Lecture 19:

Volumes and Points

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2024



Today’s subject

m Rendering from geometry representations that are not meshes
- Volume rendering
- Point rendering

m And their implications to modern progress in scene capture

Stanford (5248A, Winter 2024



Volumetric effects

Stanford (S248A, Winter 2024



Absorption in a volume

L(p,w L +dL
(p )_@ O'a(p) >—+ P = (CC,y,Z)
W

—ds—|

dL(p,w) = —04(p) L(p,w) ds

dL(p,w)
ds

— ~0Oa (p)L(p, w)

m [ (p,w) radiance along a ray from p in direction
m Absorption cross section at point in space: 7. (P)

- Probability of being absorbed per unit length

- Units: 1/distance

Stanford CS348K, Spring 2023



Absorption in a volume

L(p,w) L +dL
) o)) — p = (2,5,2)
W

(¢,0)

—ds—|

dL(p,w)
L(p,w)

L(p + sw,w) = e~ Jo 72T AL (p ) = T(s) L(p,w)

= —0,(p)ds

Transmittance: 7'(s) = e~ IS oa(p+s’ w,w)ds’

Stanford CS348K, Spring 2023



Absorption: lower density

Credit: Walt Disney Animation Studios Stanford (S248A, Winter 2024



Absorption: higher density

Credit: Walt Disney Animation Studios Stanford (S248A, Winter 2024



Out scattering

dL(p,w) = —0os(p) L(p,w) ds

m Scattering cross section at point in space: O g
- Probability of being scattered per unit length
- Units: 1/distance

Stanford CS348K, Spring 2023



Absorption and out scattering diminish radiance

Total cross section:

Ot = Oq + Og

dL(p,w) = —o¢(p) L(p,w) ds Where total transmittance is:
L(p —|— Sw’ CU) p— T(S) L(p7 CU) T(S) _ e_ fOS O ¢ (P‘l‘s’w) dS/ __ 6—’7’(8)

(s) = /O on(p + 5'w) ds

“Optical distance” (from absorption and scattering)

Stanford CS348K, Spring 2023



Ray marching to compute transmittance

Step through volume in small steps r(t)

Given “camera ray” from point o in direction w....

r(t) = o+ tw

And volume with density
o(p)

Estimate optical thickness as:

AOEEDIAY

o i—|—0.5w
Pi = | N

Stanford CS348K, Spring 2023



In scattering

m Light going in other directions also scatters into the direction w
m Inscattering increases radiance along w

Stanford (5248A, Winter 2024



Direct illumination in a volume

m (an treat like direct illumination on a surface
m e.g., sample light sources (or from phase function’s distribution)

Sa(p’,w) = os(p’) / p(w — w) Lq(p,w') dw' R
S2

m But computing direct lighting can be expensive
m Why?
m Hint: requires more than a shadow ray

Stanford (5248A, Winter 2024






Multiple scattering (not discussed today)

m Appearance of volume is not just due to a single scattering event (light directly from light source scattering in
direction of eye)

m Light scatters many times in the volume hefore existing in the direction of the eye
m Advanced rendering topic: Monte Carlo estimate of multiple scattering events (“volume rendering equation”)

Single scattering Multiple scattering

Stanford (5248A, Winter 2024



Let’s ignore lighting for a moment

Consider representing a scene as a volume Volume density and “color” at all points in space.

o(p)
The reflectance off surface

C(p7 w) — C($7 Y <y ¢7 (9) at point p in direction w

Volume rendered scene

Volume rendered (T scan (Mildenhall et al.)

Credit: Taubmann et al., Siemens Healthineers Stanford CS248A, Winter 2024



Rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

r(t
And volume with density and directional radiance. (t)

o (p> <4— Volume density and color at all points in space.

c(p,w)

Step through the volume to compute radiance along the ray.

C(r) = /t :f T(t)o(x(t))e(x(t), d)dt, where T(t) = exp (— /t t a(r(s))ds)

Stanford (5248A, Winter 2024



An interesting task

m Given a collection of photographs (from known camera viewpoints)
m Compute a 3D reconstruction of the scene (surface locations + color at each point on surface)

Credit: Mildenhall 2019 | Stanford (5248A, Winter 2024



Estimating mesh geometry is tricky

Reconstructed Mesh

Credit: Mildenhall 2019 Stanford (S248A, Winter 2024



Re-interest in using volume rendering (circa 2018)

m Let’s just drop this triangle-based representation entirely, it's much simpler (and more versatile
when it’s unclear what the geometry is anyway) to emit a single volumetric representation

Credit: Lombardi 2019 Stanford (S248A, Winter 2024



Reqular 3D grid representation of a volume

m Dense3D grid
- V[i,j,k]=rgba

m Note, this representation treats surface
as diffuse, since: c(p,w) = c(p)

m  Would need ofi,j, k] and c[i,j,k,phi,theta]
to represent directional distribution of
color

Credit: Voxel Ville NFT (voxelville.io)




Optimizing volumes

C(r) = /t :f T(t)o (r(t))c(r(t), d)dt, where T(t) = exp (— /t t a(r(s))ds)

|dea: optimize volume values (opacity and color)
so that ((r) matches that of photos.

For many rays.... trace through volume... see if the result matches the

photo... use error to update volume opacity/color values

Compute radiance along Compare to
ray through volume actual image
. Oy Ray 1 / /_\
& o

‘ ’
v ‘4 : )
‘ “ .: P
;"f Py "’
5 'a :/ o A .
WU gl s $
?i' ”/\,J' UA Ray 2 | |

>

Ray Distance

F§i\\
/]

N —g.t.

- g.t.

r(s)

e

\‘\‘

TS

2

2

2

2

Stanford (5248A, Winter 2024



Reqular 3D grid representation of a volume

Consider storage requirements:
10243 cells

Ignore directional dependency: rgho 4 bytes/cell
~ 4GB

Now consider directional dependency of color
on (¢, 0) ... muchworse storage cost

Typical challenge: :
limited resolution .

Credit: Voxel Ville NFT (voxelville.io)




Learning (compressed) representations

Why not just learn an approximation to the continuous function that matches observations
from different viewpoints?

o(p)
c(p,w)

0] _—ﬂ
(rgbo)
128-d

vector

(p,CU) — Fg(p,W) —

(x,7,2) 6, $)

Stanford (5248A, Winter 2024



Learning neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views
B A g & e Y
& ANy TS
AN EFE L0l -8 7 T
3#”%&%&&&@ 7 & B 8
FRAEFBEESEN |
o FU e B Y R G R
e TR S R A I
S 0L
LS B TG W B Bkl A
3“‘5’:&3'\ S i

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
~ (x2.2.0.9) —>[||:||]—> RGBo)

/ F

¢ Rwl///F\\\

2
| B -c.t.
2

2

 —-g.t.

2

\ﬁ”w Ray 2 //’H\
( ¥

Ray Distance

Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)

Stanford (5248A, Winter 2024



Great visual results!

- - . 4B
‘! A ¢ &\l ‘:}‘;

Credit: Mildenhall 2023



What just happened?

m Continuous coordinate-based representation vs reqular grid: DNN “learns” how to use its weights to
produce high-resolution output where needed... given input data

m Compact representation: trades-off space for expensive rendering

- Good: a few MBs = effectively very high-resolution dense grid
- Bad: must evaluate DNN every step during ray marching
- And the DNN is a“big” MLP (8-layer x 256) < Mir mus bres work o asadte L

- Bad: must step densely (because we dont know where the surface is)

m  Compact representation: optimization can learn to interpolate views despite complexity of volume
density and radiance function

- Only prior is the separation into positional O and directional rgb
- Training time: hours to a day to learn a good NeRF

Stanford (5248A, Winter 2024



Improving rendering performance

m Main idea: move to a different point in the compression-compute trade-off space

m Mainideas:

- Avoid stepping densely through empty space (costly to evaluate the DNN to find
density = 0)

- Shrink the size of the DNN
- Avoid evaluating the DNN when you can

Stanford (5248A, Winter 2024



Recall quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t have to choose
partition planes)

Has greater ability to adapt to location of scene geometry
than uniform grid.

Stanford (5248A, Winter 2024



Simple two-level sparse quad tree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space) V |
0

5

Stanford (5248A, Winter 2024



Without sparsity loss With sparsity loss

-y ST D g P
- o W iy o
T Pt

Let’s just run optimization for a bit...

m Optimization will push some opacity values to 0
m DNN tells us where the empty space is!

m Then convert dense opacity grid to an octree representation that’s more efficient to render from...
m  With the octree structure *fixed*, we can continue to optimize color/density at leaves

S €=
> / X 2
e — I 5
%
R J
A
Use the initial MLP to densely sample volume Note:
(Find the empty space that’s used to build the octree) This implementation uses 2-level octreee

Credit: Yu 2021 Stanford (S248A, Winter 2024



What just happened?

m We performed initial training... a la original NeRF

m Once we get a sense of where the empty space is, we add a traditional acceleration structure to replace
the “big” DNN. Can use used a little DNN at leaves.

m That structure speeds up rendering (a lot), and also speeds up “fine tuning” training, since the initial
“big” DNN need not be trained to convergence

297

28+

v 27-
=
A, 26 -
a9 NeRF
24 - NeRF-SH
- PlenOctree
Credit: Yu 2021
0 10 20 30 40 50 60

Training Time (hours)

m Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP

Stanford (5248A, Winter 2024



m Useful basis for representing directional

information
m Analogy: cosine basis on the sphere

o
vee

—~-
. ol
b -
% )"I.'\%’. \", .f,.. r‘/ K. - . ." r‘..\ “.‘ (x’
WSSy Q& S w S B8
: s 1 “' Y f \"i "_.‘ I‘A'l 'é. ”" (.“ ’ - "‘ p
CWREELSLUCoeREttve
il Gond o o) GV SV NS 4° (2 6 1) () fed fand
WE R YT E TR RPN Rw
L.a K fa) Ty @b £ ) (0 (o) fed fad !
Wi BT e SRR RN v

Another idea: spherical harmonics

m Represent c(p,w) compactly by
projecting into basis of SH.

Y7 (w)

Stanford (S248A, Winter 2024



Finally...back to where we began

Plenoxels [CVPR 22] S
O
m Start with a dense 3D grid of SH coefficients, optimize those 2
coefficients at low resolution
m  Now move to a sparse higher resolution representation (octree) s 4
m Directly optimize for opacities and SH coefficients using L &+
differentiable volume rendering z

m No neural networks. Just optimizing the octree representation of
baked SH lighting

m Takeaway: conventional computer graphics representations are
efficient representations to learn/optimize on

- Plenoxel

20 —— NeRF

0 10 20 30 40 50 60
Training Time (minutes)
024



Summarizing it all: the “template”

m Train a DNN to gain understanding of 3D occupancy (where the surface is)
o(p)

- Little to no geometric priors (so need position encoding tricks, etc) (p,w) ¥ Fy(p,w) c(p, w)

m Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
- Now the “topology” of the irregular data structure is fixed

- Representation of surface/appearance/etcis stored at the nodes of this structure (spherical harmonics,
neural code, etc.)

- Most of the heavy lifting is now performed by the data structure

4p
P # lookup(p) +
>
: e : " p
m Continue optimization on the fixed, sparse representation Traditional data structure o (w)
- Leverages differential volume rendering on sparse structure
SH), (w)

- What we're now learning is how to represent/compress the local details

Stanford (5248A, Winter 2024



More recent innovations

m Best practices since 2022 replace this two-step process with a single optimization passing
using a data structure called a “hash grid”

m See”instant neural graphics primitives” (NGP)

Stanford (5248A, Winter 2024



Rendering point clouds

s .’s;;‘,‘,"

=1 . %,
e

AT TR

D)

Stanford (S248A, Winter 2024



Anti-aliasing point clouds

m Treat surface as a collection of “Gaussian blobs” (convolve points with Gaussian filter)

local parameterization

3D object space » 2D parameterization

—

screen space object space
i/ around Q basis function ri(u-uy) e e
X X X X X X X X ( "'. e
X X X X x x x X A TP .~ o

m 3D Gaussians turn into oriented 2D gaussians e,
when projected onto the 2D screen NG

------

mapping x=m(u)

m (anrender the blobs back to front (requires : S discrete output g(x)
o ~ resampling kernel py(x)
alpha compositing)

[Zwicker 2001] Stanford (S248A, Winter 2024




“Point splatting”

Menu Views Capture » 3D Gaussians » Camera Poink view

o

' ’
¥ Mekrics

181,08 (9.89ms) FPS - Naﬁve OpenGL | 8 ' T 48 ' a

[Kerbl 2023] Stanford (S248A, Winter 2024



Optimization to produce Gaussians, not voxels

m Earlierinlecture: optimization

) Compute radiance along Compare to
produces color and opacity at each ray through scene actual image
voxel %  Rayl /_\ ’

N —g.t.

'™
A .
all , ¥ ?
n ) "y
P e
; ’o,: . én )
‘l Prs” :’ ﬁ
p iy
2: e JA
A ay

)

2

m Now:same idea, but optimization

2

chooses color, position, and radius /

of the Gaussians -o.t.

2

- Now: also need to decide on the Ray Distance

number of Gaussians (a bit
tricker)

Key idea: differentiable Gaussian splatting rendering to compute dC/d(color)d(radius)d(location)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]

Stanford (5248A, Winter 2024



Summary

m Volumes (voxels) and Gaussian points as two alternative representations of geometry and
materials

m Significant interest in modern times due to ease of writing differentiable renderers for these
representations

m Heavy use in reconstructing scenes from (potentially sparse) set of photos
- Surprising effectiveness of large-scale optimization

m Some of these solutions employ interesting combinations of neural structures (learned DNN
weights) and “traditional” graphics primitives

- Takeaway for graphics students in 2024: need to be a master of hoth!

Stanford (5248A, Winter 2024



Summary

m Thanks to Matt Pharr, Pat Hanrahan for materials in these slides

Stanford (5248A, Winter 2024



