Lecture 14:

Modern Real-Time
Rendering Techniques

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2023



Course projects

m Project deadlines:

- Proposal: no later than Friday March 3rd... but ungraded (get it in early if you can)
- Final video: Monday, March 20

- Final writeup+code: Tuesday, March 21

m OnTuesday, March 21st at 3:30pm we’ll have a showcase where we watch all the videos
- Highly encouraged to come in person, but you can watch online
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Screenshot; Red Dead Redemption. .~ {1 . ’






BATTLEFIELD V

Screenshot: Battlefield V



Last couple of lectures: ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
How much radiance is incident from a given direction?
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Rasterization: algorithm for “camera ray”- scene queries

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection

Note: rasterization does not yield uniform distribution in angle. .. angle between rays is smaller away from view
direction than it is in the center of the view because equal steps in Y are not equal steps in angle.
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Review: basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project _triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are distributed uniformly on screen)

More efficient hierarchical rasterization:
For each TILE of image
If triangle overlaps tile, check all samples in tile
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Review: OpenGL/Direct3D graphics pipeline

* Several stages of the modern OpenGL pipeline are omitted

°3
°1 —
l— °4  |nput: vertices in 3D space
©2
Operations on  ETTEXIhIocessIng
vertices T E
Vertex stream ; ° ; . . . . . .
l : © .  Verticesin positioned in normalized coordinate space

Operations on Primitive Processing ]

primitives
(triangles, lines, etc.) Primitivestream | = reeeeeeeeeeeeeeeeeeeen

Fragment Generation . Triangles positioned on screen

(Rasterization)

Operations on Fragment streaml
fragments %:. Fragments (one fragment per covered sample)
EragmentiErocessing

Shaded fragment streaml % ? Shaded fragments

Operations on Screen sample operations
(depth and color) SO — :

screen samples

Output: image (pixels)
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Review: basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}
color|[s] = compute rejected radiance from triangle r.tri at hit point And as you know now, a performant

raytracer will use an
acceleration structure like a BVH.

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”
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Theme of this part of the lecture

A surprising number of advanced lighting effects can be efficiently approximated using the
basic primitives of the rasterization pipeline, without the need to actually ray trace the
scene geometry. Instead we are going to approximate the use of ray tracing with:

m Rasterization
m Texture mapping
m Depth buffer for occlusion

These techniques have been the basis of high quality real-time rendering for decades.

Although in recent years they are being to be replaced by ray tracing as ray tracing
performance is not fast enough to be used in real-time applications.
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Shadows
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How much light is REFLECTED from p toward po

L(p, wo) Z f (P, wi, wo)V (P, Pi) Li cost; (Point light 1 is at P and emits L,)

/ ® P1
Visibility term: =

4 (Pa Pi) 1, if P is visible from P;
0, otherwise

(8

W1

Po

Pinhole

° PZ
= (Pointlight 2 is at P, and emits L,)
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Review: How to compute V' (p, p;) using ray tracing

m Traceray from point P to location P; of light source

m [fray hits scene object before reaching light
source... then Pis in shadow

(%

(%

Q)
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Convfnce yoursel \h\hor“ﬂf
(what you e /o




Or this...




Point lights generate “hard shadows”

(Either a point is in shadow or it’s not)

| 1,ifpisvisible from L, P,
V(p, Pi) a { 0, otherwise o

A

Stanford (5248A, Winter 2023



What if you didn’t have a ray tracer,
just a rasterizer?
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We want to shade these points (aka fragments)
What “shadow rays” do you need to compute shading for this scene?

Surface
Camera

position
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Shadow mapping

[Williams 78]

1. Place camera at position of the scene’s point light source light

2. Render scene to compute depth to closest object to light along a uniformly spaces
set of “shadow rays” (note: answer is stored in depth buffer after rendering)

3. Store precomputed shadow ray intersection results in a texture map

Precomputed
shadow rays

“Shadow map” = depth map from
perspective of a point light.

(Store closest intersection along each
shadow ray in a texture)

Image credits: Segal et al. 92, NVIDIA
Stanford C5248A, Winter 2023



Result of shadow texture lookup approximates visibility
result when shading fragment at P

Precomputed shadow rays shown in red:

i Distance to closest object in scene has been precomputed and stored in “shadow map”
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Interpolation error

Bilinear interpolation of shadow map values (red line) only approximates distance
to closest surface point in all directions from the camera
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Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between surface
point and light directly using ray tracing)

Image credit: Johnson et al. TOG 2005 Stanford (5248A, Winter 2023



Soft shadows

Hard shadows Soft shadows
(created by point light source) (created by ?7?)

Image credit: Pixar Stanford (S248A, Winter 2023



Area light
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Shadow cast by an area light (via ray tracing)

¢ o Notice that a fraction of the light from an area light

toward a point P may reach that point (partial occlusion)
®

P (partially illuminated)
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Percentage closer filtering (PCF) — hack!

(consider case where distance
from light to surface is 0.5)

m Instead of sampling shadow map once, perform multiple lookups 0/o/0/0/0fo]o]0]1
around desired texture coordinate 019 | Somiantanian | ' | -
0.0;0 0 0|1 1_1'1

) ) . o|o0(0j0 |0 fT]1 1|1

m Tabulate fraction of lookups that are in shadow, modulate light oo | GRREEEE | 1|1
intensity accordingly 0100011111

1 1‘1 1|2 _1 s S I I |

Hard shadows PCF shadows
(one lookup per fragment) (16 lookups per fragment)
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What PCF computes

The fraction of these rays that are shorter than |P-P,| ° o

P
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Shadow cast by an area light

¢ Actual illumination at P is given by
fraction of these rays that are occluded.

)
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Image credit: Brennan Shacklett
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—

This scene contains an environment light source that has equa

m b i e nt 0 cc I u S i 0 n illumination from all directions. (e.g., an overcast day)

All surfaces are diffuse reflectors.

el A L



Hack: ambient obscurance

ldea:

Precompute “fraction of hemisphere” that is occluded within distance d from a point (via a ray tracer)

Store this fraction in a texture map
When shading, attenuate environment lighting by this fraction

Stanford (5248A, Winter 2023



“Screen-space” ambient occlusion in games

1. Render scene to depth buffer
2. Foreach pixel p, “ray trace” the depth buffer to estimatelocal [ J
occlusion of hemisphere - use a few samples per pixel I T S
3. Blurthe the per-pixel occlusion results to reduce noise T
4. When shading pixels, darken direct environment lighting by Depth buffer values
occlusion amount computed for the current pixel

R
.
.

‘$
“
.
.

without ambient occlusion with ambient occlusion
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Ambient occlusion

Direct Lighting (no self-shadowing computations)

R
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Reflections

Stanford (5248A, Winter 2023



What is wrong with this picture?

CS248: Shader Assignment

Stanford (5248A, Winter 2023



Reflections

Image credit: NVIDIA Stanford (S248A, Winter 2023
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Recall: perfect mirror material

Stanford (5248A, Winter 2023



Recall: perfect mirror reflection

Light reflected from P in direction of Py is
incident on P; from reflection about surface at P.

Stanford (5248A, Winter 2023



Rasterization: “camera” position can be reflection point

Environment mapping: Scene rendered 6 times, with ray
¢ o o o origin at center of reflective box
place ray origin at reflective object (produces “cube-map”)
Yields approximation to true reflection
results. Why? ’
—
Cube map: —

stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered using
the cube-map)

Center of projection /

Image credit: http://en.wikipedia.org/wiki/Cube_mapping Stanford C5248A, Winter 2023
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Indirect lighting

Stanford (5248A, Winter 2023



Indirect lighting

Why is this gray wall tinted red?

-

Why is this point not black.<>

Image credit: Henrik Wann Jensen Stanford (5248A, Winter 2023



PrecomPUtEd Iighting Rendered result

m Precompute accurate lighting for a scene offline
using a ray tracer (possible for static lights)

m  “Bake” results of lighting into texture map

Light map

Stanford (5248A, Winter 2023



Precomputed lighting in Unity Engine

<— Visualization of light map texture coordinates

Image credit: Unity / Alex Lovett Stanford C5248A, Winter 2023



Growing interest in real-time ray tracing

m ['vejust shown you an array of different techniques for approximating different advanced lighting phenomenon
using a rasterizer

m Challenges:
- Different algorithm for each effect (code complexity)
- Algorithms may not compose
- They are only approximations to the physically correct solution (“hacks!”)

m Traditionally, tracing rays to solve these problems was too costly for real-time use
- That s rapidly changing...

This image was ray traced in real-time on a GPU
Stanford (5248A, Winter 2023



This image was rendered in real-time on a single high-end GPU

>

NVIDIA.



Real-time ray tracing challenge:

Need to shoot many rays per pixel to accurately simulate
advanced lighting effects

Want high-performance interactive rendering

s



Innovation 1:
Hardware innovation: custom GPU hardware for RT

NVIDIA GeForce RTX 3080 GPU



Innovation 2: better importance sampling algorithms

Path traced: 1 path/pixel (8 ms/frame) Path traced: 1 path/pixel using ReSTIR GI (8.9 ms/frame

Key idea: cache good paths, reuse good paths found from from prior frames or for prior pixels in same frame

[Ouyang et al. 2021]

Stanford (5248A, Winter 2023



Innovation 3: Neural network based denoising

|ldea: Use neural image-to-image transfer methods to convert cheaper to
compute (but noisy) ray traced images into higher quality images that look
like they were produced by tracing many rays per pixel

Stanford (5248A, Winter 2023
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Denoised results

Stanford (5248A, Winter 2023






16 paths/pixel (denoised)




——

e —

e AR
AR e
L ﬁ.ﬁ E Q

o «

a4
o

- -
-

—

= e




——— iy

Xel (denoised)
b
-

1]

paths/)

~
0

25







4096 paths/pixel (denoised)
.




w

.
ga
8

oA
T i

(8 [

i
P

s

A

(TR




Summary

m Until very recently, it was too expensive to perform ray tracing in real-time graphics
systems

m Many rasterization-based methods for approximating ray traced effects (shadows,
reflections, etc).

m Inthe last five years, there’s been a major shift toward using more ray tracing in real-time
graphics systems

- Brute force: new ray tracing hardware supported by graphics APIs (D3D12/Vulkan)
- Algorithmic innovation: smarter ways to importance sample paths

- Introduction of ML: use ML to convert noisy low sample count images to images that
“look like” images that were ray traced at high sample counts

m Gradual introduction of ray tracing into shipping games

Stanford (5248A, Winter 2023



[Reshetov 09]

Morphological anti-aliasing (MLAA)

Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

8 8 .
7k i 7 |
GF- i 6
5 S
4 4
3 3
2 2
1
a b ¢ d e f g h g h
Z-shapes: —T o L—‘ ,—J Z and U shape decomposition into L-shapes:
Ushapes: LI M ] [ . r
L-shapes: —l_ | [ S B

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing. Stanford (52481, Winter 2023



[Reshetov 09]

Morphological anti-aliasing (MLAA)

Aliased image Zoomed views After filtering using MLAA
(one shading sample per pixel)  (top: aliased, bottom: after MLAA)

Stanford (5248A, Winter 2023



Modern trend: learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

R

,
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« 1 % :
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https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/ Stanford CS248A, Winter 2023



Learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Traditional Heuristic (TXAA) Learned AA (DLSS)

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/ Stanford (S248A, Winter 2023




Summary: deferred shading

m Verypopular technique in modern games
m Creative use of graphics pipeline

- (Create a G-buffer, not a final image
m Two major motivations

- Convenience and simplicity of separating geometry processing logic/costs from shading costs
- Potential for high performance under complex lighting and shading conditions
- Shade only once per sample despite triangle overlap
- Often more amenable to “screen-space shading techniques”
- e.g., screen space ambient occlusion

Stanford (5248A, Winter 2023



