
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2024

Lecture 14:

Modern Real-Time
Rendering Techniques

Stanford CS248A, Winter 2024Screenshot: Red Dead Redemption

Stanford CS248A, Winter 2024Screenshot: Far Cry 5

Stanford CS248A, Winter 2024Screenshot: Battle!eld V

Stanford CS248A, Winter 2024

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
How much radiance is incident from a given direction?

Last couple of lectures: ray-scene queries

Virtual
Sensor

Stanford CS248A, Winter 2024

Rasterization: algorithm for “camera ray”- scene queries
Rasterization is a e"cient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection

Note: rasterization does not yield uniform distribution in angle… angle between rays is smaller away from view
direction than it is in the center of the view because equal steps in Y are not equal steps in angle.

Stanford CS248A, Winter 2024

Review: basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth bu#er

“Given a triangle, !nd the samples it covers”
(!nding the samples is relatively easy since they are distributed uniformly on screen)

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Stanford CS248A, Winter 2024

Review: OpenGL/Direct3D graphics pipeline
* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized coordinate space

Input: vertices in 3D space1

2

3
4

Stanford CS248A, Winter 2024

Review: basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute rejected radiance from triangle r.tri at hit point And as you know now, a performant

raytracer will use an
acceleration structure like a BVH.

Stanford CS248A, Winter 2024

Theme of this part of the lecture
A surprising number of advanced lighting e#ects can be approximated using the basic
primitives of the rasterization pipeline, without the need to actually ray trace the scene
geometry. We are going to approximate the use of ray tracing with:

▪ Rasterization

▪ Texture mapping

▪ Depth bu#er for occlusion

These techniques have been the basis of high quality real-time rendering for decades.
Since ray tracing performance is not fast enough to be used in real-time applications.
Although this is changing…

Stanford CS248A, Winter 2024

Shadows

Stanford CS248A, Winter 2024

How much light is REFLECTED from p toward p0

Pinhole x

y

p0

P1

N
✓1

p
✓2

P2

!1

!2

Visibility term:
1, if P is visible from Pi
0, otherwise

(Point light 1 is at P1 and emits L1)L(p,!o) =
X

i

f(p,!i,!o)V (p,pi)Li cos ✓i

<latexit sha1_base64="wSNN6X9vinJb9U3QLAFpxkOGvaI=">AAACYHicbVHLSgMxFM1MfdT6qrrTTbAIClJmRNGNUHTjwoWCrUKnDJn0ThtMJkNyRylDf9KdCzd+iWmt4OtCyOHcc5KbkySXwmIQvHp+ZW5+YbG6VFteWV1br29sdqwuDIc211Kbh4RZkCKDNgqU8JAbYCqRcJ88Xk76909grNDZHY5y6Ck2yEQqOENHxfXn6/1IMRwmaZmPD2mkFQxYrA/oOY1soWJB0/8E4ru081PxhWMxPqDRIb12h7gt4trSCIeAzk7jeiNoBtOif0E4Aw0yq5u4/hL1NS8UZMgls7YbBjn2SmZQcAnjWlRYyBl/ZAPoOpgxBbZXTgMa0z3H9GmqjVsZ0in73VEyZe1IJU45md7+7k3I/3rdAtOzXimyvEDI+OdFaSEpajpJm/aFAY5y5ADjRrhZKR8ywzi6P6m5EMLfT/4LOkfN8Lh5cnvcaF3M4qiSHbJL9klITkmLXJEb0iacvHkVb8Vb9d79qr/ub3xKfW/m2SI/yt/+AE24s7M=</latexit>

(Point light 2 is at P2 and emits L2)

V (p,pi)

<latexit sha1_base64="GeCdIOcs87hssJSyOJn4+i8PASY=">AAACBHicbZDLSsNAFIZP6q3WW9RlN4NFqCAlkYoui25cVrAXaEOYTCft0MmFmYlQQhdufBU3LhRx60O4822ctEG09YeBj/+cw5zzezFnUlnWl1FYWV1b3yhulra2d3b3zP2DtowSQWiLRDwSXQ9LyllIW4opTruxoDjwOO144+us3rmnQrIovFOTmDoBHobMZwQrbblmuV3tB1iNPD+Np6foh102PXHNilWzZkLLYOdQgVxN1/zsDyKSBDRUhGMpe7YVKyfFQjHC6bTUTySNMRnjIe1pDHFApZPOjpiiY+0MkB8J/UKFZu7viRQHUk4CT3dmS8rFWmb+V+slyr90UhbGiaIhmX/kJxypCGWJoAETlCg+0YCJYHpXREZYYKJ0biUdgr148jK0z2p2vXZ+W680rvI4ilCGI6iCDRfQgBtoQgsIPMATvMCr8Wg8G2/G+7y1YOQzh/BHxsc3U9eX6A==</latexit>

Stanford CS248A, Winter 2024

Review: How to compute using ray tracing
Trace ray from point P to location Pi of light source
If ray hits scene object before reaching light
source… then P is in shadow

x

V (p,pi)

<latexit sha1_base64="GeCdIOcs87hssJSyOJn4+i8PASY=">AAACBHicbZDLSsNAFIZP6q3WW9RlN4NFqCAlkYoui25cVrAXaEOYTCft0MmFmYlQQhdufBU3LhRx60O4822ctEG09YeBj/+cw5zzezFnUlnWl1FYWV1b3yhulra2d3b3zP2DtowSQWiLRDwSXQ9LyllIW4opTruxoDjwOO144+us3rmnQrIovFOTmDoBHobMZwQrbblmuV3tB1iNPD+Np6foh102PXHNilWzZkLLYOdQgVxN1/zsDyKSBDRUhGMpe7YVKyfFQjHC6bTUTySNMRnjIe1pDHFApZPOjpiiY+0MkB8J/UKFZu7viRQHUk4CT3dmS8rFWmb+V+slyr90UhbGiaIhmX/kJxypCGWJoAETlCg+0YCJYHpXREZYYKJ0biUdgr148jK0z2p2vXZ+W680rvI4ilCGI6iCDRfQgBtoQgsIPMATvMCr8Wg8G2/G+7y1YOQzh/BHxsc3U9eX6A==</latexit>

p

Image credit: Grand Theft Auto V Stanford CS248A, Winter 2024

Convince yourself this algorithm produces “hard shadows” like these
(what you’d see on a sunny day)

Stanford CS248A, Winter 2024

Or this…

Stanford CS248A, Winter 2024

Point lights generate “hard shadows”
(Either a point is in shadow or it’s not)

x

Pi
1, if p is visible from Li
0, otherwise

V (p,Li) =

(

V (p,pi)

<latexit sha1_base64="GeCdIOcs87hssJSyOJn4+i8PASY=">AAACBHicbZDLSsNAFIZP6q3WW9RlN4NFqCAlkYoui25cVrAXaEOYTCft0MmFmYlQQhdufBU3LhRx60O4822ctEG09YeBj/+cw5zzezFnUlnWl1FYWV1b3yhulra2d3b3zP2DtowSQWiLRDwSXQ9LyllIW4opTruxoDjwOO144+us3rmnQrIovFOTmDoBHobMZwQrbblmuV3tB1iNPD+Np6foh102PXHNilWzZkLLYOdQgVxN1/zsDyKSBDRUhGMpe7YVKyfFQjHC6bTUTySNMRnjIe1pDHFApZPOjpiiY+0MkB8J/UKFZu7viRQHUk4CT3dmS8rFWmb+V+slyr90UhbGiaIhmX/kJxypCGWJoAETlCg+0YCJYHpXREZYYKJ0biUdgr148jK0z2p2vXZ+W680rvI4ilCGI6iCDRfQgBtoQgsIPMATvMCr8Wg8G2/G+7y1YOQzh/BHxsc3U9eX6A==</latexit>

p

Stanford CS248A, Winter 2024

What if you didn’t have a ray tracer,
just a rasterizer?

Stanford CS248A, Winter 2024

We want to shade these points
(aka “fragments” in rasterization pipeline)

Camera
position

What “shadow rays” do you need to
compute shading for this scene?

Surface

Stanford CS248A, Winter 2024

Shadow mapping

Image credits: Segal et al. 92, NVIDIA

“Shadow map” = depth map from
perspective of a point light.
(Store closest intersection along each
shadow ray in a texture)

[Williams 78]
Raytracing [Whitted 1980] and related techniques can accurately

render a variety of global illumination effects including hard shad-
ows. It is possible that real-time rendering systems will eventually
adopt raytracing techniques. However, even with recent progress in
this area [Wald et al. 2003], rendering performance remains inade-
quate for scenes containing deformable objects.
Shadow mapping [Williams 1978] and many of its variants

[Hourcade and Nicolas 1985; Fernando et al. 2001] leverage ex-
isting Z-buffer hardware to render shadows with high performance
for complex scenes. However, existing versions of the technique are
prone to sampling and self-shadowing artifacts that are sufficiently
serious to limit the technique’s use in real applications.
Figure 4 (left) illustrates the shadow map algorithm. The scene

is rendered first from the light position (yielding Znear values) and
then rendered from the eye position. Each pixel in the eye view is
treated as a 3-space point positioned according to its X / Y posi-
tion in the image plane and its Z value (from the depth buffer), and
is transformed into light space. This transformation yields a point
P in light space and a distance ZP between P and the light-view
image plane. The original eye-space pixel is considered to be in
shadow iff Znear ZP, using an estimated Znear value. The algo-
rithm estimates Znear from the Znear values of one or more light-
view sample(s) that are nearest to the projection of point P onto the
light-view image plane. This estimation step is the primary cause
of artifacts produced by the technique as the estimation error is gen-
erally unbounded.
Most recent efforts to reduce these artifacts have taken one of two

approaches. The first is to use additional information from object-
space silhouette computations to reduce or eliminate estimation er-
rors for the most common cases [Sen et al. 2003]. This approach
seems to be the most successful at reducing the incidence of esti-
mation artifacts, but sharp corners and details are often truncated or
lost due to limited precision in the contours used to represent the
silhouettes. Also, the need for object-space computation introduces
additional complexity into the rendering system. The second ap-
proach is to adapt the sampling rate in the light-view image plane to
the characteristics of the scene [Fernando et al. 2001; Stamminger
and Drettakis 2002], thereby reducing the average distance between
a projection of P and the nearest sample point. Fernando et al. [Fer-
nando et al. 2001] replace the standard light view image with an
adaptive image hierarchy. This focus on improving shadow quality
through strategic placement of shadow map sample points is simi-
lar to our own, but we take this approach to its logical extreme by
placing sample points in their ideal locations.

4 Irregular Shadow Mapping

Pseudocode for irregular shadow mapping is shown in Figure 5.
The scene is first rendered from the eye point. As in conventional
shadow mapping, pixels (at the Z values given by the Z-buffer) are
transformed into light space, yielding P and ZP. Unlike conven-
tional shadow mapping, scene geometry is then rasterized to sam-
ple positions in the light view image plane given by the projec-
tion of the transformed pixels, yielding Znear. As before, a pixel
is in shadow iff Znear ZP. Note that irregular shadow maps are
view-dependent. Samples are computed in the shadow map plane
precisely where required by pixels in the eye view. Therefore, no
mismatch exists between the sampling rates or sample positions in
eye and light space. Aliasing and self-shadowing are avoided, and
no unnecessary samples are computed. Moreover, given points P
prior to rasterization in light space, and the property that Znear is
always less than or equal to ZP, we can maximize our use of the
available Z-buffer precision.
Figure 6 plots the location of sample points within irregular

shadow maps for the Doom 3 scene from Figure 1. The density of
sample points varies significantly across the image plane, demon-

Figure 4: Conventional (left) and irregular (right) shadow map-
ping. In the case of the former, the scene is rendered to a conven-
tional Z-buffer from the light, and then from the eye. With the latter,
the scene is rendered to a conventional Z-buffer from the eye, and
to an irregular Z-buffer from the light.

strating the importance of adaptive and irregular sampling methods
in this context.
Observe that irregular shadow mapping effectively mimics

shadow generation by ray tracing. Points P match the intersection
points between eye rays and scene geometry; and steps 2, 4 and 6
imitate light ray computation. Unlike ray tracing, irregular shadow
mapping is an object-order algorithm, which means that primitives
are processed in the order submitted by the application. In this
way, our approach combines the image quality and sampling char-
acteristics of ray-traced shadows with the system organization and
performance characteristics of Z-buffer rendering.

4.1 Image Quality

We compare the quality of images produced by irregular shadow
mapping to that of several other approaches. Figure 1 shows that
images generated using irregular shadow mapping are visually in-
distinguishable from those produced by the shadow volumes tech-
nique. Figure 7 shows that irregular shadow mapping eliminates
shadow aliasing artifacts commonly associated with conventional
shadow mapping. In Figure 8 we use an L2 norm to compare
quantitatively the image quality of our approach to that of three
other approaches. Our quantitative comparison is made against
ray-traced shadows and against two other shadow mapping algo-
rithms that avoid object-space computations: conventional shadow
mapping [Williams 1978] and adaptive shadow mapping [Fernando
et al. 2001]. This figure illustrates that the number of shadow map
samples required to attain high fidelity is much less than that re-
quired by these other shadow mapping techniques.
Our conventional and adaptive implementations include stan-

dard enhancements to reduce self-shadowing and shadow alias-
ing artifacts. These enhancements include percentage closer filter-
ing (PCF) [Reeves et al. 1987], object IDs [Hourcade and Nicolas
1985] and orientation-dependent bias values like those computed by
glPolygonOffset [OpenGL Architectural Review Board 2003].

1. Place camera at position of the scene’s point light source
2. Render scene to compute depth of closest object to light along a uniformly spaced set

of “shadow rays” (note: answer is stored in depth bu#er after rendering)
3. Store precomputed shadow ray intersection results in a texture map

Precomputed
shadow rays

Stanford CS248A, Winter 2024

Result of shadow texture lookup approximates visibility
result when shading fragment at P

P

Precomputed shadow rays shown in red:
Distance to closest object in scene has been precomputed and stored in “shadow map”

Camera
position Surface

Pi

Bilinear interpolation of shadow map values (red line) only approximates distance
to closest surface point in all directions from the camera

Stanford CS248A, Winter 2024

Interpolation error

P

Camera
position Surface

P’

(Not in shadow)

(Not actually in shadow,
but in shadow according to shadow map)

PP’

Shadow map
(depth map computed from P1)

Pi

Stanford CS248A, Winter 2024Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between surface
point and light directly using ray tracing)

Shadow aliasing due to shadow map undersampling

Stanford CS248A, Winter 2024

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Stanford CS248A, Winter 2024

Area light

Soft shadow
boundary

Credit: Jaime Velasco (https://all3dp.com/2/blender-lighting-simply-explained/)

Stanford CS248A, Winter 2024

Area light

Penumbra
(Region of partial shadow)

Umbra
(Region of complete shadow)

Credit: Jaime Velasco (https://all3dp.com/2/blender-lighting-simply-explained/)

Stanford CS248A, Winter 2024

Shadow cast by an area light (via ray tracing)

x

P

Notice that a fraction of the light from an area light
toward a point P may reach that point (partial occlusion)

(Partially illuminated)

Stanford CS248A, Winter 2024

Percentage closer !ltering (PCF) — hack!
Instead of sampling shadow map once, perform multiple lookups
around desired texture coordinate

Tabulate fraction of lookups that are in shadow, modulate light
intensity accordingly

Hard shadows
(one lookup per fragment)

PCF shadows
(16 lookups per fragment)

shadow map values
(consider case where distance

from light to surface is 0.5)

Stanford CS248A, Winter 2024

What PCF computes

x

P

PL

The fraction of these rays that are shorter than |P-PL| !

Stanford CS248A, Winter 2024

Shadow cast by an area light

x

P

Actual illumination at P is given by
fraction of these rays that are occluded.

Image credit: Grand Theft Auto V Stanford CS248A, Winter 2024

Q. Why isn’t the surface in shadow completely black?
Answer: Assumption that some amount of “ambient light” (light scattered from o# surfaces)
hits every surface. Here… ambient light is just a constant.

Stanford CS248A, Winter 2024

Simulates large light !xtures

Image credit: Brennan Shacklett

Stanford CS248A, Winter 2024

Ambient occlusion This scene contains an environment light source that has equal
illumination from all directions. (e.g., an overcast day)

All surfaces are di#use re$ectors.
Without accounting for shadows, all surfaces should be the same color.

Stanford CS248A, Winter 2024

Hack: ambient obscurance

Vd(!1) = 0

Vd(!2) = 1

Vd(!1) = 0

Vd(!2) = 1

!1

!2

Idea:

Precompute “fraction of hemisphere” that is occluded within distance d from a point (via a ray tracer)
Store this fraction in a texture map
When shading, attenuate environment lighting by this fraction

d

Stanford CS248A, Winter 2024

“Screen-space” ambient occlusion in games

p
Depth bu#er values

1. Render scene to depth bu#er
2. For each pixel p, “ray trace” the depth bu#er to estimate local

occlusion of hemisphere - use a few samples per pixel
3. Blur the the per-pixel occlusion results to reduce noise
4. When shading pixels, darken direct environment lighting by

occlusion amount computed for the current pixel

Stanford CS248A, Winter 2024

Ambient occlusion

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

The Alchemy Screen-Space Ambient Obscurance Algorithm

Morgan McGuire⇤
NVIDIA & Williams College

Brian Osman
Vicarious Visions

Michael Bukowski
Vicarious Visions

Padraic Hennessy
Vicarious Visions

Figure 1: left: Environment lighting. right) Modulated by Alchemy ambient obscurance, computed from 12 samples per pixel at 1280⇥720
in 3 ms on GeForce 580. The algorithm is easy to tune, robust, and captures darkening at many scales and orientations.

Abstract

Ambient obscurance (AO) produces perceptually important illumi-
nation effects such as darkened corners, cracks, and wrinkles; prox-
imity darkening; and contact shadows. We present the AO algo-
rithm from the Alchemy engine used at Vicarious Visions in com-
mercial games. It is based on a new derivation of screen-space
obscurance for robustness, and the insight that a falloff function
can cancel terms in a visibility integral to favor efficient operations.
Alchemy creates contact shadows that conform to surfaces, cap-
tures obscurance from geometry of varying scale, and provides four
intuitive appearance parameters: world-space radius and bias, and
aesthetic intensity and contrast.

The algorithm estimates obscurance at a pixel from sample points
read from depth and normal buffers. It processes dynamic scenes
at HD 720p resolution in about 4.5 ms on Xbox 360 and 3 ms on
NVIDIA GeForce580.

CR Categories: I.3.3 [Picture/Image Generation]: Display Al-
gorithms; I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: ambient occlusion, ambient obscurance, screen space

1 Introduction

Indirect illumination is a significant factor in realistic lighting. Ev-
ery game approximates indirect light sparsely over large distances,
either via precomputation (e.g., [Larsson 2010]; environment maps
and constant ambient are the classic examples) or dynamic gener-
ation (e.g., [Kaplanyan and Dachsbacher 2010; Martin and Einars-
son 2010]). Those sparse methods miss occlusion on the small, sub-

⇤e-mail: morgan@cs.williams.edu,{bosman,mbukowski,phennessy}@vvisions.com

meter scale. Ambient obscurance (AO) is an illumination term that
corrects the indirect light by scaling it proportional each point’s vis-
ible obscurance on that scale. A point that is locally obscured from
most directions should receive little indirect illumination from dis-
tant objects, while highly accessible points receive most indirect il-
lumination. Obscurance is visually important for object definition,
to provide a sense of scale, and as a spatial cue through contact
shadows and darkening on concave surfaces. It is also computa-
tionally intense to estimate directly from scene geometry–any point
may be obscured from any direction. This is why screen space ap-
proximations, which are independent of the number of polygons,
have proven very attractive in practice.

This paper presents the screen space AO algorithm we developed
for a specific Guitar Hero title and subsequently generalized and
integrated into the cross-platform Alchemy game engine. Figure 1
demonstrates its visual impact. The left image shows a scene with
environment lighting only. The image on the right modulates that
lighting by Alchemy AO, which resolves the fine details and spa-
tial relationships between objects. The algorithm follows from
three insights: Derive a robust estimator from the rendering equa-
tion; provide temporal coherence by making the estimator efficient
enough to evaluate many times per pixel; and achieve that effi-
ciency by shaping the falloff function to cancel expensive opera-
tions. Alchemy addresses the drawbacks of previous screen-space
AO methods, none of which satisfy all of the following require-
ments:

1. Robust: Conform obscurance to affected surfaces (e.g., no
shadows “floating in air” near silhouettes), limit viewer de-
pendence of intensity, and maximize temporal coherence.

2. Multiscale: Capture phenomena at multiple scales: shadowed
deep pits, corner darkening, contact shadows, wrinkles.

3. Artist-control: Provide intuitive parameters with large sweet-
spots and predictable quality.

4. Scalable: Compute in 3-5 ms, from Xbox 360 to Windows
Direct3D 11 hardware by varying quality.

Like all screen-space methods, its limitations are sample variance
(addressed by edge-aware filtering) and under-obscurance due to
unseen occluders behind the depth buffer surface and outside the
field of view. Rendering a guard band about the viewport can re-
duce the latter. We attribute the visual fidelity and robustness of

Lighting modulated by ambient occlusion

Direct Lighting (no self-shadowing computations)

Stanford CS248A, Winter 2024

Re$ections

Stanford CS248A, Winter 2024

What is wrong with this picture?

Stanford CS248A, Winter 2024

Re$ections

Image credit: NVIDIA

Stanford CS248A, Winter 2024

Re$ections

Stanford CS248A, Winter 2024

Recall: perfect mirror material

Stanford CS248A, Winter 2024

Recall: perfect mirror re$ection

x

P1

P2

P3

Light re$ected from P1 in direction of P0 is
incident on P1 from re$ection about surface at P1.

p0

Stanford CS248A, Winter 2024

Rasterization: “camera” position can be re$ection point
Environment mapping:
place ray origin at re$ective object

Yields approximation to true re$ection
results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of re$ective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror re$ection rays

(Question: how can a glossy surface be rendered using
the cube-map)

Stanford CS248A, Winter 2024

Environment map vs. ray traced re$ections

https://www.techspot.com/article/1934-the-state-of-ray-tracing/Image credit: Control

Stanford CS248A, Winter 2024

Environment map vs. ray traced re$ections

https://www.techspot.com/article/1934-the-state-of-ray-tracing/Image credit: Control

Stanford CS248A, Winter 2024

Indirect lighting

Stanford CS248A, Winter 2024

Indirect lighting

Image credit: Henrik Wann Jensen

Why is this point not black?

Why is this gray wall tinted red?

Stanford CS248A, Winter 2024

Precomputed lighting
Precompute accurate lighting for a scene o%ine
using a ray tracer (possible for static lights)

“Bake” results of lighting into texture map

Light map

Rendered result

Stanford CS248A, Winter 2024

Precomputed lighting in Unity Engine

Image credit: Unity / Alex Lovett

Visualization of light map texture coordinates

Stanford CS248A, Winter 2024

Growing interest in real-time ray tracing
I’ve just shown you an array of di#erent techniques for approximating di#erent advanced lighting phenomenon
using a rasterizer
Challenges:
- Di#erent algorithm for each e#ect (code complexity)
- Algorithms may not compose
- They are only approximations to the physically correct solution (“hacks!”)
Traditionally, tracing rays to solve these problems was too costly for real-time use
- That is rapidly changing…

This image was ray traced in real-time on a GPU

Stanford CS248A, Winter 2024

This image was rendered in real-time on a single high-end GPU

Stanford CS248A, Winter 2024

Real-time ray tracing challenge:

Need to shoot many rays per pixel to accurately simulate
advanced lighting e#ects

Want high-performance interactive rendering
"

Stanford CS248A, Winter 2024

Innovation 1:
Hardware innovation: custom GPU hardware for RT

NVIDIA GeForce RTX 3080 GPU

Stanford CS248A, Winter 2024

Innovation 2: better importance sampling algorithms

Path traced: 1 path/pixel (8 ms/frame) Path traced: 1 path/pixel using ReSTIR GI (8.9 ms/frame)

Key idea: cache good paths, reuse good paths found from from prior frames or for prior pixels in same frame

[Ouyang et al. 2021]

Stanford CS248A, Winter 2024

Innovation 3: Neural network based denoising

Idea: Use neural image-to-image transfer methods to convert cheaper to
compute (but noisy) ray traced images into higher quality images that look

like they were produced by tracing many rays per pixel

Stanford CS248A, Winter 2024

High quality image (via expensive global illumination)

Rendering of surface albedo
(no illumination — very cheap)

Rendering of surface normals
(no illumination — very cheap)

Stanford CS248A, Winter 2024

16 paths/pixel

Recall: numerical integration of light (via Monte Carlo sampling) su#ers from high
variance, resulting in images with “noise”

Stanford CS248A, Winter 2024

64 paths/pixel

Stanford CS248A, Winter 2024

256 paths/pixel

Stanford CS248A, Winter 2024

1024 paths/pixel

Stanford CS248A, Winter 2024

4096 paths/pixel

Stanford CS248A, Winter 2024

Denoised results

Stanford CS248A, Winter 2024

16 paths/pixel

Stanford CS248A, Winter 2024

16 paths/pixel (denoised)

Stanford CS248A, Winter 2024

64 paths/pixel (denoised)

Stanford CS248A, Winter 2024

256 paths/pixel (denoised)

Stanford CS248A, Winter 2024

1024 paths/pixel (denoised)

Stanford CS248A, Winter 2024

4096 paths/pixel (denoised)

Stanford CS248A, Winter 2024

4096 paths/pixel (NOT DENOISED)

Stanford CS248A, Winter 2024

Summary
Until very recently, it was too expensive to perform ray tracing in real-time graphics
systems
Many rasterization-based methods for approximating ray traced e#ects (shadows,
re$ections, etc).
In the last !ve years, there’s been a major shift toward using more ray tracing in real-time
graphics systems
- Brute force: new ray tracing hardware supported by graphics APIs (D3D12/Vulkan)
- Algorithmic innovation: smarter ways to importance sample paths
- Introduction of ML: use ML to convert noisy low sample count images to images that

“look like” images that were ray traced at high sample counts

Gradual introduction of ray tracing into shipping games

Stanford CS248A, Winter 2024

Morphological anti-aliasing (MLAA)
Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge.. it’s a hack!)

[Reshetov 09]

Note: modern interest in replacing MLAA patterns with DNN-based anti-aliasing.

Stanford CS248A, Winter 2024

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After !ltering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]

Stanford CS248A, Winter 2024

Modern trend: learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/

Stanford CS248A, Winter 2024https://wccftech.com/nvidia-dlss-explained-nvidia-ngx/

Learn anti-aliasing functions
Use modern image processing deep networks to reduce aliasing artifacts from rendered images.

Learned AA (DLSS)Traditional Heuristic (TXAA)

Stanford CS248A, Winter 2024

Summary: deferred shading
Very popular technique in modern games
Creative use of graphics pipeline
- Create a G-bu#er, not a !nal image
Two major motivations
- Convenience and simplicity of separating geometry processing logic/costs from shading costs
- Potential for high performance under complex lighting and shading conditions

- Shade only once per sample despite triangle overlap
- Often more amenable to “screen-space shading techniques”

- e.g., screen space ambient occlusion

