
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Lecture 9:

Accelerating Geometric
Queries

Stanford CS248A, Winter 2025

Last time: intersecting a ray with individual primitives

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d

o
d

Ray-sphere

Ray-triangle

Ray-plane

Stanford CS248A, Winter 2025

Applying what you learned last time
Consider interesting a ray with a cylinder with radius R and length L!
(centered at the origin)

Intersecting Cylinders

Problem 3. (15 points):
You are writing a ray-tracer that is specialized for rendering realistic hair. The renderer models each
strand of hair as a chain of cylinders.

A. (8 pts) As a first step in this problem, we’d like to you derive an algorithm for ray-cylinder inter-
section. Assume the cylinder has radius R and length L, and is oriented along the Z-axis as drawn
below. Like we did for various primitives in class, consider how to break down this problem into
simpler intersection problems for which the solution is known. We are providing:

• The implicit equation for a circle in 2D (what is the radius of this circle): x2 + y2 = c

• The implicit form of a plane NTx = c

• The quadratic formula (the solution to ax2+ bx+ c = 0). If you use it, you do not need to solve
it directly, just write your equation for a solution.

x =
�b±

p
b2 � 4ac

2a

R

L/2
y

x

z

Solution: Ray-infinite cylinder intersection is much like ray-sphere intersection. Simply take the X and Y
values of the ray r(t) = o + td and plug into the circle equation x2 + y2 = R2. However the intersection
point much be checked to determine if falls between the Z values of ±L

2 . You must also perform ray-plane
intersection for the top and bottom of the cylinder (done by plugging in the ray to NT r = ±L

2 , where
NT = [0, 0, 1]T), and check to see if the ray-plane intersection falls within in a circle of radius R. Taking the
smallest positive t value gives the closest hit point.

Page 9

x2 + y2 = R2

I’ll give you: the implicit form of a circle in 2D

From last class you know:

Explicit form for a ray:

Implicit form for a plane:
NTx = c Q. What if the cylinder is centered at (xo,yo,zo) instead of the origin?

Stanford CS248A, Winter 2025

Motivation (ray tracing)

Stanford CS248A, Winter 2025

The visibility problem: as ray casting
In terms of casting rays from the camera:
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the

aperture of the pinhole camera? (coverage)

- What primitive is the !rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS248A, Winter 2025

Review: basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth bu"er

“Given a triangle, !nd the samples it covers”

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Stanford CS248A, Winter 2025

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Stanford CS248A, Winter 2025

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re#ection is visible on a surface?

Generality of ray-scene queries

Virtual
Sensor

Stanford CS248A, Winter 2025

Accelerating ray-scene queries

Stanford CS248A, Winter 2025

Ray-scene intersection
Given a scene de!ned by a set of N primitives and a ray r, !nd the closest point of intersection of
r with the scene

p_closest = NULL
t_closest = inf
for each primitive p in scene:
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

“Find the !rst primitive the ray hits”

O(N)Complexity?

Can we do better?
(Assume p.intersect(r) returns value of t corresponding to the point of
intersection with ray r)

Stanford CS248A, Winter 2025

One simple idea
“Early out” — Skip ray-primitive test if it’s computationally easy to determine that ray
does not intersect primitives

E.g., A ray cannot intersect a primitive if it doesn’t intersect the bbox containing it!

o,d
o,d

Note: early out does not change asymptotic
complexity of ray-scene intersection. But it
reduces cost by a constant if ray is far from
most triangles.

Stanford CS248A, Winter 2025

Ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1
NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all planes of box:

Math simpli!es greatly since plane is axis aligned
(consider x=x0 plane in 2D):

Figure shows intersections
with x=x0 and x=x1 planes.

Performance note: it is possible to precompute terms
that only depend on the ray, so computing t is cheap
a =

1

dx
b = �ox

dx

So…

Stanford CS248A, Winter 2025

So how do we !nd the closest hit for a 3D box?
1. How do you know there is a hit at all?
2. What is the t value for that hit?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax
Figure shows intersections with x=x0 and x=x1 planes.

Stanford CS248A, Winter 2025

Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know if the ray hits the box?
If there’s a t-range where the ray is within the X planes, Y planes, AND Z planes, then we are in the box (ray hits it)

Stanford CS248A, Winter 2025

Ray-scene intersection with early out
Given a scene de!ned by a set of N primitives and a ray r, !nd the closest point of
intersection of r with the scene

p_closest = NULL
t_closest = inf
for each primitive p in scene:
 if (!p.bbox.intersect(r))
 continue;
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

(Assume p.intersect(r) returns value of t corresponding to the
point of intersection with ray r)

O(N)Still complexity.

Stanford CS248A, Winter 2025

Recall this optimization in a simple rasterizer
Your assignment 1 rasterizer skipped sample-in-triangle tests for samples not contained in the bounding box of the triangle.
(It’s the 2D equivalent of skipping ray-triangle test in 3D if the ray does not hit 3D bbox of a triangle!)

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in 2D BOUNDING BOX OF TRIANGLE: // loop 2: over visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Cull samples not within bbox
(if sample not in bbox don’t attempt
more expensive point in triangle test)

Stanford CS248A, Winter 2025

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2025

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2025

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2025

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2025

Data structures for reducing O(N) complexity
of ray-scene intersection

Given ray, !nd closest intersection with set of scene triangles.*

* We are also interested in: Given ray, !nd if there is any intersection with scene triangles

Stanford CS248A, Winter 2025

1 2 6 8 10 11 20 25 30 64 80 100 111 123 200 950

A simpler problem
Imagine I have a set of integers
Given an integer, say k=18, !nd the element in the set that is closest to k:

10 123 2 100 6 25 64 11 200 30 950 111 20 8 1 80

Suppose we !rst sort the integers:

How much does it now cost to !nd k (including sorting)?

What’s the cost of !nding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost over many queries: O(log n)

worse than before! :-(
much better!

Stanford CS248A, Winter 2025

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Can we also reorganize scene primitives to enable fast
ray-scene intersection queries?

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Stanford CS248A, Winter 2025

Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box):
preprocessing: O(n)
ray-box test: O(1)
amortized cost*: O(1)

*amortized over many ray-scene intersection tests

Stanford CS248A, Winter 2025

Another (should be) simple case
o,d

o,d

Cost (hits box):
preprocessing: O(n)
ray-box test: O(1)
triangle tests: O(n)
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than naïve
algorithm (must test all

triangles)!

Stanford CS248A, Winter 2025

Q: How can we do better?

A: Apply this strategy hierarchically

Stanford CS248A, Winter 2025

Bounding volume hierarchy (BVH)

Root

Stanford CS248A, Winter 2025

Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)

Stanford CS248A, Winter 2025

Bounding volume hierarchy (BVH)

Stanford CS248A, Winter 2025

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes:
- Contain small list of primitives
Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS248A, Winter 2025

Demo!

Stanford CS248A, Winter 2025

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Two di"erent BVH organizations of
the same scene containing 22
primitives.

Is one BVH better than the other?

Stanford CS248A, Winter 2025

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // true if node is a leaf
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.t > closest.t)
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

Can this occur if ray hits the box?
(assume hit.t is INF if ray misses box)

node

child1
child2

Stanford CS248A, Winter 2025

Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 HitInfo hit1 = intersect(ray, node->child1->bbox);
 HitInfo hit2 = intersect(ray, node->child2->bbox);

 NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
 NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

 find_closest_hit(ray, first, closest);
 if (second child’s t is closer than closest.t)
 find_closest_hit(ray, second, closest);
 }
}

“Front to back” traversal.
Traverse to closest child node !rst.
Why?

node

child1

child2

New invariant compared to last slide:
assume !nd_closest_hit() is only called for nodes where ray intersects bbox.

Why might we still need to traverse to second child if
there was a hit with geometry in the !rst child?

Stanford CS248A, Winter 2025

Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the scene at all
(don’t care about distance to !rst hit)
bool find_any_hit(Ray* ray, BVHNode* node) {

 if (!intersect(ray, node->bbox))
 return false;

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim)
 return true;
 } else {

 return (find_any_hit(ray, node->child1) ||
 find_any_hit(ray, node->child2));
 }
}

There’s an interesting question of which child to enter !rst.
How might you make a good decision?

Stanford CS248A, Winter 2025

Why “any hit” queries?

P

L1

L2

Shadow computations!

Stanford CS248A, Winter 2025

For a given set of primitives,
there are many possible BVHs

(~2N ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?

Stanford CS248A, Winter 2025

How would you partition these triangles into two groups?

Stanford CS248A, Winter 2025

What about these?

Stanford CS248A, Winter 2025

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes that minimize overlap between

children, avoid bboxes with signi!cant empty space

Stanford CS248A, Winter 2025

What are we really trying to do?
A good partitioning minimizes the expected cost of !nding the closest intersection of a ray
with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

Stanford CS248A, Winter 2025

Cost of making a partition
The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?

Stanford CS248A, Winter 2025

Estimating probabilities
For convex object A inside convex object B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

Stanford CS248A, Winter 2025

Implementing partitions
Constrain search for good partitions to axis-aligned spatial partitions
- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes… O(# objects)

Stanford CS248A, Winter 2025

E$ciently implementing partitioning
E$cient modern approximation: split spatial extent of primitives into B buckets (B is
typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize bucket counts to 0, per-bucket bboxes to empty
 For each primitive p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B-1 possible partitioning planes evaluate SAH
Use lowest cost partition found (or make node a leaf)

Stanford CS248A, Winter 2025

Troublesome cases

All primitives with same centroid (all
primitives end up in same partition)

All primitives with same bbox (ray
often ends up visiting both partitions)

In general, di"erent strategies may work better for di"erent types of
geometry / di"erent distributions of primitives…

Stanford CS248A, Winter 2025

Question
Imagine you have a valid BVH
Now I move one of the triangles in the scene to a new location
How do I “re!t” the BVH so it is a valid BVH?

Imagine I moved a triangle
in this red leaf node.

Stanford CS248A, Winter 2025

Primitive-partitioning acceleration structures vs.
space-partitioning structures

Primitive partitioning (e.g, bounding volume
hierarchy): partitions primitives into disjoint sets
(but sets of primitives may overlap in space)

Space-partitioning (e.g. grid, K-D tree) partitions
space into disjoint regions (primitives may be
contained in multiple regions of space)

So far I’ve only showed you a primitive partitioning structure
(a BVH), let’s look at two space partitioning structures.

Stanford CS248A, Winter 2025

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits (not a partitioning of a set of objects)

A

A

Stanford CS248A, Winter 2025

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

B

A

A

B C

C

Stanford CS248A, Winter 2025

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

B

A

A

B C

C

D

E

D E

Stanford CS248A, Winter 2025

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal can proceed in strict front-to-back order
- So unlike BVH, can terminate search after !rst hit is found

B

A

A

B C

C

D

E F

D E

F

Stanford CS248A, Winter 2025

Challenge: objects overlap multiple tree nodes
Want node traversal to proceed in front-to-back order so traversal can terminate search after !rst hit found

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes.

Ray hits triangle 1 when in highlighted leaf cell.

But intersection with triangle 2 is closer!
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection point to be within spatial
volume current leaf node.

(primitives may be intersected multiple times by same ray *)
* Caching hit info (“mailboxing”) can be used to avoid repeated intersections

Stanford CS248A, Winter 2025

Uniform grid
(a very simple space partitioning hierarchy)

Stanford CS248A, Winter 2025

Uniform grid (also space partitioning)
▪ Partition space into equal sized volumes (volume-elements or

“voxels”)

▪ Each grid cell contains primitives that overlap the voxel.
- Cheap to construct acceleration structure

▪ Walk ray through volume in order
- E$cient implementation possible (think: 3D line

rasterization)
- Only consider intersection with primitives in voxels the

ray intersects

Stanford CS248A, Winter 2025

Consider tiled triangle rasterization

For each TILE of image
If triangle overlaps tile, check all samples in tile

What does this rasterization strategy remind you of? :-)

Think about ray-casting using a uniform grid.

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles
 t_proj = project_triangle(t)
 for each 2D tile of screen samples touching bbox of triangle: // loop 2: tiles
 if (triangle does not overlap tile)
 continue;
 for each 2D sample s in tile: // loop 3: visibility samples
 if (t_proj covers s)
 compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Stanford CS248A, Winter 2025

What should the grid resolution be?

Too few grids cell: degenerates to
brute-force approach

Too many grid cells: incur signi!cant cost
traversing through cells with empty space

Stanford CS248A, Winter 2025

Grid size heuristic
Choose number of cells ~ total number of primitives
(yields constant prims per cell for any scene size — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost:

(Q: Which grows faster, cube root of N or log(N)?

(assuming 3D grid)

Stanford CS248A, Winter 2025

A case where uniform grids can be e$cient:
uniform distribution of primitives in scene

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height !elds:

Field of grass

Slide credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]

Stanford CS248A, Winter 2025

Problem with uniform grids:
cannot adapt to distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

“Teapot in a stadium problem”

Scene has large spatial extent.
Contains a high-resolution object that has small spatial
extent (ends up in one grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Stanford CS248A, Winter 2025Jun Yan, Tracy Renderer

When uniform grids do not work well:
non-uniform distribution of geometric detail

Stanford CS248A, Winter 2025

When uniform grids do not work well:
non-uniform distribution of geometric detail

[Image credit: Pixar]

Stanford CS248A, Winter 2025

Quad-tree / octree

Quad-tree: nodes have 4 children
(partitions 2D space, like the example to the right)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build
(don’t have to choose partition planes)

Has greater ability to adapt to location of scene geometry
than a uniform grid.

But lower intersection performance than a hierarchical
structure like a BVH or K-D tree
(the structure only has limited ability to adapt to
distribution of scene geometry)

Stanford CS248A, Winter 2025

Simple two-level sparse quad tree
Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

0 1

2 3

0 1 2 3

Note: in this example, no storage is
required for “subtrees” 1 and 2.

Stanford CS248A, Winter 2025

Summary of spatial acceleration structures:
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning:

- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position

- Spatial partitioning: partition space into non-overlapping regions
- Traverse space in order (!rst intersection is closest intersection), may intersect primitive multiple times

Adaptive structures (BVH, K-D tree)
- More costly to construct (must be able to amortize cost over many geometric queries)
- Better intersection performance under non-uniform distribution of primitives

Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

Many, many combinations thereof…

Stanford CS248A, Winter 2025

Extra material: (if time)
Understanding BVH Performance

Stanford CS248A, Winter 2025

Recall: Moana scene

Stanford CS248A, Winter 2025

Moana costs

Number of nodes visited

Num ray-triangle tests

Stanford CS248A, Winter 2025

Another example

Stanford CS248A, Winter 2025

Number of BVH Nodes Visited

24

77

Stanford CS248A, Winter 2025

4

4

65

Number of Ray-Triangle Tests (when using BVH)

Stanford CS248A, Winter 2025

Another example: diagonal geometry (not axis aligned)

Number of nodes visited Num ray-triangle tests

??

Stanford CS248A, Winter 2025

Axis-alignment and performance

Wall and its
bounding box

Rotated wall and its
bounding box

Stanford CS248A, Winter 2025

Original scene

Rendering time: 27m 38s

Stanford CS248A, Winter 2025

Same scene

Rendering time: 1h 55m 45s

(But now rotated in world space, so walls are less axis aligned)

Stanford CS248A, Winter 2025

Axis-alignment and performance

Rotated wall and its
bounding box

Work-around: re!ne
bounding boxes

Note: this introduces back the
idea of partitioning space!

(Recall octree, KD-tree)

Stanford CS248A, Winter 2025

Immense interest in real time ray tracing

Image credit: Unreal Engine 4

Stanford CS248A, Winter 2025

Ray tracing dynamic scenes
Scenes have millions of triangles, many objects are in motion

For real time applications, can allow a few ms / frame for BVH build
- e.g. @10M tris, 60fps, need to build BVH at 600M tris / second

➡ Hierarchy construction e$ciency really matters!

Stanford CS248A, Winter 2025

A BVH itself is an intersectable primitive!
It has a bounding box
It supports ray-primitive intersection
So it can be used as a primitive in another BVH

Stanford CS248A, Winter 2025

Two-level acceleration structures
2-level hierarchy

“Top-level” acceleration structure
(build every frame)

“Bottom-level” acceleration
structures are primitives in
top-level BVH

(Built once upon scene load)

Stanford CS248A, Winter 2025

Hierarchical BVH build

At scene load…
Build one BVH for each object

Each frame…
Build top-level BVH of BVH’s based on current object positions.

(Scene may contain millions of triangles, but only hundreds of objects.)
Image credit: Brennan Shacklett

Stanford CS248A, Winter 2025

Acknowledgements
Thanks to Keenan Crane, Ren Ng, and Matt Pharr for presentation resources

