
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2024

Lecture 7:

Mesh representations and
Mesh Processing

Stanford CS248A, Winter 2024

A small triangle mesh

8 vertices, 12 triangles

Stanford CS248A, Winter 2024

A large triangle mesh
David
Digital Michelangelo Project
28,184,526 vertices
56,230,343 triangles

Stanford CS248A, Winter 2024

Even larger meshes
Google Earth
Meshes reconstructed from satellite and aerial photography
Trillions of triangles

Stanford CS248A, Winter 2024

Recall: image upsampling

Convert representation of signal given by samples taken at black dots
into a representation given at new set of denser samples (red dots)

Stanford CS248A, Winter 2024

Recall:
image upsampling

Upsampling via
Nearest neighbor

interpolation

Stanford CS248A, Winter 2024

Recall:
image upsampling

Upsampling via
bilinear interpolation

Stanford CS248A, Winter 2024

Recall: image downsampling

Convert representation of signal given by samples taken at black dots
into a representation given at new set of sparser samples (red dots)

Stanford CS248A, Winter 2024

Recall: image resampling

Convert representation of signal given by samples taken at black dots
into a representation given at new set of samples (red dots)

Stanford CS248A, Winter 2024

Examples of geometry processing

Stanford CS248A, Winter 2024

Mesh upsampling — subdivision

Increase resolution via interpolation

Stanford CS248A, Winter 2024

Mesh downsampling — simpli!cation

Decrease resolution; try to preserve shape/appearance

Stanford CS248A, Winter 2024

Mesh resampling — regularization

Modify sample distribution to improve quality

Stanford CS248A, Winter 2024

More geometry processing tasks

reconstruction
filtering

remeshing
compressionparameterizationshape analysis

Stanford CS248A, Winter 2024

Today
How to represent meshes (data structures)

How to perform a number of basic mesh processing operations
- Subdivision (upsampling)
- Mesh simpli!cation (downsampling)
- Mesh resampling

Stanford CS248A, Winter 2024

Mesh representations

Stanford CS248A, Winter 2024

Basic mesh representation: list of triangles

Stanford CS248A, Winter 2024

Another representation:
Lists of vertexes / indexed triangle

Stanford CS248A, Winter 2024

Comparison
List of triangles
- GOOD: simple
- BAD: contains redundant per-vertex information

List of vertexes + list of indexed triangles
- GOOD: sharing vertex position information reduces memory usage
- GOOD: ensures integrity of the mesh (changing a vertex’s position in 3D space causes

that vertex in all the polygons to move)

Stanford CS248A, Winter 2024

Mesh topology vs surface geometry
Same vertex positions, di"erent mesh topology

Same topology, di"erent vertex positions

Notice di"erent
connectivity

Stanford CS248A, Winter 2024

Smooth surfaces
Intuitively, a surface is the boundary or “shell” of an object
(Think about the candy shell, not the chocolate.)
Surfaces are manifold:
- If you zoom in far enough (at any point) looks like a plane*
- E.g., the Earth from space vs. from the ground

*…or can easily be #attened into the plane, without cutting or ripping.

u

v

Stanford CS248A, Winter 2024

Why is the manifold property valuable?
Makes life simple: all surfaces look the same (at least locally)
Gives us coordinates! (at least locally)

Stanford CS248A, Winter 2024

Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.

Stanford CS248A, Winter 2024

More examples of smooth surfaces
Which of these shapes are manifold?

Stanford CS248A, Winter 2024

A manifold polygon mesh has fans, not !ns
For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “!ns”)
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES

Stanford CS248A, Winter 2024

What about boundary?
The boundary is where the surface “ends.”
E.g., waist and ankles on a pair of pants.
Locally, looks like a half disk
Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

YES

Stanford CS248A, Winter 2024

Topological validity: manifold
A 2D manifold is a surface that when cut with a small sphere always yields a disk
(or a half disk on the boundary)

Manifold Not manifold

With border With border

Stanford CS248A, Winter 2024

Manifolds have useful properties
A 2D manifold is a surface that when cut with a small sphere always yields a disk
If a mesh is manifold, we can rely on these useful properties: *
- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces
- Euler’s polyhedron formula holds: #f – #e + #v = 2

(for a surface topologically equivalent to a sphere)
(Check for a cube: 6 – 12 + 8 = 2)

* Some of these properties only apply to non-border mesh regions

Stanford CS248A, Winter 2024

Topological validity: orientation consistency

AB

C

D

AB

C

D

OK bad

Non-orientable
(e.g., Moebius strip)

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Image credit: Wikipedia

Stanford CS248A, Winter 2024

Simple example: triangle-neighbor data structure
// definition of a triangle
struct Tri {

Vert* v[3];
Tri* t[3];

}

// definition of a triangle vertex
struct Vert {

Vec3 pos;
Tri* t;

}
t[0]

t[1]t[2]

v[0]

v[1]

v[2]

Stanford CS248A, Winter 2024

Triangle-neighbor – mesh traversal

Tri* ccw_tri(Vert *v, Tri *t)
{

if (v == t->v[0])
return t[0];

if (v == t->v[1])
return t[1];

if (v == t->v[2])
return t[2];

}

t[0]

t[1]t[2]

Find next triangle counter-clockwise around vertex v from triangle t

t

v[0]

v[1]

v[2]

Stanford CS248A, Winter 2024

Half-edge data structure

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge {

 Halfedge *twin,

 Halfedge *next;

 Vertex *vertex;

 Edge *edge;

 Face *face;

}

Key idea: two half-edges act as “glue”
between mesh elements

Each vertex, edge and face points
to one of its half edges

struct Vertex {

 Vec3 pos;

 Halfedge *halfedge;

}

struct Edge {

 Halfedge *halfedge;

}

struct Face {

 Halfedge *halfedge;

}

Stanford CS248A, Winter 2024

Half-edge structure facilitates mesh traversal
Use twin and next pointers to move around mesh
Process vertex, edge, and/or face pointers

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 do_work(h->vertex);
 h = h->next;
}
while(h != f->halfedge);

Example 1: process all vertices of a face

Stanford CS248A, Winter 2024

Half-edge structure facilitates mesh traversal
Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {
 do_work(h->edge);
 h = h->twin->next;
}
while(h != v->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Stanford CS248A, Winter 2024

Local mesh operations

Stanford CS248A, Winter 2024

Half-Edge – local mesh editing
Consider basic operations for linked list: insert, delete
Basic ops for half-edge mesh: #ip, split, collapse edges

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Allocate / delete elements; reassign pointers
(Care is needed to preserve mesh manifold property)

Stanford CS248A, Winter 2024

Half-edge – edge #ip
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

b

c

a d

b

c

a d

!ip

In implementaton: you’ll perform a long list of half-edge pointer reassignments
However, no mesh elements created/destroyed

Stanford CS248A, Winter 2024

Thought experiment: de!ning edge #ip on N-gons?
I !nd it very use to think about this case…

What is a “reasonable” thing to do.

Does your approach reduce to triangle edge
#ips in the N=3 case?

a
b

c

de

f

g

Stanford CS248A, Winter 2024

Half-edge – edge split
Insert midpoint m of edge (c,b), connect to get four triangles:

Must add elements to mesh (new vertex, faces, edges)
Again, many half-edge pointer reassignments

b

m

c

a d

b

c

a d

split

Stanford CS248A, Winter 2024

Half-edge – edge collapse
Replace edge (c,d) with a single vertex m:

Must delete elements from the mesh
Again, many half-edge pointer reassignments

a

b

c d

a

b

m

collapse

Stanford CS248A, Winter 2024

Global mesh operations: geometry processing
Mesh subdivision (form of subsampling)
Mesh simpli!cation (form of downsampling)
Mesh regularization (form of resampling)

Stanford CS248A, Winter 2024

Subdivision — upsampling a mesh

Stanford CS248A, Winter 2024

Upsampling via subdivision

Repeatedly split each element into smaller pieces

Replace vertex positions with weighted average of neighbors

Main considerations:

- interpolating vs. approximating

- limit surface continuity (C1, C2, ...)

- behavior at irregular vertices

Many options:

- Quad: Catmull-Clark

- Triangle: Loop, butter#y, sqrt(3)

Stanford CS248A, Winter 2024

Loop subdivision
Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating

Sim
on Fuhrm

an

Stanford CS248A, Winter 2024

Loop subdivision algorithm
Split each triangle into four

1/8

1/8

3/83/8

New vertices
(weighted sum of vertices on

split edge, and vertices
“across from” edge)

u u

u u

u u1 – n*u

n = vertex degree

u = 3/16 if n=3, 3/(8n) otherwise

Old vertices
(weighted sum of

edge adjacent vertices)

Compute new vertex positions using weighted sum of prior vertex positions:

Stanford CS248A, Winter 2024

Loop subdivision algorithm
Example, for degree 6 vertices (“regular” vertices)

10/16

1/16

1/16 1/16

1/16

1/16 1/16

Stanford CS248A, Winter 2024

Loop subdivision results
Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating

Credit: Simon Fuhrman

Stanford CS248A, Winter 2024

Semi-regular meshes
Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to
a sphere, then not all the vertices can have
degree 6

Must have a few extraordinary points
(degree not equal to 6)

Extraordinary vertex

Stanford CS248A, Winter 2024

Proof: always an extraordinary vertex
Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles

E = 3/2 T
- There are 3 edges per triangle, and each edge is part of 2 triangles
- Therefore E = 3/2T

T = 2V – 4
- Euler Convex Polyhedron Formula: T – E + V = 2
- => V = 3/2 T – T + 2 => T = 2V – 4

If all vertices had 6 triangles, T = 2V
- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, E = 6/2V => 3/2T = 6/2V => T = 2V

T cannot equal both 2V – 4 and 2V, a contradiction
- Therefore, the mesh cannot have 6 triangles for every vertex

Stanford CS248A, Winter 2024

Loop subdivision via edge operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

#ip

Next, #ip new edges that touch a new and old vertex:

Stanford CS248A, Winter 2024

Continuity of loop subdivision surface
At extraordinary vertices
- Surface is at least C1 continuous

Everywhere else (“ordinary” regions)
- Surface is C2 continuous

Stanford CS248A, Winter 2024

Loop subdivision results

Stanford CS248A, Winter 2024

Catmull-Clark Subdivision

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (regular quad mesh)

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (regular quad mesh)

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (regular quad mesh)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Stanford CS248A, Winter 2024

Catmull-Clark vertex update rules (quad mesh)
Face point f =

v1 + v2 + v3 + v4

4v1

v2 v3

v4

f

v1

v2

f1 f2
e

e =
v1 + v2 + f1 + f2

4

Edge point

f1 f2

f3 f4

p
v

m1

m2

m3

m4

Vertex point

v =
f1 + f2 + f3 + f4 +2(m1 +m2 +m3 +m4)+4p

16

m midpoint of edge, not “edge point”
p old “vertex point”

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (general mesh)

Non-quad face

Extraordinary
vertex
(valence != 4)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (general mesh)

How many extraordinary
vertices after first subdivision?
What are their valences?
How many non-quad faces?

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (general mesh)

Stanford CS248A, Winter 2024

Catmull-Clark subdivision (general mesh)

Stanford CS248A, Winter 2024

Catmull-Clark vertex update rules (general mesh)
f = average of surrounding vertices

e =
f1 + f2 + v1 + v2

4
These rules reduce to earlier quad
rules for ordinary vertices / faces

v =
f̄
n

+
2m̄
n

+
p(n�3)

n

f̄ = average of adjacent face points
m̄ = average of adjacent midpoints

n = valence of vertex
p = old ”vertex” point

Stanford CS248A, Winter 2024

Continuity of Catmull-Clark surface
At extraordinary points
- Surface is at least C1 continuous

Everywhere else (“ordinary” regions)
- Surface is C2 continuous

Stanford CS248A, Winter 2024

What about sharp creases?

From Pixar Short, “Geri’s Game”
Hand is modeled as a Catmull Clark surface with creases between skin and !ngernail

Stanford CS248A, Winter 2024

What about sharp creases?

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Stanford CS248A, Winter 2024

Creases and boundaries
Can create creases in subdivision surfaces by marking certain edges as “sharp”. Surface
boundary edges can be handled the same way
- Use di"erent subdivision rules for vertices along these “sharp” edges

1

2

1

2

1

8

1

8
3

4

Insert new midpoint vertex,
weights as shown

Update existing vertices,
weights as shown

Stanford CS248A, Winter 2024

Subdivision in action (“Geri’s Game”, Pixar)
Subdivision used for entire character:
- Hands and head
- Clothing, tie, shoes

Stanford CS248A, Winter 2024

Subdivision in action (Pixar’s “Geri’s Game”)

Stanford CS248A, Winter 2024

Mesh simpli!cation (downsampling)

Stanford CS248A, Winter 2024

How do we resample meshes? (reminder)
Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge #ip is (local) resampling:

Still need to intelligently decide which edges
to modify!

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Stanford CS248A, Winter 2024

Mesh simpli!cation
Goal: reduce number of mesh elements while maintaining overall shape

30,000 triangles 3,000 300 30

Stanford CS248A, Winter 2024

Estimate: error introduced by collapsing an edge?
How much geometric error is introduced by collapsing an edge?

collapse

Stanford CS248A, Winter 2024

Sketch of Quadric Error
Mesh Simpli!cation

Stanford CS248A, Winter 2024

Simpli!cation via quadric error
Iteratively collapse edges
Which edges? Assign score with quadric error metric*
- Approximate distance to surface as sum of squared distances to planes containing

nearby triangles
- Iteratively collapse edge with smallest score
- Greedy algorithm... great results!

* (Garland & Heckbert 1997)

Stanford CS248A, Winter 2024

Distance from point to a line (and a plane)
Line is de!ned by:

- Its normal: N
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)

Distance to line:

Stanford CS248A, Winter 2024

Quadric error matrix (encodes squared distance)
- Suppose we have:

- a query point (x,y,z)
- a normal (a,b,c)
- an o"set d := –(xp,yp,zp) • (a,b,c)

- Then in homogeneous coordinates, let
- u := (x,y,z,1)
- v := (a,b,c,d)

- Signed distance to plane is then
D = uvT = vuT = ax+by+cz+d

- Squared distance is D2 = (uvT)(vuT) = u (vTv) uT := uTQu
- Distance is 2nd degree (“quadric”) polynomial in x,y,z

Stanford CS248A, Winter 2024

Cost of edge collapse
How much does it cost to collapse an edge?
Idea: compute edge midpoint Vmid, measure quadric error at this point
Error at Vmid given by vmidT(Q0 + Q1)vmid

Intuition: cost is sum of squared di"erences to original position of triangles now touching Vmid

collapse

Better idea: choose point on edge (not necessarily the midpoint) that minimizes quadric error

More details: Garland & Heckbert 1997

V0 V1 Vmid = (V0 + V1) / 2

See next slide for Qi

Stanford CS248A, Winter 2024

“Quadric error metric at mesh vertex”
Heuristic: “error metric at vertex V” is sum of squared distances to triangles connected to V
Encode this as a single quadric matrix per vertex that is the sum of quadric error matrices
for all triangles

Q1

Q2Q3

Q4

Q5

QV

QV =
NX

i=1

Qi

Stanford CS248A, Winter 2024

Quadric error simpli!cation: algorithm
- Compute quadric error matrix Q for each triangle’s plane
- Set Q at each vertex to sum of Q’s from neighbor triangles
- Set Q at each edge to sum of Q’s at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target # of triangles:

- collapse edge (i,j) with smallest cost to get new vertex m
- add Qi and Qj to get quadric Qm at vertex m
- update cost of edges touching vertex m

Stanford CS248A, Winter 2024

Quadric error mesh simpli!cation

5,804 994 532 248 64

G
arland and H

eckbert ‘97

30,000 triangles 3,000 300 30

Stanford CS248A, Winter 2024

Mesh Regularization

Stanford CS248A, Winter 2024

What makes a “good” triangle mesh?
One rule of thumb: triangle shape

“GOOD” “BAD”

*See Shewchuk, “What is a Good Linear Element”

One rule of thumb: triangle shape
More speci!c condition: Delaunay

- “Circumcircle interiors contain no vertices.”
Not always a good condition, but often*

- Good for simulation

- Not always best for shape approximation

Stanford CS248A, Winter 2024

subdivide

What else constitutes a good mesh?
Rule of thumb: regular vertex degree
Triangle meshes: ideal is every vertex with valence 6:

Why? Better triangle shape, important for (e.g.) subdivision:
“GOOD” “OK” “BAD”

*See Shewchuk, “What is a Good Linear Element”

Stanford CS248A, Winter 2024

Isotropic remeshing
Goal: try to make triangles uniform in shape and size

Stanford CS248A, Winter 2024

How do we make a mesh “more delaunay”?
Already have a good tool: edge #ips!

If α+β > π, #ip it!

In practice: a simple, e"ective way to improve mesh quality

Stanford CS248A, Winter 2024

How do we improve degree?
Edge #ips!
If total deviation from degree 6 gets smaller, #ip it!

#ip

Iterative edge #ipping acts like “discrete di"usion” of degree

No (known) guarantees; works well in practice

Stanford CS248A, Winter 2024

How do we make triangles “more round”?
Delaunay doesn’t mean equilateral triangles
Can often improve shape by centering vertices:

average

[See Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]

Stanford CS248A, Winter 2024

Isotropic remeshing algorithm*
Repeat four steps:
- Split edges over 4/3rds mean edge length
- Collapse edges less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

* Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

Stanford CS248A, Winter 2024

Things to remember
Triangle mesh representations
- Triangles vs points+triangles
- Half-edge structure for mesh traversal and editing

Geometry processing basics
- Local operations: #ip, split, and collapse edges
- Upsampling by subdivision (Loop, Catmull-Clark)
- Downsampling by simpli!cation (Quadric error)
- Regularization by isotropic remeshing

Stanford CS248A, Winter 2024

Acknowledgements
Thanks to Keenan Crane, Ren Ng, Pat Hanrahan, James O’Brien, Steve Marschner for
presentation resources

