem: not “smooth”

Slide credit: Efros

Stanford CS248A, Winter 2023

“Feather” the alpha mask
For a “smoother” look…

Iblend = ↵ Ileft + (1� ↵) Iright

<latexit sha1_base64="A/D9080pr+vxY/Nc4+grdPDr/MI=">AAACS3icbVA9SwNBFNyL3/ErammzGARFDXeiaCOINtpFMFHIhbC3eZcs7u0du+/EcNz/s7Gx80/YWChi4eajUOPAwjAzj/d2gkQKg6774hQmJqemZ2bnivMLi0vLpZXVuolTzaHGYxnr24AZkEJBDQVKuE00sCiQcBPcnff9m3vQRsTqGnsJNCPWUSIUnKGVWqXAjxh2dZRd5i0f4QEzO6naOT2hPpNJl1F/l45lJISY0x265e0NU9v/xrTodDFvlcpuxR2AjhNvRMpkhGqr9Oy3Y55GoJBLZkzDcxNsZkyj4BLyop8aSBi/Yx1oWKpYBKaZDbrI6aZV2jSMtX0K6UD9OZGxyJheFNhk/1zz1+uL/3mNFMPjZiZUkiIoPlwUppJiTPvF0rbQwFH2LGFcC3sr5V2mGUdbf9GW4P398jip71e8g8rh1UH59GxUxyxZJxtki3jkiJySC1IlNcLJI3kl7+TDeXLenE/naxgtOKOZNfILhalvN9C0Gw==</latexit>

Slide credit: Efros

Stanford CS248A, Winter 2023

E"ect of feather window size

“Ghosting” visible is feather window (transition) is too large
Slide credit: Efros

Stanford CS248A, Winter 2023

E"ect of feather window size

Seams visible is feather window (transition) is too small
Slide credit: Efros

Stanford CS248A, Winter 2023

What do we want
To avoid seams, transition window should be >= size of largest prominent feature

To avoid ghosting, transition window should be smaller than ~ 2X smallest prominent
feature

In other words, the largest and smallest features need to be within a factor of two for
feathering to generate good results

Intuition:
- Coarse structure of images (large features) should transition slowly between images
- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy

Stanford CS248A, Winter 2023

Idea: blend laplacian pyramids (not pixels) according to gaussian
pyramid of alpha mask

Source apple Source orange Mask Blended Laplacian
pyramid

Mask G0 Mask G1 Mask G2 Mask G3 Mask G3

Stanford CS248A, Winter 2023

Modern application: HDR photography

Stanford CS348K, Spring 2022

Saturated
pixels

Stanford CS248A, Winter 2023

Saturated pixels

Credit: P. Debevec

Stanford CS248A, Winter 2023

Global tone mapping
Measured image values (by camera’s sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
How to convert 12 bit number to 8 bit number?

0

255

212

Allow many pixels to “blow
out” (detail in dark regions)

0

255

212

Allow many pixels to
clamp to black (detail

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

input value
ou

tp
ut

 va
lu

e

input value

ou
tp

ut
 va

lu
e

Stanford CS248A, Winter 2023

High dynamic range image (HDR)
Detail in dark and light images

Image credit: Wikipedia

Stanford CS348K, Spring 2022

Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast,
boosting dark regions, decreasing bright regions
(no physical basis for this)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure

Stanford CS348K, Spring 2022

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity

of di"erent exposures is di"erent

Merged result
(after blurring weight mask)

Notice “halos” near edges

Stanford CS248A, Winter 2023

Use of Laplacian pyramid in local tone mapping
Compute weights for all Laplacian pyramid levels
Merge pyramids (image features) not image pixels
Then “$atten” merged pyramid to get !nal image

Stanford CS248A, Winter 2023

Merging Laplacian pyramids

Four exposures (weights not shown)

Merged result
(based on multi-resolution pyramid merge)

Merged result
(after blurring weight mask)

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford CS248A, Winter 2023

Summary
Convolution is a powerful image processing operation
- Di"erent kernels = di"erent e"ects

Data-dependent kernels for edge-aware image processing (Laplacian !lter)

Gaussian and Laplacian pyramids: data structures for enabling edits localized to both
spatial regions and frequency components of images

