Lecture 18:

Parallelizing and Optimizing
Rasterization

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2024



Today’s topic

m Apeekunder the hood at how modern GPUs implement rasterization-based graphics
pipelines (with a focus on mobile GPUs)

m Parallelization of work
m Saving power by: reducing work, transferring less data

m Reducing data transfer using data compression

Stanford (5248A, Winter 2024



Simple OpenGL/Direct3D graphics pipeline *

°3
°1 S
l— °4 |nput: verticesin 3D space
°2
Operations on ETTEX I TOCEsSINg
vertices T E
Vertex stream ; ° ; . ] .. . .
l ; © . | Verticesin positioned in normalized

Operations on Primitive Processing § ) . coordinate space

primitives l .......................

(triangles, lines, etc.) Siaararn | T

Fragment Generation Triangles positioned on screen

(Rasterization)
Operations on Fragment streaml ----------------
fragments Fragments (one fragment per covered sample)
HragmentiErocessing E

Shaded fragment streaml

% ?- Shaded fragments
Operations on Screen sample operations

(depth and color) S :
screen samples : :

Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted Stanford €S248A. Winter 2024



Cyberpunk 2077
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Lots of paraIIeI processmg capablllty
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L2 Cache (6 MB)
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(4096 bit interface)

GPU memory (HBM)
(16 GB)
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V100 GPU parallelism
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RTX 3090 GPU g

PCI Express 4.0 Host Interface

GigaThread Engine

Raster Engine Raster Engine Raster Engine
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RTX 3090 GPU

SM

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk

LD/ST

Lo Gaohe + o Schosul s DEpalEh (G2 hreadia

Register File (16,384 x 32-bit)

LD/ST

LD/ST

4

A

LD/ST

. Compute mip map level d

TENSOR
CORE
3rd Gen

Register File (16,384 x 32-bit)

LD/ST

LD/ST

128KB L1 Data Cache / Shared Memory

LD/ST

LD/ST

TENSOR
CORE
3rd Gen

SFU

Texture sampling operation

. Compute u and v from screen sample x,y (via evaluation of attribute equations)
. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

1

2

3

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]
5. Compute required texels in window of filter

6

7

. Perform tri-linear interpolation according to (U, V, d)

Hardware units
for texture mapping
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RTX 3090 GPU

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST

128KB L1 Data

Tex

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LDI/IST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

Cache / Shared Memory

Tex

RT

CORE

| [iﬁ'd'lGeneratie

Hardware units
for ray tracing
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For the rest of the lecture, I'm going to focus on mapping
rasterization workloads to modern mobile GPUs



Q. What is a big concern in nfoaile computing?

Stanford (5248A, Winter 2024



A. Power

Stanford (5248A, Winter 2024



Two reasons to save power

Run at higher performance
for a fixed amount of time.

Run at sufficient performance
for a Jonger amount of time.

Power = heat
“— Ifachip gets too hot, it must be
clocked down to cool off

Power = battery
<+<— Long battery life is a desirable
feature in mobile devices

Stanford (5248A, Winter 2024



MObile phﬂne Example Apple iPhone 12

L -

2,815 mAmp hours
(10.7 Watt hours)
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Graphics processors (GPUs) in these mobile phones

Google Pixel 7 Apple iPhone 12

'\
g\/l;rL?M-Gﬂo * | 3 N , \\
— <« ARM Mali Custom Apple GPU in
G710 GPU A14 Bionic Processor

L2 cache

AMBA® 4 A
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Ways to conserve power

m Compute less
- Reduce the amount of work required to render a picture
- Less computation = less power

m Read less data
- Data movement has high energy cost

Stanford (5248A, Winter 2024



Simplified OpenGL/Vulkan/Direct3D graphics pipeline

03
°1 °4 Input: vertices in 3D space
I 02
Operations on Jariau Pucasthly
vertices R S"ea“‘l o . Vertices in positioned in normalized

Operations on Primitive Processing § ) . coordinate space

primitives l .......................

(triangles, lines, etc.) Siaararn | T

Fragment Generation Triangles positioned on screen

(Rasterization)
Operations on Fragment streaml ----------------
fragments Fragments (one fragment per covered sample)
HragmentiErocessing E

Shaded fragment streaml

% ?- Shaded fragments
Operations on Screen sample operations

(depth and color) S :
screen samples : :

Output: image (pixels)
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Work saving idea:
Early depth culling (“Early Z")




Depth testing as we've described it

'
[]

Graphics pipeline abstraction
specifies that depth test is
performed here!

Frame-Buffer Ops TP PITIY

As a result... pipeline generates, shades, and depth
tests orange triangle fragments in this region although
they do not contribute to the final image.

(they are occluded by the blue triangle)
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Early Z culling

m Implemented by all modern GPUs, not just mobile GPUs
m Application needs to sort geometry to make early Z most effective. Why?

Rasterization

Rasterization

$ $ > TR Optimization: when possible, reorder

L Ty T pipeline operations: perform depth
{ T uai Ay ] [ o esdessan ] test immediately following
* * rasterization and before fragment
Frame-Buffer Ops € e, Graphics pipeline shading
specifies that depth
test is performed
here!

Key assumption: occlusion results do not depend on fragment shading
- Example operations that prevent use of this early Z optimization: enabling alpha test, fragment shader modifies fragment’s Z value

Stanford (5248A, Winter 2024



Example: fragment visibility depending on the results of shading

m Fragment shading accesses a texture with an alpha channel
m Fragment color’s alpha value depends on the results of the texture lookup
m Alpha test: pipeline drops fragment if it’s alpha value < THRESHOLD

- Implemented as part of frame buffer ops

Rasterization

'

{ Fragment Processing }

v

Frame-Buffer Ops DR Graphics pipeline specifies that
depth test and alpha test is
performed here!

Stanford (5248A, Winter 2024



Deferred shading

Stanford (5248A, Winter 2024



The graphics pipeline

“Forward” rendering
!

ey

Rasterization

(Fragment Generation)

| Early Depth |
{ Fragment Processing } S Typical use of fragment processing stage: “shading”
| evaluate application-defined function from surface

inputs to surface color (e.g., reflectance equation)
Frame Buffer

Stanford (S248A, Winter 2024



Deferred shading: two steps

Step 1: Do not use graphics pipeline to generate RGB image

Fragment shader now outputs surface properties (future shading inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information about the surface geometry visible at each pixel
(called a “g-buffer’, for “geometry buffer”)

Vertex Generation

W

v

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Depth

“G-buffer”

Normal

Stanford (5248A, Winter 2024



G-buffer =“geometry” buffer

Depth

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford CS248A, Winter 2024



Example G-buffer layout

Graphics pipeline configured to render to four RGBA output buffers + depth
(32-bits per pixel, per buffer)

G8 A8
Depth 24bpp Stencil
Lighting Accumulation RGB Intensity
Normal X (FP16) Normal Y (FP16)

Motion Vectors XY Spec-Power Spec-Intensity
Diffuse Albedo RGB Sun-Occlusion

Source: W. Engel, “Light-Prepass Renderer Mark 111" SIGGRAPH 2009 Talks

Intuitive to consider G-buffer as one big render target with “fat” pixels
In the example above: 32 x 5 =160 bits = 20 bytes per pixel

Up to 96-160 bits per pixel in some games.

Stanford (5248A, Winter 2024



Compressed G-buffer layout

m Material information is compressed using indirection
- Store material ID in G-buffer

- Material parameters other than albedo (specular shape/roughness/color) stored in table indexed by
material ID

G-buffer layout in Bungie’s Destiny (2014)
8 /8 /8 8

Albedo Color RGB Ambient Occlusion RTO
Normal XYZ * (Biased Specular Smoothness) Material ID RT1

Example material ID visualization

Source: N Tatarchuk: SIGGRAPH 2014 Courses, Matt Hoffman
Stanford (S248A, Winter 2024



Two-pass deferred shading algorithm o

m Pass 1: G-buffer generation pass

- Render complete scene geometry using traditional pipeline
- Write visible geometry information to G-buffer

After all geometry processing is done...

m Pass 2: shading/lighting pass
For each G-buffer sample (x,y):
- Read G-buffer data for current sample (x,y)

- Compute shading by accumulating contribution to reflectance of all lights
- Output final surface color for sample (x,y)

Shading/lighting computations are “deferred” until all geometry processing is
complete...

Final Image

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (S248A, Winter 2024



BTW... one challenge of deferred shading: supersampling

m G-buffer stores much more information per sample than RGBA+Z
m Result: very large G-buffer (high memory consumption + high memory bandwidth cost)
m Surprising solution: do not supersample, use image processing to remove aliasing artifacts!

Morphological Anti-aliasing (MLAA)

- Detect specific patterns in rendered image

- For detected patterns, blend neighboring
pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

= N W S U OO N

h La'bcdeflgkh

{

8
Z-shapes: —l__ __ l—-1 |-—J Z and U shape decomposition into L-shapes:
Ushapes: L1 M | [ e B r
L-shapes: = [ S 1

[Reshetov 09]
Stanford (5248A, Winter 2024



Morphological anti-aliasing (MLAA)

Aliased image Zoomed views After filtering using MLAA
(one shading sample per pixel)  (top: aliased, bottom: after MLAA)

Stanford (S248A, Winter 2024



Modern approach: learn anti-aliasing functions

Use modern image processing deep networks to reduce aliasing artifacts from rendered images.
Previous state-of-the art-heuristic (TXAA) Learned AA (NVIDIA’s DLSS)

AP mm _ gp | o
ol & ) |

.3’

https://wccftech.com/nvidia-dlss-explained-nvidia-nqx/ Stanford CS248A, Winter 2024




Read data less often

Stanford (5248A, Winter 2024



Reading less data conserves power

m Goal: redesign algorithms to make good use of on-chip memory or processor caches
- And therefore transfer less data from memory

m Afact you might not have heard:

— Itis far more costly (in energy) to load/store data from memory, than it is to perform
an arithmetic operation

“Ballpark” numbers [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

- Integerop:~1pJ*

- Floating point op: ~20 pJ *

- Reading 64 bits from small local SRAM (1Tmm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford (5248A, Winter 2024



Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

What does a data cache do in a processor?

38 GB/sec

<)

Memory
DDR4 DRAM

(Gigabytes)

Stanford (5248A, Winter 2024



Today: a simple mobile GPU

m Asetof programmable cores (run vertex and fragment shader programs)
m Hardware for rasterization, texture mapping, and frame-buffer access

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Core 0

Core 1

Core 2

Core3

Stanford (5248A, Winter 2024



Block diagrams from vendors

ARM Mali G72MP18

Mali GPU Block Model

APB Control Bus

AXI Data Bus

Vertex
Queue

Shader
Core

Fragment L2 Cache
Queue

Shader
Core

Shader
Core

=

Tiler

Imagination PowerVR
(in earlier iPhones)

Host CPU
Host , Interface
CPU Bus :

Unified Shading Cluster Array
uSsC

Processor

Coarse Shared Shared Shared : Co-

Grain : . X
B scheduler Texture Unit Texture Unit Texture Unit Processor

uUSsC uUsC USsC

Core
Management Multi-level Memory Cache Unit (MCU)
Unit
System
X2 Memory
System | EEGCHETS
Memory

Bus

Stanford (5248A, Winter 2024



=2 & o ».
W ﬂ’ > Gk

- 2/

Let’s consider different workloads N

Average triangle size:

determines ratio of vertex processing work to fragment processing work

-
- L <o l,.\t‘l ; NEM
L] 3 5 .
4
» 3 *»Ny L -
-4 - o 5 .~ . .‘

1EVERE

Image credit:
https://www.theverge.com/2013/11/29/5155726/next-gen-su -pi
Stanford (5248A, Winter 2024
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Let’s consider different workloads

Scene depth complexity: average number of overlapping triangles per pixel
Determines the number of times depth buffer/render target names are read and written to

[Imagination Technologies

In this visualization: bright colors = more overlap Stanford CS248. Winter 2024



One very simple solution

m Let’s assume four GPU cores

m Divide screen into four quadrants, each processor processes all triangles, but only
renders triangles that overlap quadrant

m Problems?

Stanford (5248A, Winter 2024



Problem: unequal work partitioning

(partition the primitives to parallel units based on screen overlap)

Stanford (5248A, Winter 2024



Step 1: parallel geometry processing

m Distribute triangles to the four processors (e.g., round robin)
m In parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core3 Core 4

Stanford (5248A, Winter 2024



Step 2: sort triangles into per-tile lists

m Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)

m Coreruns vertex processing, computes 2D triangle/screen-tile overlap, inserts triangle into
appropriate bin(s)

List of scene triangles

/NN

Core 1 Core 2 Core3 Core 4

After processing first five triangles:

Bin1list: 1,2,3,4
Bin 2 list: 4,5

Stanford (5248A, Winter 2024



Step 3: per-tile processing

m Inparallel, the cores process the bins: performing rasterization, fragment shading,
and frame buffer update

m While (more bins left to process):
- Assign bin to available core

For all triangles in bin:

Rasterize

Fragment shade
Depth test

Render target blend

List of triangles in bin:

v

Rasterizer

Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

v

final pixels for NxN tile of
render target

Stanford (5248A, Winter 2024



What should the size of tiles be?

Stanford (5248A, Winter 2024



What should the size of the bins be?

Fine granularity Coarse granularity

0 1

[Image source: NVIDIA] Stanford (5248A, Winter 2024



What size should the tiles be?

m  Small enough for a tile of the color buffer and depth
buffer (potentially supersampled) to fit in a shader
processor core’s on-chip storage (i.e., cache)

m Tilesizesinrange 16x16 to 64x64 pixels are common

m  ARM Mali GPU: commonly uses 16x16 pixel tiles

Stanford (5248A, Winter 2024



Tiled rendering “sorts” the scene in 2D space to enable efficient
color/depth buffer access

Consider rendering without a sort: This sample is updated three times during
(process triangles in order given by application) rendering, but it may have fallen out of cache
in between accesses

Now consider step 3 of a tiled renderer:

Initialize Z and color buffer for tile
for all triangles 1in tile:
for all each fragment:
shade fragment
update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to read color or depth buffer from memory?
Q. Why doesn’t the renderer need to write depth buffer in memory? *

* Assuming application does not need depth buffer for other purposes. Stanford C5248A, Winter 2024



Recall: deferred shading using a G-buffer

Key benefit: shade each sample exactly once.

Depth

- - ¥y

Normal Specular
Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (5248A, Winter 2024



Tile-based deferred rendering (TBDR)

m Many mobile GPUs implement deferred shading in the hardware!
m Divide step 3 of tiled pipeline into two phases:
m Phase 1: compute what triangle/quad fragment is visible at every sample

m Phase 2: perform shading of only the visible quad fragments

A\ —>

T

12

13

Stanford (5248A, Winter 2024



The story so far

m Computation-saving optimizations (shade less)
- earlyZ cull
- tile-based deferred shading

m Bandwidth-saving optimizations

- tile-based rendering
- many more...

Stanford (5248A, Winter 2024



Texture compression
(reducing bandwidth cost)

Stanford (5248A, Winter 2024



Recall: a texture sampling operation

. Compute u and v from screen sample x,y (via evaluation of attribute equations)
. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples
. Compute mipmap level L
. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel v
. Compute required texels in window of filter **
. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:
- Load required texels (in compressed form) from memory
- Decompress texture data
/. Perform tri-linear interpolation according to (texel_u, texel_v, L)

SN U B W N =

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration tanford (52488 Winer 2024
antor , winter



Texture compression

m Goal: reduce bandwidth requirements of texture access

m Textureis read-only data
- Compression can be performed off-line, so compression algorithms can take significantly longer than decompression
(decompression must be fast!)
- Lossy compression schemes are permissible

m Design requirements

- Support random texel access into texture map (constant time access to any texel)
- High-performance decompression

- Simple algorithms (low-cost hardware implementation)

- High compression ratio

- High visual quality (lossy is okay, but cannot lose too much!)

Stanford (5248A, Winter 2024



Simple scheme: color palette (indexed color)

m Lossless (if image contains a small number of unique colors)

Color palette (eight colors)

0 1 2 3 4 5
Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

6 7

0 1 3 6
0 2 6 7
1 4 6 7
4 > 6 7| Whatis the compression ratio?

Stanford (5248A, Winter 2024



Per-block palette

m Block-based compression scheme on 4x4 texel blocks

- ldea: there might be many unique colors across an entire image, but can approximate all values in any 4x4 texel
region using only a few unique colors

m Per-block palette (e.q., four colors in palette)

- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)
- 2 bits per texel (4 bytes for per-texel indices)

- 16 bytes (3X compression on original data: 16x3=48 bytes)

m Can we do better?

Stanford (5248A, Winter 2024



$3TC (also called BCT or DXTC by Direct3D)

m Palette of four colors encoded in four bytes:

- Two low-precision base colors: C; and C; (2 bytes each: RGB 5-6-5 format)

- Other two colors computed from base values
- 1/3C + 2/3C4
- 2[3Co + 1/3(;

m Total footprint of 4x4 texel block: 8 bytes

- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data values)

m S3TCassumption:
- All texels in a 4x4 block lie on a line in RGB color space

m Additional mode:
- £ C0 < (1, then third color is 1/,Co + 1/2C; and fourth color is transparent black

Stanford (5248A, Winter 2024



S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

[Strom et al. 2007]

Stanford (S248A, Winter 2024



Summary

m 3D graphics implementations are highly optimized for power efficiency
- Tiled rendering for bandwidth efficiency *
- Deferred rendering to reduce shading costs

- Many additional optimizations such as buffer compression, eliminating unnecessary
memory ops, etc.

m [f you enjoy these topics, consider (5348K (Visual Computing Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture. Stanford (S248A, Winter 2024



