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Today’s topic
A peek under the hood at how modern GPUs implement rasterization-based graphics 
pipelines (with a focus on mobile GPUs) 

Parallelization of work 

Saving power by: reducing work, transferring less data 

Reducing data transfer using data compression
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Simple OpenGL/Direct3D graphics pipeline *

* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized 
coordinate space 

Input: vertices in 3D space1

2

3
4
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L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

Lots of parallel processing capability
NVIDIA V100 GPU: 
80 streaming multiprocessors 
(SMs)
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V100 GPU parallelism

* mul-add counted as 2 !ops:

L2 Cache (6 MB)

GPU memory (16 GB)

900 GB/sec

1.245 GHz clock 

80 SM processor cores per chip 

64 parallel multiple-add units per SM  

80 x 64 = 5,120 fp32 mul-add ALUs 
                = 12.7 TFLOPs * 

Up to 163,840 fragments being 
processed at a time on the chip!
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RTX 3090 GPU Hardware units 
for rasterization
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RTX 3090 GPU

Hardware units 
for texture mapping
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RTX 3090 GPU

Hardware units 
for ray tracing



Stanford CS248A, Winter 2024

For the rest of the lecture, I’m going to focus on mapping 
rasterization workloads to modern mobile GPUs
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Q. What is a big concern in mobile computing?
all
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A. Power
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Two reasons to save power

Run at higher performance 
for a !xed amount of time.

Run at su"cient performance 
for a longer amount of time.

Power = heat 
If a chip gets too hot, it must be 
clocked down to cool o"

Power = battery 
Long battery life is a desirable 
feature in mobile devices
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Mobile phone example

2,815 mAmp hours 
(10.7 Watt hours)

Apple iPhone 12
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Graphics processors (GPUs) in these mobile phones
Apple iPhone 12Google Pixel 7

ARM Mali 
G710 GPU

Custom Apple GPU in 
A14 Bionic Processor
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Ways to conserve power
Compute less 
- Reduce the amount of work required to render a picture 
- Less computation = less power 

Read less data 
- Data movement has high energy cost
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Simpli#ed OpenGL/Vulkan/Direct3D graphics pipeline

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized 
coordinate space 

Input: vertices in 3D space1

2

3
4
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Work saving idea: 
Early depth culling (“Early Z”)
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Depth testing as we’ve described it 

Rasterization

Fragment Processing

Frame-Bu"er Ops

As a result… pipeline generates, shades, and depth 
tests orange triangle fragments in this region although 
they do not contribute to the #nal image.  
(they are occluded by the blue triangle)

Graphics pipeline abstraction 
speci#es that depth test is 
performed here!
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Early Z culling
Implemented by all modern GPUs, not just mobile GPUs 
Application needs to sort geometry to make early Z most e"ective.  Why? 

Rasterization

Fragment Processing

Frame-Bu"er Ops

Rasterization

Fragment Processing

Frame-Bu"er Ops

Optimization: when possible, reorder 
pipeline operations: perform depth 
test immediately following 
rasterization and before fragment 
shadingGraphics pipeline 

speci#es that depth 
test is performed 
here!

Key assumption: occlusion results do not depend on fragment shading 
- Example operations that prevent use of this early Z optimization: enabling alpha test, fragment shader modi#es fragment’s Z value
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Example: fragment visibility depending on the results of shading
Fragment shading accesses a texture with an alpha channel 
Fragment color’s alpha value depends on the results of the texture lookup 
Alpha test: pipeline drops fragment if it’s alpha value < THRESHOLD 
- Implemented as part of frame bu"er ops

Rasterization

Fragment Processing

Frame-Bu"er Ops Graphics pipeline speci#es that 
depth test and alpha test is 
performed here!
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Deferred shading
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The graphics pipeline

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Bu"er Ops

Frame Bu"er

“Forward” rendering

Early Depth

Typical use of fragment processing stage: “shading” 
evaluate application-de#ned function from surface 
inputs to surface color (e.g., re!ectance equation)
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Deferred shading: two steps

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

“G-bu"er”

Step 1: Do not use graphics pipeline to generate RGB image  

Fragment shader now outputs surface properties (future shading inputs) 
(e.g., position, normal, material di"use color, specular color) 

Rendering output is a screen-size 2D bu"er representing information about the surface geometry visible at each pixel 
(called a “g-bu"er”, for “geometry bu"er”) 

Albedo (Re!ectance) Depth

SpecularNormal
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G-bu"er = “geometry” bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Albedo (Re!ectance) Depth

SpecularNormal
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Example G-bu"er layout
Graphics pipeline con#gured to render to four RGBA output bu"ers + depth 
(32-bits per pixel, per bu"er)

Intuitive to consider G-bu"er as one big render target with “fat” pixels 
In the example above: 32 x 5 =160 bits = 20 bytes per pixel 

Up to 96-160 bits per pixel in some games.

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks
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Compressed G-bu"er layout

DS

RT0

RT1

G-bu"er layout in Bungie’s Destiny (2014)

Source: N Tatarchuk: SIGGRAPH 2014 Courses, Matt Ho"man
Example material ID visualization

Material information is compressed using indirection 
- Store material ID in G-bu"er 
- Material parameters other than albedo (specular shape/roughness/color) stored in table indexed by 

material ID
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Two-pass deferred shading algorithm
Pass 1: G-bu"er generation pass 
- Render complete scene geometry using traditional pipeline 
- Write visible geometry information to G-bu"er 

After all geometry processing is done… 

Pass 2: shading/lighting pass 
For each G-bu"er sample (x,y): 
- Read G-bu"er data for current sample (x,y) 
- Compute shading by accumulating contribution to re!ectance of all lights 
- Output #nal surface color for sample (x,y) 

Shading/lighting computations are “deferred” until all geometry processing is 
complete…

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Final Image 

G-bu"er Inputs
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BTW… one challenge of deferred shading: supersampling
G-bu"er stores much more information per sample than RGBA+Z 
Result: very large G-bu"er (high memory consumption + high memory bandwidth cost) 
Surprising solution: do not supersample, use image processing to remove aliasing artifacts! 

Morphological Anti-aliasing  (MLAA) 
- Detect speci#c patterns in rendered image 
- For detected patterns, blend neighboring 

pixels according to a few simple rules 
(“hallucinate” a smooth edge.. it’s a hack!)

[Reshetov 09]
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Morphological anti-aliasing (MLAA)

Aliased image 
(one shading sample per pixel)

After #ltering using MLAAZoomed views 
(top: aliased, bottom: after MLAA)
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Modern approach: learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Learned AA (NVIDIA’s DLSS)Previous state-of-the art-heuristic  (TXAA)
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Read data less often
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Reading less data conserves power
Goal: redesign algorithms to make good use of on-chip memory or processor caches 
- And therefore transfer less data from memory

▪ A fact you might not have heard: 

-It is far more costly (in energy) to load/store data from memory, than it is to perform 
an arithmetic operation
“Ballpark” numbers 

- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

Implications 
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
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What does a data cache do in a processor?

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Today: a simple mobile GPU
A set of programmable cores (run vertex and fragment shader programs) 
Hardware for rasterization, texture mapping, and frame-bu"er access

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

Core 0 Core 1 Core 2 Core 3
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Block diagrams from vendors
ARM Mali G72MP18

Imagination PowerVR 
(in earlier iPhones)
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Let’s consider di"erent workloads

Image credit: 
https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece 
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotId,852293/

Average triangle size: 
determines ratio of vertex processing work to fragment processing work
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Let’s consider di"erent workloads
Scene depth complexity: average number of overlapping triangles per pixel
Determines the number of times depth bu"er/render target names are read and written to

[Imagination Technologies] 

In this visualization: bright colors = more overlap
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One very simple solution
Let’s assume four GPU cores 
Divide screen into four quadrants, each processor processes all triangles, but only 
renders triangles that overlap quadrant 
Problems?
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Problem: unequal work partitioning 
(partition the primitives to parallel units based on screen overlap)

1 2

3 4



Stanford CS248A, Winter 2024

Step 1: parallel geometry processing
Distribute triangles to the four processors (e.g., round robin) 
In parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core 3 Core 4
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Step 2: sort triangles into per-tile lists
Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”) 
Core runs vertex processing, computes 2D triangle/screen-tile overlap, inserts triangle into 
appropriate bin(s)

Core 1 Core 2 Core 3 Core 4

List of scene triangles

Bin 1 Bin 2 Bin 3 Bin 4

Bin 5 Bin 6 Bin 7 Bin 8

Bin 9 Bin 10 Bin 11 Bin 12

1 2

3
4

5Bin 1 list: 1,2,3,4 

Bin 2 list: 4,5

After processing #rst #ve triangles:
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Step 3: per-tile processing
In parallel, the cores process the bins: performing rasterization, fragment shading, 
and frame bu"er update 

While (more bins left to process): 
- Assign bin to available core 
- For all triangles in bin: 

- Rasterize 
- Fragment shade 
- Depth test 
- Render target blend

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader 
Processor Core

Te
xt

ur
e

List of triangles in bin:

#nal pixels for NxN tile of 
render target
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What should the size of tiles be?
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What should the size of the bins be?

Fine granularity Coarse granularity

[Image source: NVIDIA]
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What size should the tiles be?
Small enough for a tile of the color bu"er and depth 
bu"er (potentially supersampled) to #t in a shader 
processor core’s on-chip storage (i.e., cache) 

Tile sizes in range 16x16 to 64x64 pixels are common 

ARM Mali GPU: commonly uses 16x16 pixel tiles
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Tiled rendering “sorts” the scene in 2D space to enable e$cient 
color/depth bu"er access

Consider rendering without a sort: 
(process triangles in order given by application)

8 2

3
4 5

6

1

7

This sample is updated three times during 
rendering, but it may have fallen out of cache 
in between accesses 

Now consider step 3 of a tiled renderer: 

Initialize Z and color buffer for tile 
for all triangles in tile: 
  for all each fragment: 
    shade fragment 
    update depth/color 
write color tile to final image buffer

Q. Why doesn’t the renderer need to write depth bu"er in memory? *
Q. Why doesn’t the renderer need to read color or depth bu"er from memory?

* Assuming application does not need depth bu"er for other purposes.
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Recall: deferred shading using a G-bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Albedo (Re!ectance) Depth

SpecularNormal

Key bene#t: shade each sample exactly once.
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Tile-based deferred rendering (TBDR)
Many mobile GPUs implement deferred shading in the hardware! 
Divide step 3 of tiled pipeline into two phases: 
Phase 1: compute what triangle/quad fragment is visible at every sample 
Phase 2: perform shading of only the visible quad fragments 

T3

T2

T4

1 2 3

4

T1 1 2

5 6

7

T3

T1 T2

T4

3

none

8

1 2 3

4 5 6
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The story so far
Computation-saving optimizations (shade less) 
- early Z cull 
- tile-based deferred shading 

Bandwidth-saving optimizations 
- tile-based rendering 
- many more…
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Texture compression 
(reducing bandwidth cost)
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Recall: a texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 
2. Compute du/dx, du/dy, dv/dx, dv/dy di"erentials from quad-fragment samples 
3. Compute mipmap level L 
4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v 
5. Compute required texels in window of #lter ** 
6. If texture data in #lter footprint (eight texels for trilinear #ltering) is not in cache: 

- Load required texels (in compressed form) from memory 
- Decompress texture data 

7. Perform tri-linear interpolation according to (texel_u, texel_v, L)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode con#guration
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Texture compression
Goal: reduce bandwidth requirements of texture access 
Texture is read-only data 
- Compression can be performed o"-line, so compression algorithms can take signi#cantly longer than decompression 

(decompression must be fast!) 
- Lossy compression schemes are permissible 

Design requirements 
- Support random texel access into texture map (constant time access to any texel) 
- High-performance decompression 
- Simple algorithms (low-cost hardware implementation) 
- High compression ratio 
- High visual quality (lossy is okay, but cannot lose too much!)
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Simple scheme: color palette (indexed color)
Lossless (if image contains a small number of unique colors)

0  1  2  3  4  5  6  7  

Color palette (eight colors)

Image encoding in this example: 
3 bits per texel + eight RGB values in palette (8x24 bits)

0  1  3  6  

0  2  6  7  

1  4  6  7  

4  5  6  7 What is the compression ratio?
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Per-block palette
Block-based compression scheme on 4x4 texel blocks 
- Idea: there might be many unique colors across an entire image, but can approximate all values in any 4x4 texel 

region using only a few unique colors 

Per-block palette (e.g., four colors in palette) 
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8) 
- 2 bits per texel (4 bytes for per-texel indices) 
- 16 bytes (3x compression on original data: 16x3=48 bytes) 

Can we do better?
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S3TC (also called BC1 or DXTC by Direct3D)
Palette of four colors encoded in four bytes: 
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format) 
- Other two colors computed from base values 

- 1/3C0 + 2/3C1 
- 2/3C0 + 1/3C1 

Total footprint of 4x4 texel block: 8 bytes 
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel) 
- 4 bpp e"ective rate, 6:1 compression ratio (#xed ratio: independent of data values) 

S3TC assumption: 
- All texels in a 4x4 block lie on a line in RGB color space 

Additional mode: 
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black
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S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green 
(here compressor chose blue and yellow as base 
colors to minimize overall error)  

But scheme works well in practice on “real-world” 
images. (see images at right)

Image credit: 
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]
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Summary
3D graphics implementations are highly optimized for power e$ciency 
- Tiled rendering for bandwidth e$ciency * 
- Deferred rendering to reduce shading costs 
- Many additional optimizations such as bu"er compression, eliminating unnecessary 

memory ops, etc. 

If you enjoy these topics, consider CS348K (Visual Computing Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture.  


