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Lecture 8:

Geometric Queries
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Last time
How to perform a number of basic mesh processing operations 

- Subdivision (upsampling) 

- Mesh simpli!cation (downsampling) 

- Mesh resampling
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Geometric queries — motivation

Intersecting triangles (collisions)

Intersecting rays and triangles (ray tracing)

Closest point on surface queries
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Closest point queries
Given a point, in space (e.g., a new sample point), how do we !nd the closest point on a 
given surface? 

- Q: Does implicit/explicit representation make this easier? 
- Q: Does our half-edge data structure help? 
- Q: What’s the cost of the naïve algorithm? 
- Q: How do we !nd the distance to a single triangle anyway? p

???
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Many types of geometric queries
Plenty of other things we might like to know: 
- Do two triangles intersect? 
- Are we inside or outside an object? 
- Does one object contain another? 
- ... 

Data structures we’ve seen so far not really designed for this... 
Need some new ideas! 
TODAY: come up with simple (aka: slow) algorithms 
NEXT TIME: intelligent ways to accelerate geometric queries
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Warm up: closest point on point
Given a query point (px,py), how do we !nd the closest point on the point (ax,ay)?

(px, py)

(ax, ay)

Bonus question: what’s the distance?
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Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal 
- Remember: a line is all points x such that NTx=c 

How do I !nd the point on the line closest to my query point p?

p
N

x0



Stanford CS248A, Winter 2024

Review: matrix form of a line (and a plane)
Line is de!ned by: 

- Its normal: N 
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x, 
where x - x0 is orthogonal to N.

x� x0

<latexit sha1_base64="KsQRu2ETP2bQ0WQYJ5LJO+xLUns=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSWRii6LblxWsA9oQ5hMJ+3QyYOZiVhCcOOvuHGhiFu/wp1/46QNoq0HBs6ccy/33uPFnEllWV/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtd5X77jgrJovBWjWPqBHgQMp8RrLTkmvu9AKuh56f3GTpBPx/XylyzYlWtCdA8sQtSgQIN1/zs9SOSBDRUhGMpu7YVKyfFQjHCaVbuJZLGmIzwgHY1DXFApZNOTsjQkVb6yI+EfqFCE/V3R4oDKceBpyvzHeWsl4v/ed1E+RdOysI4UTQk00F+wpGKUJ4H6jNBieJjTTARTO+KyBALTJROraxDsGdPniet06pdq57d1Cr1yyKOEhzAIRyDDedQh2toQBMIPMATvMCr8Wg8G2/G+7R0wSh69uAPjI9v8FOXJQ==</latexit>

N · (x� x0) = 0

NT(x� x0) = 0

NTx = NTx0

NTx = c

<latexit sha1_base64="lPYkwo1mDgQ7CDH0Ce6GnsvO7LQ="></latexit>

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.) 

(N, x, x0 on this slide are 2-vectors)

(N, x, x0 are 3-vectors)
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Closest point on line
Now suppose I have a line NTx = c, where N is the unit normal 
- Remember: a line is all points x such that NTx=c 

How do I !nd the point on line that is closest to my query point p?

p
NTx = cN

Many ways to do it: NT (p+ tN) = c

x0
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p
p

p

p

p

p

p p p

Harder: closest point on line segment
Two cases: endpoint or interior 

Already have basic components: 
- point-to-point 
- point-to-line 

Algorithm? 
- !nd closest point on line 
- check if it is between endpoints 
- if not, take closest endpoint 

How do we know if it’s between endpoints? 
- write closest point on line as a+t(b-a) 
- if t is between 0 and 1, it’s inside the segment!

a

b
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Even harder: closest point on triangle in 2D
What are all the possibilities for the closest point?

Q: What about a point inside the triangle?

Almost just minimum distance to three line segments:
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Closest point on triangle in 3D
Not so di"erent from 2D case 
Algorithm: 
- Project point onto plane of triangle 
- Use three half-plane tests to classify point (vs. half plane) 
- If inside the triangle, we’re done! 
- Otherwise, !nd closest point on associated vertex or edge 

By the way, how do we !nd closest point on plane? 
Same expression as closest point on a line!    p + ( c - NTp ) N
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p

Closest point on triangle mesh in 3D?
Conceptually easy: 
- loop over all triangles 
- compute closest point to current triangle 
- keep globally closest point 
Q: What’s the cost? 
What if we have billions of faces? 
NEXT TIME: Better data structures!
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Closest point to implicit surface?
If we change our representation of geometry, algorithms can change completely 
E.g., how might we compute the closest point on an implicit surface described via its distance 
function?

One idea: 
- start at the query point 
- compute gradient of distance (using, e.g., !nite 

di"erences) 
- take a little step (decrease distance) 
- repeat until we’re at the surface (zero distance)
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Di"erent query: ray-mesh intersection
A “ray” is an oriented line starting at a point 
Think about a ray of light traveling from the sun 
Want to know where a ray pierces a surface 
- Notice: this is a di"erent query than !nding the closest point on surface from ray’s origin. 

Applications? 
- GEOMETRY: inside-outside test 
- RENDERING: visibility, ray tracing 
- ANIMATION: collision detection 

Ray might pierce surface in many places!
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Ray equation
Can express ray as…

Position along ray 
(some students think “time”)

point along ray

origin unit direction
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Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0 
Q: How do we !nd points where a ray pierces this surface? 
Well, we know all points along the ray: r(t) = o + td 
Idea: replace “x” with “r(t)” in 1st equation, and solve for t 
Example: unit sphere quadratic formula:

Why two solutions?
o

d
|d|2 = 1Note: since d is a unit vector
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Now solve for t: 

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c 
- N - unit normal 
- c - o"set 
How do we !nd intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:
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Ray-triangle intersection
Triangle is in a plane... 
Algorithm: 
- Compute ray-plane intersection 
- Q: What do we do now?
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Barycentric coordinates (as ratio of areas)
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Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed 

by points: a, b, x 
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Ray-triangle intersection
Algorithm: 
- Compute ray-plane intersection 
- Compute barycentric coordinates of hit point 
- If barycentric coordinates are all positive, point is in triangle 

Many di"erent techniques if you care about e#ciency
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Ray-triangle intersection (another way)
▪ Parameterize triangle with vertices                           using 

barycentric coordinates *  
p0,p1,p2

▪ Can think of a triangle as an a#ne map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2

* I’m writing u,v instead of beta, gamma to make explicit representation of triangle very clear. 
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Another way: ray-triangle intersection
p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0)                 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane.  
It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t:
⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0
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One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself? 
ANIMATION: How do we know if a collision occurred?
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Warm up: point-point intersection
Q: How do we know if p intersects a? 
A: ...check if they’re the same point!

(px, py)

(a1, a2)
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Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line? 
A: ...plug it into the line equation!

p
NTx = c



Stanford CS248A, Winter 2024

Line-line intersection
Two lines: ax=b and cx=d 
Q: How do we !nd the intersection? 
A: See if there is a simultaneous solution 
Leads to linear system:
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Degenerate line-line intersection?
What if lines are almost parallel? 
Small change in normal can lead to big change in intersection! 
Instability very common, very important with geometric predicates.  Demands special 
care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”
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Triangle-triangle intersection?
Lots of ways to do it 
Basic idea: 
- Q: Any ideas? 
- One way: reduce to edge-triangle intersection 
- Check if each line passes through plane (ray-triangle) 
- Then do interval test 
What if triangle is moving? 
- Important case for animation 
- Can think of triangles as prisms in time 
- Turns dynamic problem (in nD + time) into purely geometric problem in (n+1)-

dimensions 
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Ray-scene intersection
Given a scene de!ned by a set of N primitives and a ray r, !nd the closest point of intersection 
of r with the scene

t_closest = inf 

for each primitive p in scene: 

   t = p.intersect(r) 

   if t >= 0 && t < t_closest: 

      t_closest = t 

// closest hit is: 

// r.o + t_closest * r.d

O(N)Complexity?
Can we do better?  Of course… but you’ll 
have to wait until next class

(Assume p.intersect(r) returns value of t corresponding to the 
point of intersection with ray r)
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Rendering via ray casting: 
(one common use of ray-scene intersection tests)
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Rasterization and ray casting are two algorithms for 
solving the same problem: 

determining surface “visibility” from a virtual camera
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Recall triangle visibility problem:

Question 1: what samples does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to the 
camera in each sample? (“occlusion”)

Sample
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The visibility problem (rasterization perspective)
What scene geometry is visible at each screen sample? 
- What scene geometry projects onto screen sample points? (coverage) 

- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

x/z
-z axis

x-axis
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Basic rasterization algorithm
Sample = 2D point 
Coverage: 2D triangle/sample tests  (does projected triangle cover 2D sample point) 
Occlusion: depth bu"er

“Given a triangle, !nd the samples it covers” 
(!nding the samples is relatively easy since they are distributed uniformly on screen) 

More e#cient hierarchical rasterization: 
For each TILE of image 
    If triangle overlaps tile, check all samples in tile

initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  

initialize color[]                             // store scene color for all samples 

for each triangle t in scene:                  // loop 1: over triangles 

    t_proj = project_triangle(t) 

    for each 2D sample s in frame buffer:      // loop 2: over visibility samples 

        if (t_proj covers s)  

            compute color of triangle at sample 

            if (depth of t at s is closer than z_closest[s]) 

                update z_closest[s] and color[s]
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The visibility problem (described di"erently)
In terms of casting rays from the camera: 
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through 

the opening of a pinhole camera? (coverage) 

- What primitive is the !rst hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops! 
“Given a ray, !nd the closest triangle it hits.”

initialize color[]                                 // store scene color for all samples 

for each sample s in frame buffer:                 // loop 1: over visibility samples (rays) 

    r = ray from s on sensor through pinhole aperture 

    r.min_t = INFINITY                             // only store closest-so-far for current ray 

    r.tri = NULL; 

    for each triangle tri in scene:                  // loop 2: over triangles 

        if (intersects(r, tri)) {                    // 3D ray-triangle intersection test 

            if (intersection distance along ray is closer than r.min_t) 

                update r.min_t and r.tri = tri; 

        } 

    color[s] = compute surface color of triangle r.tri at hit point  
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Basic rasterization vs. ray casting
Rasterization: 
- Outer loop: iterate over all triangles (“for all triangles”) 

- Store entire depth bu"er (requires access to 2D array of !xed size) 

- Do not have to store entire scene geometry in memory 

- Naturally supports unbounded size scenes 

Ray casting: 
- Outer loop: iterative over all screen samples (for all rays) 

- Do not have to store closest depth so far for the entire screen (just the current ray) 

- Easy solution for rendering transparent surfaces: Process surfaces in the order they are encountered 
along the ray: front-to-back (!nd !rst “hit”, then “second”, etc) 

- Must store entire scene geometry in a manner that allows fast access
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In other words…
Rasterization is a e#cient implementation of ray casting where: 
- Ray-scene intersection is computed for a batch of rays 
- All rays in the batch originate from same origin 
- Rays are distributed uniformly in plane of projection 

(Note: not uniform distribution in angle… angle between rays is smaller away from view direction) 
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What object is visible to the camera? 
What light sources are visible from a point on a surface (is a surface in shadow?) 
What re$ection is visible on a surface?

Generality of ray-scene queries

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating 
from the same point (most often: the camera)

Virtual 
Sensor
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Shadows

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

x

P

L1

L2
Assume you have an algorithm for 
ray-scene intersection…
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A simple shadow computation algorithm
Trace ray from point P to location Li of light source 

If ray hits scene object before reaching light 
source… then P is in shadow

x

P

L1

L2
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Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen
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Global illumination solution

Image credit: Henrik Wann Jensen
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Direct illumination

p
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Sixteen-bounce global illumination

p
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Next time: spatial acceleration data structures
Testing every primitive in scene to !nd ray-scene intersection is slow! 
Consider accelerating a linear scan through an array with binary search 
- We can apply a similar type of thinking to accelerating geometric queries
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