Lecture 4:

Texture Mapping
Many uses of texture mapping

Define variation in surface reflectance
Describe surface material properties

Multiple layers of texture maps for color, logos, scratches, etc.
Layered material
Normal and displacement mapping

Normal mapping

Use texture value to perturb surface normal to "fake" appearance of a bumpy surface (note smooth silhouette/shadow reveals that surface geometry is not actually bumpy!)

Displacement mapping

Dice up surface geometry into tiny triangles & offset vertex positions according to texture values (note bumpy silhouette and shadow boundary)
Represent precomputed lighting and shadows

Original model

With ambient occlusion

Extracted ambient occlusion map

Grace Cathedral environment map

Environment map used in a rendering
Perspective and texture

■ PREVIOUSLY:
 - *transformation* (how to manipulate primitives in space)
 - *rasterization* (how to turn primitives into colored pixels)

■ TODAY:
 - see where these two ideas come crashing together!
 - *perspective* transformations
 - talk about how to map *texture* onto a primitive to get more detail
 - ...and how perspective creates challenges for texture mapping!

Why is it hard to render an image like this?
Recall the function $\text{coverage}(x,y)$ from lecture 2

In lecture 2 we discussed how to sample coverage given the 2D position of the triangle's vertices.
Consider sampling color(x,y)

What is the triangle's color at the point \(x \), given its colors at points a, b, c?
Review: interpolation in 1D

\[f_{\text{recon}}(x) = \text{linear interpolation between values of two closest samples to } x \]

\[
f_{\text{recon}}(t) = (1 - t)f(x_2) + tf(x_3)
\]

where:

\[
t = \frac{(x - x_2)}{(x_3 - x_2)}
\]
Consider similar behavior on triangle

Color depends on distance from $b - a$

$$\text{Color} = (1 - t) \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} + t \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$t = \frac{\text{distance from } x \text{ to } b - a}{\text{distance from } c \text{ to } b - a}$$

How can we interpolate in 2D between three values?
Linear interpolation of quantities over triangle

\[\mathbf{b} - \mathbf{a} \text{ and } \mathbf{c} - \mathbf{a} \text{ form a non-orthogonal basis for points in triangle (origin at } \mathbf{a}) \]

\[\mathbf{x} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}) \]
\[= (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c} \]
\[= \alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c} \]
\[\alpha + \beta + \gamma = 1 \]

Color value at \(\mathbf{x} \) is linear combination of color value at three triangle vertices.

\[\mathbf{x}_{\text{color}} = \alpha\mathbf{a}_{\text{color}} + \beta\mathbf{b}_{\text{color}} + \gamma\mathbf{c}_{\text{color}} \]

What is the triangle’s color at the point \(\mathbf{x} \), given its colors at points \(\mathbf{a}, \mathbf{b}, \mathbf{c} \)?
Another way: barycentric coordinates as ratio of areas

Also ratio of \textit{signed} areas:
\[\alpha = A_A / A \]
\[\beta = A_B / A \]
\[\gamma = A_C / A \]

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?
Yet another way: barycentric coordinates as scaled distances

\[\beta \text{ proportional to distance from } x \text{ to edge } c \rightarrow a \]

Compute distance of \(x \) from line \(c \rightarrow a \)
Divide by distance of \(b \) from line \(c \rightarrow a \) (“height” of triangle)

(Similarly for other two barycentric coordinates)
You can linearly interpolate any values (defined at vertices) over the triangle this way.

Here: I’m interpolating position \((x, y, z)\), color \((r, g, b)\), and extra values \((u, v)\)

- \(A = (x_0, y_0, z_0, r_0, g_0, b_0, u_0, v_0)\)
- \(B = (x_1, y_1, z_1, r_1, g_1, b_1, u_1, v_1)\)
- \(C = (x_2, y_2, z_2, r_2, g_2, b_2, u_2, v_2)\)

Vertex is green, so \((r_2, g_2, b_2) = (0, 1, 0)\)

Vertex is red, so \((r_1, g_1, b_1) = (1, 0, 0)\)

Vertex is black, so \((r_0, g_0, b_0) = (0, 0, 0)\)
Not so fast... perspective incorrect interpolation

The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices.

But due to perspective projection, barycentric interpolation of values on a triangle with vertices of different depths in 3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

In this example, the 2D screen point $\text{proj}(P)$ with attribute value $(A_0 + A_1) / 2$ is not halfway between the 2D screen points $\text{proj}(P_0)$ and $\text{proj}(P_1)$.

Similarly, the attribute's value at $P_{\text{mid}} = (\text{proj}(P_0) + \text{proj}(P_1)) / 2$ is not $(A_0 + A_1) / 2$.
Perspective correct interpolation

This is a plane (two triangles), tilted down and rendered under perspective.

2D screen-space interpolation

3D world-space interpolation
Perspective-correct interpolation

Assume a triangle attribute varies linearly across the triangle (in 3D)

Attribute’s value at 3D point on triangle \(P = [x \ y \ z]^T \) is given by:

\[
 f(x, y, z) = ax + by + cz
\]

Perspective project \(P \), get 2D homogeneous representation:

\[
\begin{bmatrix}
 x_{2D-H} \\
y_{2D-H} \\
w
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\cdot
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

Note: using a more general perspective projection matrix only changes the coefficient in front of \(x_{2d} \) and \(y_{2d} \). (property that \(f/w \) is affine still holds)

Then plug back in to equation for \(f \) at top of slide...

\[
 f(x_{2D-H}, y_{2D-H}) = ax_{2D-H} + by_{2D-H} + cw
\]

\[
\frac{f(x_{2D-H}, y_{2D-H})}{w} = \frac{a}{w} x_{2D-H} + \frac{b}{w} y_{2D-H} + c
\]

\[
\frac{f(x_{2D}, y_{2D})}{w} = \frac{a}{w} x_{2D} + \frac{b}{w} y_{2D} + c
\]

So \(\frac{f}{w} \) is affine function of 2D screen coordinates: \([x_{2D} \ y_{2D}]^T\)
Direct evaluation of surface attributes from 2D-H vertices

For any surface attribute (with value defined at triangle vertices as: f_a, f_b, f_c)

w coordinate of vertex a after perspective projection transform

$$\frac{f_a}{a_w} = A a_x + B a_y + C$$

value of attribute at vertex a

$$\frac{f_b}{b_w} = A b_x + B b_y + C$$

projected 2D position of vertex a

$$\frac{f_c}{c_w} = A c_x + B c_y + C$$

3 equations, solve for 3 unknowns (A, B, C)

This is done as a per triangle “setup” computation prior to sampling, just like you computed edge equations for evaluating coverage.
Efficient perspective-correct interpolation

Setup:

Given \(f_a, f_b, f_c\) and \(w_a, w_b, w_c\) ... compute \(A, B, C\) for \(f/w(x,y) = Ax + By + C\)

Also compute equation for \(1/w(x,y)\)

To evaluate surface attribute \(f(x,y)\) at every covered sample \((x,y)\):

Evaluate \(1/w(x,y)\)
Reciprocate \(1/w(x,y)\) to get \(w(x,y)\)

For each triangle attribute:

Evaluate \(f/w(x,y)\)
Multiply \(f/w(x,y)\) by \(w(x,y)\) to get \(f(x,y)\)

Works for any surface attribute \(f\) that varies linearly across triangle:
e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation”
Texture coordinates

“Texture coordinates” define a mapping from surface coordinates (e.g., points on triangle) to points in the domain of a texture image.

![Diagram showing texture coordinates](image)

- **Surface (one face of cube)**
 - (0.0, 0.0) to (1.0, 0.0)
 - (0.0, 0.5) to (1.0, 0.5)
 - (0.5, 0.0) to (0.5, 1.0)

- **Texture function** (represented by an image)
 - texture(u, v) is a function defined on the [0,1]^2 domain (represented by 2048x2048 image)

- **Rendered image of texture mapped onto surface**
 - Final rendered result (entire cube shown).
 - Location of triangle after projection onto screen shown in red.

Location of highlighted triangle in texture space shown in red.

Eight triangles (one face of cube) with surface parameterization provided as per-vertex texture coordinates (u,v)

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute
(Not discussing methods for generating surface texture parameterizations)
Many different mappings of surface position to texture space

Example: mercator projection onto sphere

https://blender.stackexchange.com/questions/3315/how-to-get-perfect-uv-sphere-mercator-projection
Texture “atlas”

https://www.creativebloq.com/3d/how-create-killer-3d-robot-21410645
Visualization of texture coordinates

Texture coordinates linearly interpolated over triangle

(0.0, 0.0) (black)
(0.0, 1.0) (green)
(1.0, 0.0) (red)
Texture coordinates provided at triangle vertices
(Just like 3D positions are provided at vertices)

Mesh inputs: for each triangle
- Per-vertex positions in 3D [x, y, z]
- Per-vertex texture coordinates in 2D texture space [u, v]
Texture mapping adds detail

Sample texture map at specified location in *texture coordinate space* to determine the surface’s color at the corresponding point on surface.
Texture mapping adds detail

rendering without texture rendering with texture texture image

Each triangle “copies” a piece of the image back to the surface.
Texture sampling 101

Basic algorithm for mapping texture to surface:

- For each color sample location \((X,Y)\)
 - Interpolate \(U\) and \(V\) coordinates across triangle to get value at \((X,Y)\)
 - Sample (evaluate) texture at location given by \((U,V)\)
 - Set color of surface point to sampled texture value
Texture coordinate visualization

Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow
Rendered result
Visualization of texture coordinates

Notice texture coordinates repeat over surface.
Example textured scene
Example textures used in previous scene
Texture mapping: basic algorithm

- Basic algorithm for mapping texture image onto a surface:
 - For each color sample location \((X,Y)\) in the image
 - Interpolate \(U\) and \(V\) texture coordinates across triangle to get texture coordinate value at \((X,Y)\)
 - Sample texture map at location \((U,V)\)
 - Set output image sample color to sampled texture value
Thought experiment

Imagine rendering a texture-mapped quadrilateral onto a 1000x1000 pixel output image.

Let's also say the texture image is 1000x1000 as well.

These red dots are your rasterizer's screen sample points.
Sampling rate on screen vs in texture: object zoomed out

The entire 1000x1000 texture is rendered into a small region of the screen.

Texture space \((u,v)\)

Red dots = samples on screen
White dots = texture map samples in texture space

Texture is “minified” on screen
Zooming in…

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel
Zooming in…

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel
Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel

Zoomed in

Texture space (u, v)

Texture is “magnified” on screen

Only a small region of texture is visible on screen
Sampling rate on screen vs in texture: object rotation

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel
Equally spaced samples on screen != equally spaced samples in texture space

Sample positions are uniformly distributed in screen space (rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space (texture function is sampled at these locations)
Screen pixel footprint in texture space

Texture sampling pattern not rectilinear or isotropic
Screen pixel footprint in texture space

Upsampling (Magnification)
Camera zoomed in close to object

Downsampling (Minification)
Camera far away from object
Screen pixel area vs texel area

- At optimal viewing size:
 - 1:1 mapping between pixel sampling rate and texel sampling rate
 - Dependent on screen and texture resolution!

- When pixel area is larger than texel area (texture minification)
 - Think: zoom far out from object
 - One pixel sample per multiple texel samples

- When pixel area is smaller than texel area (texture magnification)
 - Think: zoom in on an object
 - Multiple pixel samples per texel sample
Texture magnification

What is the color of the texture at these red dots?
Review: piecewise constant approximation

\[f_{\text{recon}}(x) = \text{value of sample closest to } x \]

\[f_{\text{recon}}(x) \text{ approximates } f(x) \]
Picture of Josephine (the graphics cat)
Texture magnification (nearest)
Texture magnification (nearest)
Texture magnification (nearest)
Texture magnification (nearest)
Texture magnification

- Generally don’t want this situation — it means we have insufficient texture resolution
- Magnification involves interpolation of values in texture map (below: three different interpolation kernel functions)
Review: piecewise linear approximation

\(f_{\text{recon}}(x) = \) linear interpolation between values of two closest samples to \(x \)
Texture magnification (bilinear)
Texture magnification (bilinear)
Texture magnification (bilinear)
Texture magnification (bilinear)
Bilinear interpolation

Want to sample texture value $f(x,y)$ at red point

Black points indicate texture sample locations
Bilinear interpolation

Take 4 nearest sample locations, with texture values as labeled.
Bilinear interpolation

And fractional offsets,
(s,t) as shown
Bilinear interpolation

Linear interpolation (1D)

\[\text{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0) \]
Bilinear interpolation

Linear interpolation (1D)
\[\text{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0) \]

Two helper lerps (horizontal)
\[u_0 = \text{lerp}(s, u_{00}, u_{10}) \]
\[u_1 = \text{lerp}(s, u_{01}, u_{11}) \]
Bilinear interpolation

Linear interpolation (1D)
\[\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0) \]

Two helper lerps
\[u_0 = \operatorname{lerp}(s, u_{00}, u_{10}) \]
\[u_1 = \operatorname{lerp}(s, u_{01}, u_{11}) \]

Final vertical lerp, to get result:
\[f(x, y) = \operatorname{lerp}(t, u_0, u_1) \]
Texture minification

Texture space \((u, v)\)
By now I hope you’ve realized:

Applying textures is a form of sampling!

\[t(u,v) \]
Minification of Josephine

Imagine the texture map is 9x9

And is applied to a quad that spans a 3x3 pixel region of screen.

Red dots = samples needed to render
White dots = samples existing in texture map

When a texture is minimized, the texture map is sampled sparsely!
Recall: aliasing

Undersampling a high-frequency signal can result in aliasing

1D example

2D examples:
Moiré patterns, jaggies
Aliasing due to undersampling texture

One texture sample per pixel (aliasing!)

Anti-aliased texture sampling
Aliasing due to undersampling (zoom)

One texture sample per pixel
(aliasing!)

Anti-aliased texture sampling
Another example

Anti-aliased result

Rendered image: 256x256 pixels
Challenge:
- Many texels contribute to color of an output image pixel (sampling only one of them could yield aliasing)
- Shape of pixel footprint can be complex

Shaded region = pixel area
Red lines = screen pixel boundaries
Red dots = texture space sample points for adjacent pixels
Texture minification - hard case

- **Challenge:**
 - Many texels contribute to color of an output image pixel (sampling only one of them could yield aliasing)
 - Shape of pixel footprint can be complex

- **One solution that you already know: supersampling**
 - Averaging many texture samples per pixel can approximate result of convolving texture map with pixel-area sized filter
 - Problem?

Alternative solution: remove high frequency from texture to reduce aliasing!

Shaded region = pixel area
Red lines = screen pixel boundaries
Red dots = texture space sample points for adjacent pixels
Pre-filtering texture map reduces aliasing

One texture sample per pixel (aliasing!)

Pre-filtered texture map (high frequencies removed)
Pre-filtering texture map reduces aliasing

No pre-filtering of texture data (resulting image exhibits aliasing)

Pre-filtered texture map (high frequencies removed)
But how much should we pre-filter?

- Amount of pre-filtering depends on how far away the object is:
 - minor minification: image pixel extreme magnification: image pixel spans large region of texture

- Idea:
 - Low-pass filter and downsample texture file, and store successively lower resolutions
 - For each sample, use the texture file whose resolution approximates the screen sampling rate
But how much should we pre-filter?

- Amount of pre-filtering necessary depends on how far away the object is.

- Idea: pre-compute and store different versions of the texture with different amounts of prefiltering.
 - Low-pass filter and downsample texture file, and store successively lower resolutions.
 - When sampling texture, use the texture file whose prefiltering amount matches the desired sampling rate.
Mipmap (L. Williams 83)

Each mipmap level is downsamped (low-pass filtered) version of the previous

“Mip” comes from the Latin “multum in parvo”, meaning a multitude in a small space
Mipmap (L. Williams 83)

Williams’ original proposed mip-map layout

What is the storage overhead of a mipmap?

“Mip hierarchy” level = d
Computing mipmap level

Compute differences between texture coordinate values of neighboring screen samples.
Computing mipmap level

Compute differences between texture coordinate values of neighboring screen samples

\[\begin{align*}
\frac{du}{dx} &= u_{10} - u_{00} \\
\frac{du}{dy} &= u_{01} - u_{00} \\
\frac{dv}{dx} &= v_{10} - v_{00} \\
\frac{dv}{dy} &= v_{01} - v_{00}
\end{align*} \]

\[L = \max \left(\sqrt{\left(\frac{du}{dx} \right)^2 + \left(\frac{dv}{dx} \right)^2}, \sqrt{\left(\frac{du}{dy} \right)^2 + \left(\frac{dv}{dy} \right)^2} \right) \]

mip-map \(d = \log_2 L \)
Bilinear resampling at level 0
Bilinear resampling at level 2
Bilinear resampling at level 4
Visualization of mipmap level
(bilinear filtering only: \(d\) clamped to nearest level)
“Tri-linear” filtering

Linearly interpolate the bilinear interpolation results from two adjacent levels of the mip map.

(smoothly transition between different levels of prefiltering)

\[
\text{lerp}(t, v_1, v_2) = v_1 + t(v_2 - v_1)
\]

Bilinear resampling:
- four texel reads
- 3 lerps (3 mul + 6 add)

Trilinear resampling:
- eight texel reads
- 7 lerps (7 mul + 14 add)
Visualization of mipmap level
(trilinear filtering: visualization of continuous d)
Bilinear vs trilinear filtering cost

- **Bilinear resampling:**
 - 4 texel reads
 - 3 lerps (3 mul + 6 add)

- **Trilinear resampling:**
 - 8 texel reads
 - 7 lerps (7 mul + 14 add)
Example: mipmap limitations

Supersampling: 512 texture samples per pixel
(desired answer)
Example: mipmap limitations

Overblurs
Why?

Mipmap trilinear sampling
Screen pixel footprint in texture space

Texture sampling pattern not rectilinear or isotropic
Pixel area may not map to isotropic region in texture space

Proper filtering requires anisotropic filter footprint

Overblurring in u direction

Modern anisotropic texture filtering solutions combine multiple mip map samples to approximate integral of texture value over arbitrary texture space regions
Anisotropic filtering

Elliptical weighted average (EWA) filtering
(uses multiple lookups into mip-map to approximate filter region)
Summary: texture filtering using the mip map

- Small storage overhead (33%)
 - Mipmap is 4/3 the size of original texture image

- For each isotropically-filtered sampling operation
 - Constant filtering cost (independent of mip map level)
 - Constant number of texels accessed (independent of mip map level)

- Combat aliasing with prefiltering, rather than supersampling
 - Recall: we used supersampling to address aliasing problem when sampling coverage

- Bilinear/trilinear filtering is isotropic and thus will “overblur” to avoid aliasing
 - Anisotropic texture filtering provides higher image quality at higher compute and memory bandwidth cost (in practice: multiple mip map samples)
A full texture sampling operation

1. Compute u and v from screen sample x,y (via evaluation of attribute equations)
2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.
3. Compute mip map level d
4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]
5. Compute required texels in window of filter
6. Load required texels from memory (need eight texels for trilinear)
7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel lookup! It involves a significant amount of math.

For this reason, modern GPUs have dedicated fixed-function hardware support for performing texture sampling operations.
Summary: texture mapping

- Texturing: used to add visual detail to surfaces that is not captured in geometry

- Texture coordinates: define mapping between points on triangle’s surface (object coordinate space) to points in texture coordinate space

- Texture mapping is a sampling operation and is prone to aliasing
 - Solution: precompute and store multiple multiple resampled versions of the texture image (each with different amounts of low-pass filtering to remove increasing amounts of high frequency detail)
 - During rendering: dynamically select how much low-pass filtering is required based on distance between neighboring screen samples in texture space
 - Goal is to retain as much high-frequency content (detail) in the texture as possible, while avoiding aliasing
Acknowledgements

- Thanks to Ren Ng, Pat Hanrahan, and Keenan Crane for slide materials