
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2024

Lecture 7:

Mesh representations and 
Mesh Processing
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A small triangle mesh

8 vertices, 12 triangles
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A large triangle mesh
David 
Digital Michelangelo Project  
28,184,526 vertices 
56,230,343 triangles
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Even larger meshes
Google Earth  
Meshes reconstructed from satellite and aerial photography  
Trillions of triangles 
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Recall: image upsampling

Convert representation of signal given by samples taken at black dots 
into a representation given at new set of denser samples (red dots)
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Recall: 
image upsampling

Upsampling via 
Nearest neighbor 

interpolation
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Recall: 
image upsampling

Upsampling via 
bilinear interpolation
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Recall: image downsampling

Convert representation of signal given by samples taken at black dots 
into a representation given at new set of sparser samples (red dots)
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Recall: image resampling

Convert representation of signal given by samples taken at black dots 
into a representation given at new set of samples (red dots)
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Examples of geometry processing
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Mesh upsampling — subdivision

Increase resolution via interpolation
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Mesh downsampling — simpli!cation

Decrease resolution; try to preserve shape/appearance
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Mesh resampling — regularization

Modify sample distribution to improve quality
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More geometry processing tasks

reconstruction
filtering

remeshing
compressionparameterizationshape analysis
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Today
How to represent meshes (data structures) 

How to perform a number of basic mesh processing operations 
- Subdivision (upsampling) 
- Mesh simpli!cation (downsampling) 
- Mesh resampling
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Mesh representations
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Basic mesh representation: list of triangles
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Another representation: 
Lists of vertexes / indexed triangle
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Comparison
List of triangles 
- GOOD: simple 
- BAD: contains redundant per-vertex information  

List of vertexes + list of indexed triangles 
- GOOD: sharing vertex position information reduces memory usage  
- GOOD: ensures integrity of the mesh (changing a vertex’s position in 3D space causes 

that vertex in all the polygons to move) 
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Mesh topology vs surface geometry
Same vertex positions, di"erent mesh topology

Same topology, di"erent vertex positions

Notice di"erent 
connectivity
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Smooth surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough (at any point) looks like a plane* 
- E.g., the Earth from space vs. from the ground

*…or can easily be #attened into the plane, without cutting or ripping.



u

v
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Why is the manifold property valuable?
Makes life simple: all surfaces look the same (at least locally) 
Gives us coordinates!  (at least locally)
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Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.
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More examples of smooth surfaces
Which of these shapes are manifold?
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A manifold polygon mesh has fans, not !ns
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “!ns”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist and ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Topological validity: manifold
A 2D manifold is a surface that when cut with a small sphere always yields a disk 
(or a half disk on the boundary)

Manifold Not manifold

With border With border
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Manifolds have useful properties
A 2D manifold is a surface that when cut with a small sphere always yields a disk 
If a mesh is manifold, we can rely on these useful properties: *  
- An edge connects exactly two faces  
- An edge connects exactly two vertices  
- A face consists of a ring of edges and vertices  
- A vertex consists of a ring of edges and faces  
- Euler’s polyhedron formula holds: #f – #e + #v = 2  

(for a surface topologically equivalent to a sphere)  
(Check for a cube: 6 – 12 + 8 = 2)

* Some of these properties only apply to non-border mesh regions
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Topological validity: orientation consistency

AB

C

D

AB

C

D

OK bad

Non-orientable 
(e.g., Moebius strip)

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Image credit: Wikipedia
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Simple example: triangle-neighbor data structure
// definition of a triangle 
struct Tri {  

Vert*  v[3]; 
Tri*   t[3];  

}  

// definition of a triangle vertex 
struct Vert {  

Vec3   pos; 
Tri*   t; 

} 
t[0]

t[1]t[2]

v[0]

v[1]

v[2]
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Triangle-neighbor – mesh traversal

Tri* ccw_tri(Vert *v, Tri *t) 
{ 

if (v == t->v[0]) 
return t[0]; 

if (v == t->v[1]) 
return t[1]; 

if (v == t->v[2]) 
return t[2]; 

}

t[0]

t[1]t[2]

Find next triangle counter-clockwise around vertex v from triangle t

t

v[0]

v[1]

v[2]
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Half-edge data structure

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge { 

   Halfedge *twin, 

   Halfedge *next; 

   Vertex *vertex; 

   Edge *edge; 

   Face *face; 

}

Key idea: two half-edges act as “glue” 
between mesh elements

Each vertex, edge and face points 
to one of its half edges

struct Vertex { 

   Vec3 pos; 

   Halfedge *halfedge; 

} 

struct Edge { 

   Halfedge *halfedge;  

} 

struct Face { 

   Halfedge *halfedge;  

}
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Half-edge structure facilitates mesh traversal
Use twin and next pointers to move around mesh 
Process vertex, edge, and/or face pointers 

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge; 
do { 
   do_work(h->vertex); 
   h = h->next; 
} 
while( h != f->halfedge );

Example 1: process all vertices of a face
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Half-edge structure facilitates mesh traversal
Example 2: process all edges around a vertex

Halfedge* h = v->halfedge; 
do { 
   do_work(h->edge); 
   h = h->twin->next; 
} 
while( h != v->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex
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Local mesh operations
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Half-Edge – local mesh editing
Consider basic operations for linked list: insert, delete 
Basic ops for half-edge mesh: #ip, split, collapse edges

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Allocate / delete elements; reassign pointers 
(Care is needed to preserve mesh manifold property)
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Half-edge – edge #ip
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

b

c

a d

b

c

a d

!ip

In implementaton: you’ll perform a long list of half-edge pointer reassignments  
However, no mesh elements created/destroyed
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Thought experiment: de!ning edge #ip on N-gons?
I !nd it very use to think about this case… 

What is a “reasonable” thing to do. 

Does your approach reduce to triangle edge 
#ips in the N=3 case?

a
b

c

de

f

g
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Half-edge – edge split
Insert midpoint m of edge (c,b), connect to get four triangles:

Must add elements to mesh (new vertex, faces, edges) 
Again, many half-edge pointer reassignments

b

m

c

a d

b

c

a d

split



Stanford CS248A, Winter 2024

Half-edge – edge collapse
Replace edge (c,d) with a single vertex m:

Must delete elements from the mesh 
Again, many half-edge pointer reassignments

a

b

c d

a

b

m

collapse
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Global mesh operations: geometry processing
Mesh subdivision (form of subsampling) 
Mesh simpli!cation (form of downsampling) 
Mesh regularization (form of resampling)
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Subdivision — upsampling a mesh
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Upsampling via subdivision

Repeatedly split each element into smaller pieces 

Replace vertex positions with weighted average of neighbors 

Main considerations: 

- interpolating vs. approximating 

- limit surface continuity (C1, C2, ...) 

- behavior at irregular vertices 

Many options: 

- Quad: Catmull-Clark 

- Triangle: Loop, butter#y, sqrt(3)
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Loop subdivision
Common subdivision rule for triangle meshes 
“C2” smoothness away from irregular vertices  
Approximating, not interpolating 

Sim
on Fuhrm

an
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Loop subdivision algorithm
Split each triangle into four

1/8

1/8

3/83/8

New vertices 
(weighted sum of vertices on 

split edge, and vertices 
“across from” edge)

u u

u u

u u1 – n*u

n = vertex degree

u = 3/16 if n=3, 3/(8n) otherwise

Old vertices 
(weighted sum of 

edge adjacent vertices)

Compute new vertex positions using weighted sum of prior vertex positions:
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Loop subdivision algorithm 
Example, for degree 6 vertices (“regular” vertices)

10/16

1/16

1/16 1/16

1/16

1/16 1/16
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Loop subdivision results
Common subdivision rule for triangle meshes 
“C2” smoothness away from irregular vertices  
Approximating, not interpolating 

Credit: Simon Fuhrman
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Semi-regular meshes
Most of the mesh has vertices with degree 6 

But if the mesh is topologically equivalent to 
a sphere, then not all the vertices can have 
degree 6 

Must have a few extraordinary points 
(degree not equal to 6)

Extraordinary vertex 
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Proof: always an extraordinary vertex
Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles  

E = 3/2 T  
- There are 3 edges per triangle, and each edge is part of 2 triangles  
- Therefore E = 3/2T 

T = 2V – 4  
- Euler Convex Polyhedron Formula: T – E + V = 2    
- =>   V = 3/2 T – T + 2   =>   T = 2V – 4  

If all vertices had 6 triangles, T = 2V  
- There are 6 edges per vertex, and every edge connects 2 vertices 
- Therefore, E = 6/2V   =>   3/2T = 6/2V  =>   T = 2V 

T cannot equal both 2V – 4 and 2V, a contradiction  
- Therefore, the mesh cannot have 6 triangles for every vertex 
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Loop subdivision via edge operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

#ip

Next, #ip new edges that touch a new and old vertex:
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Continuity of loop subdivision surface
At extraordinary vertices 
- Surface is at least C1 continuous  

Everywhere else (“ordinary” regions) 
- Surface is C2 continuous
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Loop subdivision results
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Catmull-Clark Subdivision
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Catmull-Clark subdivision (regular quad mesh)
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Catmull-Clark subdivision (regular quad mesh)
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Catmull-Clark subdivision (regular quad mesh)

Each subdivision step: 
  Add vertex in each face 
  Add midpoint on each edge 
  Connect all new vertices
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Catmull-Clark vertex update rules (quad mesh)
Face point f =

v1 + v2 + v3 + v4

4v1

v2 v3

v4

f

v1

v2

f1 f2
e

e =
v1 + v2 + f1 + f2

4

Edge point

f1 f2

f3 f4

p
v

m1

m2

m3

m4

Vertex point

v =
f1 + f2 + f3 + f4 +2(m1 +m2 +m3 +m4)+4p

16

m midpoint of edge, not “edge point”
p old “vertex point”
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Catmull-Clark subdivision (general mesh)

Non-quad face 

Extraordinary 
vertex 
(valence != 4)

Each subdivision step: 
  Add vertex in each face 
  Add midpoint on each edge 
  Connect all new vertices
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Catmull-Clark subdivision (general mesh)

How many extraordinary  
vertices after first subdivision? 
What are their valences? 
How many non-quad faces?
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Catmull-Clark subdivision (general mesh)
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Catmull-Clark subdivision (general mesh)
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Catmull-Clark vertex update rules (general mesh)
f = average of surrounding vertices

e =
f1 + f2 + v1 + v2

4
These rules reduce to earlier quad 
rules for ordinary vertices / faces

v =
f̄
n

+
2m̄
n

+
p(n�3)

n

f̄ = average of adjacent face points
m̄ = average of adjacent midpoints

n = valence of vertex
p = old ”vertex” point
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Continuity of Catmull-Clark surface
At extraordinary points 
- Surface is at least C1 continuous  

Everywhere else (“ordinary” regions) 
- Surface is C2 continuous
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What about sharp creases?

From Pixar Short, “Geri’s Game” 
Hand is modeled as a Catmull Clark surface with creases between skin and !ngernail
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What about sharp creases?

Figure from:  Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases
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Creases and boundaries
Can create creases in subdivision surfaces by marking certain edges as “sharp”.  Surface 
boundary edges can be handled the same way 
- Use di"erent subdivision rules for vertices along these “sharp” edges

1

2

1

2

1

8

1

8
3

4

Insert new midpoint vertex, 
weights as shown 

Update existing vertices,  
weights as shown 
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Subdivision in action (“Geri’s Game”, Pixar)
Subdivision used for entire character: 
- Hands and head 
- Clothing, tie, shoes
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Subdivision in action (Pixar’s “Geri’s Game”)



Stanford CS248A, Winter 2024

Mesh simpli!cation (downsampling)
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How do we resample meshes? (reminder)
Edge split is (local) upsampling: 

Edge collapse is (local) downsampling: 

Edge #ip is (local) resampling: 

Still need to intelligently decide which edges 
to modify!

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse
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Mesh simpli!cation
Goal: reduce number of mesh elements while maintaining overall shape

30,000 triangles 3,000 300 30
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Estimate: error introduced by collapsing an edge?
How much geometric error is introduced by collapsing an edge?

collapse
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Sketch of Quadric Error  
Mesh Simpli!cation
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Simpli!cation via quadric error
Iteratively collapse edges 
Which edges?  Assign score with quadric error metric* 
- Approximate distance to surface as sum of squared distances to planes containing 

nearby triangles 
- Iteratively collapse edge with smallest score 
- Greedy algorithm... great results!

* (Garland & Heckbert 1997)
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Distance from point to a line (and a plane)
Line is de!ned by: 

- Its normal: N 
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x, 
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.) 

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)

Distance to line:
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Quadric error matrix (encodes squared distance)
- Suppose we have: 

- a query point (x,y,z) 
- a normal (a,b,c) 
- an o"set d := –(xp,yp,zp) • (a,b,c) 

- Then in homogeneous coordinates, let 
- u := (x,y,z,1) 
- v := (a,b,c,d) 

- Signed distance to plane is then  
D = uvT = vuT = ax+by+cz+d 

- Squared distance is D2 = (uvT)(vuT) = u (vTv) uT := uTQu 
- Distance is 2nd degree (“quadric”) polynomial in x,y,z
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Cost of edge collapse
How much does it cost to collapse an edge? 
Idea: compute edge midpoint Vmid, measure quadric error at this point 
Error at Vmid given by vmidT(Q0 + Q1)vmid  

Intuition: cost is sum of squared di"erences to original position of triangles now touching Vmid 

collapse

Better idea: choose point on edge (not necessarily the midpoint) that minimizes quadric error 

More details: Garland & Heckbert 1997

V0 V1 Vmid = (V0 + V1) / 2

See next slide for Qi
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“Quadric error metric at mesh vertex”
Heuristic: “error metric at vertex V” is sum of squared distances to triangles connected to V 
Encode this as a single quadric matrix per vertex that is the sum of quadric error matrices 
for all triangles

Q1

Q2Q3

Q4

Q5

QV

QV =
NX

i=1

Qi
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Quadric error simpli!cation: algorithm
- Compute quadric error matrix Q for each triangle’s plane 
- Set Q at each vertex to sum of Q’s from neighbor triangles 
- Set Q at each edge to sum of Q’s at endpoints 
- Find point at each edge minimizing quadric error 
- Until we reach target # of triangles: 

- collapse edge (i,j) with smallest cost to get new vertex m 
- add Qi and Qj to get quadric Qm at vertex m 
- update cost of edges touching vertex m



Stanford CS248A, Winter 2024

Quadric error mesh simpli!cation

5,804 994 532 248 64

G
arland and H

eckbert ‘97

30,000 triangles 3,000 300 30



Stanford CS248A, Winter 2024

Mesh Regularization
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What makes a “good” triangle mesh?
One rule of thumb: triangle shape

“GOOD” “BAD”

*See Shewchuk, “What is a Good Linear Element”

One rule of thumb: triangle shape  
More speci!c condition: Delaunay 

- “Circumcircle interiors contain no vertices.” 
Not always a good condition, but often* 

- Good for simulation 

- Not always best for shape approximation
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subdivide

What else constitutes a good mesh?
Rule of thumb: regular vertex degree 
Triangle meshes: ideal is every vertex with valence 6:

Why? Better triangle shape, important for  (e.g.) subdivision:
“GOOD” “OK” “BAD”

*See Shewchuk, “What is a Good Linear Element”
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Isotropic remeshing
Goal: try to make triangles uniform in shape and size
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How do we make a mesh “more delaunay”?
Already have a good tool: edge #ips! 

If α+β > π, #ip it! 

In practice: a simple, e"ective way to improve mesh quality
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How do we improve degree?
Edge #ips! 
If total deviation from degree 6 gets smaller, #ip it!

#ip

Iterative edge #ipping acts like “discrete di"usion” of degree 

No (known) guarantees; works well in practice
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How do we make triangles “more round”?
Delaunay doesn’t mean equilateral triangles 
Can often improve shape by centering vertices:

average

[See Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]
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Isotropic remeshing algorithm*
Repeat four steps: 
- Split edges over 4/3rds mean edge length 
- Collapse edges less than 4/5ths mean edge length 
- Flip edges to improve vertex degree 
- Center vertices tangentially

* Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”
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Things to remember
Triangle mesh representations 
- Triangles vs points+triangles 
- Half-edge structure for mesh traversal and editing 

Geometry processing basics 
- Local operations: #ip, split, and collapse edges 
- Upsampling by subdivision (Loop, Catmull-Clark) 
- Downsampling by simpli!cation (Quadric error) 
- Regularization by isotropic remeshing
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