
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2024

Lecture 8:

Geometric Queries

Stanford CS248A, Winter 2024

Last time
How to perform a number of basic mesh processing operations

- Subdivision (upsampling)

- Mesh simpli!cation (downsampling)

- Mesh resampling

Stanford CS248A, Winter 2024

Geometric queries — motivation

Intersecting triangles (collisions)

Intersecting rays and triangles (ray tracing)

Closest point on surface queries

Stanford CS248A, Winter 2024

Closest point queries
Given a point, in space (e.g., a new sample point), how do we !nd the closest point on a
given surface?

- Q: Does implicit/explicit representation make this easier?
- Q: Does our half-edge data structure help?
- Q: What’s the cost of the naïve algorithm?
- Q: How do we !nd the distance to a single triangle anyway? p

???

Stanford CS248A, Winter 2024

Many types of geometric queries
Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- ...

Data structures we’ve seen so far not really designed for this...
Need some new ideas!
TODAY: come up with simple (aka: slow) algorithms
NEXT TIME: intelligent ways to accelerate geometric queries

Stanford CS248A, Winter 2024

Warm up: closest point on point
Given a query point (px,py), how do we !nd the closest point on the point (ax,ay)?

(px, py)

(ax, ay)

Bonus question: what’s the distance?

Stanford CS248A, Winter 2024

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
- Remember: a line is all points x such that NTx=c

How do I !nd the point on the line closest to my query point p?

p
N

x0

Stanford CS248A, Winter 2024

Review: matrix form of a line (and a plane)
Line is de!ned by:

- Its normal: N
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

x� x0

<latexit sha1_base64="KsQRu2ETP2bQ0WQYJ5LJO+xLUns=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSWRii6LblxWsA9oQ5hMJ+3QyYOZiVhCcOOvuHGhiFu/wp1/46QNoq0HBs6ccy/33uPFnEllWV/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtd5X77jgrJovBWjWPqBHgQMp8RrLTkmvu9AKuh56f3GTpBPx/XylyzYlWtCdA8sQtSgQIN1/zs9SOSBDRUhGMpu7YVKyfFQjHCaVbuJZLGmIzwgHY1DXFApZNOTsjQkVb6yI+EfqFCE/V3R4oDKceBpyvzHeWsl4v/ed1E+RdOysI4UTQk00F+wpGKUJ4H6jNBieJjTTARTO+KyBALTJROraxDsGdPniet06pdq57d1Cr1yyKOEhzAIRyDDedQh2toQBMIPMATvMCr8Wg8G2/G+7R0wSh69uAPjI9v8FOXJQ==</latexit>

N · (x� x0) = 0

NT(x� x0) = 0

NTx = NTx0

NTx = c

<latexit sha1_base64="lPYkwo1mDgQ7CDH0Ce6GnsvO7LQ=">AAACunicnVFJSwMxFM6MW61b1aOXYFHqwTIjSj0oFL14kgptFTrTkkkzNTSzkLwRyzA/Um/+G9PFWlsP4oPAl29JXl68WHAFlvVhmEvLK6trufX8xubW9k5hd6+pokRS1qCRiOSTRxQTPGQN4CDYUywZCTzBHr3+7VB/fGFS8SiswyBmbkB6Ifc5JaCpTuHNCQg8e356n2GHdiPApS/mNcOneLrpWNkJPr7GFnac/HeoPYIySOvZv4MzOe2bWtozij7kj3HaKRStsjUqvAjsCSiiSdU6hXenG9EkYCFQQZRq2VYMbkokcCpYlncSxWJC+6THWhqGJGDKTUejz/CRZrrYj6ReIeARO5tISaDUIPC0c9immteG5G9aKwH/0k15GCfAQjq+yE8EhggP/xF3uWQUxEADQiXXvWL6TCShoH87r4dgzz95ETTPyvZ5+eLhvFi9mYwjhw7QISohG1VQFd2hGmogalQM1/CNnnlleiY3+2OraUwy++hHmfAJjbbXvw==</latexit>

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 on this slide are 2-vectors)

(N, x, x0 are 3-vectors)

Stanford CS248A, Winter 2024

Closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
- Remember: a line is all points x such that NTx=c

How do I !nd the point on line that is closest to my query point p?

p
NTx = cN

Many ways to do it: NT (p+ tN) = c

x0

Stanford CS248A, Winter 2024

p
p

p

p

p

p

p p p

Harder: closest point on line segment
Two cases: endpoint or interior

Already have basic components:
- point-to-point
- point-to-line

Algorithm?
- !nd closest point on line
- check if it is between endpoints
- if not, take closest endpoint

How do we know if it’s between endpoints?
- write closest point on line as a+t(b-a)
- if t is between 0 and 1, it’s inside the segment!

a

b

Stanford CS248A, Winter 2024

Even harder: closest point on triangle in 2D
What are all the possibilities for the closest point?

Q: What about a point inside the triangle?

Almost just minimum distance to three line segments:

Stanford CS248A, Winter 2024

Closest point on triangle in 3D
Not so di"erent from 2D case
Algorithm:
- Project point onto plane of triangle
- Use three half-plane tests to classify point (vs. half plane)
- If inside the triangle, we’re done!
- Otherwise, !nd closest point on associated vertex or edge

By the way, how do we !nd closest point on plane?
Same expression as closest point on a line! p + (c - NTp) N

Stanford CS248A, Winter 2024

p

Closest point on triangle mesh in 3D?
Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
Q: What’s the cost?
What if we have billions of faces?
NEXT TIME: Better data structures!

Stanford CS248A, Winter 2024

Closest point to implicit surface?
If we change our representation of geometry, algorithms can change completely
E.g., how might we compute the closest point on an implicit surface described via its distance
function?

One idea:
- start at the query point
- compute gradient of distance (using, e.g., !nite

di"erences)
- take a little step (decrease distance)
- repeat until we’re at the surface (zero distance)

Stanford CS248A, Winter 2024

Di"erent query: ray-mesh intersection
A “ray” is an oriented line starting at a point
Think about a ray of light traveling from the sun
Want to know where a ray pierces a surface
- Notice: this is a di"erent query than !nding the closest point on surface from ray’s origin.

Applications?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection

Ray might pierce surface in many places!

Stanford CS248A, Winter 2024

Ray equation
Can express ray as…

Position along ray
(some students think “time”)

point along ray

origin unit direction

Stanford CS248A, Winter 2024

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0
Q: How do we !nd points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o + td
Idea: replace “x” with “r(t)” in 1st equation, and solve for t
Example: unit sphere quadratic formula:

Why two solutions?
o

d
|d|2 = 1Note: since d is a unit vector

Stanford CS248A, Winter 2024

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - o"set
How do we !nd intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:

Stanford CS248A, Winter 2024

Ray-triangle intersection
Triangle is in a plane...
Algorithm:
- Compute ray-plane intersection
- Q: What do we do now?

Stanford CS248A, Winter 2024

Barycentric coordinates (as ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS248A, Winter 2024

Ray-triangle intersection
Algorithm:
- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in triangle

Many di"erent techniques if you care about e#ciency

Stanford CS248A, Winter 2024

Ray-triangle intersection (another way)
▪ Parameterize triangle with vertices using

barycentric coordinates *
p0,p1,p2

▪ Can think of a triangle as an a#ne map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2

* I’m writing u,v instead of beta, gamma to make explicit representation of triangle very clear.

Stanford CS248A, Winter 2024

Another way: ray-triangle intersection
p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0) transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane.
It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t:
⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0

Stanford CS248A, Winter 2024

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?
ANIMATION: How do we know if a collision occurred?

Stanford CS248A, Winter 2024

Warm up: point-point intersection
Q: How do we know if p intersects a?
A: ...check if they’re the same point!

(px, py)

(a1, a2)

Stanford CS248A, Winter 2024

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?
A: ...plug it into the line equation!

p
NTx = c

Stanford CS248A, Winter 2024

Line-line intersection
Two lines: ax=b and cx=d
Q: How do we !nd the intersection?
A: See if there is a simultaneous solution
Leads to linear system:

Stanford CS248A, Winter 2024

Degenerate line-line intersection?
What if lines are almost parallel?
Small change in normal can lead to big change in intersection!
Instability very common, very important with geometric predicates. Demands special
care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”

Stanford CS248A, Winter 2024

Triangle-triangle intersection?
Lots of ways to do it
Basic idea:
- Q: Any ideas?
- One way: reduce to edge-triangle intersection
- Check if each line passes through plane (ray-triangle)
- Then do interval test
What if triangle is moving?
- Important case for animation
- Can think of triangles as prisms in time
- Turns dynamic problem (in nD + time) into purely geometric problem in (n+1)-

dimensions

Stanford CS248A, Winter 2024

Ray-scene intersection
Given a scene de!ned by a set of N primitives and a ray r, !nd the closest point of intersection
of r with the scene

t_closest = inf

for each primitive p in scene:

 t = p.intersect(r)

 if t >= 0 && t < t_closest:

 t_closest = t

// closest hit is:

// r.o + t_closest * r.d

O(N)Complexity?
Can we do better? Of course… but you’ll
have to wait until next class

(Assume p.intersect(r) returns value of t corresponding to the
point of intersection with ray r)

Stanford CS248A, Winter 2024

Rendering via ray casting:
(one common use of ray-scene intersection tests)

Stanford CS248A, Winter 2024

Rasterization and ray casting are two algorithms for
solving the same problem:

determining surface “visibility” from a virtual camera

Stanford CS248A, Winter 2024

Recall triangle visibility problem:

Question 1: what samples does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

Stanford CS248A, Winter 2024

The visibility problem (rasterization perspective)
What scene geometry is visible at each screen sample?
- What scene geometry projects onto screen sample points? (coverage)

- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

Stanford CS248A, Winter 2024

Basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth bu"er

“Given a triangle, !nd the samples it covers”
(!nding the samples is relatively easy since they are distributed uniformly on screen)

More e#cient hierarchical rasterization:
For each TILE of image
 If triangle overlaps tile, check all samples in tile

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples

initialize color[] // store scene color for all samples

for each triangle t in scene: // loop 1: over triangles

 t_proj = project_triangle(t)

 for each 2D sample s in frame buffer: // loop 2: over visibility samples

 if (t_proj covers s)

 compute color of triangle at sample

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

Stanford CS248A, Winter 2024

The visibility problem (described di"erently)
In terms of casting rays from the camera:
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through

the opening of a pinhole camera? (coverage)

- What primitive is the !rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS248A, Winter 2024

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

initialize color[] // store scene color for all samples

for each sample s in frame buffer: // loop 1: over visibility samples (rays)

 r = ray from s on sensor through pinhole aperture

 r.min_t = INFINITY // only store closest-so-far for current ray

 r.tri = NULL;

 for each triangle tri in scene: // loop 2: over triangles

 if (intersects(r, tri)) { // 3D ray-triangle intersection test

 if (intersection distance along ray is closer than r.min_t)

 update r.min_t and r.tri = tri;

 }

 color[s] = compute surface color of triangle r.tri at hit point

Stanford CS248A, Winter 2024

Basic rasterization vs. ray casting
Rasterization:
- Outer loop: iterate over all triangles (“for all triangles”)

- Store entire depth bu"er (requires access to 2D array of !xed size)

- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

Ray casting:
- Outer loop: iterative over all screen samples (for all rays)

- Do not have to store closest depth so far for the entire screen (just the current ray)

- Easy solution for rendering transparent surfaces: Process surfaces in the order they are encountered
along the ray: front-to-back (!nd !rst “hit”, then “second”, etc)

- Must store entire scene geometry in a manner that allows fast access

Stanford CS248A, Winter 2024

In other words…
Rasterization is a e#cient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

(Note: not uniform distribution in angle… angle between rays is smaller away from view direction)

Stanford CS248A, Winter 2024

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re$ection is visible on a surface?

Generality of ray-scene queries

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating
from the same point (most often: the camera)

Virtual
Sensor

Stanford CS248A, Winter 2024

Shadows

Image credit: Grand Theft Auto V

Stanford CS248A, Winter 2024

How to compute if a surface point is in shadow?

x

P

L1

L2
Assume you have an algorithm for
ray-scene intersection…

Stanford CS248A, Winter 2024

A simple shadow computation algorithm
Trace ray from point P to location Li of light source

If ray hits scene object before reaching light
source… then P is in shadow

x

P

L1

L2

Stanford CS248A, Winter 2024

Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen

Stanford CS248A, Winter 2024

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS248A, Winter 2024

Direct illumination

p

Stanford CS248A, Winter 2024

Sixteen-bounce global illumination

p

Stanford CS248A, Winter 2024

Next time: spatial acceleration data structures
Testing every primitive in scene to !nd ray-scene intersection is slow!
Consider accelerating a linear scan through an array with binary search
- We can apply a similar type of thinking to accelerating geometric queries

Stanford CS248A, Winter 2024

Acknowledgements
Thanks to Keenan Crane for presentation resources

