Lecture 11:

Materials (Part 2) +
Numerical Integration Basics

Interactive Computer Graphics
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Last time: the reflection equation

&S

L (p7 WO) — fr (p7 Wi —7 wo) Li(p7 Cdi) COs 91 dw;
02 | I |
BRDF lllumination
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Review: radiometry and illumination
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Review: differential solid angles

Sphere with radius r
A

7 s1no
e

‘ r '& ‘, dA = (rdO )(rsm0 do)
) { =7°sin0 dO dd

}
dw = d—? = s1n0 dO d¢

r
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Review: radiance

Radiance (L) is energy along a ray defined by origin point p and direction (v

4

dA

m Radiance is the solid angle density of irradiance (irradiance per unit direction)

where W denotes that the differential surface area is oriented to face in the direction
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Review: irradiance = power per unit area

Irradiance at surface is proportional to cosine of angle between light direction
and surface normal. (Lambert’s Law)
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Review: how much light hits the surface at point p?
(from multiple point light sources)

(irradiance at point P)

Z L, cos 0,

Po

®
Pinhole
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How much light hits the surface at point p?
(from light from all directions!)

(irradiance at point P)

Po

®
Pinhole

L,

27T T
/ Li(w;)cosB;dw = / / L;(w;) cos6; sin 8;dOd¢
S2 0o Jo
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Irradiance at point X from a uniform area source
F(x) = / L(w) cosfdw
H 2

—L / cos 6 dw
Constant / '

(it's a uniform source) — L Q

N

Total projected solid angle
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Irradiance at point X from uniform area source

cos 6 cos 6’

E(x) :/ L;(x,w) cos@ dw :/ L IE dA’
H?2 /

r—x

Reparameterization: now integrate over light
source area, instead of solid angle

Integral reparameterization:

S0/
dw = ————dA’ ay
T — 2 -«==)
X

Radiance leaving light from x”in direction w’ = radiance arriving at surface at x from w.
(assuming that w is pointing at the light)

Li(x,w) = Ly(2',w") = L
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Materials
(Back to slides from last lecture)
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Numerical Integration
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Many examples of needing to compute integrals already
In this lecture

/
E(x) :/ L cos 0 dw :/ LCOS@COSH dA’
H?2 /

x — x’|?

Stanford (5248A, Winter 2024



Review: fundamental theorem of calculus

/ f(2)de = F(b) — Fla)
’ d
f(z) =

@F(Qf)




Definite integral as “area under curve”

/a ' fla)da
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Simple case: constant function

/abC'da::(b—a)C
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Piecewise affine function

Sum of integrals of individual affine components

[ @ = 33 @i =2 (@) + i)
f(x)
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Piecewise affine function

If N-1 segments are of equal length: . = b a

n—1

b n—1
/ f(z)dr = g Z(f(l‘z) f(Tiy1)

f(z) = (Z fl:) + 5 (Flwo) + f(évn)))

1=1
presses s ;
Weighted combination :__ A E
" — . € :
of measurements. : Z% if () :
1=
Lo = @ L1 L2 L3 ry = b
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Arbitrary function f(x)?

f(z)
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Trapezoidal rule

Approximate integral of f(x) by assuming function is piecewise linear
b— a

n—1

For equal length segments: 1~ =

b n—1
[ fayde = (Z i) + 5 (Flwo) + f(xn)))

f(z)
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Trapezoidal rule

Consider cost and accuracy of estimateas n — oo (or h — 0)
Work: O(n)
Error can be shown to be: O(1*) = O( :

f(z)

) (for f(x) with continuous second derivative)
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Integration in 2D

Consider integrating f(z, y) using the trapezoidal rule
(apply rule twice: when integrating inxand in y)

Errors add, so error still: O(hz) Must perform much more work in 2D to get same error bound on integral!

But work is now: O(n?) InK-D, let N = n*
(n x n set of measurements) Error goes as: O ( Ni/k)
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Monte Carlo integration
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Monte Carlo numerical integration

m  Estimate value of integral using random sampling of function
- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

B Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are impossible to integrate directly

B Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O(nl/ 2)
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Monte Carlo algorithms

m Advantages
- Easy to implement
- Easy to think about (but be careful of subtleties)
- Robust when used with complex integrands (lights, BRDFs) and domains (shapes)
- Efficient for high-dimensional integrals

- Efficient when only need solution at a few points
m Disadvantages

- Noisy

- Slow (many samples needed for convergence)
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Review: random variables

X random variable. Represents a distribution of potential values

X ~ p(z) probability density function (PDF). Describes relative
probability of a random process choosing value x

Uniform PDF: all values over a domain are equally likely

) o o
e.g., for an unbiased die (o . 5
X takesonvalues1,2,3,4,5,6 . ‘o‘ ¥y 4
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) W,
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Discrete probability distributions

n discrete values =z;

With probability p;

Requirements of a PDF:
pi =0

sz' =1
i=1
1

Six-sided die example: p; = .

Think: D; is the probability that a random measurement of  will yield % value x;
X takes on the value x; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P; = ) p,
1=1

where:
0< P, <1
P, =1
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Sampling from discrete probability distributions

How do we generate samples of a discrete
random variable (with a known PDF?)

To randomly select an event,
select «; if

P11 <& P

T

Uniform random variable € [0, 1)
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Continuous probability distributions
PDF p(z) Uniform distribution: p(x) = ¢

(for random variable _X defined on [0,1] domain)
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Sampling continuous random variables using the
inversion method

Cumulative probability distribution function
P(x) =Pr(X < x)

Construction of samples:
Solve for x = P~ (¢)

Must know the formula for:
1. The integral of p(x)
2. The inverse function P! (z)
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Example: applying the inversion method

Relative density of probability

Given: of random variable taking on |
value x over [0,2] domain J!

2 - I
f(r)=2° x€]0,2

Compute PDF from f(x): i s casn feses
2
1 = / c f(z)dx
’ |
= o(F(2) - F(0)  F(a)= 7a°
1
— =27
3
8¢ 3 3 o Probability density function
— g — > C—= é? p(x) T éx (integratesto 1)

Stanford (5248A, Winter 2024



Example: applying the inversion method

Given: /

f(x) = oz € 0, 2] 7

A e P v T N R - LA PN W M v W N G - (L VN, e | |

X
3

Stanford (5248A, Winter 2024



Example: applying the inversion method

Given:
flx)=a2* x¢c]l0,2]
p(x) = ng
3
X
P(x) = <
Sample from p(z) §
2
3 /
¢ = P(a) = = //
r— /R¢ o T
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How do we uniformly sample the unit circle?
(Choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m ¢ =uniformrandom angle between 0 and 277
m 7 = uniform random radius between 0 and 1

m Returnpoint: (7 cos 6, rsin 0)

This algorithm does not produce the desired uniform sampling of the area of a circle.
Why?
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Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

\\K jdr

0 =2n& =& p(r,0)drdf ~ rdrdf
p(r,0) ~r

@k
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Uniform area sampling of a circle

WRONG RIGHT
Not Equi-areal Equi-areal
0 = 27T§1 0 — 27T€1

Stanford (5248A, Winter 2024



Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1 r

p(r,0)drdf = —rdrdf — p(r,0) = —

.

p(r, ) =1p(r)p(9) 70 independent / }rdrdé’
p(0) = 5 / %\

| dr
P(0) = -0 § = 276, K j
p(r) = 2r \\ /

=

-
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Shirley’s mapping

A

r =&
- /\\X\\ &2
AT T
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Uniform sampling via rejection sampling

® Generate random point within unit circle

° ¢ do {

X = uniform(-1,1);

P y = uniform(-1,1);

® } while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square
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Rejection sampling to generate 2D directions

/

Goal: generate random directions in 2D with
uniform probability

X
Y

X
X

dir = x/r;

Y:dir = y/r;

This algorithm is not correct! What is wrong?

What's a better algorithm?

uniform(-1,1) ;
uniform(-1,1) ;

sqrt (x*x+y*y) ;
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Monte Carlo integration
m Definite integral /b
f(a)dx

What we seek to estimate

m Random variables

X is the value of a random sample drawn from X;~p (:1:)
the distribution p(z) N
Y isalso a random variable. Y; = f (X ? )

m Expectation of f

m Estimator b
Monte Carlo estimate of / f (CIZ‘ ) dx
a

Assuming samples .X'; drawn from uniform pdf. F N — }/z
| will provide estimator for arbitrary PDFs later in N
lecture.
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Basic unbiased Monte Carlo estimator

N
b—a
Unbiased estimator: EFy| =FE ~ Z Y
Expected value of - =1 - N
estimator is the integral _b—a 1_b—a |
. ) = 2Bl = —— Y Elf(X))]
we wish to evaluate. i=1 i=1

=S [ r@)peds
Assume uniform

N b
— Z / f (CE ) dx probability density for now
Qa

=1 X; ~ Ula,b)

Properties of expectation:

1
N
) _ b 1
D , . :/ f(z)de p(z) = +—
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