Lecture 11:

Monte Carlo Evaluation of
the Reflection Equation

Interactive Computer Graphics
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Last time: the reflection equation

&S

L (p7 WO) — fr (p7 Wi —7 wo) Li(p7 Cdi) COs 91 dw;
02 | I |
BRDF lllumination
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Review: radiometry and illumination
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Review: differential solid angles
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Review: radiance

Radiance (L) is energy along a ray defined by origin point p and direction (v

4

dA

m Radiance is the solid angle density of irradiance (irradiance per unit direction)

where W denotes that the differential surface area is oriented to face in the direction
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Review: irradiance = power per unit area

Irradiance at surface is proportional to cosine of angle between light direction and surface
normal. (Lambert’s Law)
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Review: how much light hits the surface at point p?
(from multiple point light sources)

(irradiance at point P)

Z L, cos 0,

Po

®
Pinhole
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How much light hits the surface at point p?
(from light from all directions!)

(irradiance at point P)

Po

®
Pinhole

L,

27T T
/ Li(w;)cosB;dw = / / L;(w;) cos6; sin 8;dOd¢
S2 0o Jo
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Irradiance at point X from a uniform area source
F(x) = / L(w) cosfdw
H 2

—L / cos 6 dw
Constant / '

(it's a uniform source) — L Q

N

Total projected solid angle
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Irradiance at point X from uniform area source

cos 6 cos 6’

E(x) :/ L;(x,w) cos@ dw :/ L IE dA’
H?2 /

r—x

Reparameterization: now integrate over light
source area, instead of solid angle

Integral reparameterization:

S0/
dw = ————dA’ ay
T — 2 -«==)
X

Radiance leaving light from x’in direction w’ = radiance arriving at surface at x from w.
(assuming that w is pointing at the light)

Li(x,w) = Ly(2',w") = L
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Review: materials
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Review: the BRDF

Bidirectional Reflectance-Distribution Function

dLo(ws) |1

fr(wi — Wo) — dEi(wi) _;_

“For a given change in incident irradiance, how much does exit radiance change”
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BRDF energy conservation

O, fﬂo Lo(wo) cos B, dw,
Reflectance Pp= T = fﬂi Li(wi) cos 0 dw:
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Consider view of hemisphere from this point

Image credit Matt Pha



Hemispherical incident radiance

At any point on any surface in the scene, there’s an
incident radiance field that gives the directional
distribution of illumination at the point
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ldeal specular reflection

Incident radiance Exitant radiance
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Diffuse reflection

Exitant radiance is the same in all directions

e

Incident radiance Exitant radiance

Image credit Matt Pharr Stanford (S248A, Winter 2023



Plastic

Incident radiance Exitant radiance
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Incident radiance Exitant radiance
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BRDF for diffuse surface with albedo p

LO(U}O) — erz (wz) COS (97, dwi
H2

g —

— fr/ Lz (wz) COS (9@ dwz-
H2
__ f E Radiance in

outgoing direction

- . Let’s call the overall reflectance (albedo) of the surface ()
| |
Total outgoing L
surface irradiance L = 12 f B cost, dw,
frwo) = fr =c p:ff,a/ cos 0, dw,
H2
] - P — f’r‘ﬂ-

fT, — E Given a desired /0 BRDF should be the constant —
T T
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A bit more on materials from last time
(Returning to last lecture’s slides...)

Transmission
Refraction
Subsurface scattering
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Numerical Integration
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Many examples of needing to compute integrals already
In this lecture

/
E(x) :/ L cos 0 dw :/ LCOS@COSH dA’
H?2 /

x — x’|?
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Review: fundamental theorem of calculus

/ f(2)de = F(b) — Fla)
’ d
f(z) =

@F(Qf)




Definite integral as “area under curve”

/a ' fla)da
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Simple case: constant function

/abC'da::(b—a)C
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Piecewise affine function

Sum of integrals of individual affine components

[ @ = 33 @i =2 (@) + i)
f(x)
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Piecewise affine function

If N-1 segments are of equal length: . = b a

n—1

b n—1
/ f(z)dr = g Z(f(l‘z) f(Tiy1)

f(z) = (Z fl:) + 5 (Flwo) + f(évn)))

1=1
presses s ;
Weighted combination :__ A E
" — . € :
of measurements. : Z% if () :
1=
Lo = @ L1 L2 L3 ry = b

Stanford (5248A, Winter 2023



Arbitrary function f(x)?

f(z)
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Trapezoidal rule

Approximate integral of f(x) by assuming function is piecewise linear
b— a

n—1

For equal length segments: 1~ =

b n—1
[ fayde = (Z i) + 5 (Flwo) + f(xn)))

f(z)
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Trapezoidal rule

Consider cost and accuracy of estimateas n — oo (or h — 0)
Work: O(n)
Error can be shown to be: O(1?) = O(

f(z)

1
—)

(for f(x) with continuous second derivative)
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Integration in 2D

Consider integrating f(z, y)using the trapezoidal rule
(apply rule twice: when integrating inxand in y)

Errors add, so error still: O(hz) Must perform much more work in 2D to get same error bound on integral!

But work is now: O(n?) InK-D, let N = n*
(n x n set of measurements) Error goes as: O ( Ni/k)
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Monte Carlo integration
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Monte Carlo numerical integration

m  Estimate value of integral using random sampling of function
- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

B Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are impossible to integrate directly

B Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O(nl/ 2)
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Monte Carlo Algorithms

m Advantages

- Easy to implement

- Easy to think about (but be careful of subtleties)

- Robust when used with complex integrands (lights, BRDFs) and domains (shapes)
- Efficient for high-dimensional integrals

- Efficient when only need solution at a few points
m Disadvantages

- Noisy

- Slow (many samples needed for convergence)
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Review: random variables

X random variable. Represents a distribution of potential values

X ~ p(z) probability density function (PDF). Describes relative
probability of a random process choosing value x

Uniform PDF: all values over a domain are equally likely

) o o
e.g., for an unbiased die (o . 5
X takesonvalues1,2,3,4,5,6 . ‘o‘ ¥y 4
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) W,
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Discrete probability distributions

n discrete values =z;

With probability p;

Requirements of a PDF:
pi =0

sz' =1
i=1
1

Six-sided die example: p; = .

Think: D; is the probability that a random measurement of  will yield % value x;
X takes on the value x; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P; = ) p,
1=1

where:
0< P, <1
P, =1

Stanford (5248A, Winter 2023



Sampling from discrete probability distributions

How do we generate samples of a discrete
random variable (with a known PDF?)

To randomly select an event,
select «; if

P11 <& P

T

Uniform random variable € [0, 1)
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Continuous probability distributions
PDF p(z) Uniform distribution: p(x) = ¢

(for random variable _X defined on [0,1] domain)
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Sampling continuous random variables using the
inversion method

Cumulative probability distribution function
P(x) =Pr(X < x)

Construction of samples:
Solve for x = P~ (¢)

Must know the formula for:
1. The integral of p(x)
2. The inverse function P! (z)
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Example: applying the inversion method

Relative density of probability

Given: of random variable taking on |
value x over [0,2] domain J!

2 - I
f(r)=2° x€]0,2

Compute PDF from f(x): i s casn feses
2
1 = / c f(z)dx
’ |
= o(F(2) - F(0)  F(a)= 7a°
1
— =27
3
8¢ 3 3 o Probability density function
— g — > C—= é? p(x) T éx (integratesto 1)
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Example: applying the inversion method

Given: /

f(x) = oz € 0, 2] 7

A e P v T N R - LA PN W M v W N G - (L VN, e | |

X
3
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Example: applying the inversion method

Given:
flx)=a2* x¢c]l0,2]
p(x) = ng
3
X
P(x) = <
Sample from p(z) §
2
3 /
¢ = P(a) = = //
r— /R¢ o T
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How do we uniformly sample the unit circle?
(Choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m ¢ =uniformrandom angle between 0 and 277
m 7 = uniform random radius between 0 and 1

m Returnpoint: (7 cos 6, rsin 0)

This algorithm does not produce the desired uniform sampling of the area of a circle.
Why?

Stanford (5248A, Winter 2023



Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

\\K jdr

0 =2n& =& p(r,0)drdf ~ rdrdf
p(r,0) ~r

@k
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Uniform area sampling of a circle

WRONG RIGHT
Not Equi-areal Equi-areal
0 = 27T§1 0 — 27T€1
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Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1 r

p(r,0)drdf = —rdrdf — p(r,0) = —

.

p(r, ) =1p(r)p(9) 70 independent / }rdrdé’
p(0) = 5 / %\

| dr
P(0) = -0 § = 276, K j
p(r) = 2r \\ /

=

-

Stanford (5248A, Winter 2023



Shirley’s mapping

A

r =&
- /\\X\\ &2
AT T
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Uniform sampling via rejection sampling

® Generate random point within unit circle

° ¢ do {

X = uniform(-1,1);

P y = uniform(-1,1);

® } while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square
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Rejection sampling to generate 2D directions

/

Goal: generate random directions in 2D with
uniform probability

X
Y

X
X

dir = x/r;

Y:dir = y/r;

This algorithm is not correct! What is wrong?

What's a better algorithm?

uniform(-1,1) ;
uniform(-1,1) ;

sqrt (x*x+y*y) ;
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Monte Carlo integration
m Definite integral /b
f(a)dx

What we seek to estimate

m Random variables

X is the value of a random sample drawn from X;~p (:1:)
the distribution p(z) N
Y isalso a random variable. Y; = f (X ? )

m Expectation of f

m Estimator b
Monte Carlo estimate of / f (CIZ‘ ) dx
a

Assuming samples .X'; drawn from uniform pdf. F N — }/z
| will provide estimator for arbitrary PDFs later in N
lecture.
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Basic unbiased Monte Carlo estimator

N
b—a
Unbiased estimator: EFy| =FE ~ Z Y
Expected value of - =1 - N
estimator is the integral _b—a 1_b—a |
. ) = 2Bl = —— Y Elf(X))]
we wish to evaluate. i=1 i=1

=S [ r@)peds
Assume uniform

N b
— Z / f (CE ) dx probability density for now
Qa

=1 X; ~ Ula,b)

Properties of expectation:

1
N
) _ b 1
D , . :/ f(z)de p(z) = +—
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle

1
plw) = o E(p) :/L(p,w) cos  dw
Estimator:
X; ~ p(w)
Y; = f(X3)

Y; = L(p,w;)cos 0,

27TN
Fyv =%y,
N N;
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle

E(p) :/L(p,w) cos 0 dw

Given surface point p A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; /
Compute incoming radiance arriving L; at p from direction: (v,
Compute incidentirradiance duetoray: dF;, — L;cos 0,

2 . :
Accumulate NﬂdEi into estimator



Direct lighting: hemisphere sampling

Light source

Occluder
(blocks light)

e

B

Fophelan
ISR

T LA
]

B

Hemisphere

16 light samples (=16 shadow rays)
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Uniform hemisphere sampling

Generate random direction on hemisphere (all directions equally likely)

1

plw) = 5

Direction computed from uniformly distributed point on 2D plane:

(1,62) = (/1 — € cos(2ma), /1 — €2 sin(2mEs), &1)

1.0

08 o

L 1) ° () o ¢
o °® °
o ° ¢
o °
: ® ¢ ° e ©
06 ® o
) | o () Y ) o
I ® °
I L (]
04 ¢ o ©
e o ° ° o
L . ‘ .
o o
o ©® ®

0.2* o ()

Exercise to students: derive from the inversion method
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Direct lighting: area integral formulation

Consider uniformly sampling surface of light, instead of hemisphere of directions...

sf cos b’
E(x) = / Li(x,w)cosbdw= | Ly,(z', " \V(x,x" c‘oq CO,S|2 dA’
J H?= J A’ Xr — X
Integral
cos 6’ ,
dw = dA
-]
Visibility
, 0 blocked
V(x,x7) = .
1 wisible
Radiance

Li(z,w) = Lo(z",w")
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Direct lighting: area sampling

/
E(x) :/ L,(z', "V (x,x") cos 0 cos dA’

z — 2’

/ / p(x')dA" =1
pa’) = -

/ Aw=12 —x S A

— Sample shape uniformly by area
(Picking random points on the light)
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Direct lighting: area sampling

cos 6 cos O’
E(z) = //Lo(x’,w’)V(a:,x’) A
A ,
.,

'l MC Estimator
0 : 0 cos

. Y; = Lo(a},w))V (x,2]) L A’

z — x|
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Direct lighting estimate (area sampling light with area A’)

Given surface point x
For each of N samples:
Generate random point x’ on area light, compute direction fromxtox’: w;

cos 6, cos b,

Compute incident irradiance due to ray fromx’'tox:as dre; = L, (2, —w;)V (z, ')

x — 2/ |?

/
Accumulate % dFE; into estimator I

How do you evaluate V()?
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Direct lighting: area sampling

Area

16 shadow rays
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Random sampling introduces noise

Center Random

shadow ray per eye ray
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Random sampling introduces noise

Incident lighting estimator uses different
random directions when computing inciden
lighting for different points. Some of those
directions are occluded, some are not!

The estimator is a random variable!)
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Quality improves with more rays

Area Area

1 shadow ray 16 shadow rays
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Why is area better than hemisphere?

Hemisphere Area

16 shadow rays 16 shadow rays
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Variance

m Definition

VY] = E[(Y — E[Y])"]
= EB[Y?] — E[Y]

m Variance decreases linearly with number of samples

VI 20| = VI = N VY] = VY

Properties of variance:

- N ] N
VY Y| =) VY
=1 | 1=1

ViaY] = a* V[Y]
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Comparing different techniques

m Variance in an estimator manifests as noise in rendered images

m Estimator efficiency measure:
1

Variance x Cost

Efficiency o<

m [f one integration technique has twice the variance as another, then it takes twice as
many samples to achieve the same variance

m [f one technique has twice the cost of another technique with the same variance, then it
takes twice as much time to achieve the same variance
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D m el onoa!
Biasing
m  We previously used a uniform probability distribution to generate samples in our estimator

m ldea: change the distribution—bias the selection of samples

X; ~ p(x)
m However, for estimator to remain unbiased, must change the estimator to:

m Note: “biasing” selection of random samples is different than creating a biased estimator

- Biased estimator: expected value of estimator does not equal integral it is designed to
estimate (not good!)
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General unbiased Monte Carlo estimator

’ 1 (X
/a flaydo s 5 ) p(X;)

1=1

X; ~ p(x)

Special case where X; drawn from uniform distribution:

b— a —
N = N Zf(Xz) 1
i=1

Stanford (5248A, Winter 2023



Biased sample selection, but unbiased estimator

m Probability:
X; ~ p(r)

m Estimator:
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Summary: Monte Carlo integration

m Monte Carlo estimator

- Estimate integral by evaluating function at random sample points in domain
N b
1 f(X5) /
Fn = — ~ f(x)dx
VEN 2w T, T

m The function (the estimator) is computed by a ray tracer!

m Useful in rendering due to estimate high dimension integrals

- Faster convergence in estimating high dimensional integrals than non-randomized methods
- Butit'sstill slow...

- Suffers from noise due to variance in estimate (need many samples to produce good quality images)

m Notdiscussed today: importance sampling = picking good samples to reduce variance
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