Lecture 12:

Monte Carlo Evaluation of
the Reflection Equation

Interactive Computer Graphics
Stanford (5248A, Winter 2024



Review: the reflection equation

e S /

L (p7 WO) — fr (p7 Wi —7 wo) Li(p7 Cdi) COs 91 dw;
02 | I |
BRDF lllumination
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Review: irradiance at point X from uniform area source

Assume area light emits radiance L from all directions from al points on surface.

cos 6 cos 6’

E(x) :/ Li(z,w) cosf dw :/ L dA’ A —
H?2 / /

x — 2|2

—_—
Integrate over solid angle Reparameterization: now integrate over light
source area, instead of solid angle

Integral reparameterization:

0/ T2
dw = ——> > dA’ /
[z — | =)

Radiance leaving light from xin direction w’is the same as radiance arriving at x from w:
Li(x,w)=L,(z',0w) =L
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Last time: the reflection equation

&S

L (p7 WO) — fr (p7 Wi —7 wo) Li(p7 Cdi) COs 91 dw;
02 | I |
BRDF lllumination
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Q. How do we estimate the value of these integrals?
(A. Monte Carlo integration)



Monte Carlo integration

° ° b
m Definite integral / o

What we seek to estimate

m Random variables
X is the value of a random sample drawn from X; ~p (z)

the distribution p(x) Y; = f(X;)

Y isalso a random variable.

m Expectation of f

E[Y)] = E[f(X,)) = / f(2) ple) da

m MCestimator: (assuming samples X; are
drawn from uniform sampling of domain) *

b h— g N
Monte Carlo estimate of / f (:1:) dx isgivenby [ N = E 1% ;
a 1 v . 1
Y —

* We'll relax this assumption shortly. ,
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Basic Monte Carlo estimator

X?Z ~ U (CL, b) <4 Uniform distribution over domain [a,b]
1

p(z) = 7—

Note: Even though my notation suggests this is integration over 1D domain [a,b], this holds for
Uniform sampling over any integration domain, such as the 2D hemisphere of solid angles on the previous slide. Stanford (52487, Winter 2024



Why this works. ..

N
E[Fy]| =FE Y,
Unbiased estimator: N =
Expected value of , N , N
° O O — CL S CI/
estlm.ator Is the integral =— Z ElY;] = 5 Z Elf(X;)
we wish to evaluate. i=1 i=1
b—a e [P
=S [ r@) e
i=14 . .
N . Uniform den5|ty,1so:
—v > [ f@ ") =5
Properties of expectation: i=1 "¢
b
L ‘ ‘ = [ f(x)dx

Note: Even though my notation suggests this is integration over 1D domain [a,b],
this proof holds for any integration domain, such as the 2D hemisphere of directions on the previous slide.
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Direct lighting: hemisphere sampling

Light source

Occluder
(blocks light)

16 light samples (16 shadow rays)
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Monte Carlo integration applied to illumination (hemisphere sampling) *

We want to estimate this integral
E(z) = /H L (z,w) cos O dw (total incident irradiance at surface point x)

Li(x,w)

4

Monte Carlo estimator:

1 We sample directions (aka rays) uniformly from
X i " p(LU) — —— < the hemisphere of directions
T (a ray direction is a random variable)
Y = f(X5)
. — T , » For each ray we compute the incident
Y L (QZ‘, wz) cos 0; differential irradiance.
N
27
FN — YZ §———— Weaverage all these samples, and scale
Then the expected value of the — N “ by the size of the domain we are
1=1 sampling from.
result is the value of the integral. (The hemisphere has 211 steradians)

* Assume area light emits radiance L from all directions from all points on surface. Stanford CS248A. Winter 2024



Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle
F(x) = / L(x,w) cosfdw
H?2

Given surface point X A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; (fronx uniform distribution over hemisphere) *
Compute incoming radiance arriving L; at p from direction: (v,
Compute incidentirradiance duetoray: dF;, — L;cos 0,

2 . :
Accumulate NﬂdEi into estimator

* We will relax the uniform probability restriction soon... Stanford (5248A, Winter 2024



Direct lighting: hemisphere sampling

Incident lighting estimator uses random directions
when computing incident lighting for different points.
Some of those directions hit the light (and contribute
illumination, some do not)

(The estimator is a random variable!)

16 light samples
Uniformly sampled from hemisphere)
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How do we generate samples from a domain according
to a probability distribution p(x)?



Discrete probability distributions

n discrete values =z;

With probability p;

Requirements of a PDF:

pi = U
T
2 pi=
1=1
. e : 1
Six-sided die example: p; = .

Think: D; is the probability that a random measurement of _X will yield the value x;
X takes on the value x; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P; = ) p,
1=1

where:
0< P, <1
P, =1
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Sampling from discrete probability distributions

How do we generate samples of a discrete
random variable (with a known PDF?)

To randomly select an event,
select «; if

P11 <& P

T

Uniform random variable € [0, 1)
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Continuous probability distributions
PDF p(z) Uniform distribution: p(x) = ¢

(for random variable _X defined on [0,1] domain)
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Sampling continuous random variables using the
inversion method

Cumulative probability distribution function
P(x) =Pr(X < x)

Construction of samples:
Solve for x = P~ (¢)

Must know the formula for:
1. The integral of p(x)
2. The inverse function P! (z)
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Example: applying the inversion method

Relative density of probability

Given: of random variable taking on |
value x over [0,2] domain J!

2 - I
f(r)=2° x€]0,2

Compute PDF from f(x): i s casn feses
2
1 = / c f(z)dx
’ |
= o(F(2) - F(0)  F(a)= 7a°
1
— =27
3
8¢ 3 3 o Probability density function
— g — > C—= é? p(x) T éx (integratesto 1)
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Example: applying the inversion method

Given: /

f(x) = oz € 0, 2] 7

A e P v T N R - LA PN W M v W N G - (L VN, e | |

X
3

Stanford (5248A, Winter 2024



Example: applying the inversion method

Given:
flx)=a2* x¢c]l0,2]
p(x) = ng
3
X
P(x) = <
Sample from p(z) §
2
3 /
¢ = P(a) = = //
r— /R¢ o T
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How do we uniformly sample the unit circle?
(Choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m ¢ =uniformrandom angle between 0 and 277
m 7 = uniform random radius between 0 and 1

m Returnpoint: (7 cos 6, rsin 0)

This algorithm does not produce the desired uniform sampling of the area of a circle!
Why?
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Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

\\K jdr

0 =2n& =& p(r,0)drdf ~ rdrdf
p(r,0) ~r

@k
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Uniform area sampling of a circle

WRONG RIGHT
Not Equi-areal Equi-areal
0 = 27T§1 0 — 27T€1
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Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1 r

p(r,0)drdf = —rdrdf — p(r,0) = —

.

p(r, ) =1p(r)p(9) 70 independent / }rdrdé’
p(0) = 5 / %\

| dr
P(0) = -0 § = 276, K j
p(r) = 2r \\ /

=

-
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Shirley’s mapping

A

r =&
- /\\X\\ &2
AT T
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Uniform sampling via rejection sampling

® Generate random point within unit circle

° ¢ do {

X = uniform(-1,1);

P y = uniform(-1,1);

® } while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square
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Rejection sampling to generate 2D directions

/

Goal: generate random directions in 2D with
uniform probability

X
Y

X
X

dir = x/r;

Y:dir = y/r;

This algorithm is not correct! What is wrong?

What's a better algorithm?

uniform(-1,1) ;
uniform(-1,1) ;

sqrt (x*x+y*y) ;
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Uniform hemisphere sampling

Generate random direction on hemisphere (all directions equally likely)

1

plw) = 5

Direction computed from uniformly distributed point on 2D plane:

(1,62) = (/1 — € cos(2ma), /1 — €2 sin(2mEs), &1)

1.0

08 o

L 1) ° () o ¢
o °® °
o ° ¢
o °
: ® ¢ ° e ©
06 ® o
) | o () Y ) o
I ® °
I L (]
04 ¢ o ©
e o ° ° o
L . ‘ .
o o
o ©® ®

0.2* o ()

Exercise to students: derive from the inversion method
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Back to the Monte Carlo
Integration story...
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Review... direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle
F(x) = / L(x,w) cosfdw
H?2

Given surface point X A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; (fronx uniform distribution over hemisphere) *
Compute incoming radiance arriving L; at p from direction: (v,
Compute incidentirradiance duetoray: dF;, — L;cos 0,

2 . :
Accumulate NﬂdEi into estimator

* We will relax the uniform probability restriction soon... Stanford (5248A, Winter 2024



Now let’s reparameterize the integral as integration over the light

cosfcost | We want to estimate this integral
L (33) — /H , L; (:E,w) cos 0 dw = / / L ‘ T x,|2 dA (total incident irradiance at surface point x)

Monte Carlo estimator:

) 1 We sample points on the light source uniformly
X i " p(QZ ) = <€— with respect to area (a point on the lightis a
A random variable)
Y; = f(X5)
/ o o o o
cos 6 cos 6 We compute the incident differential
Y, =L <4— irradiance from the sampled point on
| T — aj‘/ ‘ 2 the light to surface point x.
y N
Then the expected value of the —— v = — Y, €————— Weaverageall these samples, and
. . N - scale by the size of the domain we are
result is the value of the integral. v=1 sampling from. (The light has area &)

* Assume area light emits radiance L from all directions from all points on surface. Stanford CS248A. Winter 2024



Direct lighting estimate (area sampling light with area A’)

Given surface point x
For each sample i of N samples:

Generate random point x’ on area light, compute direction fromxtox’: w;

/
Compute incident irradiance due to ray fromx’tox:as df; = L= v cost

/ ‘fB—x/P

Accumulate % dF,; intoestimator
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Direct lighting: area sampling

16 light samples (16 shadow rays)

Wait... how do we compute the shadows in this photo?
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Shadowed light area sampling

Note new: visibility term:

B . cosfcosl |
Blz) = / Vie, 2L z — 2|2 14 , 0 blocked
V(X,X ) = ..
1 wvisible
A —"7 .
[ \ X Monte Carlo estimator:
Scene occluder J e s,
AN v Lo
0 . i ~p(a) = Y0
» W =x—2x
Y Y; = f(X;)
- / ’ cos @ cos 0’
/ N W =2 —X E:V(m)gg/)[, G
aK=>3 z — 2|
— o
Fny = N - > Y,

* Assume area light emits radiance L from all directions from all points on surface. Stanford CS248A. Winter 2024



Direct lighting estimate (area sampling light with area A’)

Given surface point x
For each of N samples:
Generate random point x’ on area light, compute direction fromxtox’: w;

cos 6, cos b,

Compute incident irradiance due to ray fromx’'tox:as dre; = L, (2, —w;)V (z, ')

x — 2/ |?

/
Accumulate % dFE; into estimator I

How do you evaluate V()?
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How to compute if point is visible from another point?

How to evaluate V' (x, x) using ray tracing:

1. Trace ray from x toward x’
2. See if there is any hit with scene geometry closer to x than T — ' |
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Shadowed direct lighting estimate (area sampling light with area A')

Given surface point x
For each sample j of N samples:

Generate random point x’ on area light, compute direction fromxtox’: w;

cos 6 cos O’

Compute incident irradiance due to ray fromx’tox:as Jd&; = L ‘ E
L — X

Trace shadow ray from x in direction w; .
A/
If shadow ray does not hit geometry before x;, accumulate N dE; into estimator

Stanford (S248A, Winter 2024



Random sampling introduces noise

Incident lighting estimator uses different
random directions when computing inciden
lighting for different points. Some of those
directions are occluded, some are not!

The estimator is a random variable!)
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Random sampling introduces noise

Always sample light center Random area sampling

1 shadow ray per eye ray
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Uniform area sampling
16 shadow rays

16 shadow rays
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Variance

m Definition / Variance is expected squared deviation from mean
VIY]=E[(Y - E[Y])"]
= EB[Y?] — E[Y]

m Variance decreases linearly with number of samples

VI 20| = VI = N VY] = VY

Properties of variance:

A ] N
V> Y| => VY]
L 1=1 i 1=1

ViaeY] =a* VI]Y]
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Samples vs. error

BN Y .
',;\-‘ﬂl:ﬁ‘ﬂ_‘. A

N

256 1024
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For video see: http //pharr.org/matt/assets/b|stro-spp.mp4 ot Stanford (52484, Winter 2024



“Biasing” sample selection

m  We previously used a uniform probability distribution to generate samples in our estimator
m ldea: change the distribution—bias the selection of samples
X; ~ p(x)

m However, for estimator to remain unbiased, must change the estimator to:

m Note: “biasing” selection of random samples is different than creating a biased estimator

- Biased estimator: expected value of estimator does not equal integral it is designed to
estimate (not good!)

Stanford (5248A, Winter 2024



General unbiased Monte Carlo estimator

’ 1 (X
/a flaydo s 5 ) p(X;)

1=1

X; ~ p(x)

Consider the special case where X is drawn from uniform distribution:

b— a —
N = N Zf(Xz) 1
i=1
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Biased sample selection, but unbiased estimator...

E[Fy] =F

1 o [
=7 r)dx
Properties of expectation: N Z /a /()

E Y | ' :/abf(a:)dx

Note: Even though my notation suggests this is integration over 1D domain [a,b],
this proof holds for any integration domain, such as the 2D hemisphere of directions on the previous slide.
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Importance sampling

Idea: bias selection of samples towards parts of domain where function we are integrating is

large (“the most useful samples”)

Draw samples according to magnitude of f(x)

ﬁ ($ ) — Cf (.CU ) <—— Normalization to make a pdf

1
[ f(z)dx

C —

o S
F=

Recall definition of variance

VIf1=ELf"1-E°[f]

<4— (seneralized MC estimator

Bl = | % p(z) de

/ @) QCf(aﬁ)dx

flz)_
/ ) dx
/ r)dx

Zero variance!

~o

VIfl = E[f?] -
What's the gotcha??

E?[f] =

0

/|
/]

| p(x) dx_

cp(z)dx

1 2
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Effect of sampling distribution “Fit”

f(x)
' P2(x)

p1(x)

What is the behavior of f(x)/p1(x)? f(x)/p2(x)?
How does this impact the variance of the estimator?

Stanford (5248A, Winter 2024



Texture(u,v) defines incoming radiance from a direction:
L(w) = L(¢,0)




-

.
A

AT “‘

~ANC
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Consider this environment map

HDRI Haven: Quattro Canti Stanford CS248A, Winter 2024




Real world lighting: large differences in incoming radiance

~0.1

HDRI Haven: Quattro Canti

Stanford (5248A, Winter 2024



Importance sampling environment map lights

Ildea: sampling incident lighting directions proportional to luminance
(prioritize directions that contribute the most)

Luminance map

HDRI Haven: Quattro Canti Stanford CS248A, Winter 2024



Sky environment map with a bright sun

_

Most of the incoming light comes from this direction.

Stanford (5248A, Winter 2024
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poe Al

Uniform vs. importance sampling the environment light

256 1024

Uniform
sampling

s

Importance
sampling
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Comparing different techniques

m Variance in an estimator manifests as noise in rendered images

m Estimator efficiency measure:
1

Variance x Cost

Efficiency o<

m [f one integration technique has twice the variance as another, then it takes twice as
many samples to achieve the same variance

m [f one technique has twice the cost of another technique with the same variance, then it
takes twice as much time to achieve the same variance

Stanford (5248A, Winter 2024



Putting it all together: reflectance due to direct lighting

Estimating reflectance off surface point x in direction w,, due to incident illumination from

multiple area light sources . L
Tn
W;
Given surface pointx Radiance from light / N /

Sum over lights \‘\@A /> /
For each area light /: , cosfcosl
g LO(ZU,(U) — Z/A’ f(Xawiawo)L(l)(Xax)V(X7X) ‘X_X/‘Q dA

. . z z
For each sample i of N samples: JIE.

Generate random point x’ on light | according to »() for light, compute direction from x to x: Wi
Evaluate BRDF J/ (X, wi, Wo)
Compute incident irradiance due to ray from x’ to x: as <L

Trace shadow ray from x in direction “s,
. 1 _f(X, wi,wo) dEZ- . .
If shadow ray does not hit geometry before x; accumulate 7 into estimator

Cost???
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M Ilght sources

Pixar, Coco



-

[Bitterli et al. 2020]



Multiple light sources

N
m Recall Monte Carlo estimate ofasum > ",

1=1

m Define a discrete probability over terms p;

Zpizl

m Draw /Vsamples j ~ p;

m Estimator:

1 iy
N2

Stanford (5248A, Winter 2024



Multiple light sources

m Consider drawing a single sample:

) DraW one Sample ] ~ D Choose a Ilght Incoming radiance from light
- Compute /; \

1 fj — f(X7 Wi, wo) Li(j) (UJj) COS 91 dwi
- Estimator: f;/p;

m Expected value:

L 12 232531%5?1=:§£:f}

Py _

m What's a good discrete distribution p; for choosing lights? (uniform?)

Stanford (5248A, Winter 2024



Putting it all together: reflectance due to direct lighting

Estimating reflectance off surface point x in direction w,, due to incident illumination from
multiple area light sources
v

wO
Given surface point x... Radiance from light / 2
. Sum over only the sampled Ilghts / C /
For all K chosen lights: 0 cos
COS COS
Z f (%, wi, wo) L) (X, x') |X e dA’

dl;

Select area light / with probability 1

For each sample i of N samples:

Generate random point x’ on light | according to () for light, compute direction fromxtox’: W;

Evaluate BRDF [ (X, w;, Wo )
Compute incident irradiance due to ray from x’ to x: as d F;

Trace shadow ray from x in direction ;.

: I iy Wo)dE; | . :
If shadow ray does not hit geometry before x;, accumulate —— f(x, Wi, wo) into estimator

KN | prp(x’)
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Zero day scene (beeple@)

Very large number of lights

Y

|
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Uniform sampling (16 spp)

Choosing 16 lights (K=16, uniform probability across lights), tracing one ray to random point on each light (N=1)
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Importance sampling: sampling lights proportional to light power

Choosing 16 lights (K=16, light probability proportional to its power), tracing one ray to random point on each light (N=1)

(12 4x Iower mean squared error than uniform samplmg)
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Summary: Monte Carlo integration

m Monte Carlo estimator

- Estimate integral by evaluating function at random sample points in domain
N b
1 f(Xq) /
Fanr = — ~ x)dx
VEN 2w T,

m The function (the estimator) is computed by a ray tracer!

m Useful in rendering due to estimate high dimension integrals
- Faster convergence in estimating high dimensional integrals than non-randomized methods
- Butit'sstill slow...
- Suffers from noise due to variance in estimate (need many samples to produce good quality images)

® [mportance sampling

- Reduce variance by biasing choice of samples to regions of domain where value of function is large
= Intuition: pick samples that will “contribute most” to estimate
- Intelligent sampling matters A LOT!
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