Lecture 19: Volumes and Points

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2024

Today's subject

- **Rendering from geometry representations that are not meshes**
 - Volume rendering
 - Point rendering
- And their implications to modern progress in scene capture

Volumetric effects

Absorption in a volume

$$dL(\mathbf{p}, \omega) = -\sigma_a(\mathbf{p}) L(\mathbf{p}, \omega) ds$$
$$\frac{dL(\mathbf{p}, \omega)}{ds} = -\sigma_a(\mathbf{p}) L(\mathbf{p}, \omega)$$

- \blacksquare $L(p, \omega)$ radiance along a ray from *p* in direction ω
 - **Absorption cross section at point in space:** $\sigma_a(p)$
 - Probability of being absorbed per unit length
 - **Units: 1/distance**

 $\mathbf{p} = (x, y, z)$ $\omega = (\phi, \theta)$

S

Stanford CS348K, Spring 2023

Absorption in a volume

$$\frac{dL(\mathbf{p},\omega)}{L(\mathbf{p},\omega)} = -\sigma_a(\mathbf{p})ds$$

Transmittance: $T(s) = e^{-\int_0^s \sigma_a(p+s'\omega,\omega) ds'}$

 $\mathbf{p} = (x, y, z)$ $\omega = (\phi, \theta)$

$L(\mathbf{p} + s\omega, \omega) = e^{-\int_0^s \sigma_a(\mathbf{p} + s'\omega) \, \mathrm{d}s'} L(\mathbf{p}, \omega) = T(s) \, L(\mathbf{p}, \omega)$

Stanford CS348K, Spring 2023

Absorption: lower density

Credit: Walt Disney Animation Studios

Absorption: higher density

Credit: Walt Disney Animation Studios

Out scattering

• Scattering cross section at point in space: σ_s

- Probability of being scattered per unit length
- **Units: 1/distance**

 $dL(\mathbf{p},\omega) = -\sigma_s(\mathbf{p}) L(\mathbf{p},\omega) ds$

Absorption and out scattering diminish radiance

Total cross section:

 $\sigma_t = \sigma_a + \sigma_s$

$dL(\mathbf{p}, \omega) = -\sigma_t(\mathbf{p}) L(\mathbf{p}, \omega) ds$ $L(\mathbf{p} + s\omega, \omega) = T(s) L(\mathbf{p}, \omega)$

Where total transmittance is:

$$T(s) = e^{-\int_0^s \sigma_t(p+s'\omega)} ds' = e^{-\frac{1}{2}}$$

$$\tau(s) = \int_0^s \sigma_t(\mathbf{p} + s'\omega) \,\mathrm{d}s'$$

"Optical distance" (from absorption and scattering)

Stanford CS348K, Spring 2023

Ray marching to compute transmittance

Step through volume in small steps

Given "camera ray" from point o in direction w....

$$\mathbf{r}(t) = \mathbf{o} + t\omega$$

And volume with density $\sigma(n)$

Estimate optical thickness as:

$$\tau(s) \approx \frac{s}{N} \sum_{i}^{N} \sigma_t(\mathbf{p}_i)$$
$$\mathbf{p}_i = \mathbf{o} + \frac{i+0.5}{N} \omega$$

In scattering

- Light going in other directions also scatters into the direction ω
- In scattering increases radiance along ω

 $S(\mathbf{p},\omega) = \sigma_s(\mathbf{p}) \int_{C^2} p(\omega' \to \omega) L(\mathbf{p},\omega') d\omega'$

Phase function: $p(\omega' \rightarrow \omega)$

Energy conservation: $\int_{S^2} p(\omega' \to \omega) \, \mathrm{d}\omega' = 1$

Direct illumination in a volume

- **Can treat like direct illumination on a surface**
- e.g., sample light sources (or from phase function's distribution)

$$S_{d}(\mathbf{p}',\omega) = \sigma_{s}(\mathbf{p}') \int_{S^{2}} p(\omega' \to \omega) L_{d}(\mathbf{p}')$$

- But computing direct lighting can be expensive Why?
 - Hint: requires more than a shadow ray

Single scattering

Multiple scattering (not discussed today)

- Appearance of volume is not just due to a single sca direction of eye)
- Light scatters many times in the volume before existing in the direction of the eye
- Advanced rendering topic: Monte Carlo estimate of multiple scattering events ("volume rendering equation")

Single scattering

Appearance of volume is not just due to a single scattering event (light directly from light source scattering in

Multiple scattering

Let's ignore lighting for a moment **Consider representing a scene as a volume**

Volume rendered CT scan

Credit: Taubmann et al. , Siemens Healthineers

Volume density and "color" at all points in space.

 $\sigma(\mathbf{p}) = c(x, y, z, \phi, \theta)$

The reflectance off surface at point p in direction ω

Volume rendered scene (Mildenhall et al.)

Rendering volumes

Given "camera ray" from point o in direction w....

 $\mathbf{r}(t) = \mathbf{o} + t\omega$

And volume with density and directional radiance.

 $\sigma(\mathbf{p})$ — Volume density and color at all points in space. $c(\mathbf{p},\omega)$

Step through the volume to compute radiance along the ray.

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt \,, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$$

An interesting task

Given a collection of photographs (from known camera viewpoints) **Compute a 3D reconstruction of the scene (surface locations + color at each point on surface)**

Credit: Mildenhall 2019

Estimating mesh geometry is tricky

Credit: Mildenhall 2019

Re-interest in using volume rendering (circa 2018)

Let's just drop this triangle-based representation entirely, it's much simpler (and more versatile when it's unclear what the geometry is anyway) to emit a single volumetric representation

Regular 3D grid representation of a volume

- Dense 3D grid
 - V[i,j,k] = rgba
- Note, this representation treats surface as diffuse, since: $c(p, \omega) = c(p)$
- Would need σ[i,j,k] and c[i,j,k,phi,theta] to represent directional distribution of color

Credit: Voxel Ville NFT (voxelville.io)

Optimizing volumes

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$$

dea: optimize volume values (opacity and color)
o that C(r) matches that of photos.
or many rays.... trace through volume... see if the result matches the
shoto... use error to update volume opacity/color values
Compute radiance along compare to
ray through volume
actual image
$$\begin{bmatrix} \operatorname{Ray 1} & \operatorname{Ray 2} & \operatorname{$$

S(

F р

Regular 3D grid representation of a volume

Consider storage requirements: 1024³ cells

Ignore directional dependency: rgbσ 4 bytes/cell ~ 4GB

Now consider directional dependency of color

on (ϕ, θ) ... much worse storage cost

Typical challenge: limited resolution

Credit: Voxel Ville NFT (voxelville.io)

Learning (compressed) representations Why not just learn an approximation to the continuous function that matches observations from different viewpoints?

Learning neural radiance fields (NeRF)

Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)

Great visual results!

Credit: Mildenhall 2023

What just happened?

- produce high-resolution output where needed... given input data
- **Compact representation: trades-off space for expensive rendering** - Good: a few MBs = effectively very high-resolution dense grid **Bad: must evaluate DNN every step during ray marching** MLP must do real work to associate - And the DNN is a "big" MLP (8-layer x 256) ◀─── weights with 5D locations Bad: must step densely (because we don't know where the surface is)

- **Compact representation: optimization can learn to interpolate views despite complexity of volume** density and radiance function
 - Only prior is the separation into positional σ and directional rgb
 - Training time: hours to a day to learn a good NeRF

Continuous coordinate-based representation vs regular grid: DNN "learns" how to use its weights to

Improving rendering performance

- Main ideas:
 - density = 0)
 - Shrink the size of the DNN
 - Avoid evaluating the DNN when you can

Main idea: move to a different point in the compression-compute trade-off space

Avoid stepping densely through empty space (costly to evaluate the DNN to find

Recall quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space) Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don't have to choose partition planes)

Has greater ability to adapt to location of scene geometry than uniform grid.

Simple two-level sparse quad tree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

Let's just run optimization for a bit...

- **Optimization will push some opacity values to 0**
- **DNN tells us where the empty space is!**
- With the octree structure *fixed*, we can continue to optimize color/density at leaves

Use the initial MLP to densely sample volume (Find the empty space that's used to build the octree)

Credit: Yu 2021

Without sparsity loss

Then convert dense opacity grid to an octree representation that's more efficient to render from ...

What just happened?

- We performed initial training... a la original NeRF
- the "big" DNN. Can use used a little DNN at leaves.
- "big" DNN need not be trained to convergence

Credit: Yu 2021

Cost? Octree structure now 100's of MBs instead of a few MBs for MLP

Once we get a sense of where the empty space is, we add a traditional acceleration structure to replace

That structure speeds up rendering (a lot), and also speeds up "fine tuning" training, since the initial

Another idea: spherical harmonics

- Useful basis for representing directional information
- Analogy: cosine basis on the sphere

Represent $c(\mathbf{p}, \omega)$ compactly by projecting into basis of SH.

 $\mathrm{Y}_{l}^{m}(\omega)$

Finally...back to where we began **Plenoxels** [CVPR 22]

- Start with a dense 3D grid of SH coefficients, optimize those coefficients at low resolution
- Now move to a sparse higher resolution representation (octree)
- **Directly optimize for opacities and SH coefficients using** differentiable volume rendering
- No neural networks. Just optimizing the octree representation of baked SH lighting
- Takeaway: conventional computer graphics representations are efficient representations to learn/optimize on

Summarizing it all: the "template"

- Train a DNN to gain understanding of 3D occupancy (where the surface is)
 - Little to no geometric priors (so need position encoding tricks, etc)
- Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
 - Now the "topology" of the irregular data structure is fixed
 - Representation of surface/appearance/etc is stored at the nodes of this structure (spherical harmonics, neural code, etc.)
 - Most of the heavy lifting is now performed by the data structure
- **Continue optimization on the fixed, sparse representation**
 - Leverages differential volume rendering on sparse structure
 - What we're now learning is how to represent/compress the local details

 $(\mathbf{p}, \omega) \blacktriangleright F_{\theta}(\mathbf{p}, \omega) \blacktriangleright \frac{\sigma(\mathbf{p})}{c(\mathbf{p}, \omega)}$

- **Traditional data structure**
- $egin{array}{l} {
 m Zp} \ \sigma_p \ {
 m c_p}(\omega) \end{array}$

More recent innovations

- using a data structure called a "hash grid"
- See "instant neural graphics primitives" (NGP)

Best practices since 2022 replace this two-step process with a single optimization passing

Rendering point clouds

Anti-aliasing point clouds

Treat surface as a collection of "Gaussian blobs" (convolve points with Gaussian filter)

- when projected onto the 2D screen
- **Can render the blobs back to front (requires** alpha compositing)

[Zwicker 2001]

"Point splatting"

[Kerbl 2023]

Optimization to produce Gaussians, not voxels

- Earlier in lecture: optimization produces color and opacity at each voxel
- Now: same idea, but optimization chooses color, position, and radius of the Gaussians
 - Now: also need to decide on the number of Gaussians (a bit tricker)

Key idea: differentiable Gaussian splatting rendering to compute dC/d(color)d(radius)d(location)

See "3D Gaussian Splatting for Real-Time Radiance Field Rendering" [Kerbl 2023]

Summary

- materials
- Significant interest in modern times due to ease of writing differentiable renderers for these representations
- Heavy use in reconstructing scenes from (potentially sparse) set of photos - Surprising effectiveness of large-scale optimization
- Some of these solutions employ interesting combinations of neural structures (learned DNN weights) and "traditional" graphics primitives
 - Takeaway for graphics students in 2024: need to be a master of both!

Volumes (voxels) and Gaussian points as two alternative representations of geometry and

Summary

Thanks to Matt Pharr, Pat Hanrahan for materials in these slides

