
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2024

Lecture 18:

Parallelizing and Optimizing
Rasterization

Stanford CS248A, Winter 2024

Today’s topic
A peek under the hood at how modern GPUs implement rasterization-based graphics
pipelines (with a focus on mobile GPUs)

Parallelization of work

Saving power by: reducing work, transferring less data

Reducing data transfer using data compression

Stanford CS248A, Winter 2024

Simple OpenGL/Direct3D graphics pipeline *

* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

Input: vertices in 3D space1

2

3
4

Stanford CS248A, Winter 2024Cyberpunk 2077

Stanford CS248A, Winter 2024Ghost of Tsushima

Stanford CS248A, Winter 2024Forza Motorsport 7

Stanford CS248A, Winter 2024

L2 Cache (6 MB)

GPU memory (HBM)
(16 GB)

900 GB/sec
(4096 bit interface)

Lots of parallel processing capability
NVIDIA V100 GPU:
80 streaming multiprocessors
(SMs)

Stanford CS248A, Winter 2024

V100 GPU parallelism

* mul-add counted as 2 !ops:

L2 Cache (6 MB)

GPU memory (16 GB)

900 GB/sec

1.245 GHz clock

80 SM processor cores per chip

64 parallel multiple-add units per SM

80 x 64 = 5,120 fp32 mul-add ALUs
 = 12.7 TFLOPs *

Up to 163,840 fragments being
processed at a time on the chip!

Stanford CS248A, Winter 2024

RTX 3090 GPU Hardware units
for rasterization

Stanford CS248A, Winter 2024

RTX 3090 GPU

Hardware units
for texture mapping

Stanford CS248A, Winter 2024

RTX 3090 GPU

Hardware units
for ray tracing

Stanford CS248A, Winter 2024

For the rest of the lecture, I’m going to focus on mapping
rasterization workloads to modern mobile GPUs

Stanford CS248A, Winter 2024

Q. What is a big concern in mobile computing?
all

Stanford CS248A, Winter 2024

A. Power

Stanford CS248A, Winter 2024

Two reasons to save power

Run at higher performance
for a !xed amount of time.

Run at su"cient performance
for a longer amount of time.

Power = heat
If a chip gets too hot, it must be
clocked down to cool o"

Power = battery
Long battery life is a desirable
feature in mobile devices

Stanford CS248A, Winter 2024

Mobile phone example

2,815 mAmp hours
(10.7 Watt hours)

Apple iPhone 12

Stanford CS248A, Winter 2024

Graphics processors (GPUs) in these mobile phones
Apple iPhone 12Google Pixel 7

ARM Mali
G710 GPU

Custom Apple GPU in
A14 Bionic Processor

Stanford CS248A, Winter 2024

Ways to conserve power
Compute less
- Reduce the amount of work required to render a picture
- Less computation = less power

Read less data
- Data movement has high energy cost

Stanford CS248A, Winter 2024

Simpli#ed OpenGL/Vulkan/Direct3D graphics pipeline

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

Input: vertices in 3D space1

2

3
4

Stanford CS248A, Winter 2024

Work saving idea:
Early depth culling (“Early Z”)

Stanford CS248A, Winter 2024

Depth testing as we’ve described it

Rasterization

Fragment Processing

Frame-Bu"er Ops

As a result… pipeline generates, shades, and depth
tests orange triangle fragments in this region although
they do not contribute to the #nal image.
(they are occluded by the blue triangle)

Graphics pipeline abstraction
speci#es that depth test is
performed here!

Stanford CS248A, Winter 2024

Early Z culling
Implemented by all modern GPUs, not just mobile GPUs
Application needs to sort geometry to make early Z most e"ective. Why?

Rasterization

Fragment Processing

Frame-Bu"er Ops

Rasterization

Fragment Processing

Frame-Bu"er Ops

Optimization: when possible, reorder
pipeline operations: perform depth
test immediately following
rasterization and before fragment
shadingGraphics pipeline

speci#es that depth
test is performed
here!

Key assumption: occlusion results do not depend on fragment shading
- Example operations that prevent use of this early Z optimization: enabling alpha test, fragment shader modi#es fragment’s Z value

Stanford CS248A, Winter 2024

Example: fragment visibility depending on the results of shading
Fragment shading accesses a texture with an alpha channel
Fragment color’s alpha value depends on the results of the texture lookup
Alpha test: pipeline drops fragment if it’s alpha value < THRESHOLD
- Implemented as part of frame bu"er ops

Rasterization

Fragment Processing

Frame-Bu"er Ops Graphics pipeline speci#es that
depth test and alpha test is
performed here!

Stanford CS248A, Winter 2024

Deferred shading

Stanford CS248A, Winter 2024

The graphics pipeline

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Bu"er Ops

Frame Bu"er

“Forward” rendering

Early Depth

Typical use of fragment processing stage: “shading”
evaluate application-de#ned function from surface
inputs to surface color (e.g., re!ectance equation)

Stanford CS248A, Winter 2024

Deferred shading: two steps

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Bu"er Ops

“G-bu"er”

Step 1: Do not use graphics pipeline to generate RGB image

Fragment shader now outputs surface properties (future shading inputs)
(e.g., position, normal, material di"use color, specular color)

Rendering output is a screen-size 2D bu"er representing information about the surface geometry visible at each pixel
(called a “g-bu"er”, for “geometry bu"er”)

Albedo (Re!ectance) Depth

SpecularNormal

Stanford CS248A, Winter 2024

G-bu"er = “geometry” bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Re!ectance) Depth

SpecularNormal

Stanford CS248A, Winter 2024

Example G-bu"er layout
Graphics pipeline con#gured to render to four RGBA output bu"ers + depth
(32-bits per pixel, per bu"er)

Intuitive to consider G-bu"er as one big render target with “fat” pixels
In the example above: 32 x 5 =160 bits = 20 bytes per pixel

Up to 96-160 bits per pixel in some games.

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks

Stanford CS248A, Winter 2024

Compressed G-bu"er layout

DS

RT0

RT1

G-bu"er layout in Bungie’s Destiny (2014)

Source: N Tatarchuk: SIGGRAPH 2014 Courses, Matt Ho"man
Example material ID visualization

Material information is compressed using indirection
- Store material ID in G-bu"er
- Material parameters other than albedo (specular shape/roughness/color) stored in table indexed by

material ID

Stanford CS248A, Winter 2024

Two-pass deferred shading algorithm
Pass 1: G-bu"er generation pass
- Render complete scene geometry using traditional pipeline
- Write visible geometry information to G-bu"er

After all geometry processing is done…

Pass 2: shading/lighting pass
For each G-bu"er sample (x,y):
- Read G-bu"er data for current sample (x,y)
- Compute shading by accumulating contribution to re!ectance of all lights
- Output #nal surface color for sample (x,y)

Shading/lighting computations are “deferred” until all geometry processing is
complete…

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Final Image

G-bu"er Inputs

Stanford CS248A, Winter 2024

BTW… one challenge of deferred shading: supersampling
G-bu"er stores much more information per sample than RGBA+Z
Result: very large G-bu"er (high memory consumption + high memory bandwidth cost)
Surprising solution: do not supersample, use image processing to remove aliasing artifacts!

Morphological Anti-aliasing (MLAA)
- Detect speci#c patterns in rendered image
- For detected patterns, blend neighboring

pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

[Reshetov 09]

Stanford CS248A, Winter 2024

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After #ltering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

Stanford CS248A, Winter 2024https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/

Modern approach: learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Learned AA (NVIDIA’s DLSS)Previous state-of-the art-heuristic (TXAA)

Stanford CS248A, Winter 2024

Read data less often

Stanford CS248A, Winter 2024

Reading less data conserves power
Goal: redesign algorithms to make good use of on-chip memory or processor caches
- And therefore transfer less data from memory

▪ A fact you might not have heard:

-It is far more costly (in energy) to load/store data from memory, than it is to perform
an arithmetic operation
“Ballpark” numbers

- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Stanford CS248A, Winter 2024

What does a data cache do in a processor?

38 GB/sec
L3 cache

(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS248A, Winter 2024

Today: a simple mobile GPU
A set of programmable cores (run vertex and fragment shader programs)
Hardware for rasterization, texture mapping, and frame-bu"er access

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

Core 0 Core 1 Core 2 Core 3

Stanford CS248A, Winter 2024

Block diagrams from vendors
ARM Mali G72MP18

Imagination PowerVR
(in earlier iPhones)

Stanford CS248A, Winter 2024

Let’s consider di"erent workloads

Image credit:
https://www.theverge.com/2013/11/29/5155726/next-gen-supplementary-piece
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotId,852293/

Average triangle size:
determines ratio of vertex processing work to fragment processing work

Stanford CS248A, Winter 2024

Let’s consider di"erent workloads
Scene depth complexity: average number of overlapping triangles per pixel
Determines the number of times depth bu"er/render target names are read and written to

[Imagination Technologies]

In this visualization: bright colors = more overlap

Stanford CS248A, Winter 2024

One very simple solution
Let’s assume four GPU cores
Divide screen into four quadrants, each processor processes all triangles, but only
renders triangles that overlap quadrant
Problems?

Stanford CS248A, Winter 2024

Problem: unequal work partitioning
(partition the primitives to parallel units based on screen overlap)

1 2

3 4

Stanford CS248A, Winter 2024

Step 1: parallel geometry processing
Distribute triangles to the four processors (e.g., round robin)
In parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core 3 Core 4

Stanford CS248A, Winter 2024

Step 2: sort triangles into per-tile lists
Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)
Core runs vertex processing, computes 2D triangle/screen-tile overlap, inserts triangle into
appropriate bin(s)

Core 1 Core 2 Core 3 Core 4

List of scene triangles

Bin 1 Bin 2 Bin 3 Bin 4

Bin 5 Bin 6 Bin 7 Bin 8

Bin 9 Bin 10 Bin 11 Bin 12

1 2

3
4

5Bin 1 list: 1,2,3,4

Bin 2 list: 4,5

After processing #rst #ve triangles:

Stanford CS248A, Winter 2024

Step 3: per-tile processing
In parallel, the cores process the bins: performing rasterization, fragment shading,
and frame bu"er update

While (more bins left to process):
- Assign bin to available core
- For all triangles in bin:

- Rasterize
- Fragment shade
- Depth test
- Render target blend

Rasterizer

Depth Test

Render Target Blend

Data Cache

Shader
Processor Core

Te
xt

ur
e

List of triangles in bin:

#nal pixels for NxN tile of
render target

Stanford CS248A, Winter 2024

What should the size of tiles be?

Stanford CS248A, Winter 2024

What should the size of the bins be?

Fine granularity Coarse granularity

[Image source: NVIDIA]

Stanford CS248A, Winter 2024

What size should the tiles be?
Small enough for a tile of the color bu"er and depth
bu"er (potentially supersampled) to #t in a shader
processor core’s on-chip storage (i.e., cache)

Tile sizes in range 16x16 to 64x64 pixels are common

ARM Mali GPU: commonly uses 16x16 pixel tiles

Stanford CS248A, Winter 2024

Tiled rendering “sorts” the scene in 2D space to enable e$cient
color/depth bu"er access

Consider rendering without a sort:
(process triangles in order given by application)

8 2

3
4 5

6

1

7

This sample is updated three times during
rendering, but it may have fallen out of cache
in between accesses

Now consider step 3 of a tiled renderer:

Initialize Z and color buffer for tile
for all triangles in tile:
 for all each fragment:
 shade fragment
 update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to write depth bu"er in memory? *
Q. Why doesn’t the renderer need to read color or depth bu"er from memory?

* Assuming application does not need depth bu"er for other purposes.

Stanford CS248A, Winter 2024

Recall: deferred shading using a G-bu"er

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Re!ectance) Depth

SpecularNormal

Key bene#t: shade each sample exactly once.

Stanford CS248A, Winter 2024

Tile-based deferred rendering (TBDR)
Many mobile GPUs implement deferred shading in the hardware!
Divide step 3 of tiled pipeline into two phases:
Phase 1: compute what triangle/quad fragment is visible at every sample
Phase 2: perform shading of only the visible quad fragments

T3

T2

T4

1 2 3

4

T1 1 2

5 6

7

T3

T1 T2

T4

3

none

8

1 2 3

4 5 6

Stanford CS248A, Winter 2024

The story so far
Computation-saving optimizations (shade less)
- early Z cull
- tile-based deferred shading

Bandwidth-saving optimizations
- tile-based rendering
- many more…

Stanford CS248A, Winter 2024

Texture compression
(reducing bandwidth cost)

Stanford CS248A, Winter 2024

Recall: a texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)
2. Compute du/dx, du/dy, dv/dx, dv/dy di"erentials from quad-fragment samples
3. Compute mipmap level L
4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v
5. Compute required texels in window of #lter **
6. If texture data in #lter footprint (eight texels for trilinear #ltering) is not in cache:

- Load required texels (in compressed form) from memory
- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, L)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode con#guration

Stanford CS248A, Winter 2024

Texture compression
Goal: reduce bandwidth requirements of texture access
Texture is read-only data
- Compression can be performed o"-line, so compression algorithms can take signi#cantly longer than decompression

(decompression must be fast!)
- Lossy compression schemes are permissible

Design requirements
- Support random texel access into texture map (constant time access to any texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

Stanford CS248A, Winter 2024

Simple scheme: color palette (indexed color)
Lossless (if image contains a small number of unique colors)

0 1 2 3 4 5 6 7

Color palette (eight colors)

Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0 1 3 6

0 2 6 7

1 4 6 7

4 5 6 7 What is the compression ratio?

Stanford CS248A, Winter 2024

Per-block palette
Block-based compression scheme on 4x4 texel blocks
- Idea: there might be many unique colors across an entire image, but can approximate all values in any 4x4 texel

region using only a few unique colors

Per-block palette (e.g., four colors in palette)
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)
- 2 bits per texel (4 bytes for per-texel indices)
- 16 bytes (3x compression on original data: 16x3=48 bytes)

Can we do better?

Stanford CS248A, Winter 2024

S3TC (also called BC1 or DXTC by Direct3D)
Palette of four colors encoded in four bytes:
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 1/3C0 + 2/3C1
- 2/3C0 + 1/3C1

Total footprint of 4x4 texel block: 8 bytes
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp e"ective rate, 6:1 compression ratio (#xed ratio: independent of data values)

S3TC assumption:
- All texels in a 4x4 block lie on a line in RGB color space

Additional mode:
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black

Stanford CS248A, Winter 2024

S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]

Stanford CS248A, Winter 2024

Summary
3D graphics implementations are highly optimized for power e$ciency
- Tiled rendering for bandwidth e$ciency *
- Deferred rendering to reduce shading costs
- Many additional optimizations such as bu"er compression, eliminating unnecessary

memory ops, etc.

If you enjoy these topics, consider CS348K (Visual Computing Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture.

