Lecture 8: Geometric Queries

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2024

Last time

How to perform a number of basic mesh processing operations

- Subdivision (upsampling)

- Mesh simplification (downsampling)

- Mesh resampling

Geometric queries — motivation

Closest point queries Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?

- Q: Does implicit/explicit representation make this easier?
- Q: Does our half-edge data structure help?
- Q: What's the cost of the naïve algorithm?
- Q: How do we find the distance to a single triangle anyway?

Many types of geometric queries

- Plenty of other things we might like to know:
 - Do two triangles intersect?
 - Are we inside or outside an object?
 - Does one object contain another?

- Data structures we've seen so far not really designed for this...
- Need some new ideas!

•••

- TODAY: come up with simple (aka: slow) algorithms
- NEXT TIME: intelligent ways to accelerate geometric queries

algorithms e geometric queries

Warm up: closest point on point Given a query point (p_x,p_y), how do we find the closest point on the point (a_x,a_y)?

Bonus question: what's the distance?

Slightly harder: closest point on line

p

- Now suppose I have a line $N^T x = c$, where N is the unit normal
 - **Remember:** a line is all points x such that N^Tx=c
- How do I find the point on the line closest to my query point p?

Review: matrix form of a line (and a plane)

Line is defined by:

- Its normal: N
- A point x₀ on the line

(And a plane (in 3D) is all points x where x - x₀ is orthogonal to N.) $(N, x, x_0 \text{ are } 3\text{ -vectors})$

X

The line (in 2D) is all points x, where $x - x_0$ is orthogonal to N. (N, x, x₀ on this slide are 2-vectors)

Closest point on line

- Now suppose I have a line $N^T x = c$, where N is the unit normal
 - **Remember:** a line is all points x such that $N^T x = c$
- How do I find the point on line that is closest to my query point p?

Harder: closest point on line segment

- Two cases: endpoint or interior
- **Already have basic components:**
 - point-to-point
 - point-to-line
- **Algorithm?**
 - find closest point on line
 - check if it is between endpoints
 - if not, take closest endpoint
- How do we know if it's between endpoints?
 - write closest point on line as a+t(b-a)
 - if t is between 0 and 1, it's inside the segment!

Even harder: closest point on triangle in 2D What are all the possibilities for the closest point? **Almost just minimum distance to three line segments:**

Q: What about a point inside the triangle?

Closest point on triangle in 3D

- Not so different from 2D case
- **Algorithm:**
 - Project point onto plane of triangle
 - Use three half-plane tests to classify point (vs. half plane)
 - If inside the triangle, we're done!
 - Otherwise, find closest point on associated vertex or edge

By the way, how do we find closest point on plane? Same expression as closest point on a line! $p + (c - N^T p) N$

Closest point on triangle *mesh* in 3D?

- **Conceptually easy:**
 - loop over all triangles
 - compute closest point to current triangle
 - keep globally closest point
 - Q: What's the cost?
- What if we have *billions* of faces?
- **NEXT TIME: Better data structures!**

Closest point to implicit surface?

- If we change our representation of geometry, algorithms can change completely
- function?
- **One idea:**
 - start at the query point
 - compute gradient of distance (using, e.g., finite differences)
 - take a little step (decrease distance)
 - repeat until we're at the surface (zero distance)

E.g., how might we compute the closest point on an implicit surface described via its distance

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
 - Notice: this is a different query than finding the closest point on surface from ray's origin.
- **Applications?**
 - **GEOMETRY: inside-outside test**
 - **RENDERING:** visibility, ray tracing
 - **ANIMATION: collision detection**
- **Ray might pierce surface in many places!**

Ray equation

Can express ray as...

Position along ray

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that f(x) = 0
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: r(t) = o + td
- Idea: replace "x" with "r(t)" in 1st equation, and solve for t
- Example: unit sphere

$$f(\mathbf{x}) = |\mathbf{x}|^2 - 1$$

$$\Rightarrow f(\mathbf{r}(t)) = |\mathbf{o} + t\mathbf{d}|^2 - \frac{|\mathbf{d}|^2}{a}t^2 + 2(\mathbf{o} \cdot \mathbf{d})t + |\mathbf{o}|^2}{b}$$

Note: $|\mathbf{d}|^2 = 1$ since d is a unit vector

$$t = \boxed{-\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^2 - |\mathbf{o}|^2}}$$

Ray-plane intersection

- Suppose we have a plane $N^T x = c$
 - N unit normal
 - c offset
- How do we find intersection with ray r(t) = o + td?
- *Key idea:* again, replace the point x with the ray equation t: $\mathbf{N}^{\mathsf{T}}\mathbf{r}(t) = c$
- Now solve for t: $\mathbf{N}^{\mathsf{T}}(\mathbf{o} + t\mathbf{d}) = c$
- And plug t back into ray equation:

$$r(t) = \mathbf{o} + \frac{c - \mathbf{N}^{\mathsf{T}}\mathbf{c}}{\mathbf{N}^{\mathsf{T}}\mathbf{d}}$$

$$\Rightarrow t = \frac{c - \mathbf{N}^{\mathsf{T}} \mathbf{o}}{\mathbf{N}^{\mathsf{T}} \mathbf{d}}$$

Ray-triangle intersection

- Triangle is in a plane...
- Algorithm:
 - Compute ray-plane intersection
 - Q: What do we do now?

Barycentric coordinates (as ratio of areas)

Barycentric coords are *signed* areas:

 $\alpha = A_A / A$ $\beta = A_B / A$ $\gamma = A_C / A$

Why must coordinates sum to one? Why must coordinates be between 0 and 1?

Useful: Heron's formula:

b

$$A_C = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (\mathbf{x} - \mathbf{a})$$

Ray-triangle intersection

Algorithm:

- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in triangle

Many different techniques if you care about efficiency

Google	ray triangle intersection methods						
	Web	Shopping	Videos	News	Images	More -	Search tools
	About	42 000 requite	(0.44.00000)				

About 443,000 results (0.44 seconds)

Möller–Trumbore intersection algorithm - Wikipedia, the free ... https://en.wikipedia.org/.../Möller–Trumbore_intersection_alg... Wikipedia The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the ...

[PDF] Fast Minimum Storage Ray-Triangle Intersection.pdf https://www.cs.virginia.edu/.../Fast%20MinimumSt... University of Virginia by PC AB - Cited by 650 - Related articles We present a clean algorithm for determining whether a ray intersects a triangle. ... ble

it point r(tive, point is in triangle

[PDF] Optimizing Ray-Triangle Intersection via Automated Search www.cs.utah.edu/~aek/research/triangle.pdf University of Utah by A Kensler - Cited by 33 - Related articles method is used to further optimize the code produced via the fitness function. ... For these 3D methods we optimize ray-triangle intersection in two different ways.

[PDF] Comparative Study of Ray-Triangle Intersection Algorithms www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf by V Shumskiy - Cited by 1 - Related articles

Ray-triangle intersection (another way) Parameterize triangle with vertices p_0, p_1, p_2 using

barycentric coordinates*

$$f(u,v) = (1 - u - u)$$

Can think of a triangle as an affine map of the unit triangle

$$\mathbf{f}(u,v) = \mathbf{p_0} + u(\mathbf{r})$$

* I'm writing u,v instead of beta, gamma to make explicit representation of triangle very clear.

 $(-v)\mathbf{p_0} + u\mathbf{p_1} + v\mathbf{p_2}$

Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

$$\mathbf{p_0} + u(\mathbf{p_1} - \mathbf{p_0}) + v(\mathbf{p_2} - \mathbf{p_0}) = \mathbf{o} + t\mathbf{d}$$

Solve for u, v, t:

Μ ${
m M}^{-1}$ transforms triangle back to unit triangle in u,v plane, and transforms ray's direction to be orthogonal to plane. It's a point in 2D triangle test now!

$$\begin{bmatrix} \mathbf{p_1} - \mathbf{p_0} & \mathbf{p_2} - \mathbf{p_0} & -\mathbf{d} \end{bmatrix} \begin{bmatrix} u \\ v \\ t \end{bmatrix} = \mathbf{o} - \mathbf{p_0}$$

One more query: mesh-mesh intersection **GEOMETRY: How do we know if a mesh intersects itself?**

ANIMATION: How do we know if a collision occurred?

Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

• (a₁, a₂)

Slightly harder: point-line intersection

p

- Q: How do we know if a point intersects a given line?
- A: ...plug it into the line equation!

Line-line intersection

- Two lines: ax=b and cx=d
- Q: How do we find the intersection?
- A: See if there is a simultaneous solution
- Leads to linear system:

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- care (e.g., analysis of matrix).

See for example Shewchuk, "Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"

Instability very common, very important with geometric predicates. Demands special

Triangle-triangle intersection?

- Lots of ways to do it
- **Basic idea:**
 - Q: Any ideas?
 - **One way: reduce to edge-triangle intersection**
 - Check if each line passes through plane (ray-triangle)
 - Then do interval test
 - What if triangle is *moving*?
 - Important case for animation
 - Can think of triangles as *prisms* in time
 - dimensions

- Turns dynamic problem (in nD + time) into purely geometric problem in (n+1)-

Ray-scene intersection

Given a scene defined by a set of *N* primitives and a ray *r*, find the closest point of intersection of *r* with the scene

```
t_closest = inf
for each primitive p in scene:
   t = p.intersect(r)
   if t >= 0 && t < t_closest:
     t_closest = t</pre>
```

```
// closest hit is:
// r.o + t_closest * r.d
```

(Assume p.intersect(r) returns value of *t* corresponding to the point of intersection with ray *r*)

Complexity? O(N)

Can we do better? Of course... but you'll have to wait until next class

Rendering via ray casting: (one common use of ray-scene intersection tests)

Rasterization and ray casting are two algorithms for solving the same problem: determining surface "visibility" from a virtual camera

Recall triangle visibility problem:

Question 1: what samples does the triangle overlap?

Question 2: what triangle is closest to the camera in each sample? ("occlusion")

The visibility problem (rasterization perspective)

What scene geometry is visible at each screen sample?

- What scene geometry *projects* onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Basic rasterization algorithm

Sample = 2D point **Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point) Occlusion: depth buffer**

//
//
ample
than z_
lor[s]

"Given a triangle, <u>find</u> the samples it covers"

(finding the samples is relatively easy since they are distributed uniformly on screen)

More efficient <u>hierarchical</u> rasterization:

For each TILE of image

If triangle overlaps tile, check all samples in tile

store closest-surface-so-far for all samples store scene color for all samples loop 1: over triangles

loop 2: over visibility samples

closest[s])

The visibility problem (described differently)

In terms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the opening of a pinhole camera? (coverage)
- What primitive is the first hit along that ray? (occlusion)

Basic ray casting algorithm

Sample = a ray in 3D

Coverage: 3D ray-triangle intersection tests (does ray "hit" triangle) **Occlusion: closest intersection along ray**

```
initialize color[]
for each sample s in frame buffer:
    r = ray from s on sensor through pinhole aperture
    r.min_t = INFINITY
    r.tri = NULL;
   for each triangle tri in scene:
        if (intersects(r, tri)) {
            if (intersection distance along ray is closer than r.min_t)
               update r.min_t and r.tri = tri;
    color[s] = compute surface color of triangle r.tri at hit point
```

Compared to rasterization approach: just a reordering of the loops! "Given a ray, find the closest triangle it hits."

// store scene color for all samples

// loop 1: over visibility samples (rays)

// only store closest-so-far for current ray

// loop 2: over triangles

// 3D ray-triangle intersection test

Basic rasterization vs. ray casting

Rasterization:

- Outer loop: iterate over all triangles ("for all triangles")
- Store entire depth buffer (requires access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory
 - Naturally supports unbounded size scenes

Ray casting:

- Outer loop: iterative over all screen samples (for all rays)
 - Do not have to store closest depth so far for the entire screen (just the current ray)
 - Easy solution for rendering transparent surfaces: Process surfaces in the order they are encountered along the ray: front-to-back (find first "hit", then "second", etc)
- Must store entire scene geometry in a manner that allows fast access

In other words...

Rasterization is a efficient implementation of ray casting where:

- **Ray-scene intersection is computed for a batch of rays**
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

(Note: not uniform distribution in angle... angle between rays is smaller away from view direction)

Generality of ray-scene queries

What object is visible to the camera? What light sources are visible from a point on a surface (is a surface in shadow?) What reflection is visible on a surface?

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating from the same point (most often: the camera)

Shadows

Image credit: Grand Theft Auto V

N

How to compute if a surface point is in shadow?

Assume you have an algorithm for ray-scene intersection...

A simple shadow computation algorithm

- **Trace ray from point** *P* **to location** *L*_i **of light source**
- If ray hits scene object before reaching light source... then *P* is in shadow

Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen

HENRIK WANN JENSEN 1999

Global illumination solution

Image credit: Henrik Wann Jensen

HENRIK WANN JENSEN 2000

Direct illumination

RESERVEREDERE

Sixteen-bounce global Ilumination

Next time: spatial acceleration data structures

- Testing every primitive in scene to find ray-scene intersection is slow!
- Consider accelerating a linear scan through an array with binary search
 - We can apply a similar type of thinking to accelerating geometric queries

Acknowledgements

Thanks to Keenan Crane for presentation resources

