Lecture 16:

Image and Video Compression + Image Processing Basics

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2024
Recurring themes in the course

- Choosing the right representation for a task
 - e.g., choosing the right basis

- Exploiting human perception for computational efficiency
 - Errors/approximations in algorithms can be tolerable if humans do not notice

- Convolution as a useful operator
 - To remove high frequency content from images
 - What else can we do with convolution?
Image Compression
A recent sunset in Half Moon Bay

Picture taken on my iPhone (12 MPixel sensor)

4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image

JPG compressed image = 2.9 MB
Review from last class: color spaces
- Given a set of primary lights, each with its own spectral distribution (e.g., R, G, B display pixels):

\[s_R(\lambda), \ s_G(\lambda), \ s_B(\lambda) \]

- We can adjust the brightness of these lights and add them together to produce a linear subspace of spectral distribution:

\[R \ s_R(\lambda) + G \ s_G(\lambda) + B \ s_B(\lambda) \]

- The color is now described by the scalar values:

\[R, \ G, \ B \]
Color spaces

- Need three numbers to specify a color
 - But what three numbers?
 - A color space is an answer to this question

- Common example: color space defined by a display
 - Define colors by what R, G, B scalar values will produce them on your monitor
 - Output spectra $s = rR + gG + bB$ for some display primary spectra r, g, b
 - This a device dependent representation of color: if I choose R,G,B by looking at my display and send those values to you, you may not see the same color on your display (which might have different primaries, etc.)
Standard color spaces

- Standardized RGB (sRGB)
 - Makes a particular monitor’s primaries the RGB standard
 - Other color devices simulate that monitor by calibration
 - sRGB is usable as an interchange color space; widely adopted today
Another color space: CIE XYZ color space

- Converting from color coordinates in one space to another:
 - Consider display with 3 primaries (primaries need not be monochromatic light)
 - Compute XYZ coords of light emitted by display when providing display (1,0,0), (0,1,0), (0,0,1)
 - Light generated by display is linear combination of these vectors (non-negative weights)

\[
\begin{align*}
\text{color of R primary ([1,0,0] on display)} &= R_x X + R_y Y + R_z Z \\
\text{color of G primary ([0,1,0] on display)} &= G_x X + G_y Y + G_z Z \\
\text{color of B primary ([0,1,0] on display)} &= B_x X + B_y Y + B_z Z
\end{align*}
\]

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
R_x & G_x & B_x \\
R_y & G_y & B_y \\
R_z & G_z & B_z
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

- Example: Converting from CIE RGB to CIE XYZ:

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix}
0.49 & 0.31 & 0.20 \\
0.17687 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
HSV (hue-saturation-value) color space

Axes of space correspond to natural notions of “characteristics” of color
Perceptual dimensions of color

- **Hue**
 - the “kind” of color, regardless of attributes
 - colorimetric correlate: dominant wavelength
 - artist’s correlate: the chosen pigment color

- **Saturation**
 - the “colorfulness”
 - colorimetric correlate: purity
 - artist’s correlate: fraction of paint from the colored tube

- **Lightness (or value)**
 - the overall amount of light
 - colorimetric correlate: luminance
 - artist’s correlate: tints are lighter, shades are darker
Munsell book of color

Swatch identified by three numbers: hue, value (lightness), and chroma (color purity)
Review from last time: detectors

Sensor’s response is proportional to amount of light arriving at sensor

$$R = \int \Phi(\lambda)r(\lambda) d\lambda$$

Figure credit: Steve Marschner
Encoding numbers

- More bits → can represent more unique numbers
- 8 bits → 256 unique numbers (0-255)

[Credit: lambert and waters]
Luminance (brightness)

Product of radiance and the eye’s luminous efficiency

\[Y = \int \Phi(\lambda) V(\lambda) \, d\lambda \]

- Luminous efficiency is measure of how bright light at a given wavelength is perceived by a human (due to the eye’s response to light at that wavelength)

- How to measure the eye’s response curve \(V(\lambda) \)?
 - Adjust power of monochromatic light source of wavelength \(\lambda \) until it matches the brightness of reference 555 nm source (photopic case)
 - Notice: the sensitivity of photopic eye is maximized at ~ 555 nm
Lightness (perceived brightness) aka luma

Lightness (L^*) \(\propto \) Luminance (Y) = \(\int \) Spectral sensitivity of eye (eye's response curve) \(\ast \) Radiance (energy spectrum from scene)

Dark adapted eye: \(L^* \propto Y^{0.4} \)

Bright adapted eye: \(L^* \propto Y^{0.5} \)

In a dark room, you turn on a light with luminance: \(Y_1 \)

You turn on a second light that is identical to the first. Total output is now: \(Y_2 = 2Y_1 \)

Total output appears \(2^{0.4} = 1.319 \) times brighter to dark-adapted human

Note: Lightness (L^*) is often referred to as luma (Y')
Idea 1:

- What is the most efficient way to encode intensity values as a byte?

- Idea: encode based on how the brain perceives brightness (lightness), not based on the response of the eye.
Consider an image with pixel values encoding luminance (linear in energy hitting sensor)

In this visualization: Pixel can represent 8 unique luminance values (3-bits/pixel)

Here: lines indicate luminance associated with each unique pixel value

Note that “spacing” of pixel values is linear in luminance (pixel value encode equally spaced sensor responses)

\[L^* = Y^{0.45} \]
Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values).

Insufficient precision to represent brightness in darker regions of image.

Luminance (Y)

Perceived brightness: L^*

Rule of thumb: human eye cannot differentiate <1% differences in luminance.
Store lightness, not luminance

Idea: distribute representable pixel values evenly with respect to lightness (perceived brightness), not evenly in luminance *(make more efficient use of available bits)*

Solution: pixel stores $Y^{0.45}$
Must compute $(\text{pixel_value})^{2.2}$ prior to display on LCD

Warning: must take caution with subsequent pixel processing operations once pixels are encoded in a space that is not linear in luminance.

e.g., When adding images should you add pixel values that are encoded as lightness or as luminance?
Equal steps (in luminance)
Idea 2:

- Chrominance ("chroma") subsampling

- The human visual system is less sensitive to detail in chromaticity than in luminance
 - So it is sufficient to sample chroma more sparsely in space
Y’CbCr color space

Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Conversion from R’G’B’ to Y’CbCr:

\[
Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256}
\]

\[
C_B = 128 + \frac{-37.945 \cdot R'_D}{256} - \frac{71.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256}
\]

\[
C_R = 128 + \frac{112.439 \cdot R'_D}{256} - \frac{94.154 \cdot G'_D}{256} - \frac{18.285 \cdot B'_D}{256}
\]
Example: compression in Y’CbCr

Original picture of Kayvon
Example: compression in Y’CbCr

Contents of CbCr color channels downsamples by a factor of 20 in each dimension (400x reduction in number of samples)
Example: compression in Y’CbCr

Full resolution sampling of luma (Y')
Example: compression in Y’CbCr

Reconstructed result
(looks pretty good)
Chroma subsampling

Y’CbCr is an efficient representation for storage (and transmission) because Y’ can be stored at higher resolution than CbCr without significant loss in perceived visual quality.

<table>
<thead>
<tr>
<th>Y’00</th>
<th>Y’10</th>
<th>Y’20</th>
<th>Y’30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb00</td>
<td>Cb10</td>
<td>Cb20</td>
<td>Cb30</td>
</tr>
<tr>
<td>Cr00</td>
<td>Cr10</td>
<td>Cr20</td>
<td>Cr30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y’01</th>
<th>Y’11</th>
<th>Y’21</th>
<th>Y’31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb01</td>
<td>Cb11</td>
<td>Cb21</td>
<td>Cb31</td>
</tr>
<tr>
<td>Cr01</td>
<td>Cr11</td>
<td>Cr21</td>
<td>Cr31</td>
</tr>
</tbody>
</table>

4:2:2 representation:

- Store Y’ at full resolution
- Store Cb, Cr at full vertical resolution, but only half horizontal resolution

X:Y:Z notation:
- X = width of block
- Y = number of chroma samples in first row
- Z = number of chroma samples in second row

4:2:0 representation:

- Store Y’ at full resolution
- Store Cb, Cr at half resolution in both dimensions

Real-world 4:2:0 examples:
- most JPG images and H.264 video
Idea 3:

- Low frequency content is predominant in the real world
- The human visual system is less sensitive to high frequency sources of error in images
- So a good compression scheme needs to accurately represent lower frequencies, but it can be acceptable to sacrifice accuracy in representing higher frequencies
Recall: frequency content of images

Spatial domain result

Spectrum of image
Recall: frequency content of images

Spatial domain result

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
Recall: frequency content of images

Spatial domain result (strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold have 0 magnitude
A recent sunset in Half Moon Bay
A recent sunset in Half Moon Bay
A recent sunset in Half Moon Bay (with more noise added)
A recent sunset in Half Moon Bay

Original image

Noise added
(increases high frequency content)

More noise added
What is a good representation for manipulating frequency content of images?

Hint:
Image transform coding using the discrete cosine transform (DCT)

8x8 pixel block (64 coefficients of signal in "pixel basis")

64 basis coefficients

64 cosine basis vectors (each vector is 8x8 image)

\[
basis[i,j] = \cos \left(\frac{i}{N} \left(x + \frac{1}{2} \right) \right) \times \cos \left(\frac{j}{N} \left(y + \frac{1}{2} \right) \right)
\]

In practice: DCT is applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)
Examples of other bases

This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

- **Pixel Basis**
 - (Compact: each coefficient in representation only affects a single pixel of output)

- **DCT**

- **Walsh-Hadamard**

- **Haar Wavelet**

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

[Stanford CS248A, Winter 2024]
Quantization produces small values for coefficients (only few bits needed per coefficient)
Quantization zeros out many coefficients

Result of DCT
(translation of image in cosine basis)

\[
\begin{bmatrix}
-415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\
4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\
-47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\
-49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\
12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\
-8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\
-1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\
0 & 0 & -1 & -4 & -1 & 0 & 1 & 2
\end{bmatrix}
\]

Quantization Matrix

\[
\begin{bmatrix}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\
14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\
14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
72 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{bmatrix}
\]

Changing JPEG quality setting in your favorite photo app modifies this matrix ("lower quality" = higher values for elements in quantization matrix)

Quantization produces small values for coefficients (only few bits needed per coefficient)
Quantization zeros out many coefficients

[Credit: Wikipedia, Pat Hanrahan]
JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near high gradients

Low-frequency regions of image represented accurately even under high compression
JPEG compression artifacts

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?
Images with high frequency content do not exhibit as high of compression ratios. Why?

Original image: 2.9MB JPG

Medium noise: 22.6 MB JPG

High noise: 28.9 MB JPG

Photoshop JPG compression level = 10 used for all compressed images

Uncompressed image: 4032 x 3024 x 24 bytes/pixel = 36.6 MB
Lossless compression of quantized DCT values

Quantized DCT Values

Entropy encoding: (lossless)
Reorder values
Run-length encode (RLE) 0’s
Huffman encode non-zero values

JPEG compression summary

Quantization loses information (lossy compression!)

Coefficient reordering

Lossless compression!

RLE compression of zeros

Entropy compression of non-zeros

Compressed bits

Credit: Pat Hanrahan
JPEG compression summary

Convert image to Y’CbCr
Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y’, Cb, Cr):
 For each 8x8 block of values
 Compute DCT
 Quantize results (information loss occurs here)
 Reorder values
 Run-length encode 0-spans
 Huffman encode non-zero values
Key idea: exploit characteristics of human perception to build efficient image storage and image processing systems

- Separation of luminance from chrominance in color representation (Y’CrCb) allows reduced resolution in chrominance channels (4:2:0)

- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)

- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
 - Human brain is more tolerant of errors in high frequency image components than in low frequency ones
 - Images of the real world are dominated by low-frequency components
Video compression: example

30 second video: 1920 x 1080, @ 30fps

Uncompressed: 8-bits per channel RGB → 24 bits/pixel → 6.2MB/frame
(6.2 MB * 30 sec * 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: 531MB
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Go Swallows!
Video compression adds two main ideas

- Exploiting redundancy:
 - Intra-frame redundancy: value of pixels in neighboring regions of a frame are good predictor of values for other pixels in the frame (spatial redundancy)
 - Inter-frame redundancy: pixels from nearby frames in time are a good predictor for the current frame’s pixels (temporal redundancy)
Motion vector visualization

Image credit: Keyi Zhang
In video compression schemes, the residual image is compressed using lossy compression techniques like those described in the earlier part of this lecture. Better predictions lead to smaller and more compressible residuals!
Video compression overview

Source Video → Predict Pixels → Compute Residual → Compress Residual (Lossy) → Compress Residual + params (Lossless) → Compressed Video Stream

Prediction parameters

Compressed residual
Image processing basics
Example image processing operations

Increase contrast
Increasing contrast with “S curve”

Per-pixel operation:
output(x,y) = f(input(x,y))
Example image processing operations

Image Invert:
\[
\text{out}(x,y) = 1 - \text{in}(x,y)
\]
Example image processing operations

Blur
Example image processing operations

Sharpen
Edge detection
A “smarter” blur (doesn’t blur over edges)
Review: convolution

\[
(f \ast g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)\,dy
\]

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

\[
f(x) = \begin{cases}
1 & |x| \leq 0.5 \\
0 & \text{otherwise}
\end{cases}
\]

\[
(f \ast g)(x) = \int_{-0.5}^{0.5} g(x - y)\,dy
\]

\[f \ast g\] is a “blurred” version of \(g\) where the output at \(x\) is the average value of the input between \(x-0.5\) to \(x+0.5\)
Discrete 2D convolution

\[(f \ast g)(x, y) = \sum_{i,j=-\infty}^{\infty} f(i, j)I(x - i, y - j)\]

Consider \(f(i, j)\) that is nonzero only when: \(-1 \leq i, j \leq 1\)

Then:

\[(f \ast I)(x, y) = \sum_{i,j=-1}^{1} f(i, j)I(x - i, y - j)\]

And we can represent \(f(i, j)\) as a 3x3 matrix of values where:

\[f(i, j) = F_{i,j}\]

(often called: “filter weights”, “filter kernel”)
Simple 3x3 box blur

```c
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
                  1./9, 1./9, 1./9,
                  1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH + i] = tmp;
    }
}
```

For now: ignore boundary pixels and assume output image is smaller than input (makes convolution loop bounds much simpler to write)
7x7 box blur

Original

Blurred
Gaussian blur

- Obtain filter coefficients by sampling 2D Gaussian function

 \[f(i, j) = \frac{1}{2\pi \sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}} \]

- Produces weighted sum of neighboring pixels (contribution falls off with distance)

 - In practice: truncate filter beyond certain distance for efficiency

 \[
 \begin{bmatrix}
 .075 & .124 & .075 \\
 .124 & .204 & .124 \\
 .075 & .124 & .075
 \end{bmatrix}
 \]
7x7 gaussian blur

Original

Blurred
What does convolution with this filter do?

\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0 \\
\end{bmatrix}
\]

Sharpens image!
3x3 sharpen filter

Original

Sharpened
Recall: blurring is removing high frequency content.

Spatial domain result

Spectrum
Recall: blurring is removing high frequency content

Spatial domain result

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
Sharpening is adding high frequencies

- Let I be the original image
- High frequencies in image $I = I - \text{blur}(I)$
- Sharpened image $= I + (I - \text{blur}(I))$

"Add high frequency content"
I - blur(I)
I + (I - blur(I))
What does convolution with these filters do?

\begin{align*}
\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix} & \quad \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix}
\end{align*}

Extracts horizontal gradients

Extracts vertical gradients
Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a “detector” of a pattern, and the magnitude of a pixel in the output image as the “response” of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision).
Sobel edge detection

Compute gradient response images

\[
\begin{align*}
G_x &= \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix} \ast I \\
G_y &= \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix} \ast I
\end{align*}
\]

Find pixels with large gradients

\[
G = \sqrt{G_x^2 + G_y^2}
\]

Pixel-wise operation on images
Cost of convolution with \(N \times N\) filter?

float input[(WIDTH+2) \times (HEIGHT+2)];
float output[WIDTH \times HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] \times weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 \times WIDTH \times HEIGHT

For \(N \times N\) filter: \(N^2 \times WIDTH \times HEIGHT\)
Separable filter

- A filter is separable if it can be written as the outer product of two other filters. Example: a 2D box blur

\[
\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ast \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as a product of 1D filters (they are separable!)

- Key property: 2D convolution with separable filter can be written as two 1D convolutions!
Implementation of 2D box blur via two 1D convolutions

```c
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int ii=0; ii<3; ii++)
            tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
        tmp_buf[j*WIDTH + i] = tmp;
    }

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
        output[j*WIDTH + i] = tmp;
    }
}
```

Total work per image for NxN filter:
2N x WIDTH x HEIGHT
Summary

- Last two lectures: representing images
 - Choice of color space (different representations of color)
 - Store values in perceptual space (non-linear in energy)
 - JPEG image compression (tolerate loss due to approximate representation of high frequency components)

- Basic image processing operations
 - Per-pixel operations $\text{out}(x,y) = f(\text{in}(x,y))$ (e.g., contrast enhancement)
 - Image filtering via convolution (e.g., blur, sharpen, simple edge-detection)
 - Non-linear, data-dependent filters (avoid blurring over strong edges, etc.)