

**Lecture 18:**

# **Image and Video Compression + Image Processing Basics**

---

**Computer Graphics: Rendering, Geometry, and Image Manipulation**

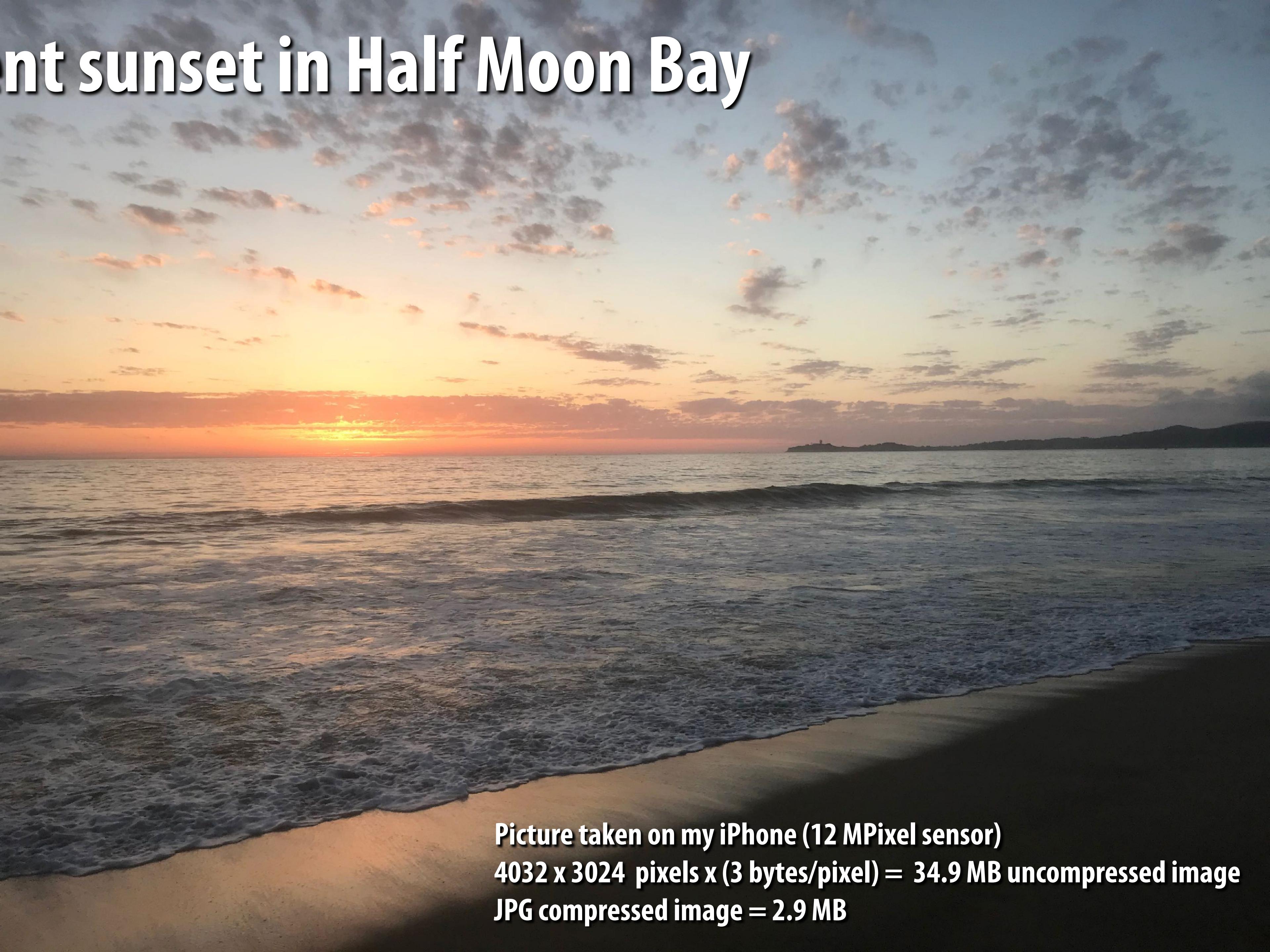
**Stanford CS248A, Winter 2025**

# Recurring themes in the course

- **Choosing the right representation for a task**
  - e.g., choosing the right basis
- **Exploiting human perception for computational efficiency**
  - Approximations in algorithms can be tolerable if humans do not notice
- **Convolution as a useful operator**
  - To remove high-frequency content from images
  - What else can we do with convolution?

# Image Compression

# A recent sunset in Half Moon Bay



**Picture taken on my iPhone (12 MPixel sensor)**  
**4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image**  
**JPG compressed image = 2.9 MB**

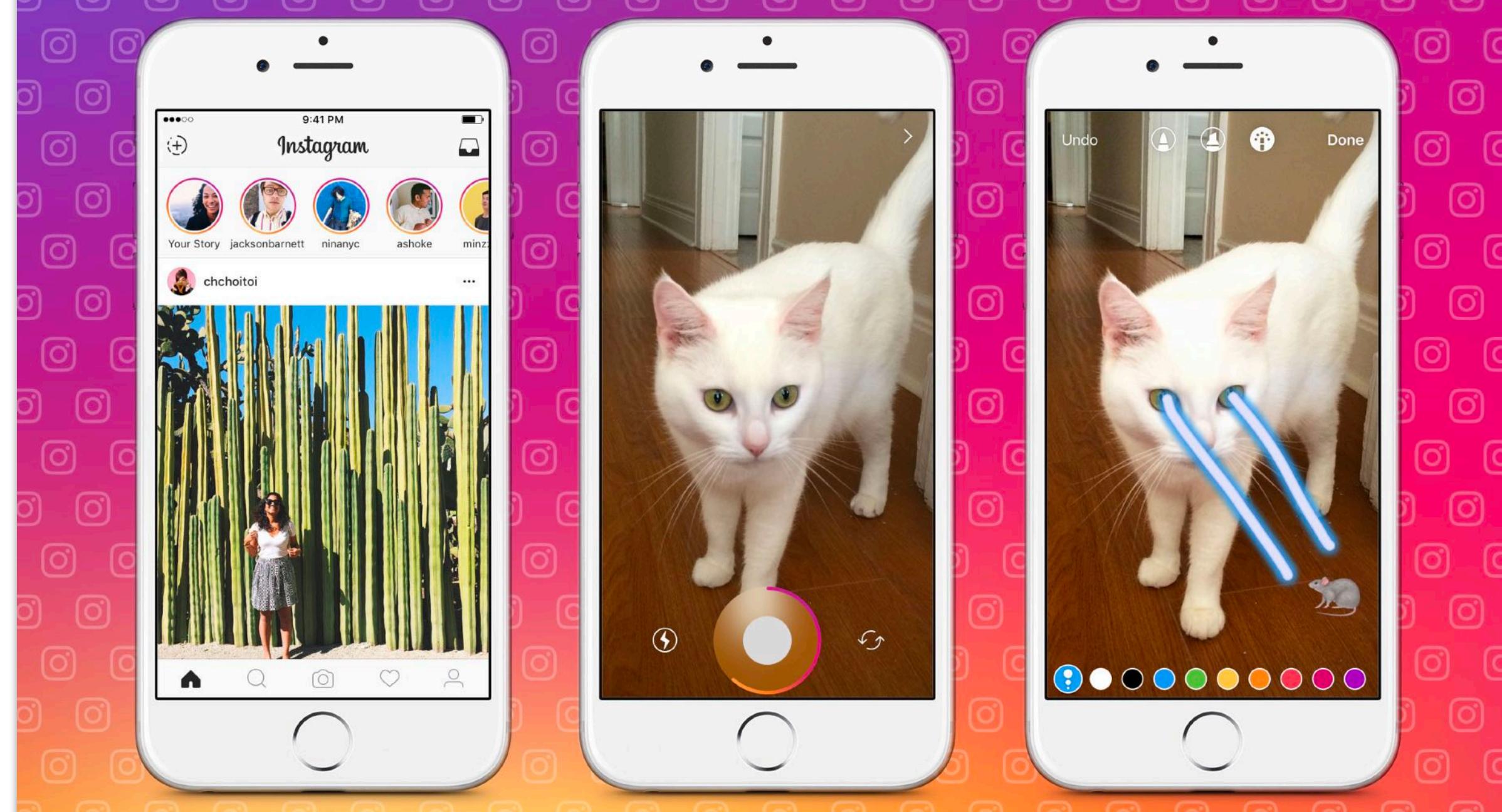
YouTube mobile interface showing a search for 'Talk Shows' and 'Visual Arts' topics. The 'Talk Shows' section includes videos like 'Mark Hamill Does a Perfect Impression of Harrison Ford' and 'Emilia Clarke - funny moments'. The 'Visual Arts' section includes videos like 'INCREDIBLE BEDROOM AND SPACE SAVING FURNITURE...' and 'Pastel Demo: A Quick Daily Painting'.

A composite image showing a YouTube video player and a live stream interface. The top part shows a live stream from 'plumbella' with a video of a person in a Harry Potter costume. The bottom part shows a live stream interface with a video of a person in a suit, a 'chat' overlay, and a list of comments from users like 'sub:', 'simmamauk', and 'donate: peachtarte: £5.00'.

Three screenshots of the Facebook mobile app. The first shows a post from 'globalgood' about a mural painting. The second shows a post from 'Jordan Torres' with a dog photo. The third shows a post from 'globalgood' about food donations with a like and comment overlay.

# Instagram Stories

A composite image showing the Instagram Stories interface and a messaging interface. The top part shows the Instagram Stories screen with a white cat photo and a video camera icon. The bottom part shows a messaging interface with a yellow background, featuring a Bitmoji reactions screen and a video of a woman with a caption 'What would you rather live without?'.



# **Review from last class: color spaces**

# Last time: displays producing color

- Given a set of primary lights, each with its own spectral distribution (e.g. R,G,B display pixels):

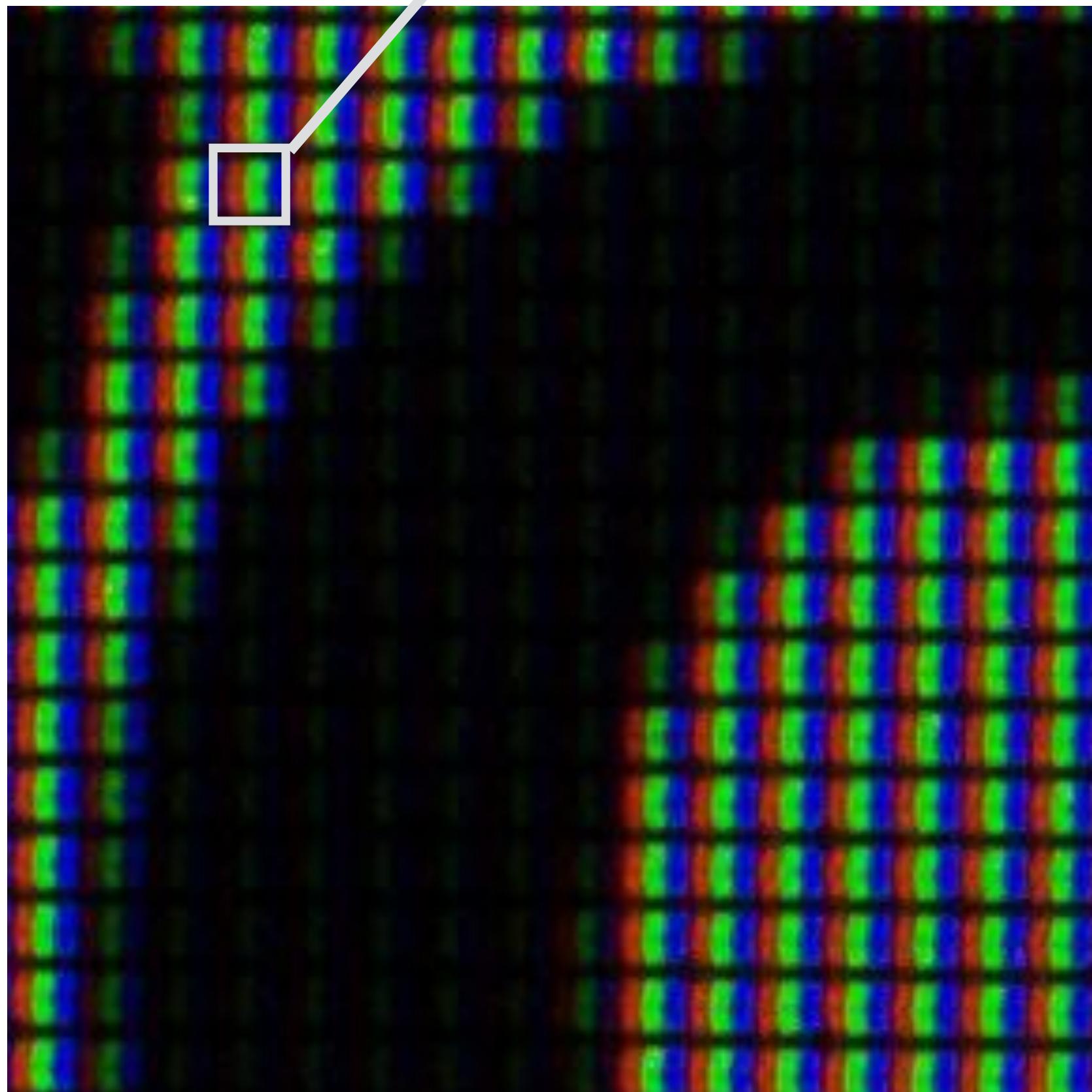
$$s_R(\lambda), s_G(\lambda), s_B(\lambda)$$

- We can adjust the brightness of these lights and add them together to produce a linear subspace of spectral distribution:

$$R s_R(\lambda) + G s_G(\lambda) + B s_B(\lambda)$$

- The color is now described by the scalar values:

$$R, G, B$$



# Color spaces

- Need three numbers to specify a color
  - But what three numbers?
  - A color space is an answer to this question
- Common example: color space defined by a display
  - Define colors by what R, G, B scalar values will produce them on your monitor
    - Output spectra  $s = rR + gG + bB$  for some display primary spectra r, g, b
  - This a device dependent representation of color: if I choose R,G,B by looking at my display and send those values to you, you may not see the same color on your display (which might have different primaries, etc.)

# Standard color spaces

## ■ Standardized RGB (sRGB)

- Makes a particular monitor's primaries the RGB standard
- Other color devices simulate that monitor by calibration
- sRGB is usable as an interchange color space; widely adopted today



# Another color space: CIE XYZ color space

- Converting from color coordinates in one space to another:
  - Consider display with 3 primaries (primaries need not be monochromatic light)
  - Compute XYZ coords of light emitted by display when providing display (1,0,0), (0,1,0), (0,0,1)
  - Light generated by display is linear combination of these vectors (non-negative weights)

$$\begin{aligned} \text{color of R primary ([1,0,0] on display)} &= R_x \mathbf{X} + R_y \mathbf{Y} + R_z \mathbf{Z} \\ \text{color of G primary ([0,1,0] on display)} &= G_x \mathbf{X} + G_y \mathbf{Y} + G_z \mathbf{Z} \\ \text{color of B primary ([0,0,1] on display)} &= B_x \mathbf{X} + B_y \mathbf{Y} + B_z \mathbf{Z} \end{aligned} \rightarrow \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} R_x & G_x & B_x \\ R_y & G_y & B_y \\ R_z & G_z & B_z \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

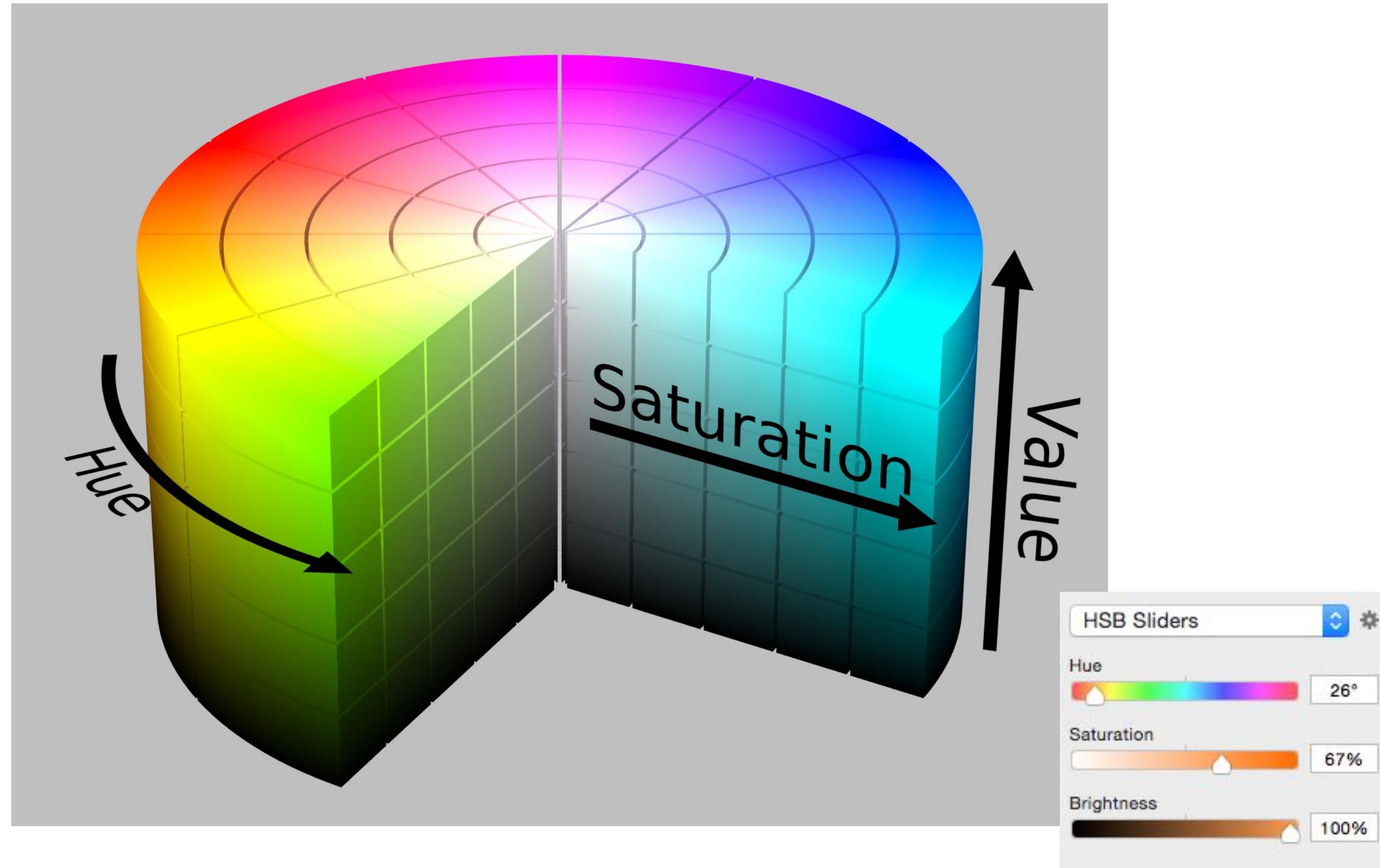
↑  
XYZ representation  
↑  
color in space  
of display primaries

- Example: Converting from CIE RGB to CIE XYZ:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17687 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

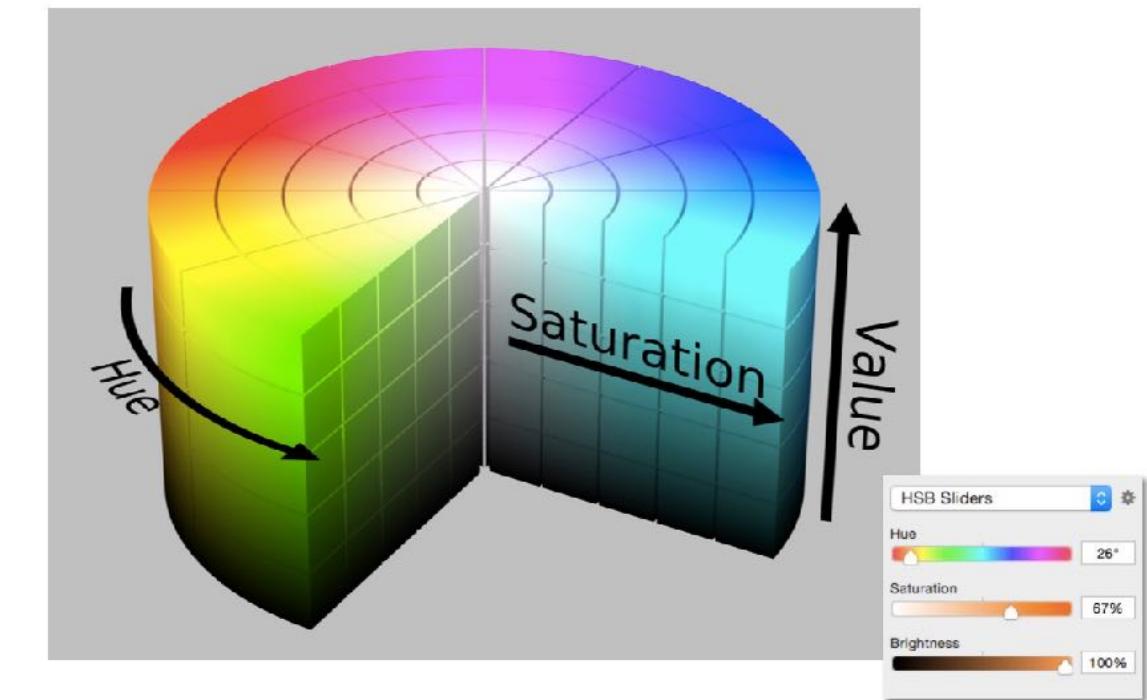
# HSV (hue-saturation-value) color space

Axes of space correspond to natural notions of “characteristics” of color

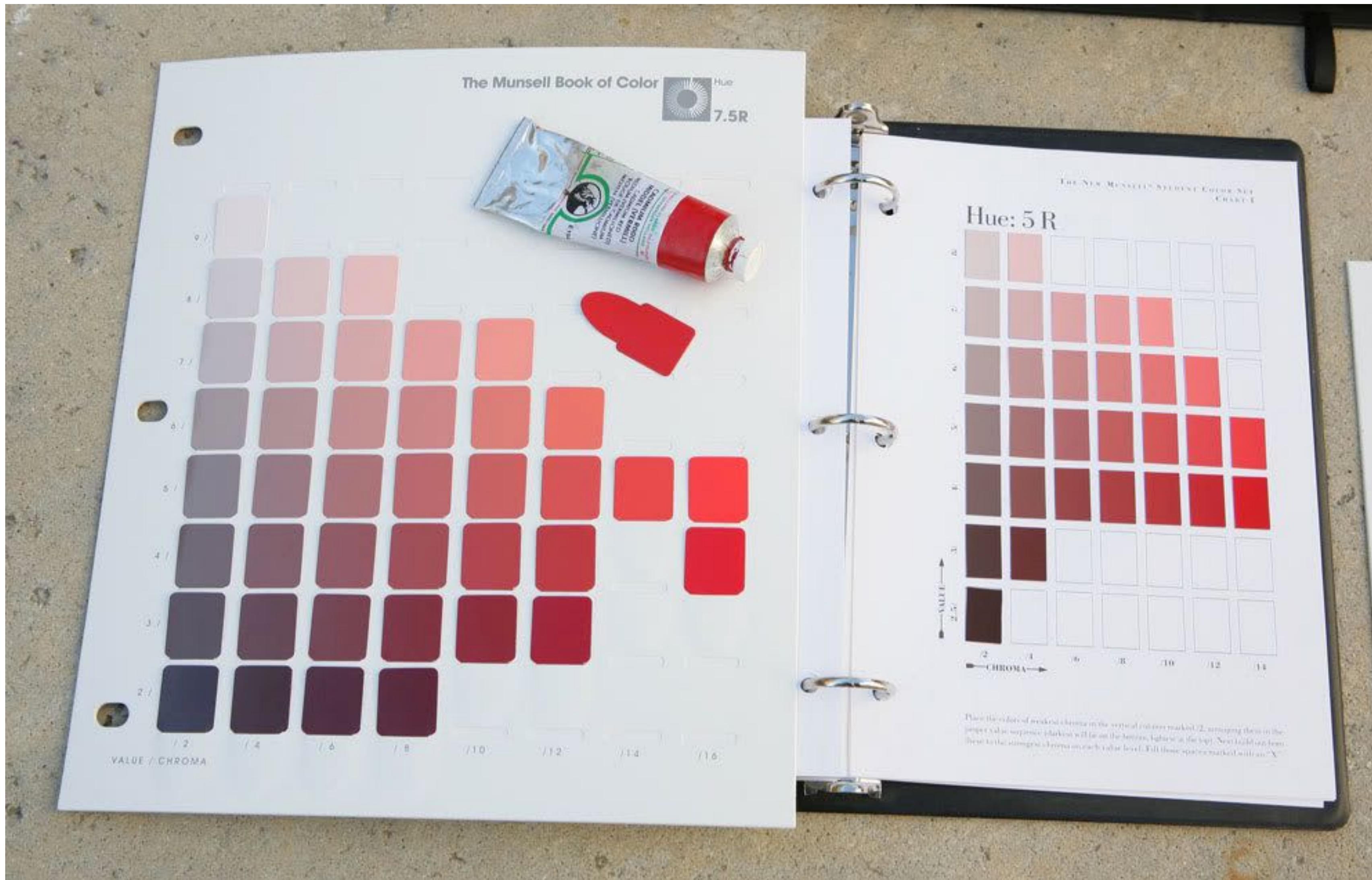


# Perceptual dimensions of color

- **Hue**
  - the “kind” of color, regardless of attributes
  - colorimetric correlate: dominant wavelength
  - artist’s correlate: the chosen pigment color
- **Saturation**
  - the “colorfulness”
  - colorimetric correlate: purity
  - artist’s correlate: fraction of paint from the colored tube
- **Lightness (or value)**
  - the overall amount of light
  - colorimetric correlate: luminance
  - artist’s correlate: tints are lighter, shades are darker



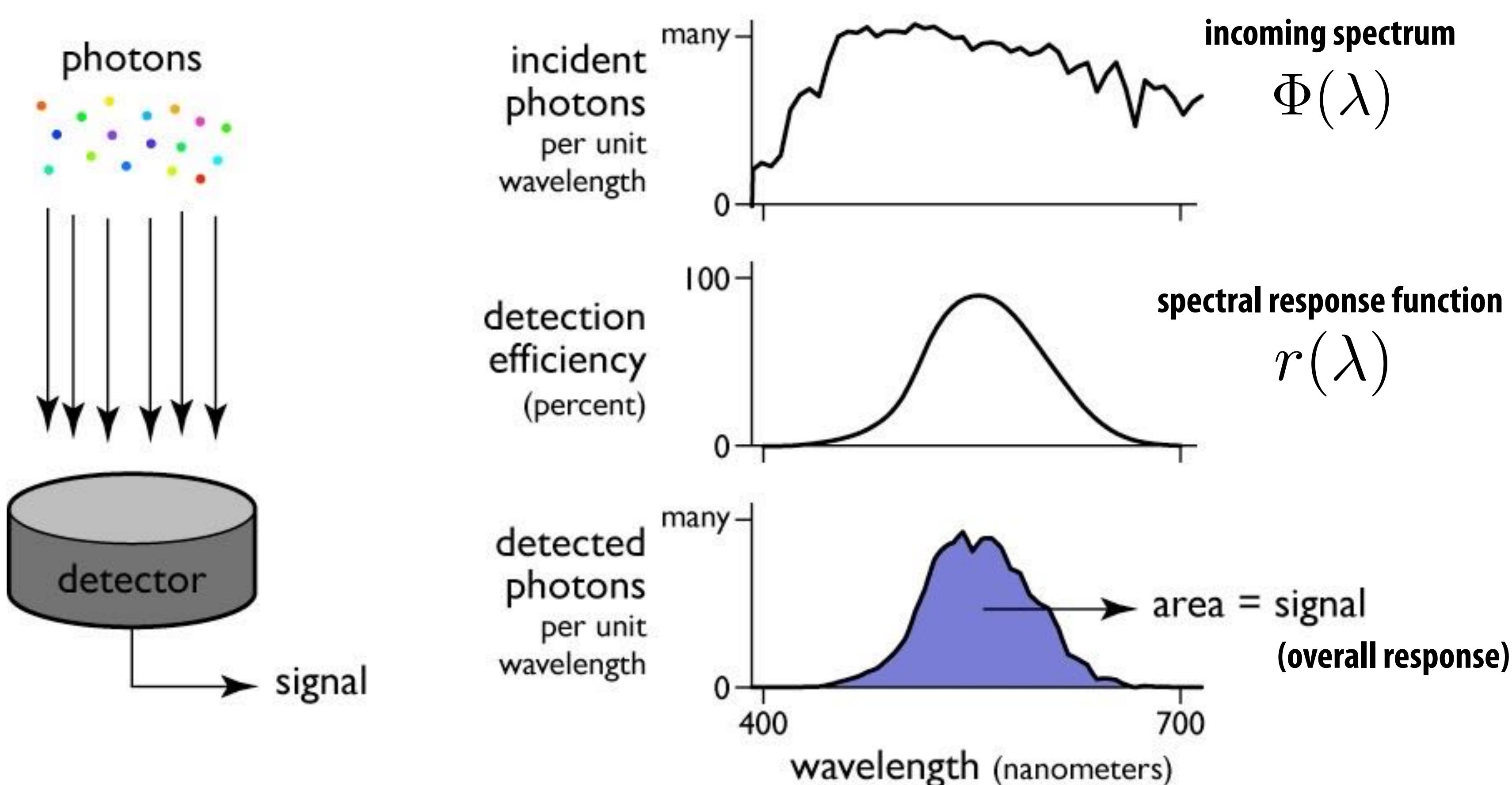
# Munsell book of color



Swatch identified by three numbers: hue, value (lightness), and chroma (color purity)

# Review from last time: detectors

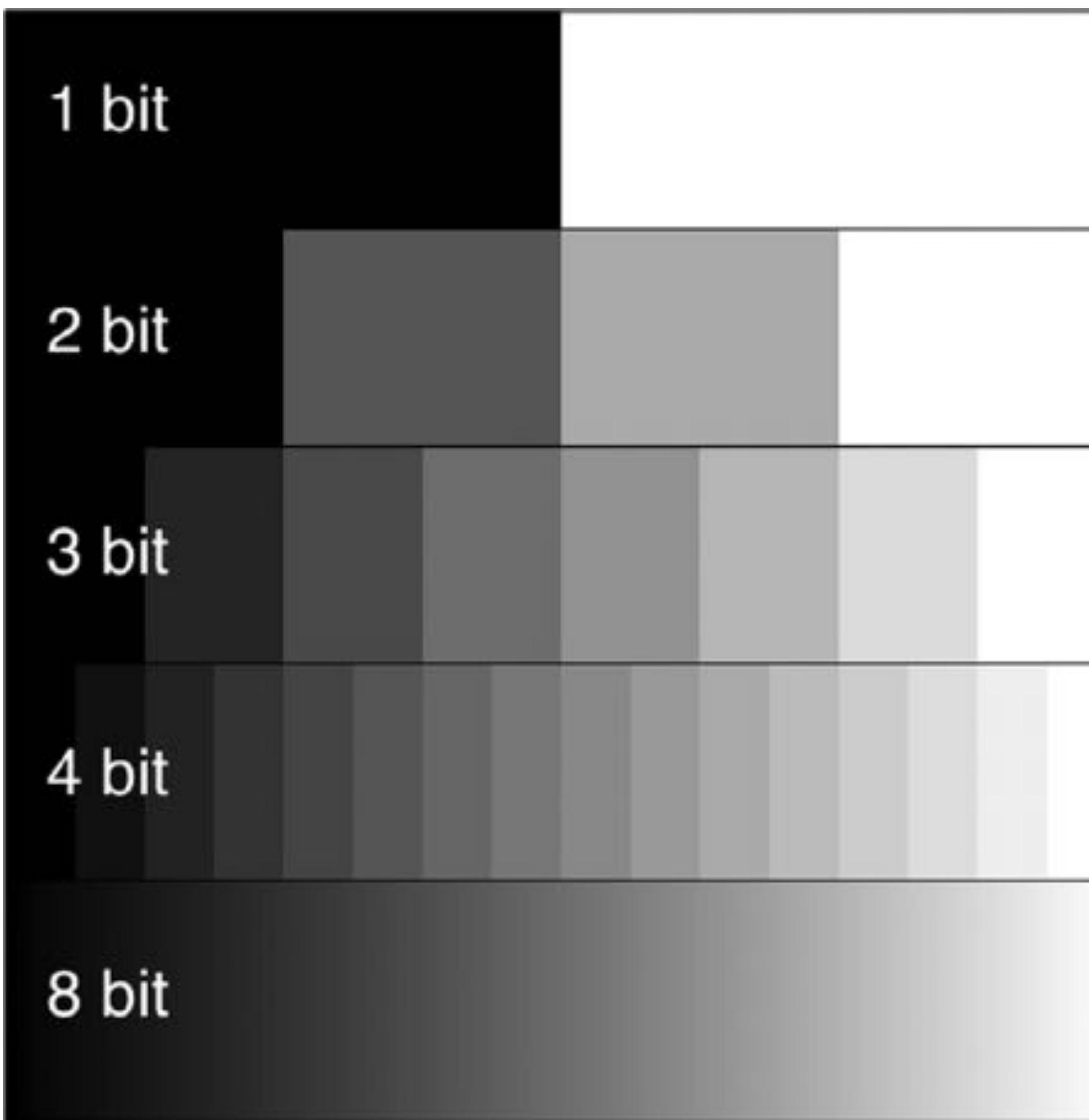
Sensor's response is proportional to amount of light arriving at sensor



$$R = \int_{\lambda} \Phi(\lambda) r(\lambda) d\lambda$$

# Encoding numbers

- More bits → can represent more unique numbers
- 8 bits → 256 unique numbers (0-255)

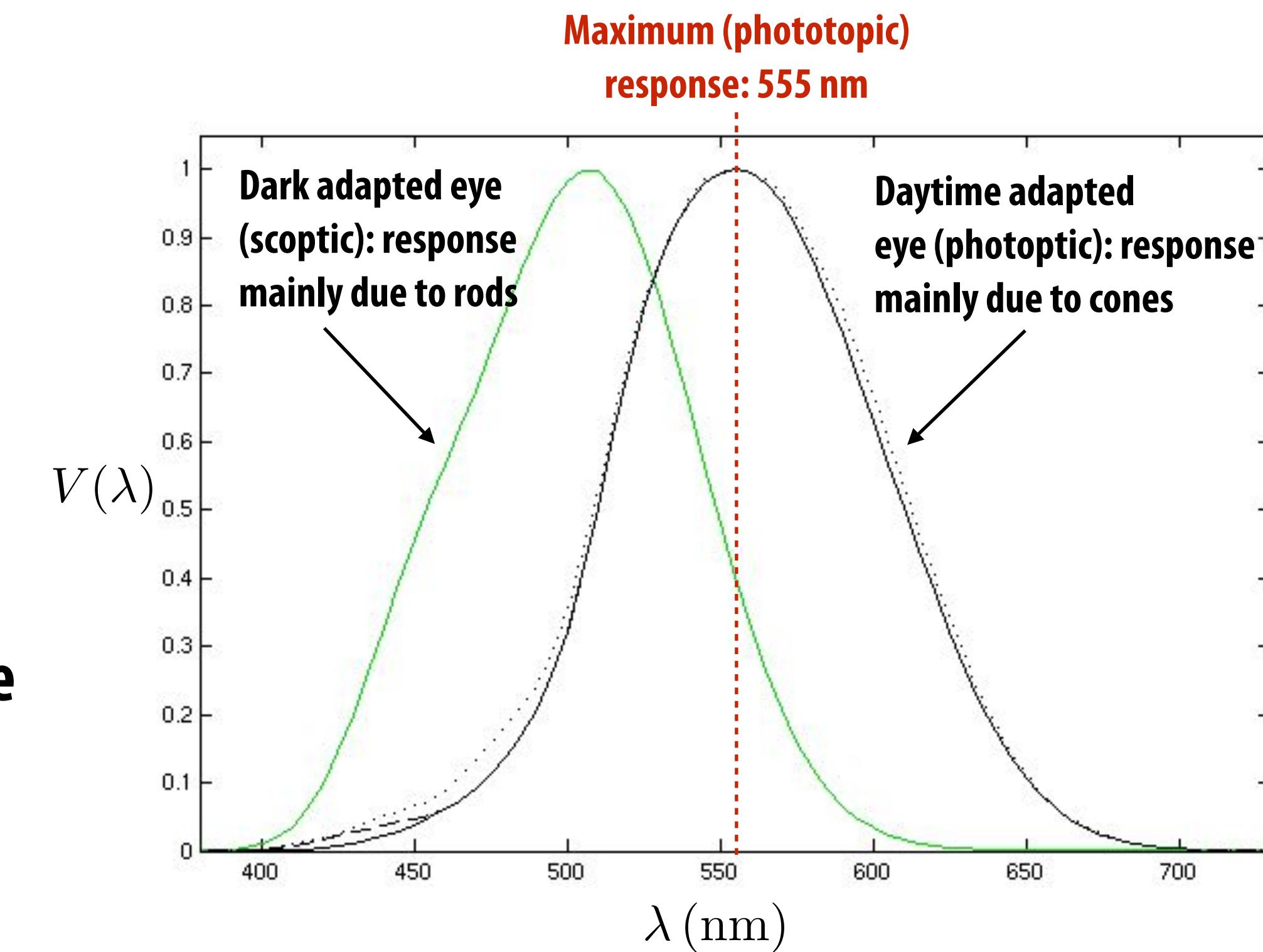


# Luminance (brightness)

Product of radiance and the eye's luminous efficiency

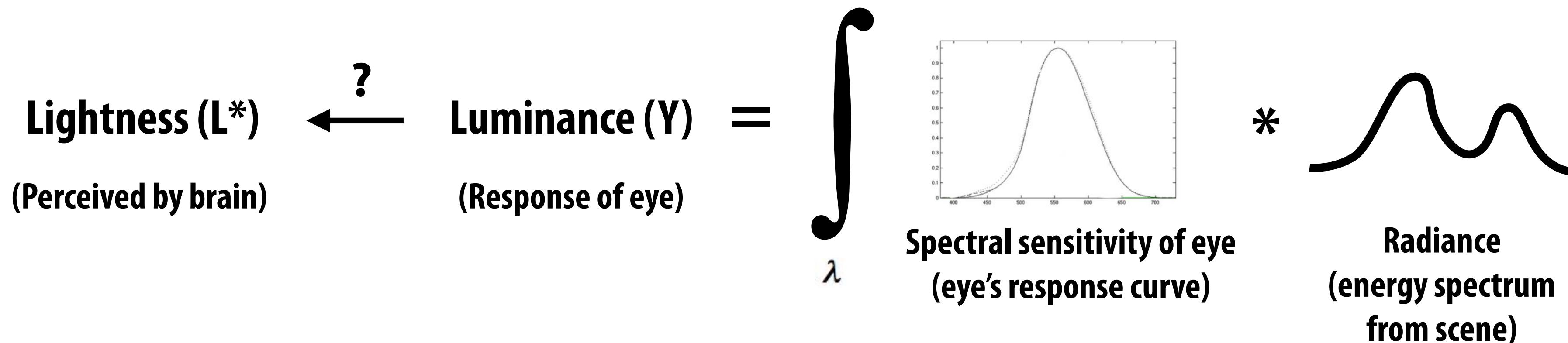
$$Y = \int \Phi(\lambda) V(\lambda) d\lambda$$

- Luminous efficiency is measure of how bright light at a given wavelength is perceived by a human (due to the eye's response to light at that wavelength)



- How to measure the eye's response curve  $V(\lambda)$ ?
  - Adjust power of monochromatic light source of wavelength  $\lambda$  until it matches the brightness of reference 555 nm source (photopic case)
  - Notice: the sensitivity of photopic eye is maximized at  $\sim 555$  nm

# Lightness (perceived brightness) aka luma



Dark adapted eye:  $L^* \propto Y^{0.4}$

Bright adapted eye:  $L^* \propto Y^{0.5}$

In a dark room, you turn on a light with luminance:  $Y_1$

You turn on a second light that is identical to the first. Total output is now:  $Y_2 = 2Y_1$

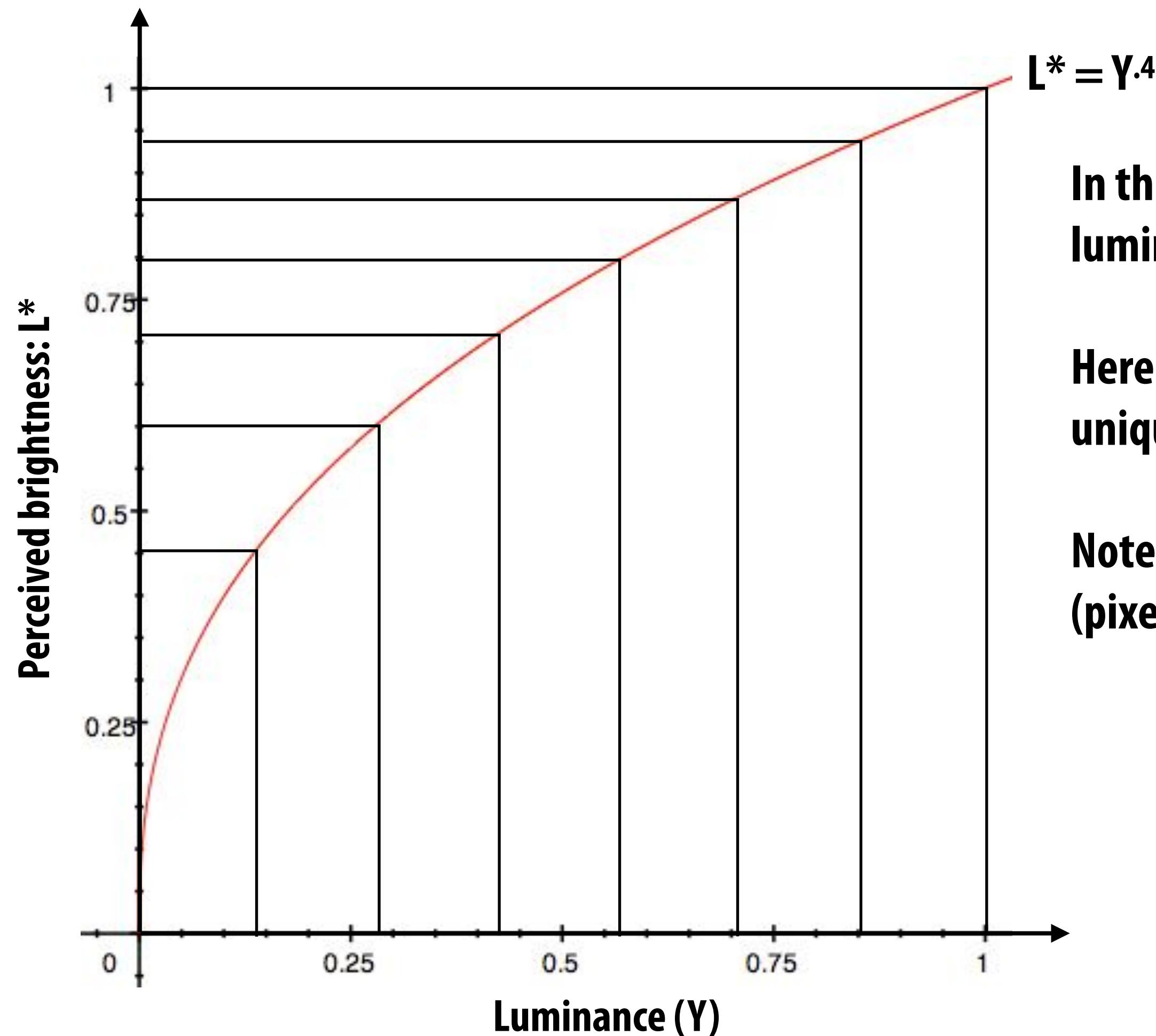
Total output appears  $2^{0.4} = 1.319$  times brighter to dark-adapted human

Note: Lightness ( $L^*$ ) is often referred to as luma ( $Y'$ )

# Idea 1:

- **What is the most efficient way to encode intensity values as a byte?**
- Idea: encode based on how the brain *perceives brightness* (lightness), not based on the response of eye

# Consider an image with pixel values encoding luminance (linear in energy hitting sensor)



**In this visualization: Pixel can represent 8 unique luminance values (3-bits/pixel)**

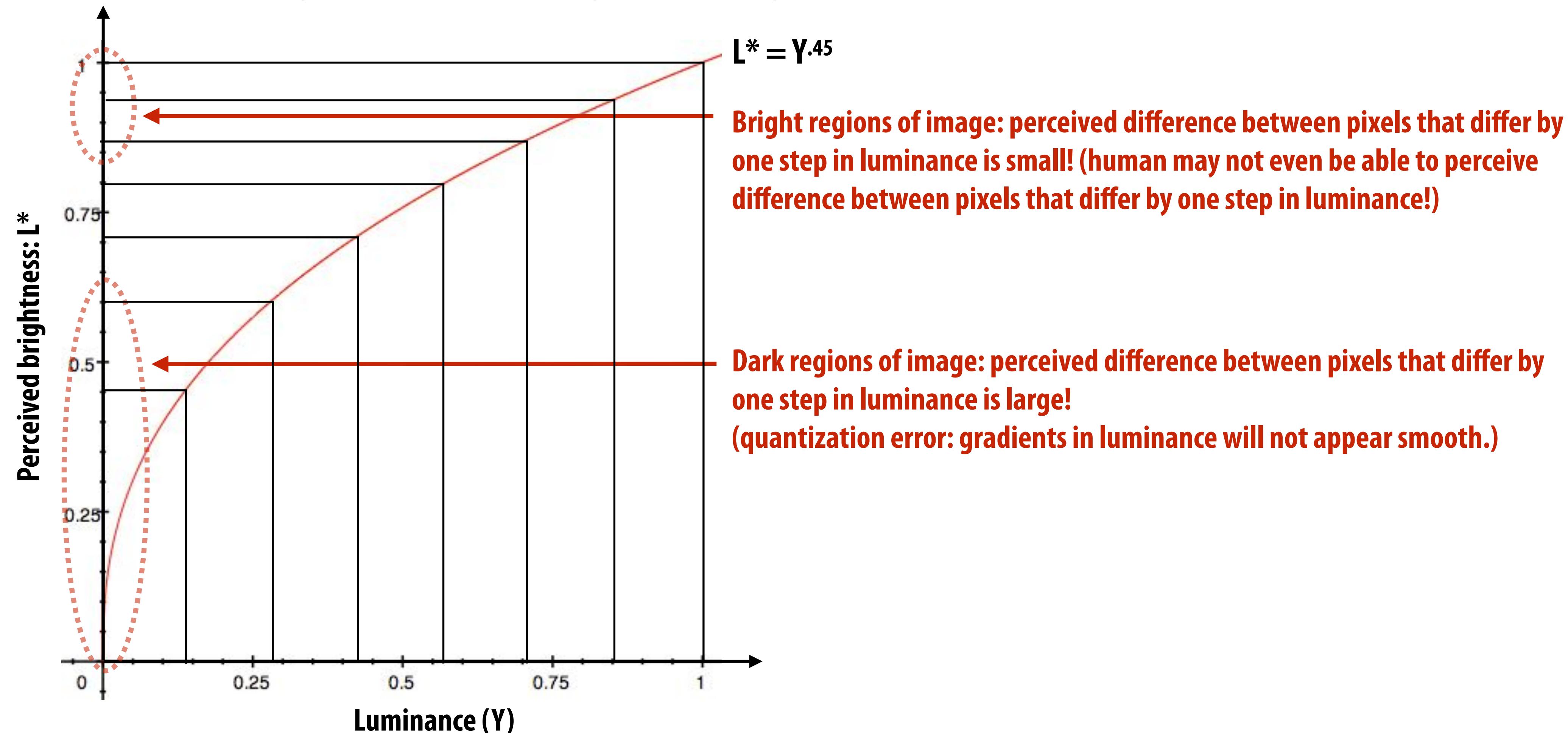
**Here: lines indicate luminance associated with each unique pixel value**

**Note that “spacing” of pixel values is linear in luminance (pixel value encode equally spaced sensor responses)**

# Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)

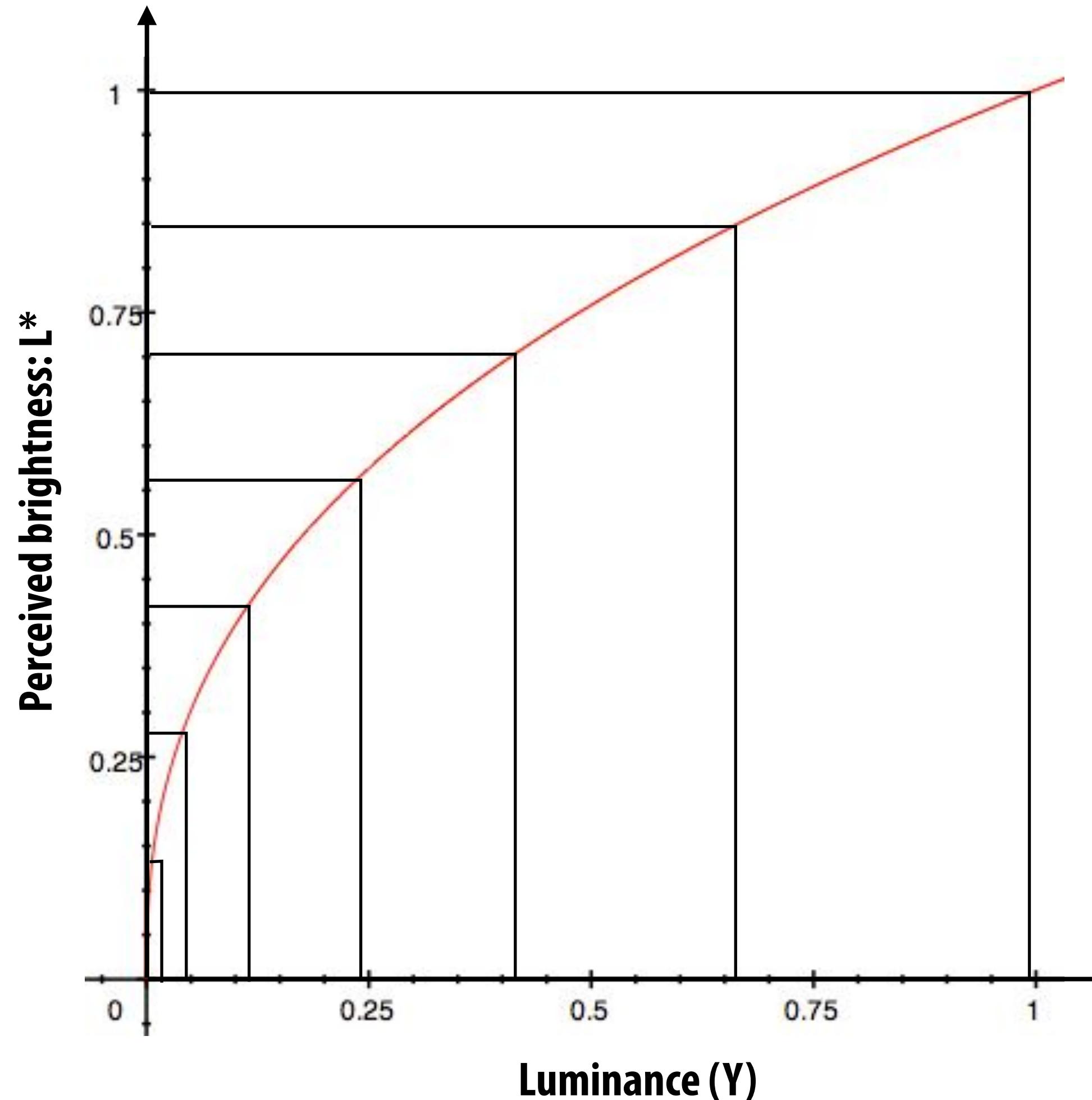
Insufficient precision to represent brightness in darker regions of image



Rule of thumb: human eye cannot differentiate  $<1\%$  differences in luminance

# Store lightness, not luminance

Idea: distribute representable pixel values evenly with respect to lightness (perceived brightness), not evenly in luminance (make more efficient use of available bits)



**Solution: pixel stores  $Y^{0.45}$**

**Must compute  $(pixel\_value)^{2.2}$  prior to display on LCD**

**Warning: must take caution with subsequent pixel processing operations once pixels are encoded in a space that is not linear in luminance.**

**e.g., When adding images should you add pixel values that are encoded as lightness or as luminance?**

[Everything on this slide is dark to make it easier to see the differences]

**Equal steps (in luminance)**



# Idea 2:

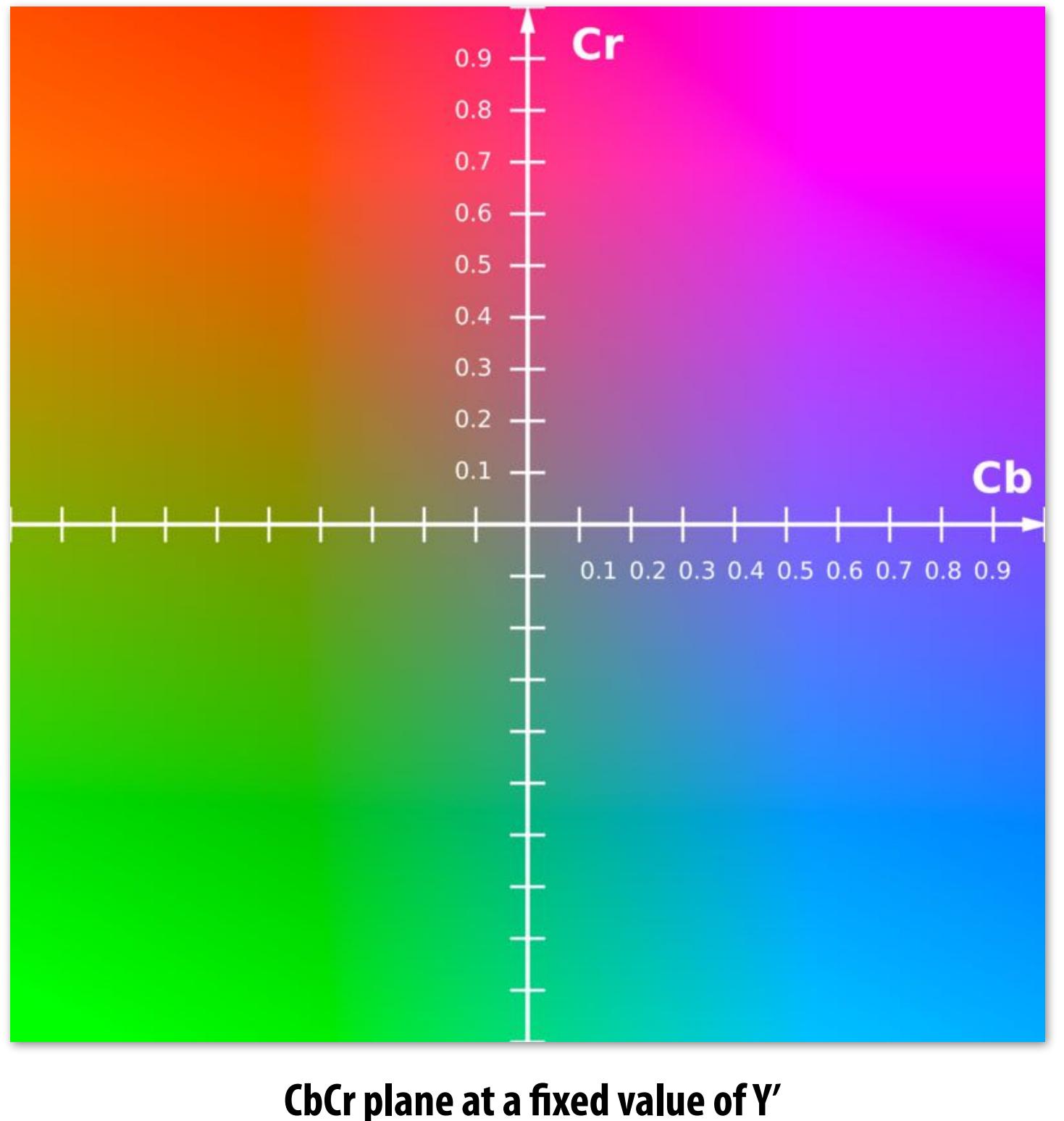
- **Chrominance (“chroma”) subsampling**
- **The human visual system is less sensitive to detail in chromaticity than in luminance**
  - **So it is sufficient to sample chroma more sparsely in space**

# Y'CbCr color space

**Y'** = luma: perceived luminance (non-linear)

**Cb** = blue-yellow deviation from gray

**Cr** = red-cyan deviation from gray



Non-linear RGB  
(primed notation indicates  
perceptual (non-linear) space)

Conversion from R'G'B' to Y'CbCr:

$$Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256}$$

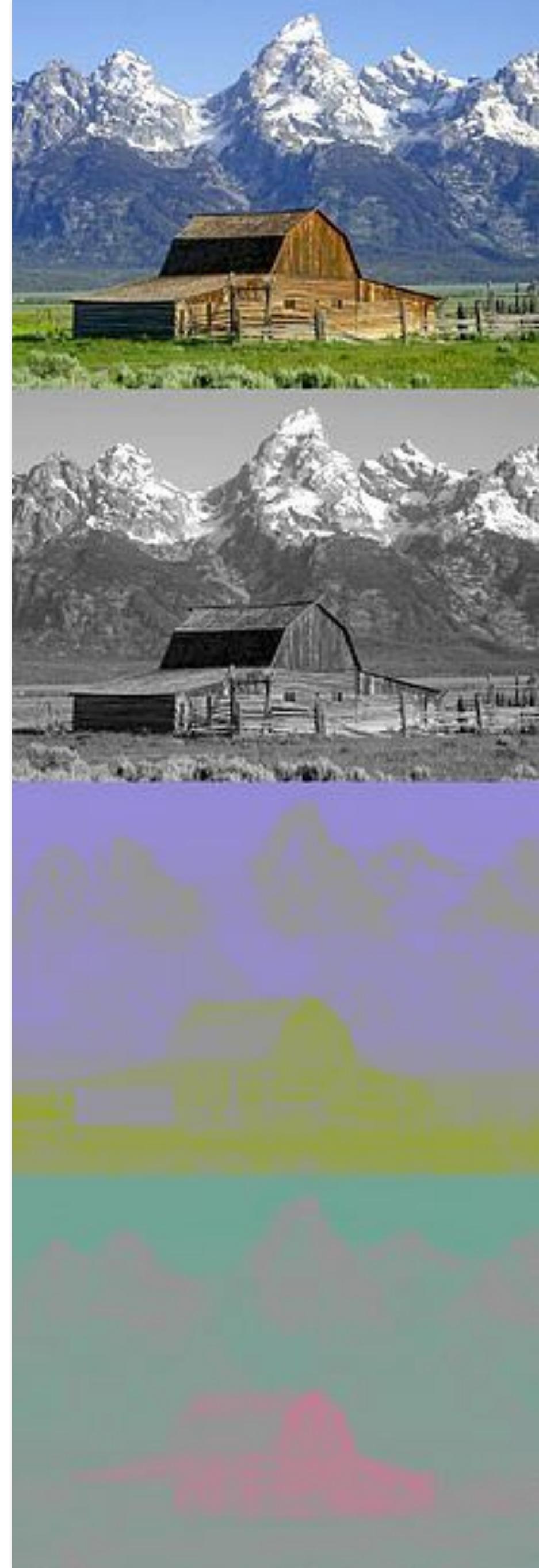
$$C_B = 128 + \frac{-37.945 \cdot R'_D}{256} - \frac{74.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256}$$

$$C_R = 128 + \frac{112.439 \cdot R'_D}{256} - \frac{94.154 \cdot G'_D}{256} - \frac{18.285 \cdot B'_D}{256}$$

Y'

Cb

Cr



# Example: compression in Y'CbCr



Original picture of Kayvon

# Example: compression in Y'CbCr



**Contents of CbCr color channels downsampled by a factor of 20 in each dimension  
(400x reduction in number of samples)**

# Example: compression in Y'CbCr



**Full resolution sampling of luma (Y')**

# Example: compression in Y'CbCr



**Reconstructed result  
(looks pretty good)**

# Chroma subsampling

**Y'CbCr is an efficient representation for storage (and transmission) because Y' can be stored at higher resolution than CbCr without significant loss in perceived visual quality**

|                                     |           |                                     |           |
|-------------------------------------|-----------|-------------------------------------|-----------|
| $Y'_{00}$<br>$Cb_{00}$<br>$Cr_{00}$ | $Y'_{10}$ | $Y'_{20}$<br>$Cb_{20}$<br>$Cr_{20}$ | $Y'_{30}$ |
| $Y'_{01}$<br>$Cb_{01}$<br>$Cr_{01}$ | $Y'_{11}$ | $Y'_{21}$<br>$Cb_{21}$<br>$Cr_{21}$ | $Y'_{31}$ |

**4:2:2 representation:**

**Store Y' at full resolution**

**Store Cb, Cr at full vertical resolution,  
but only half horizontal resolution**

**X:Y:Z notation:**

**X = width of block**

**Y = number of chroma samples in first row**

**Z = number of chroma samples in second row**

|                                     |           |                                     |           |
|-------------------------------------|-----------|-------------------------------------|-----------|
| $Y'_{00}$<br>$Cb_{00}$<br>$Cr_{00}$ | $Y'_{10}$ | $Y'_{20}$<br>$Cb_{20}$<br>$Cr_{20}$ | $Y'_{30}$ |
| $Y'_{01}$                           | $Y'_{11}$ | $Y'_{21}$                           | $Y'_{31}$ |

**4:2:0 representation:**

**Store Y' at full resolution**

**Store Cb, Cr at half resolution in both  
dimensions**

**Real-world 4:2:0 examples:**

**most JPG images and H.264 video**

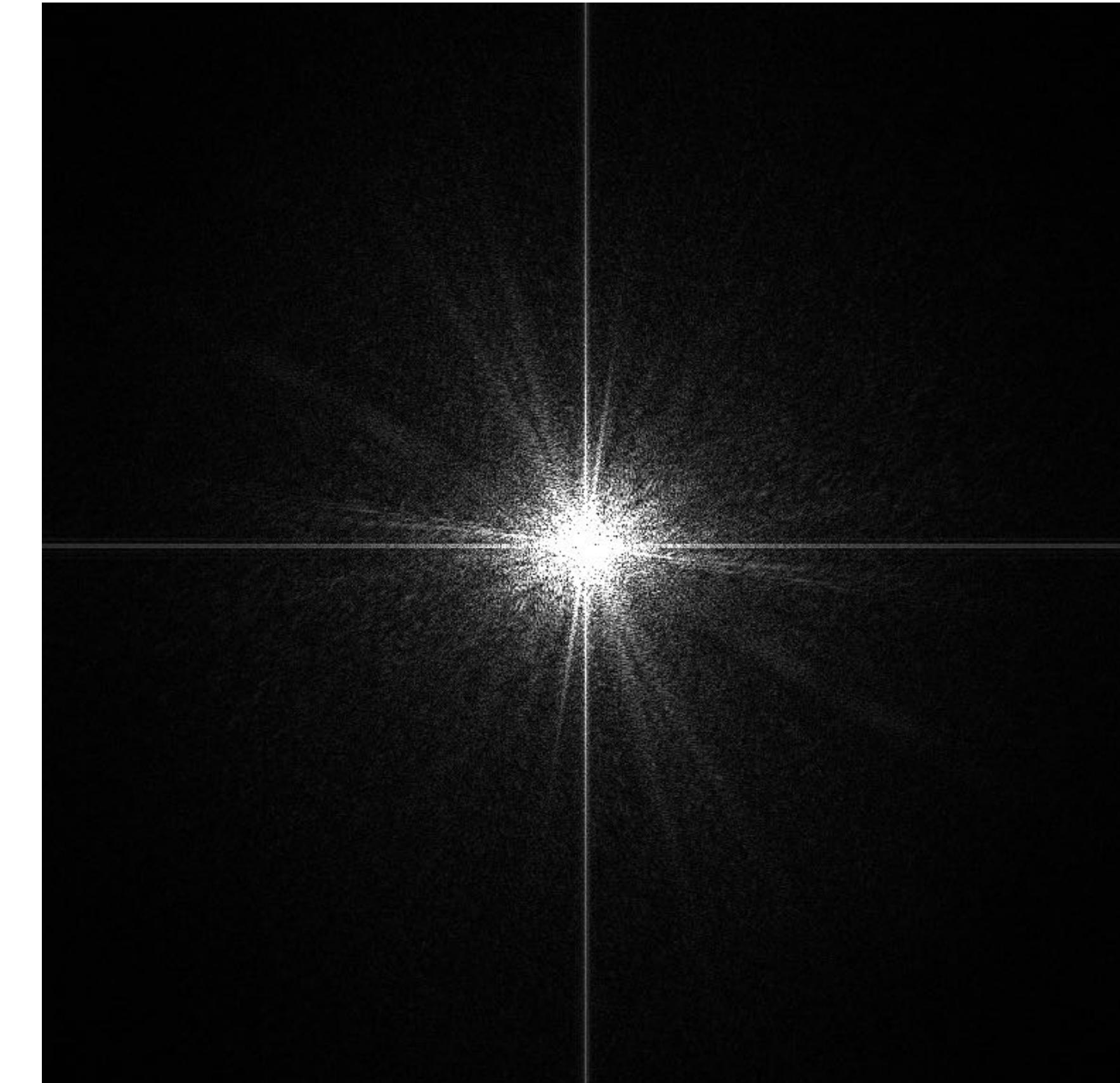
# Idea 3:

- **Low frequency content is predominant in the real world**
- **The human visual system is less sensitive to high frequency sources of error in images**
- **So a good compression scheme needs to accurately represent lower frequencies, but it can be acceptable to sacrifice accuracy in representing higher frequencies**

# Recall: frequency content of images



Spatial domain result

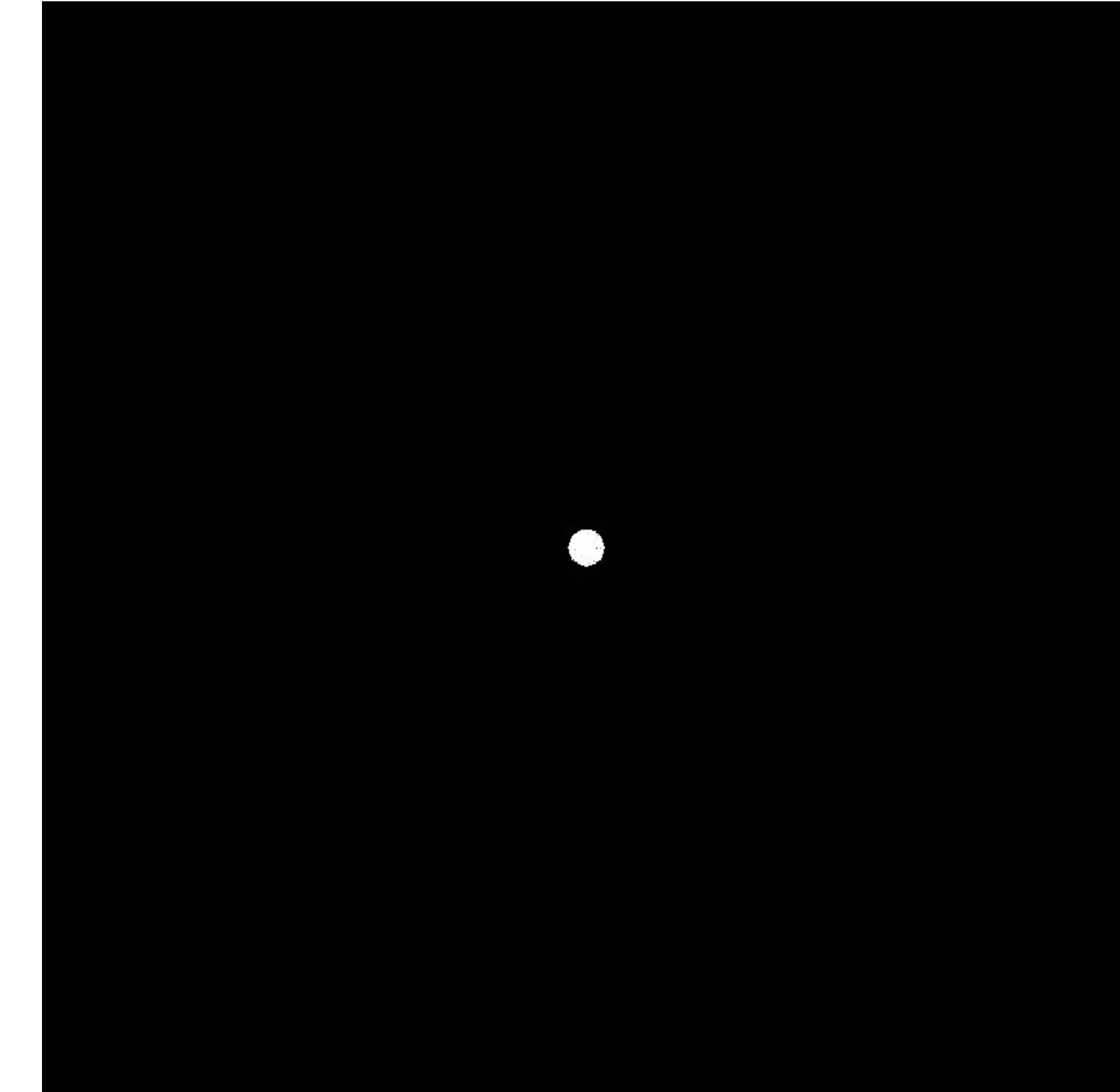


Spectrum of image

# Recall: frequency content of images

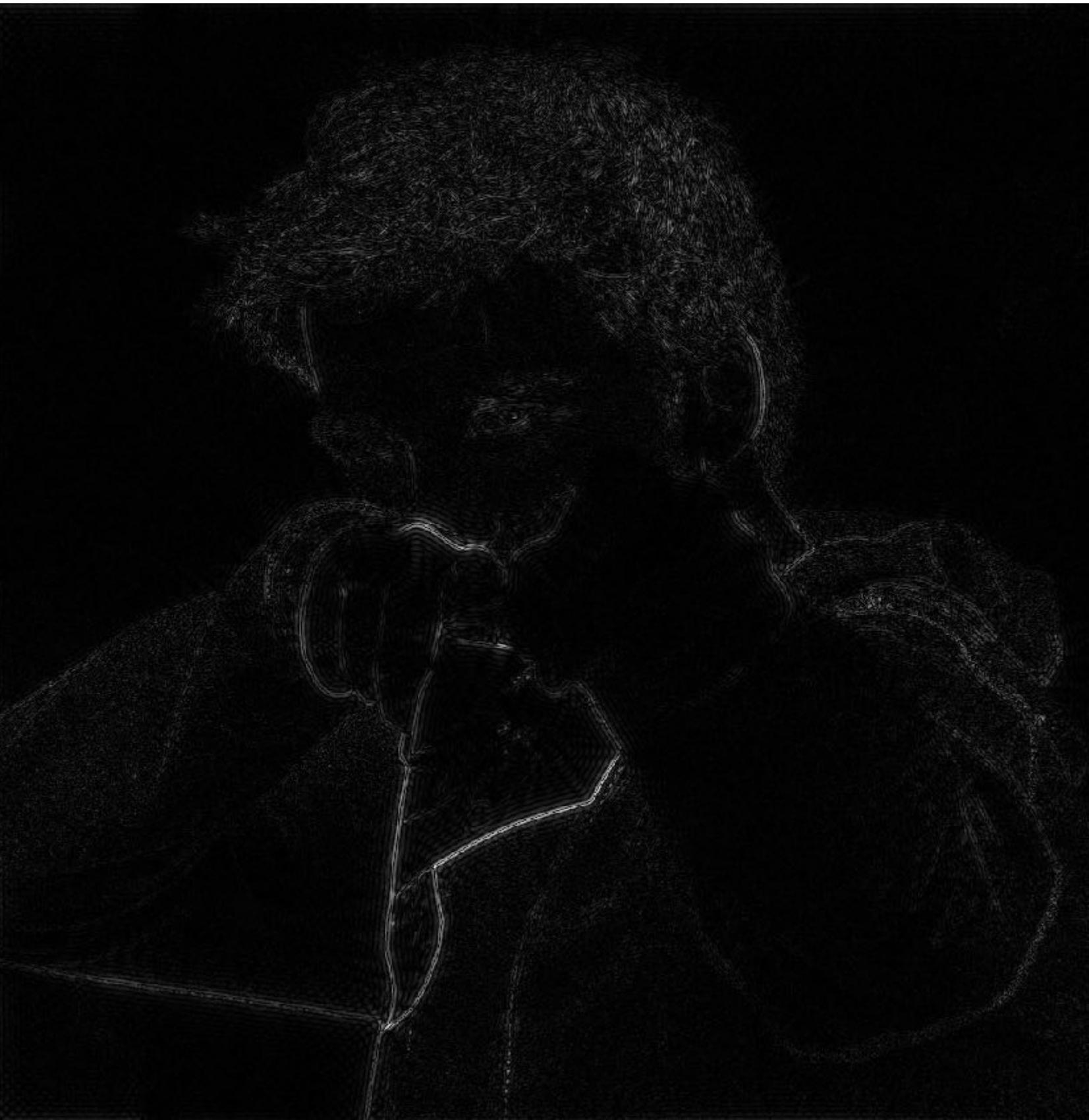


Spatial domain result

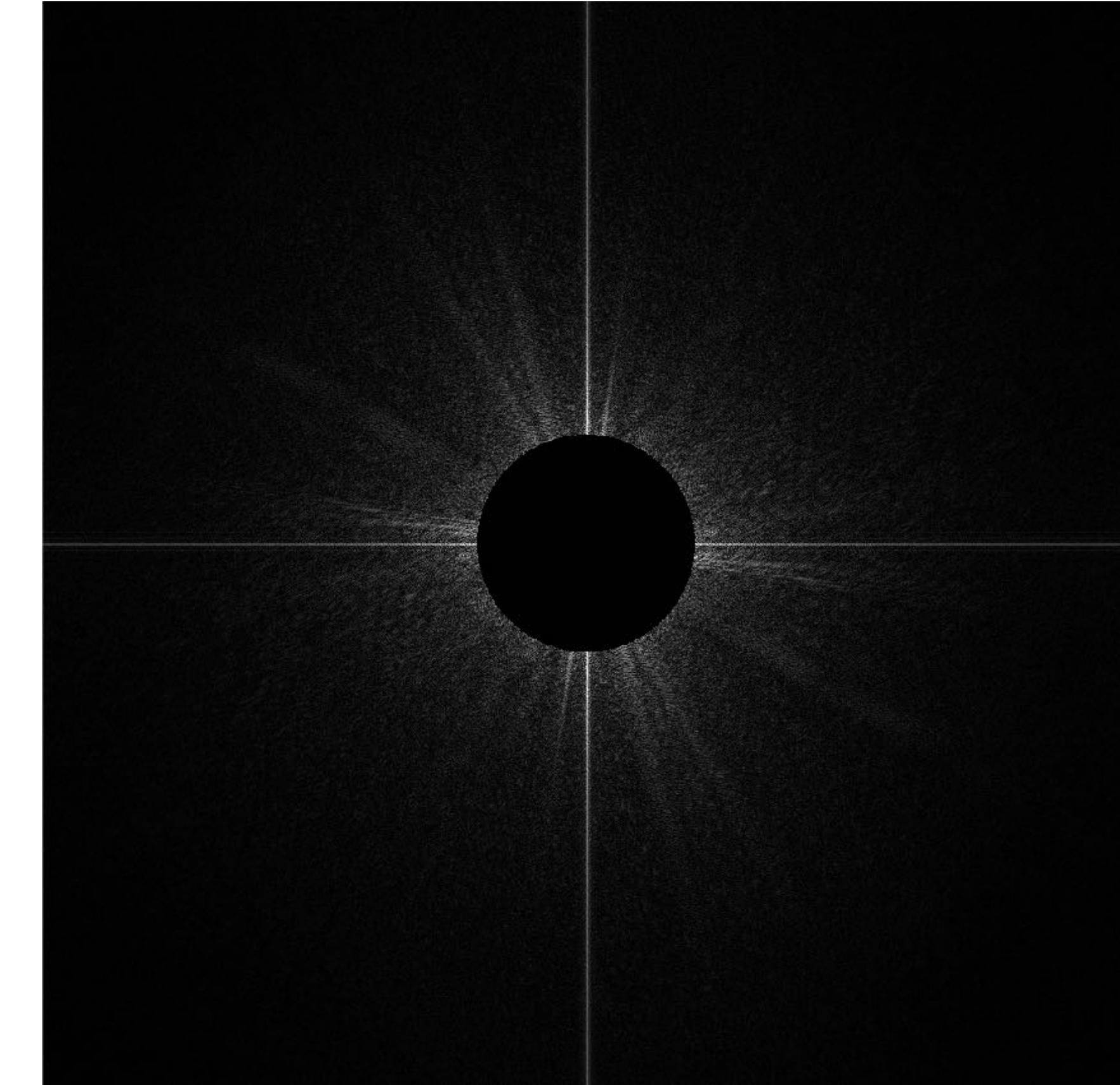


Spectrum (after low-pass filter)  
All frequencies above cutoff have 0 magnitude

# Recall: frequency content of images



**Spatial domain result  
(strongest edges)**



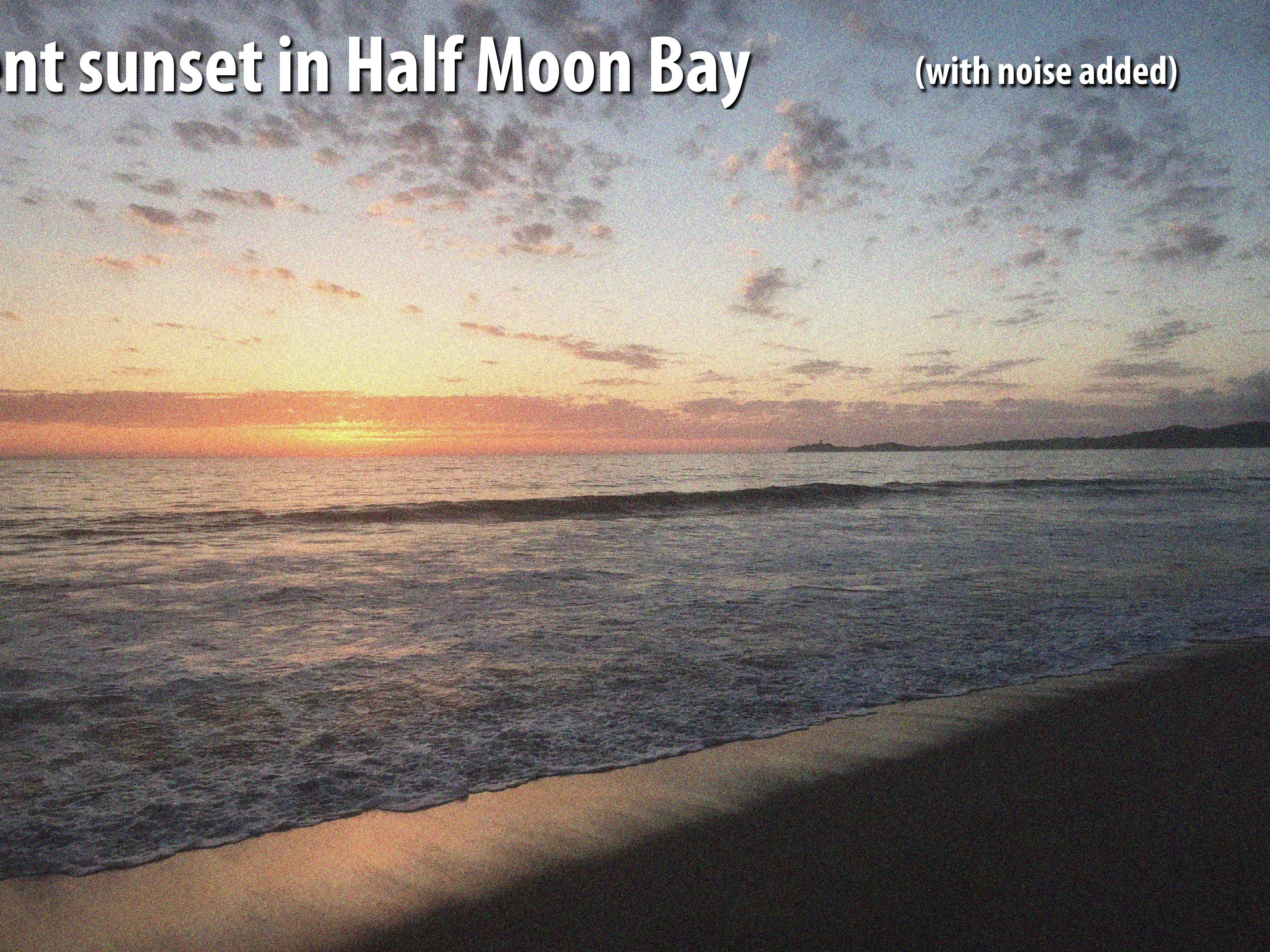
**Spectrum (after high-pass filter)  
All frequencies below threshold  
have 0 magnitude**

# A recent sunset in Half Moon Bay



# A recent sunset in Half Moon Bay

(with noise added)



# A recent sunset in Half Moon Bay

(with more noise added)



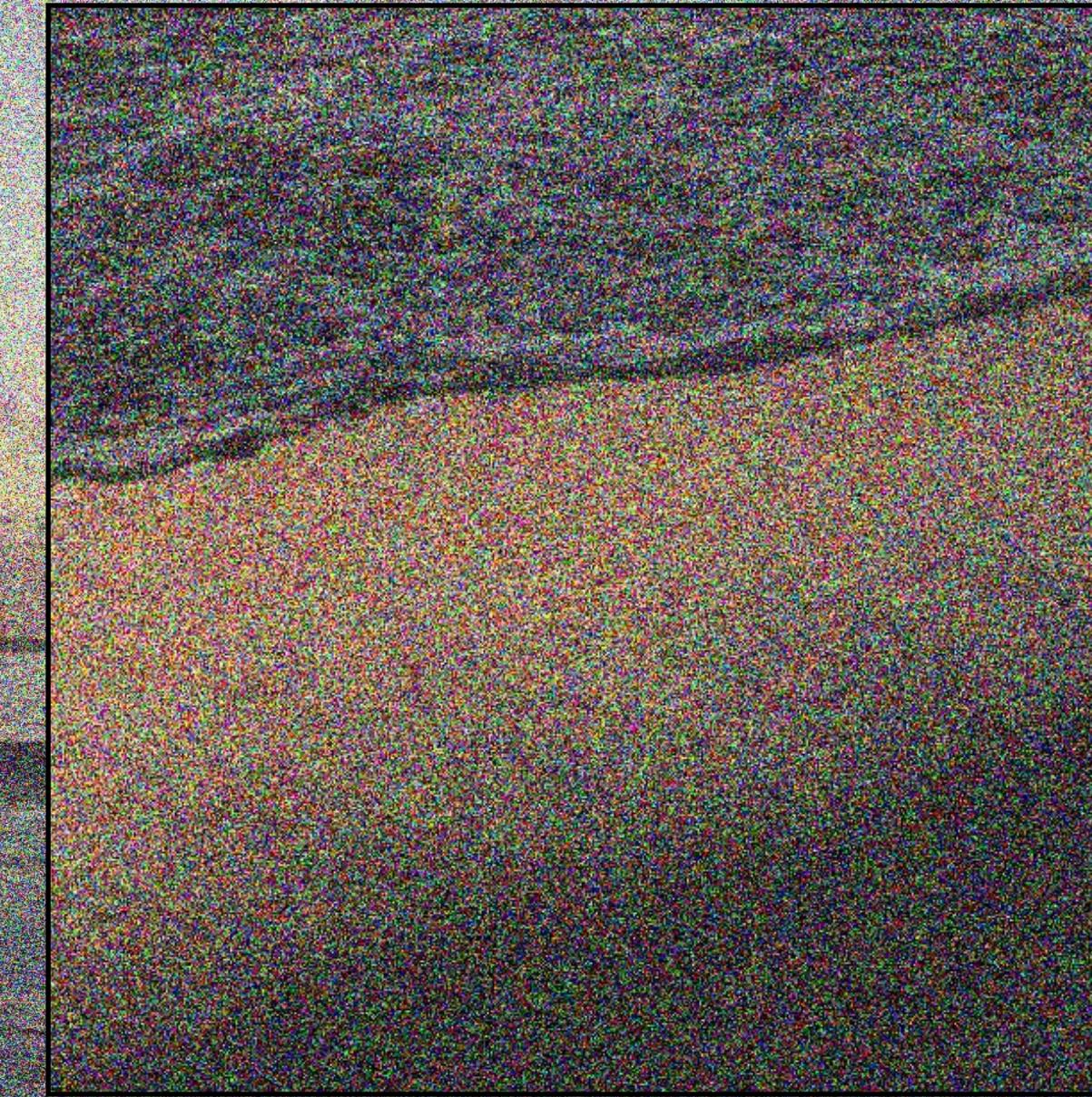
# A recent sunset in Half Moon Bay



Original image



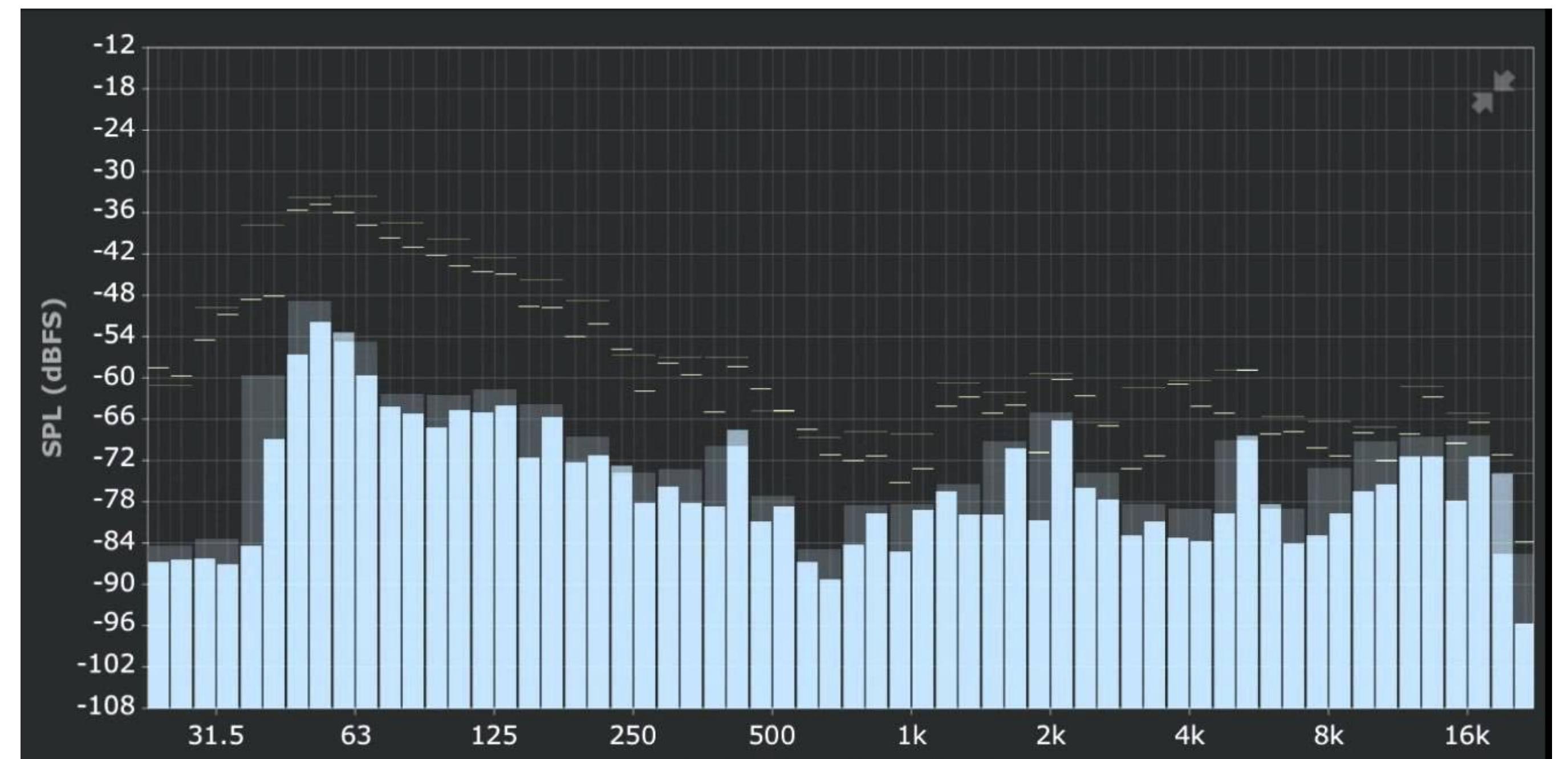
Noise added  
(increases high frequency content)



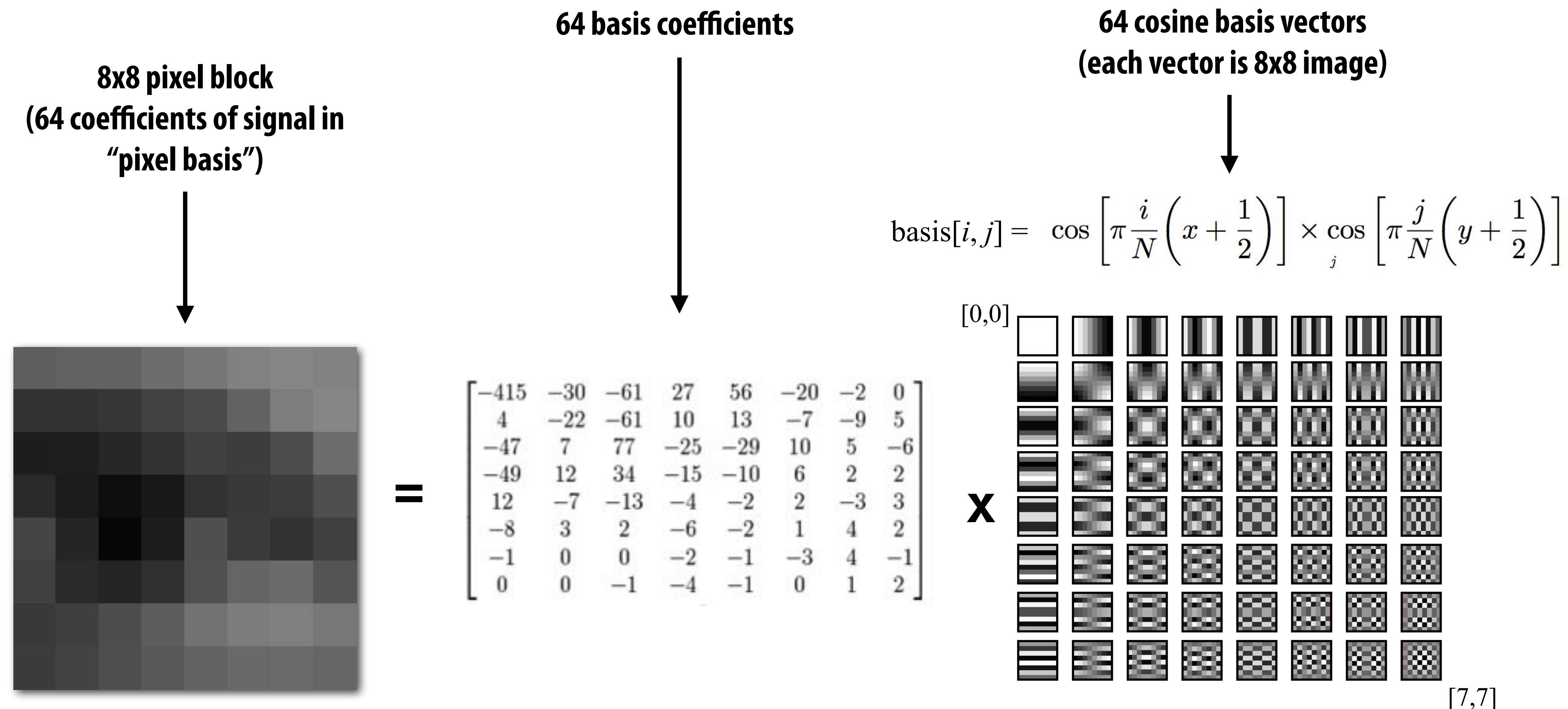
More noise added

# What is a good representation for manipulating frequency content of images?

Hint:



# Image transform coding using the discrete cosign transform (DCT)



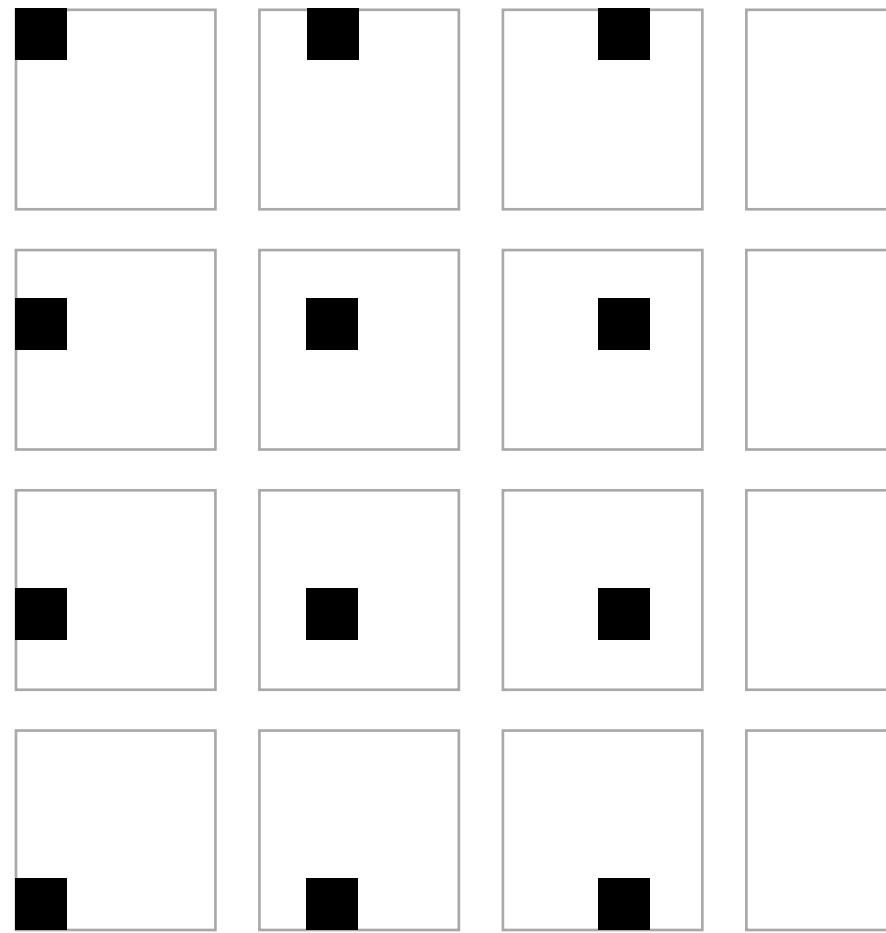
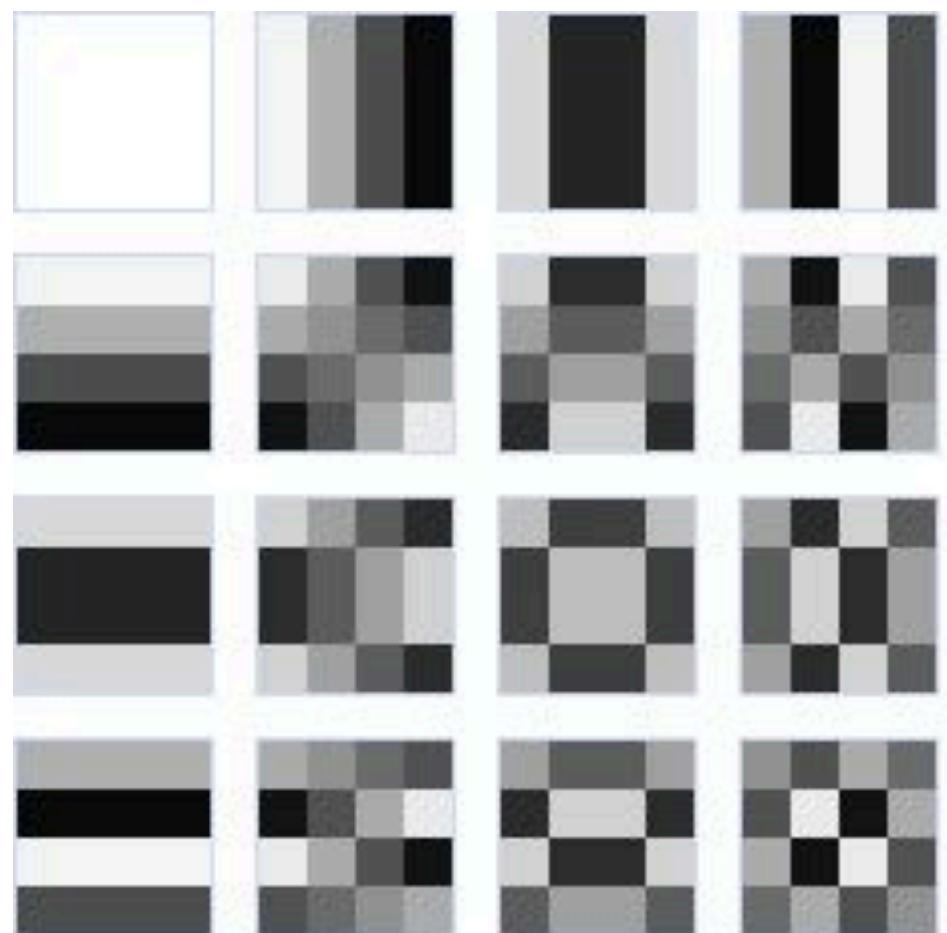
In practice: DCT is applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

# Examples of other bases

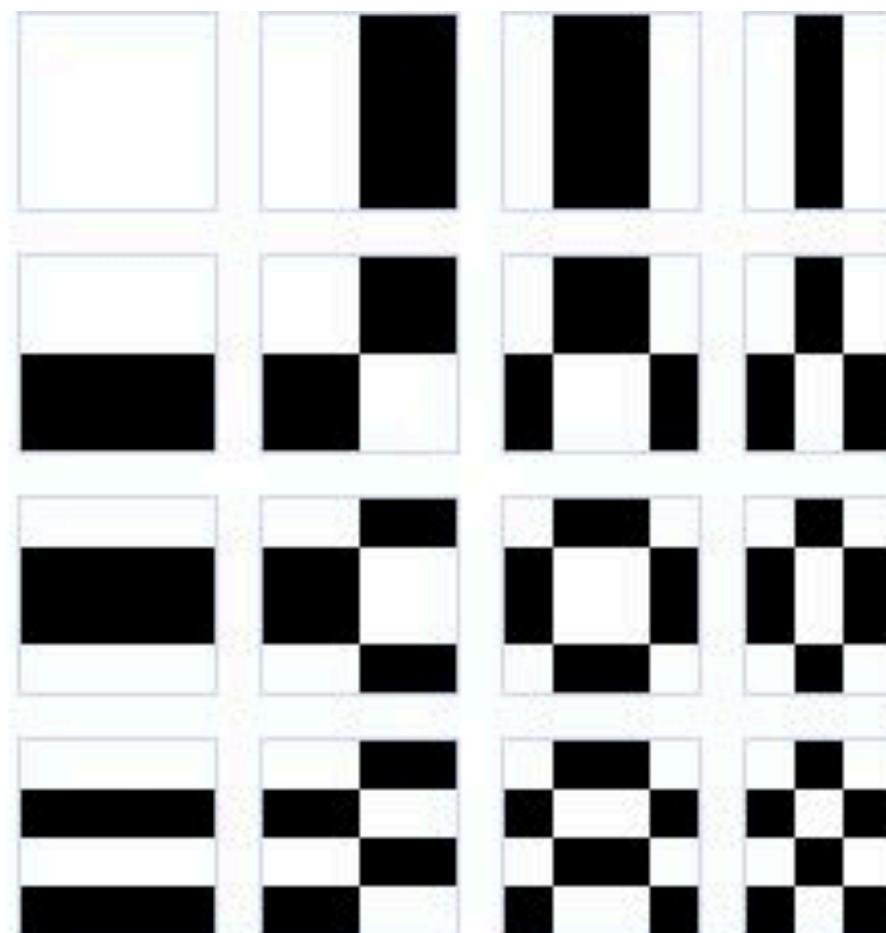
This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

## Pixel Basis

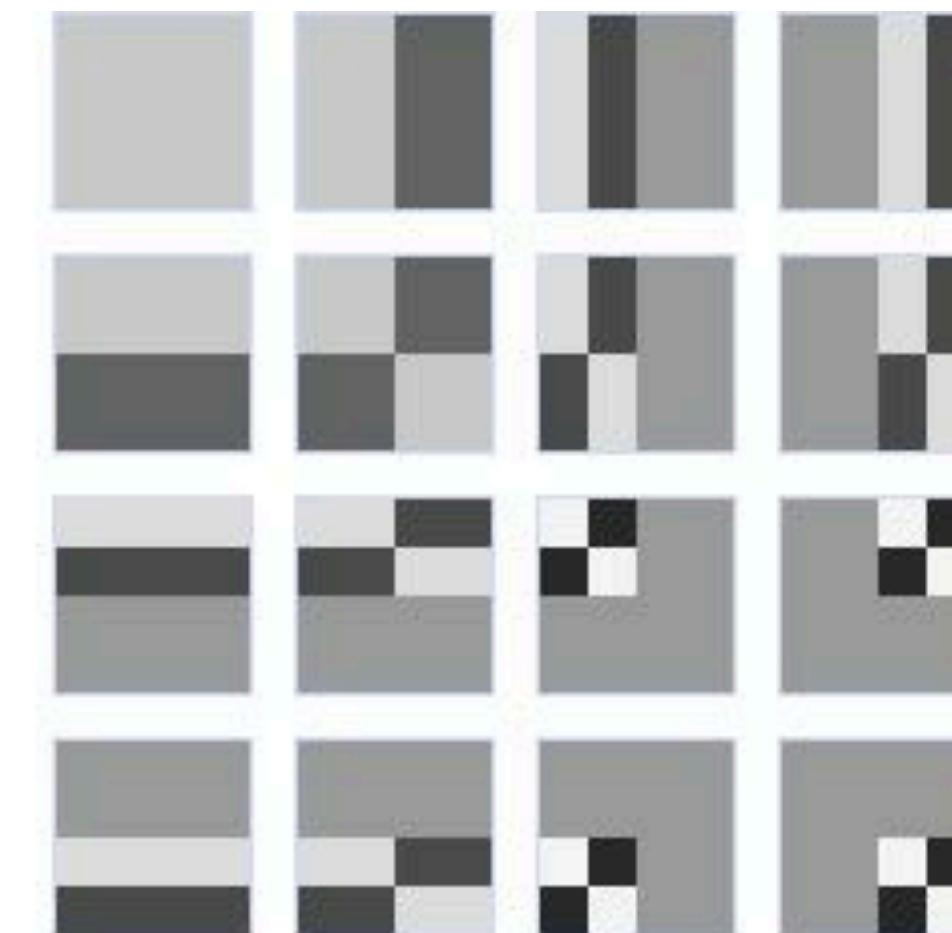
**(Compact: each coefficient in representation only effects a single pixel of output)**



DCT



Walsh-Hadamard



Haar Wavelet

# Quantization

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

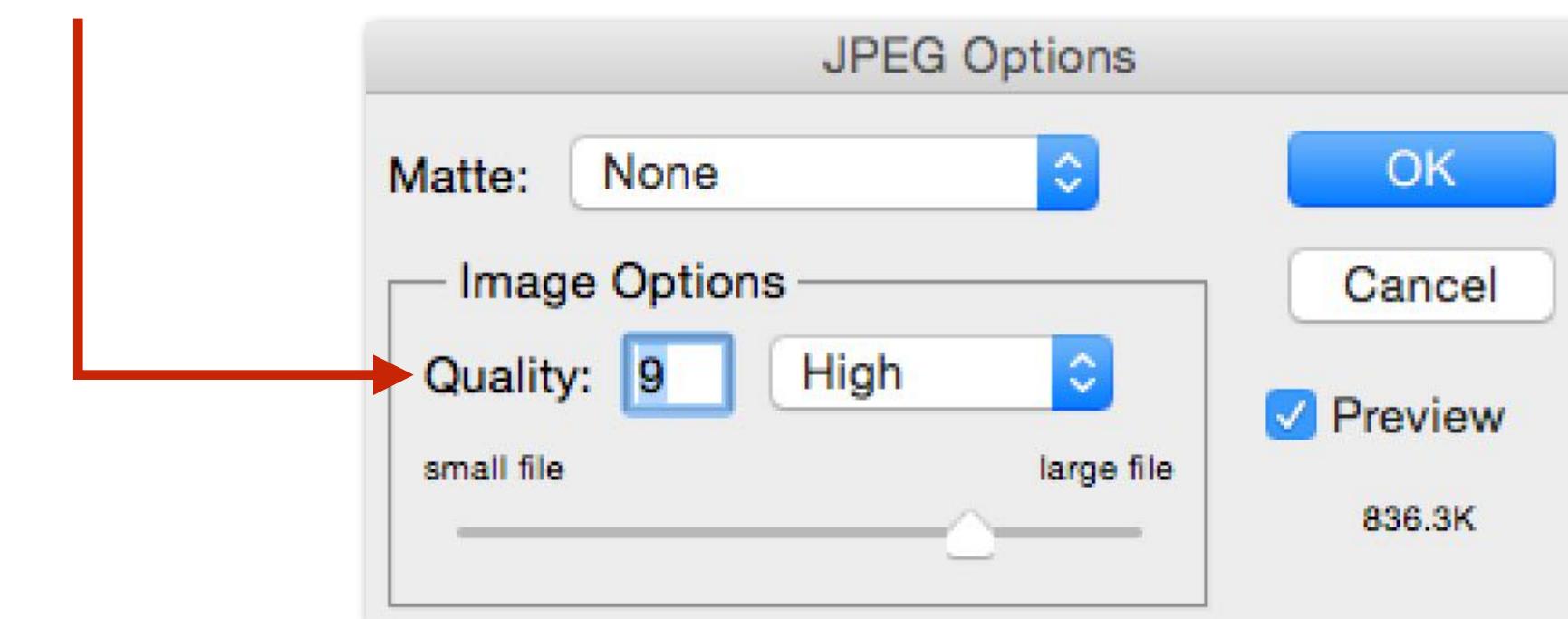
**Result of DCT**  
**(representation of image in cosine basis)**

$$\begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

**Quantization Matrix**

$$= \begin{bmatrix} -26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\ 0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\ -3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\ -4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

**Changing JPEG quality setting in your favorite photo app modifies this matrix (“lower quality” = higher values for elements in quantization matrix)**

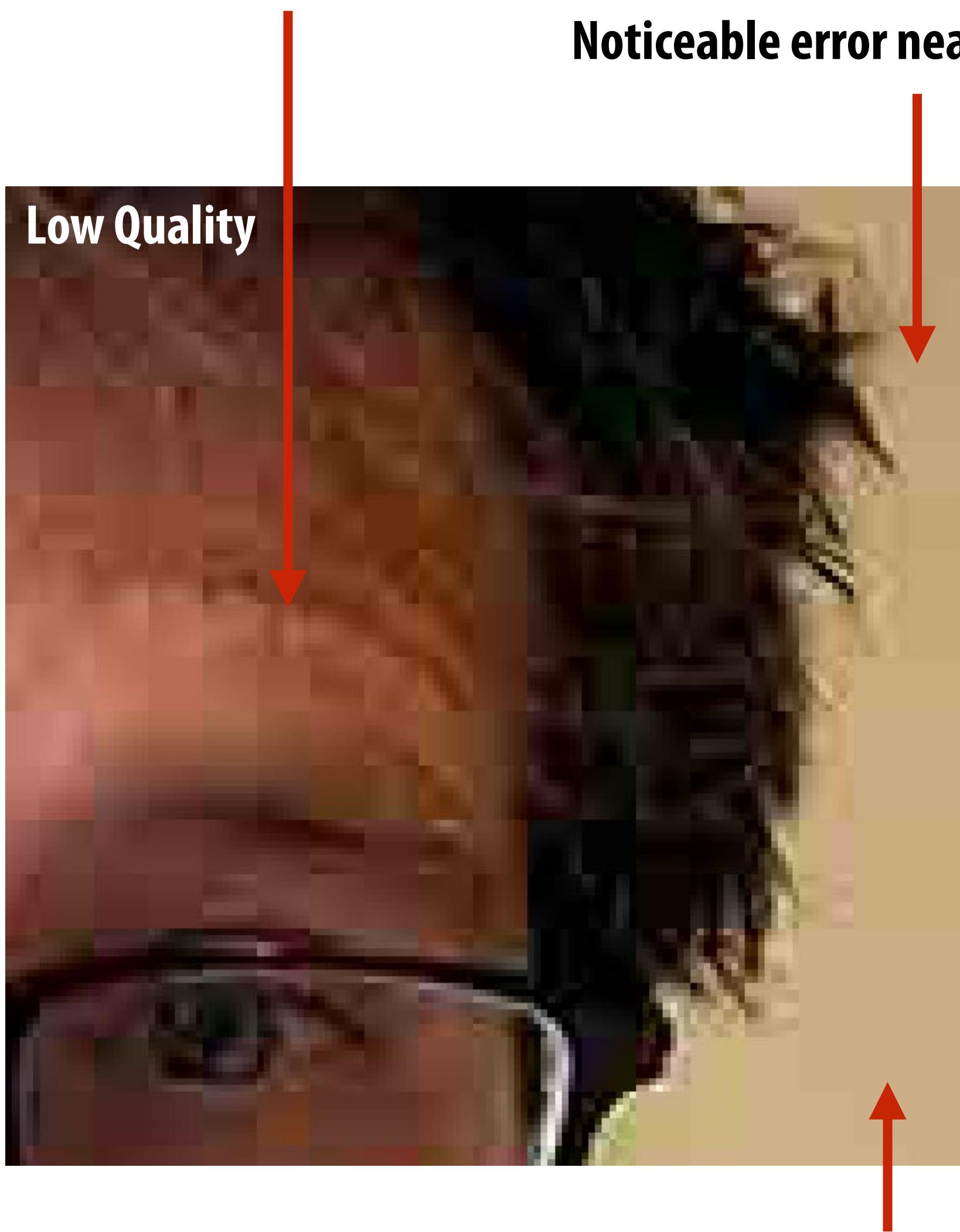


**Quantization produces small values for coefficients (only few bits needed per coefficient)**

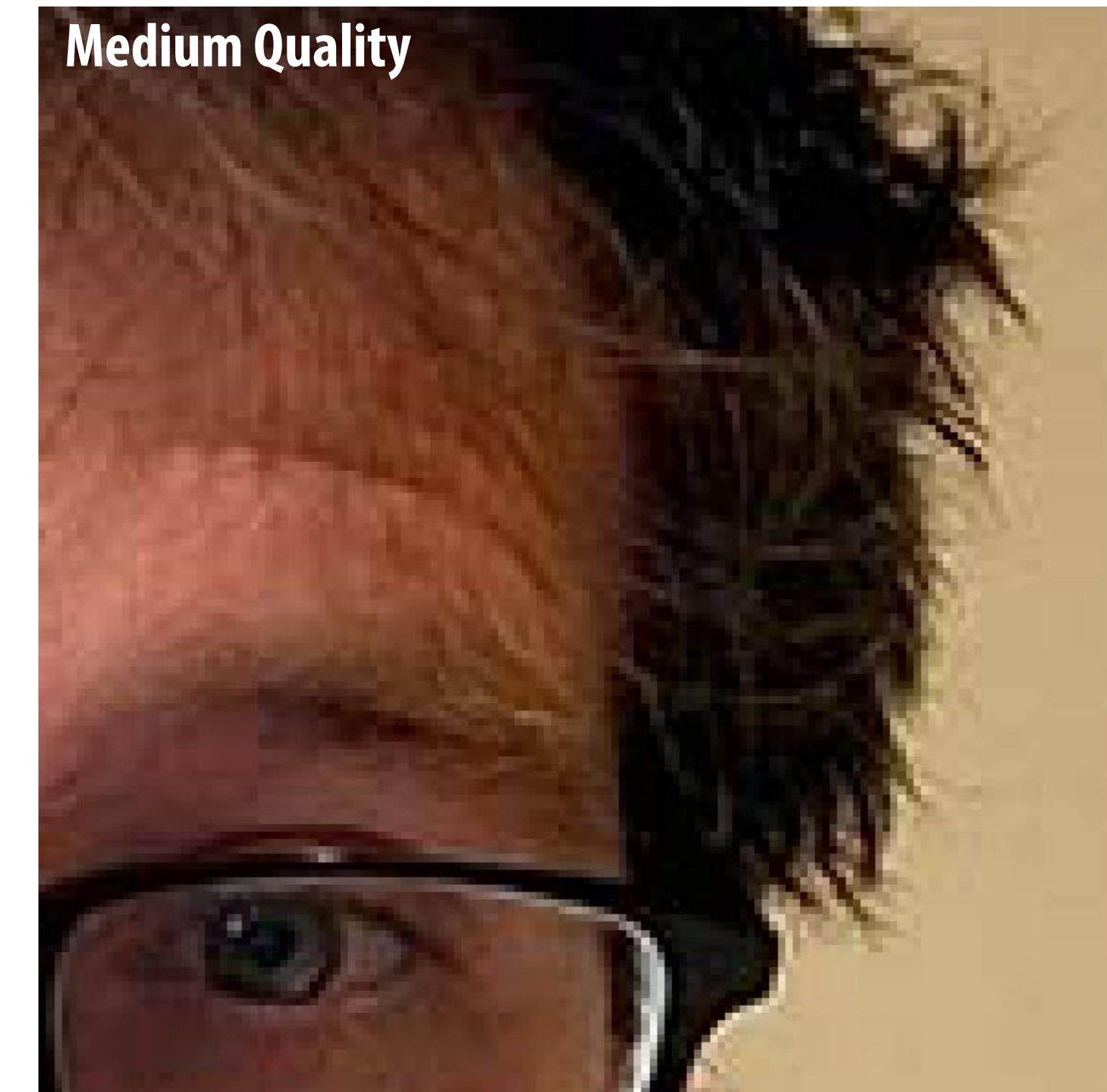
**Quantization zeros out many coefficients**

# JPEG compression artifacts

Noticeable 8x8 pixel block boundaries



Noticeable error near high gradients



Low-frequency regions of image represented accurately even under high compression

# JPEG compression artifacts

a

Original Image  
(actual size)



Original Image



Quality Level 9



Quality Level 6



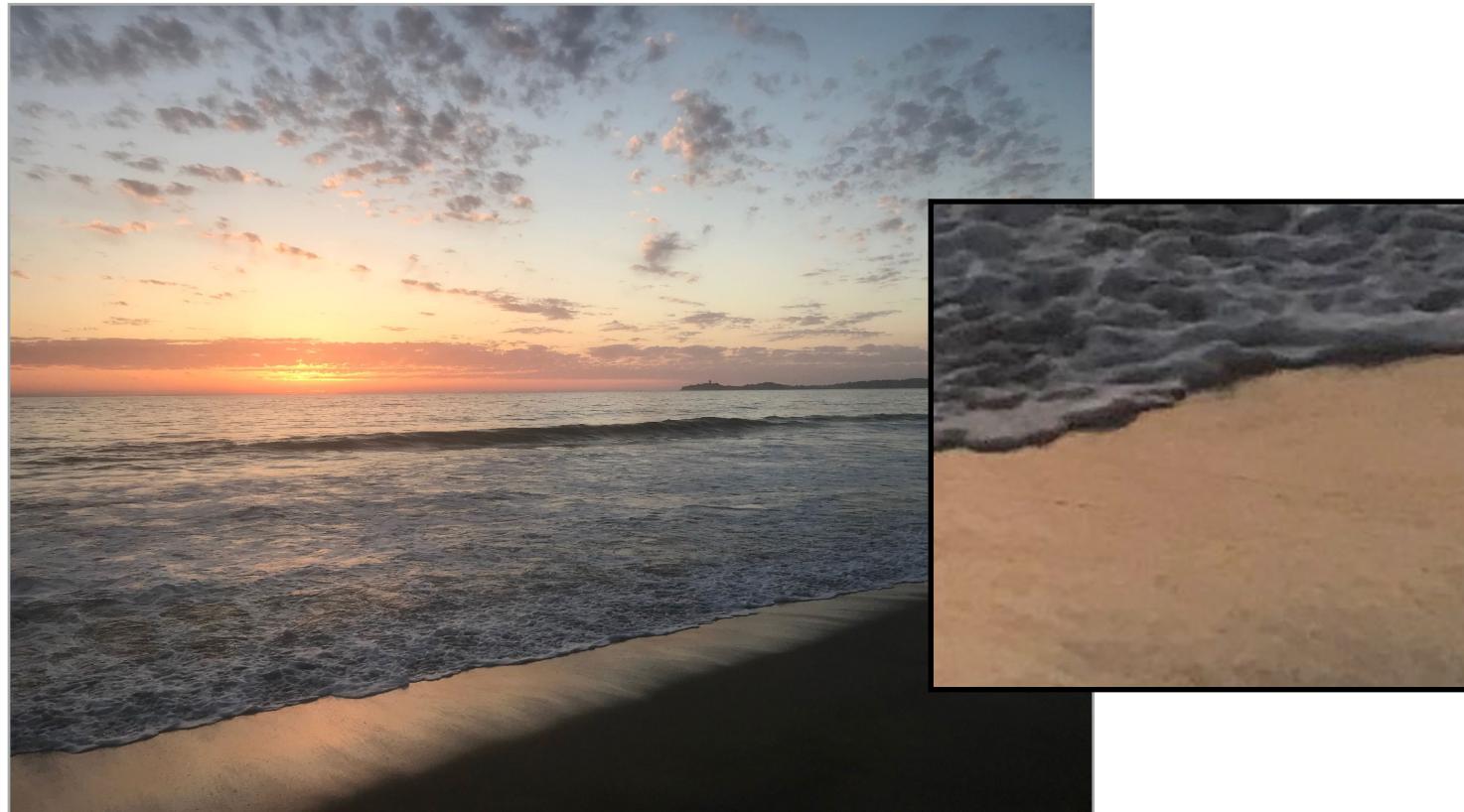
Quality Level 3



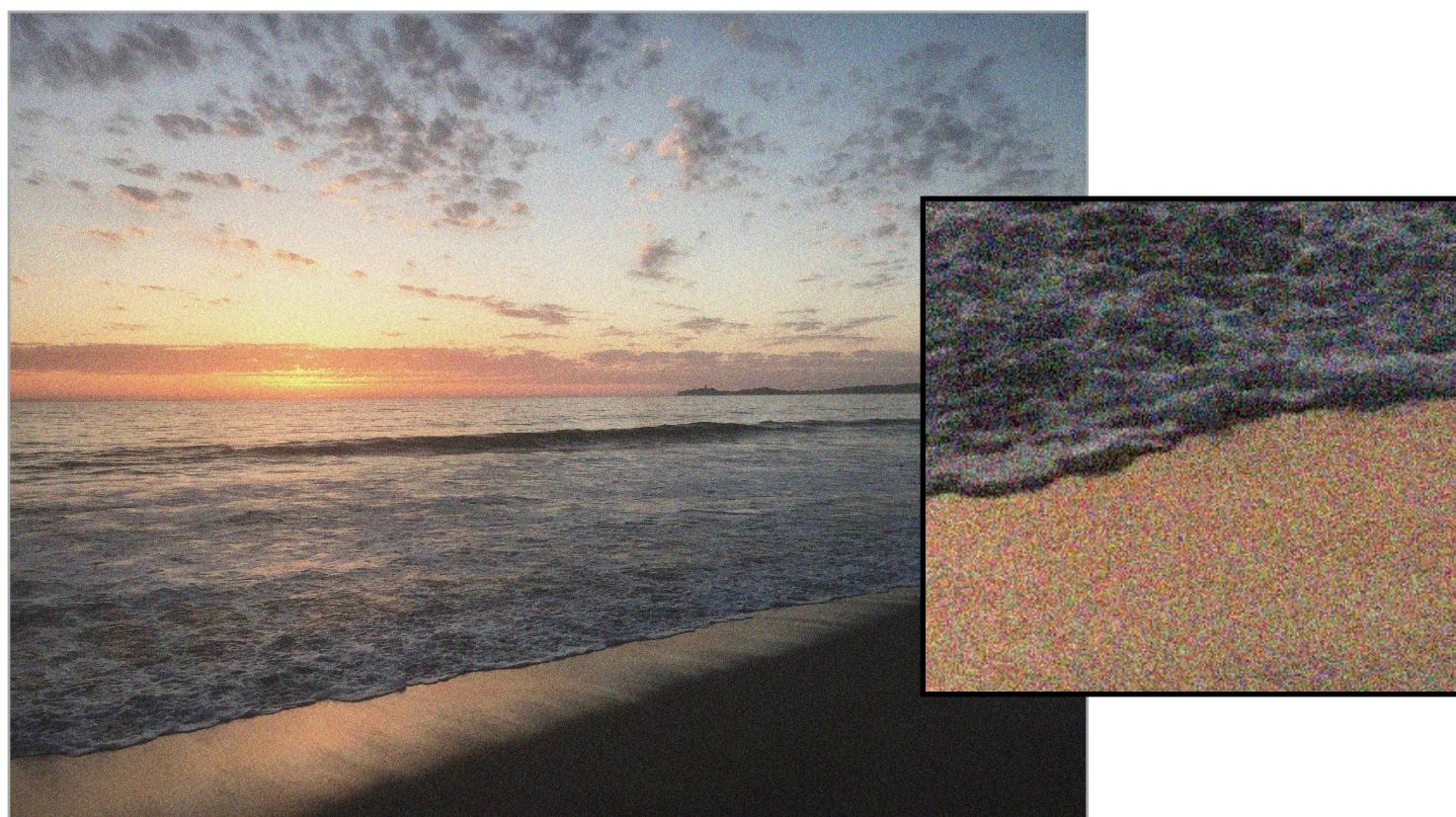
Quality Level 1

**Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?**

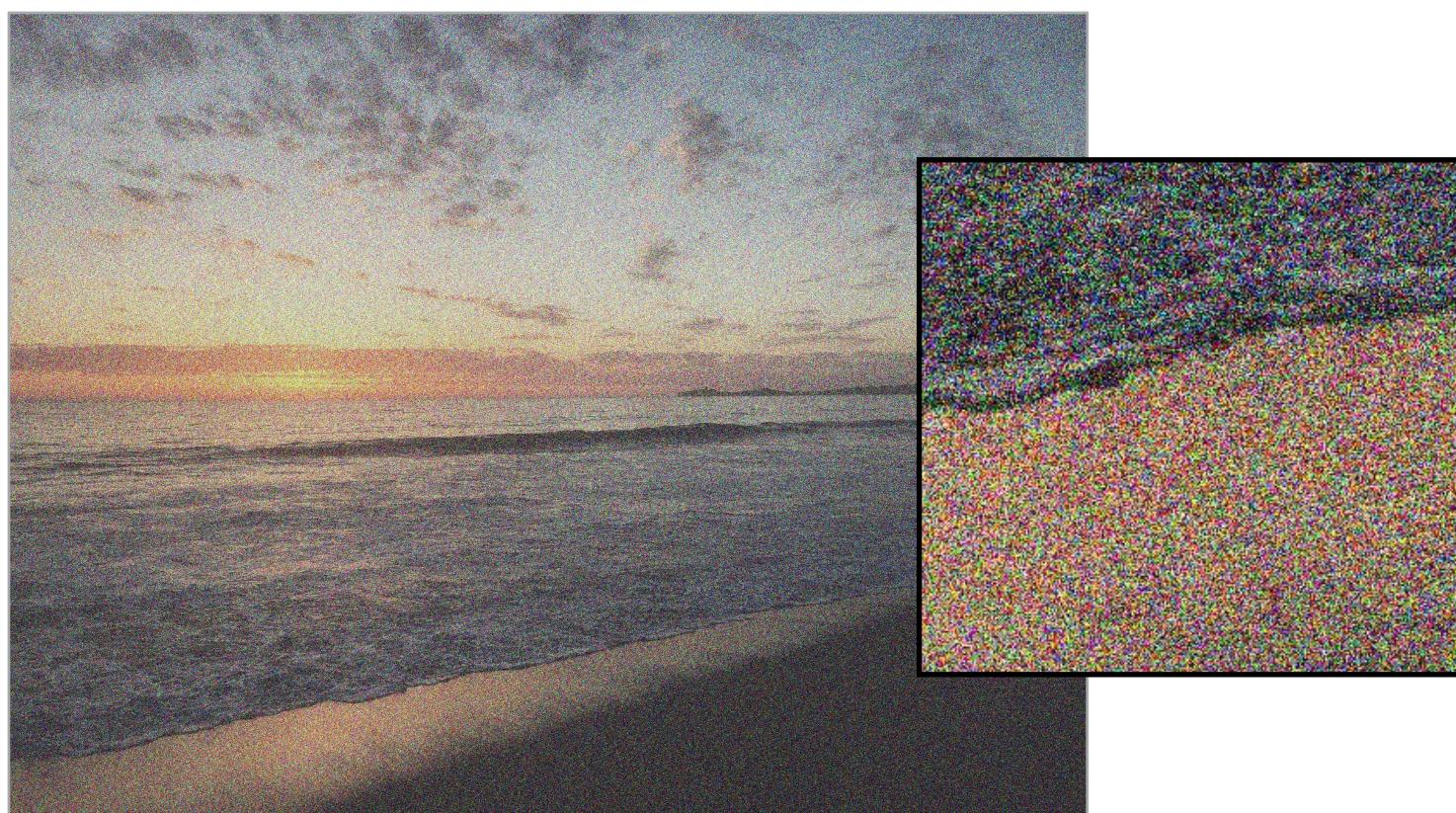
# Images with high frequency content do not exhibit as high of compression ratios. Why?



Original image: 2.9MB JPG



Medium noise: 22.6 MB JPG



High noise: 28.9 MB JPG

Photoshop JPG compression level = 10  
used for all compressed images

Uncompressed image:  
 $4032 \times 3024 \times 24 \text{ bytes/pixel} = 36.6 \text{ MB}$

# Lossless compression of quantized DCT values

|     |    |    |    |    |    |   |   |
|-----|----|----|----|----|----|---|---|
| -26 | -3 | -6 | 2  | 2  | -1 | 0 | 0 |
| 0   | -2 | -4 | 1  | 1  | 0  | 0 | 0 |
| -3  | 1  | 5  | -1 | -1 | 0  | 0 | 0 |
| -4  | 1  | 2  | -1 | 0  | 0  | 0 | 0 |
| 1   | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0   | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0   | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0   | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

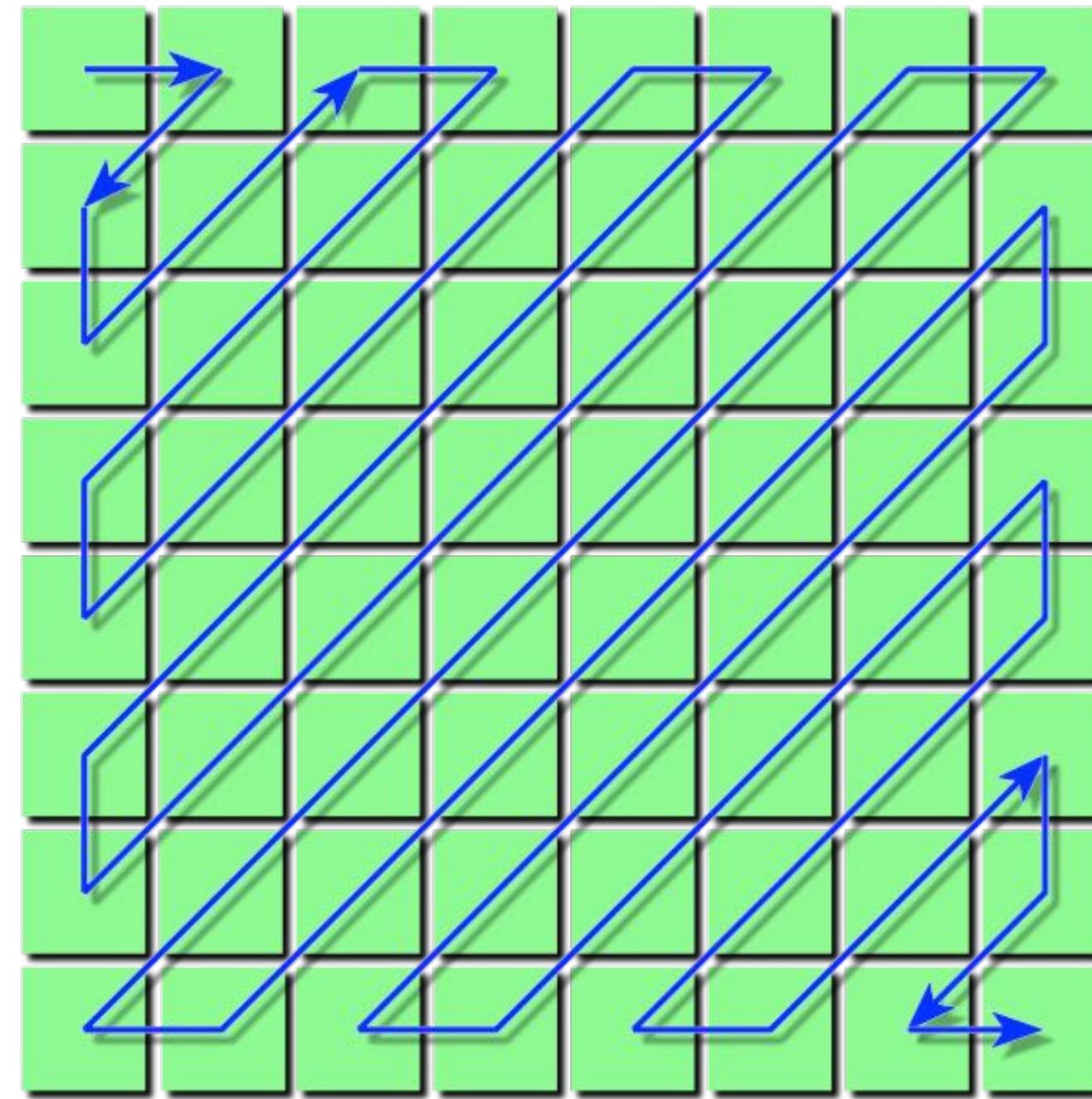
**Quantized DCT Values**

**Entropy encoding: (lossless)**

**Reorder values**

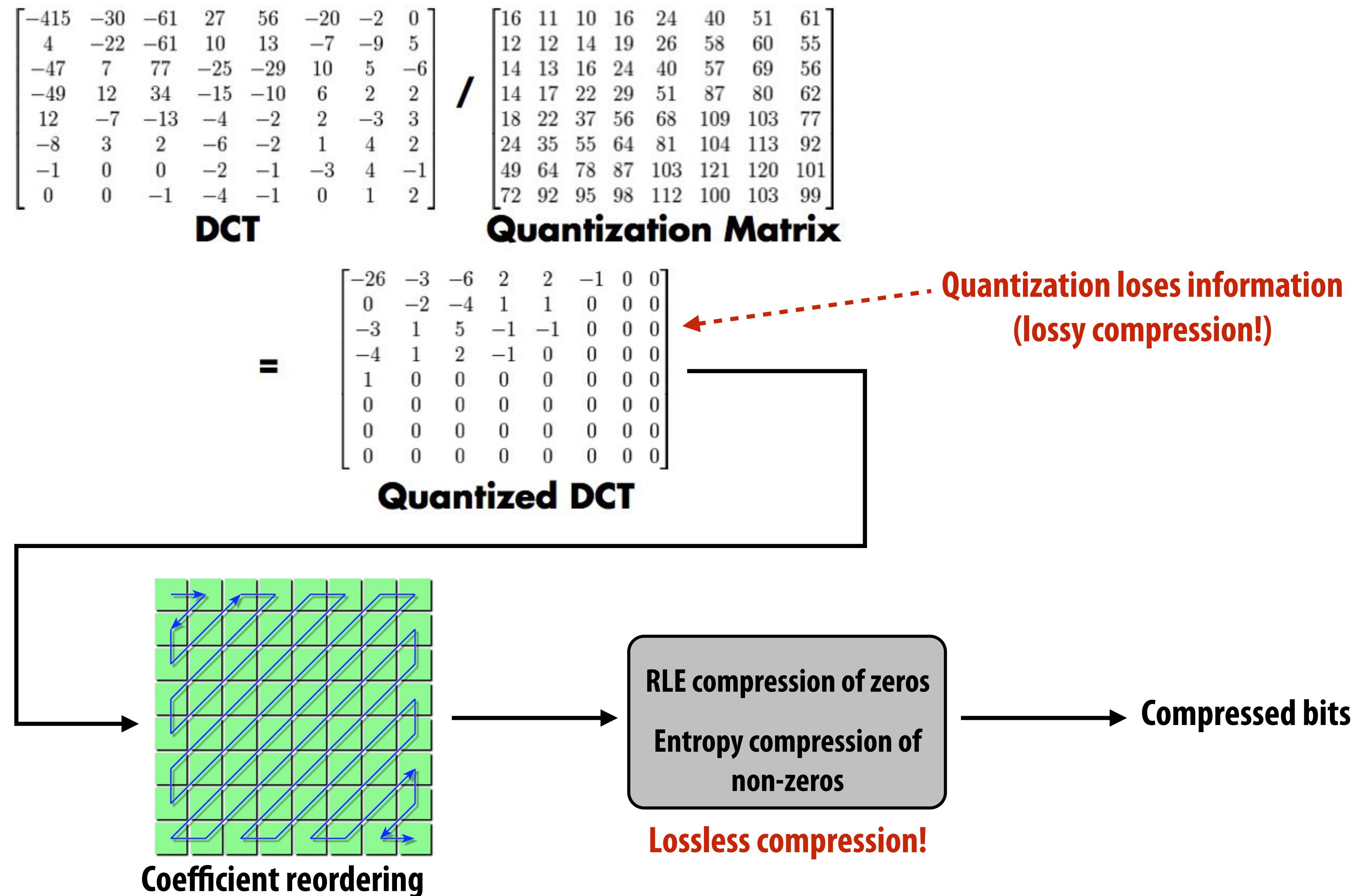
**Run-length encode (RLE) 0's**

**Huffman encode non-zero values**



**Reordering**

# JPEG compression summary



# JPEG compression summary

**Convert image to Y'CbCr**

**Downsample CbCr (to 4:2:2 or 4:2:0)** **(information loss occurs here)**

**For each color channel (Y', Cb, Cr):**

**For each 8x8 block of values**

**Compute DCT**

**Quantize results**

**(information loss occurs here)**

**Reorder values**

**Run-length encode 0-spans**

**Huffman encode non-zero values**

# Key idea: exploit characteristics of human perception to build efficient image storage and image processing systems

- Separation of luminance from chrominance in color representation ( $Y'CrCb$ ) allows reduced resolution in chrominance channels (4:2:0)
- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)
- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
  - Human brain is more tolerant of errors in high frequency image components than in low frequency ones
  - Images of the real world are dominated by low-frequency components

# Video compression: example

30 second video: 1920 x 1080, @ 30fps

Uncompressed: 8-bits per channel RGB  $\rightarrow$  24 bits/pixel  $\rightarrow$  6.2MB/frame

(6.2 MB \* 30 sec \* 30 fps = 5.2 GB)

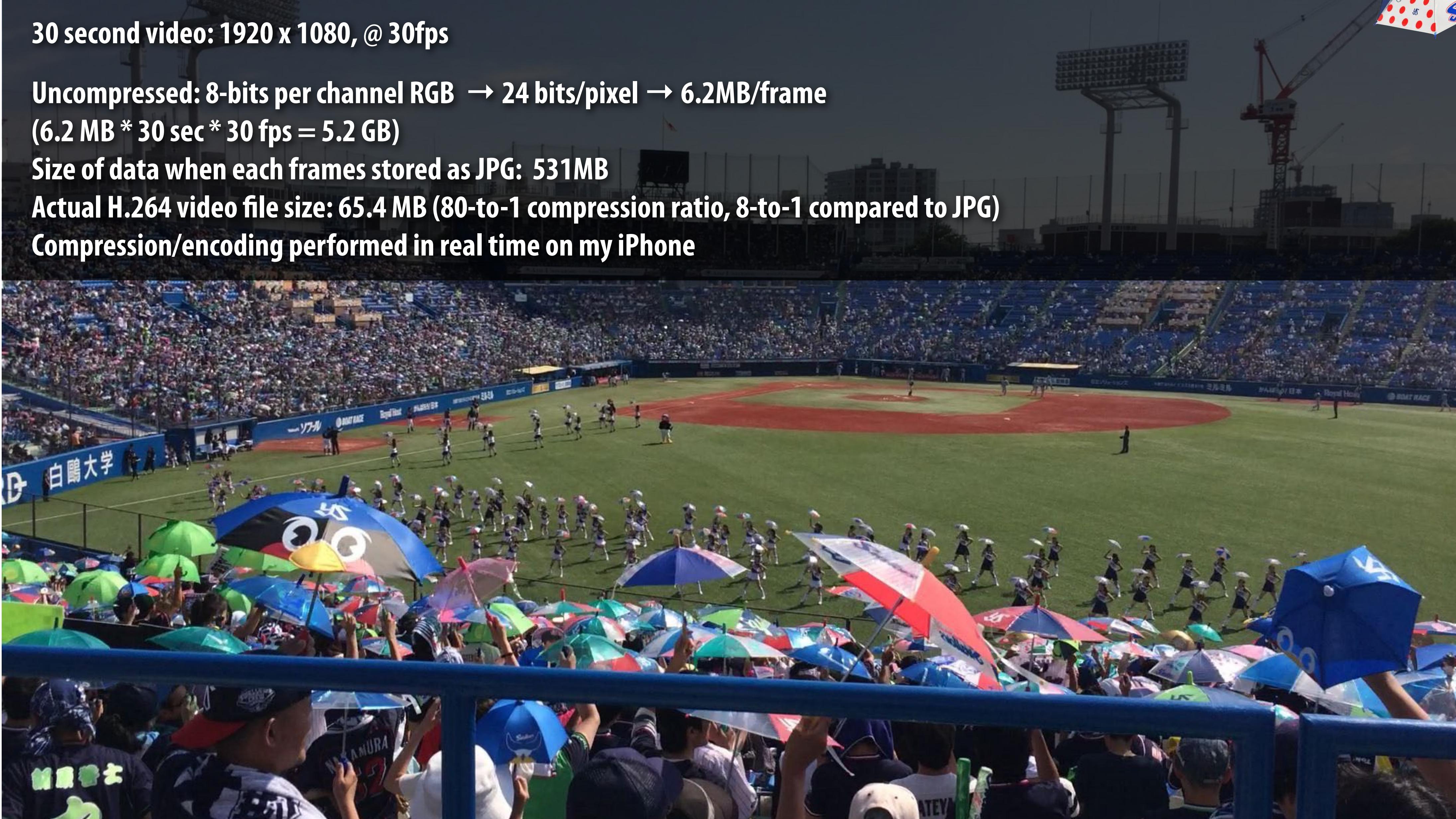
Size of data when each frames stored as JPG: 531MB

Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)

Compression/encoding performed in real time on my iPhone



Go Swallows!



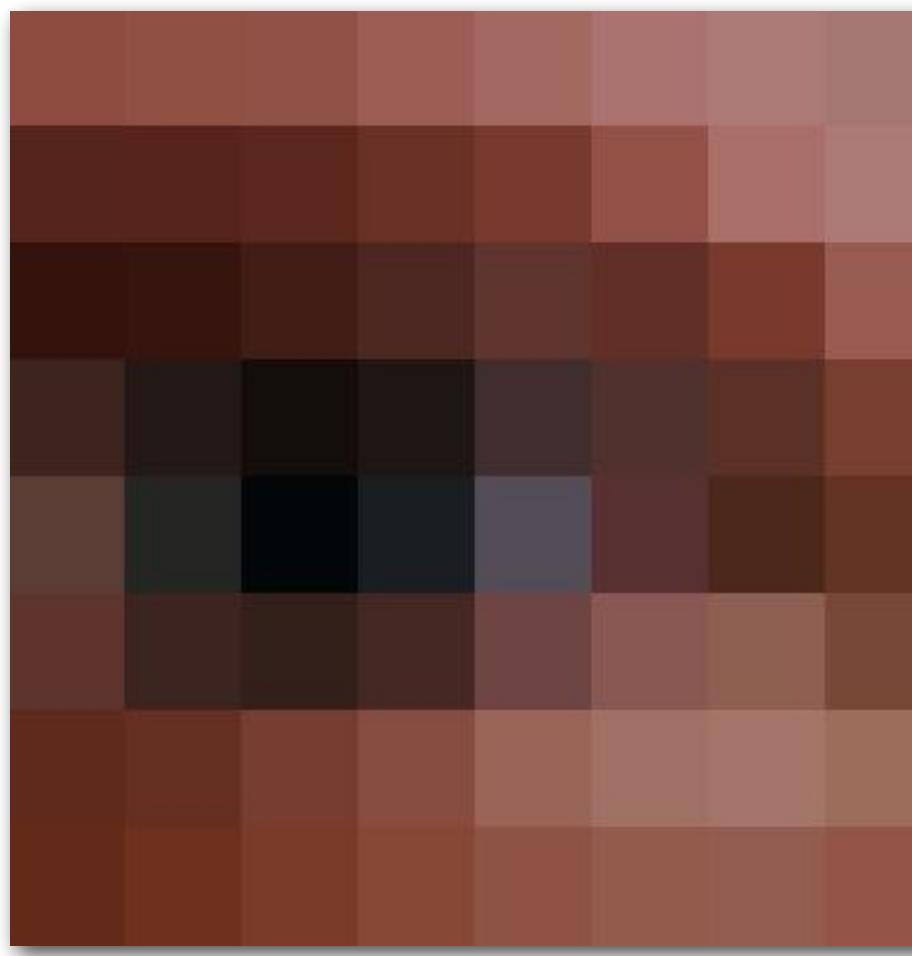
# Video compression adds two main ideas

- **Exploiting redundancy:**
  - **Intra-frame redundancy:** value of pixels in neighboring regions of a frame are good predictor of values for other pixels in the frame (spatial redundancy)
  - **Inter-frame redundancy:** pixels from nearby frames in time are a good predictor for the current frame's pixels (temporal redundancy)

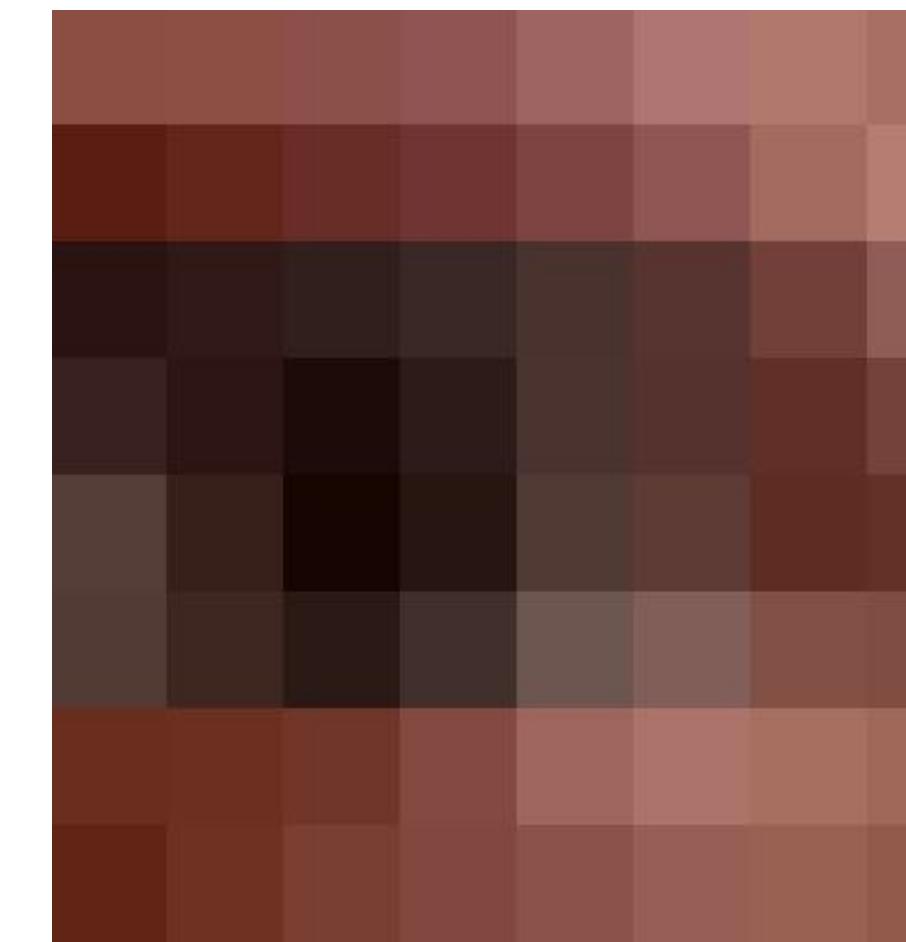
# Motion vector visualization



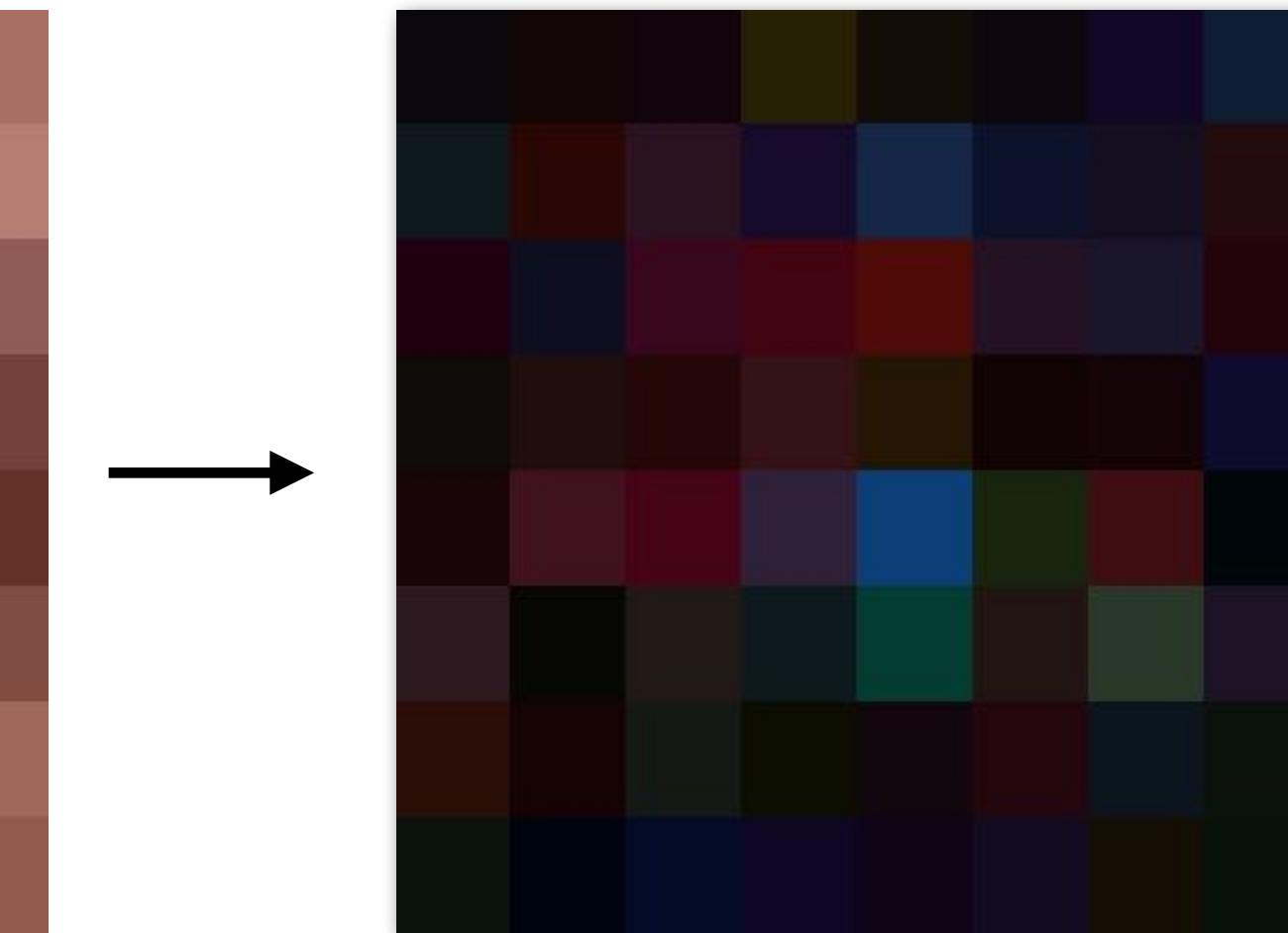
# Residual: difference between predicted image and original image



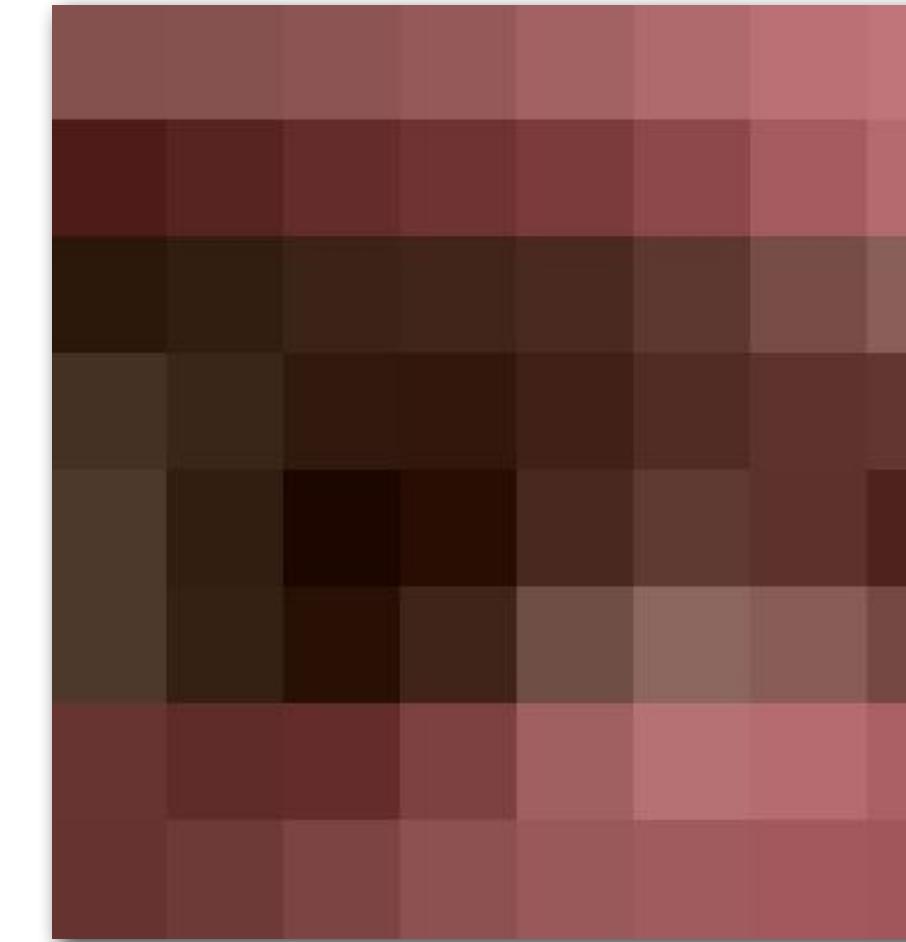
Original pixels



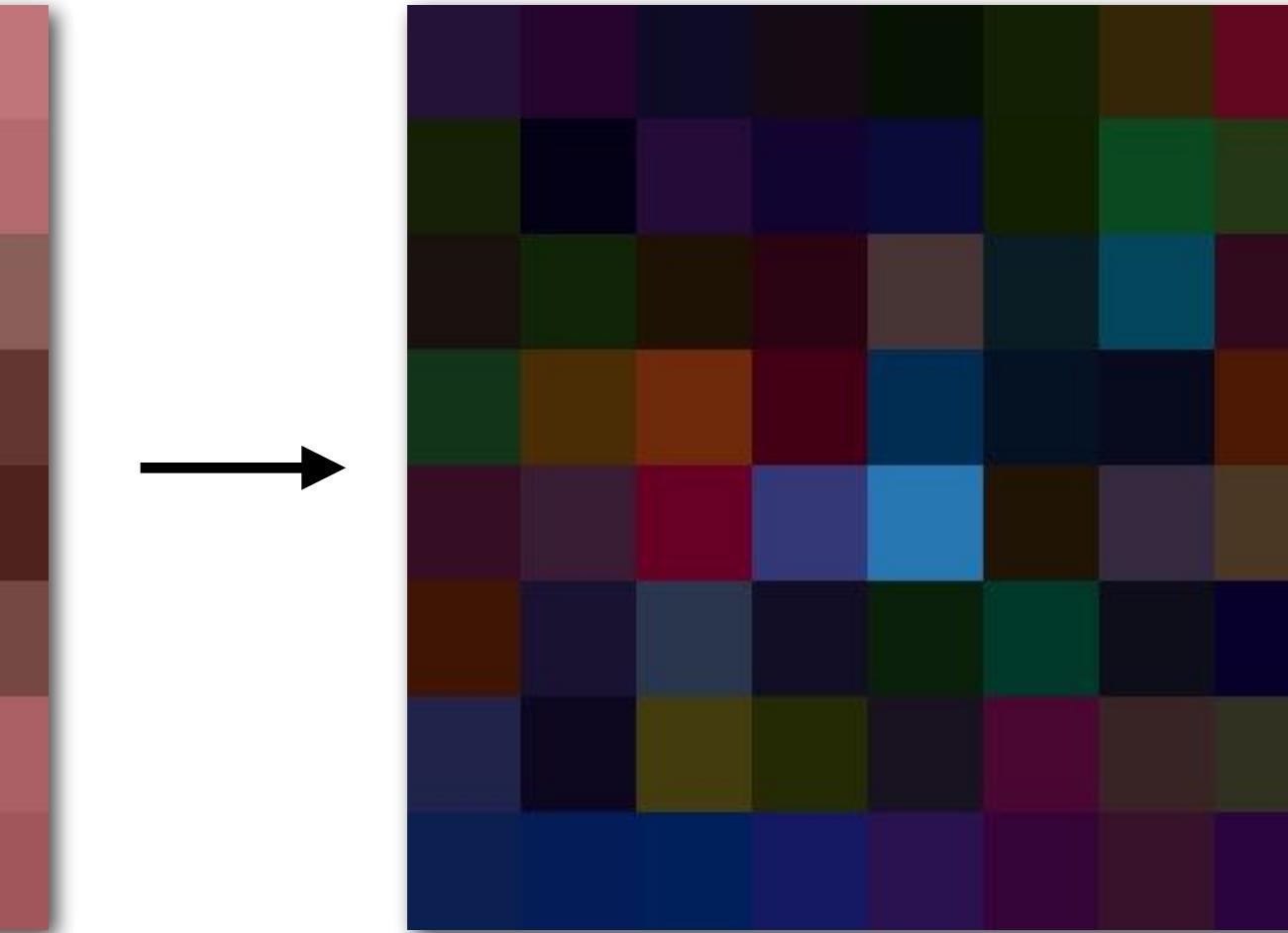
Predicted pixels  
(Prediction A)



Residual  
(amplified for visualization)



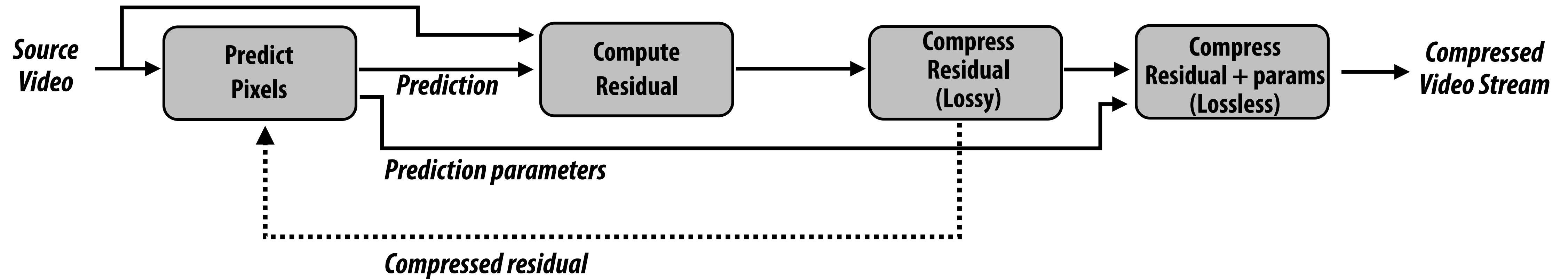
Predicted pixels  
(Prediction B)



Residual  
(amplified for visualization)

In video compression schemes, the residual image is compressed using lossy compression techniques like those described in the earlier part of this lecture. Better predictions lead to smaller and more compressible residuals!

# Video compression overview



# **Image processing basics**

## **(Only if time)**

# Example image processing operations

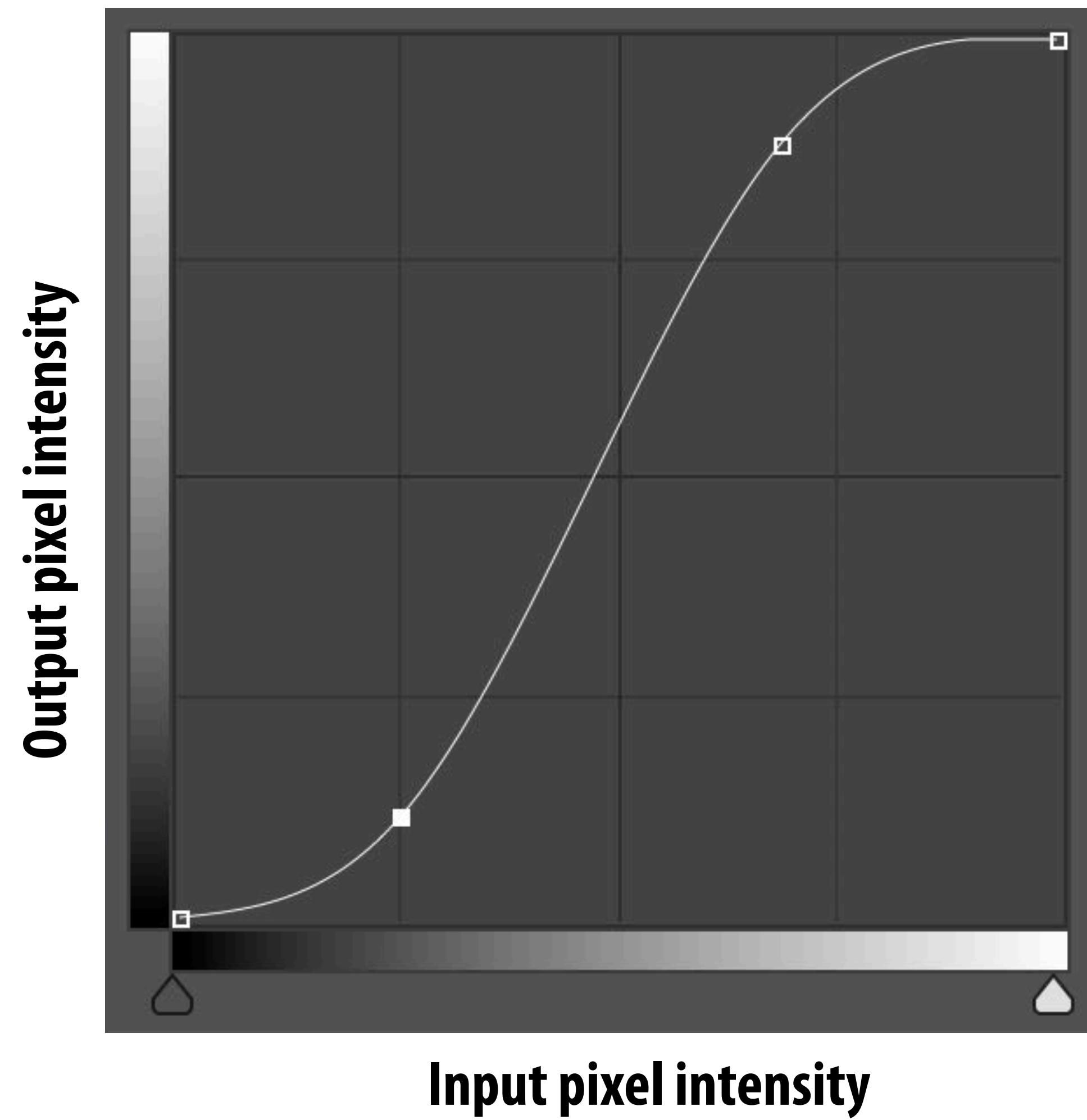


**Increase contrast**

# Increasing contrast with “S curve”

Per-pixel operation:

$$\text{output}(x,y) = f(\text{input}(x,y))$$

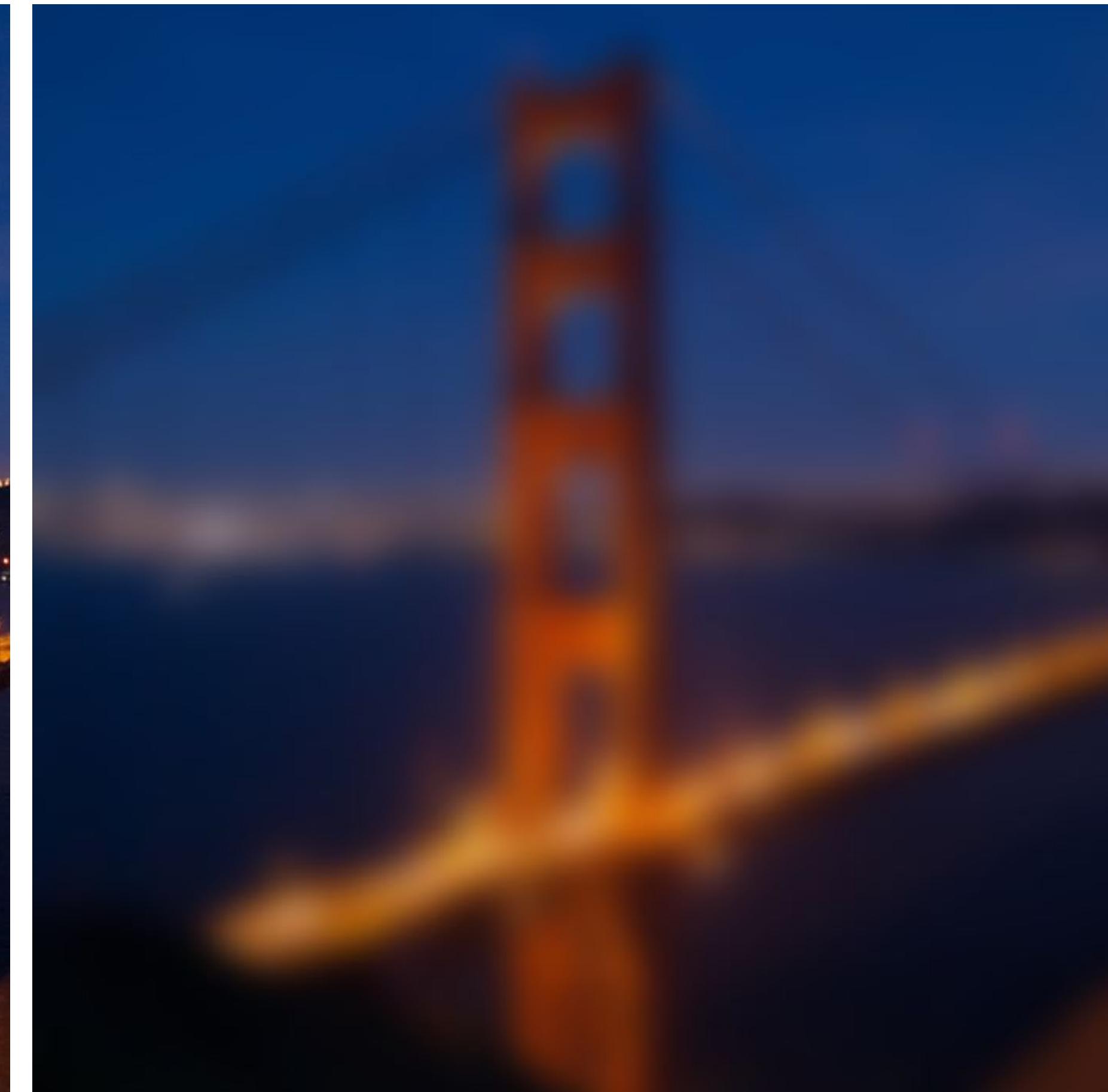


# Example image processing operations



**Image Invert:**  
 $\text{out}(x,y) = 1 - \text{in}(x,y)$

# Example image processing operations



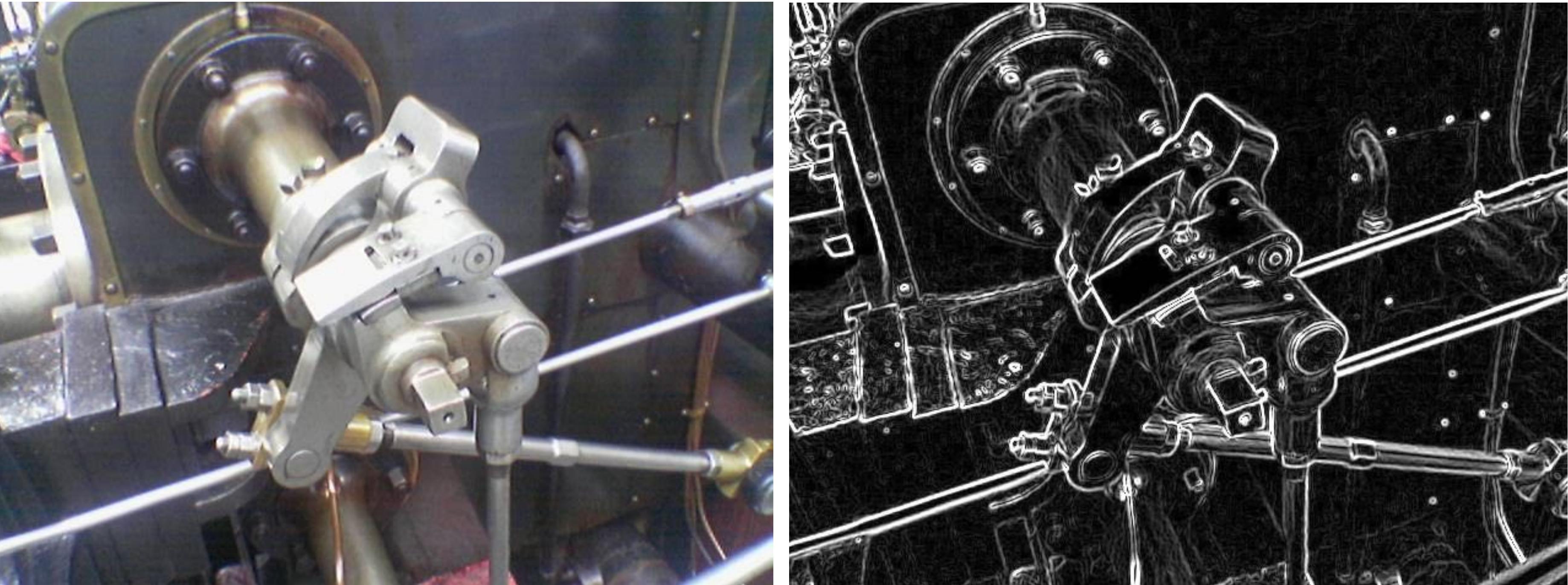
Blur

# Example image processing operations



**Sharpen**

# Edge detection



# A “smarter” blur (doesn’t blur over edges)



# Review: convolution

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dy$$

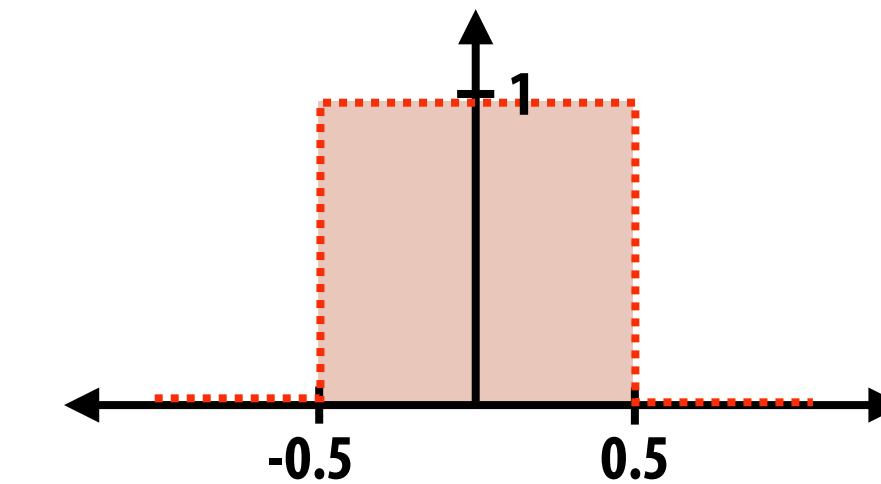
Diagram illustrating the convolution integral:

- output signal** (red line) is the result of the convolution.
- filter** (red T-shape) is the filter function  $f(y)$ .
- input signal** (red line) is the input image function  $g(x - y)$ .

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

$$f(x) = \begin{cases} 1 & |x| \leq 0.5 \\ 0 & \text{otherwise} \end{cases}$$

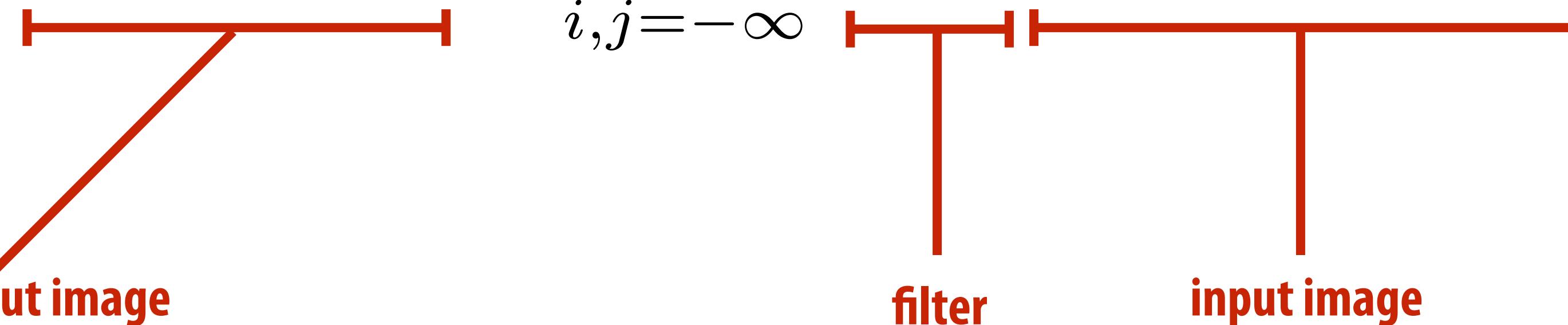
$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y)dy$$



$f * g$  is a “blurred” version of  $g$  where the output at  $x$  is the average value of the input between  $x-0.5$  to  $x+0.5$

# Discrete 2D convolution

$$(f * g)(x, y) = \sum_{i=0}^{\infty} f(i, j) I(x - i, y - j)$$



Consider  $f(i, j)$  that is nonzero only when:  $-1 \leq i, j \leq 1$

**Then:**

$$(f * I)(x, y) = \sum_{i,j=-1}^1 f(i, j) I(x - i, y - j)$$

And we can represent  $f(i,j)$  as a  $3 \times 3$  matrix of values where:

$$f(i, j) = \mathbf{F}_{i, j} \quad (\text{often called: "filter weights", "filter kernel"})$$

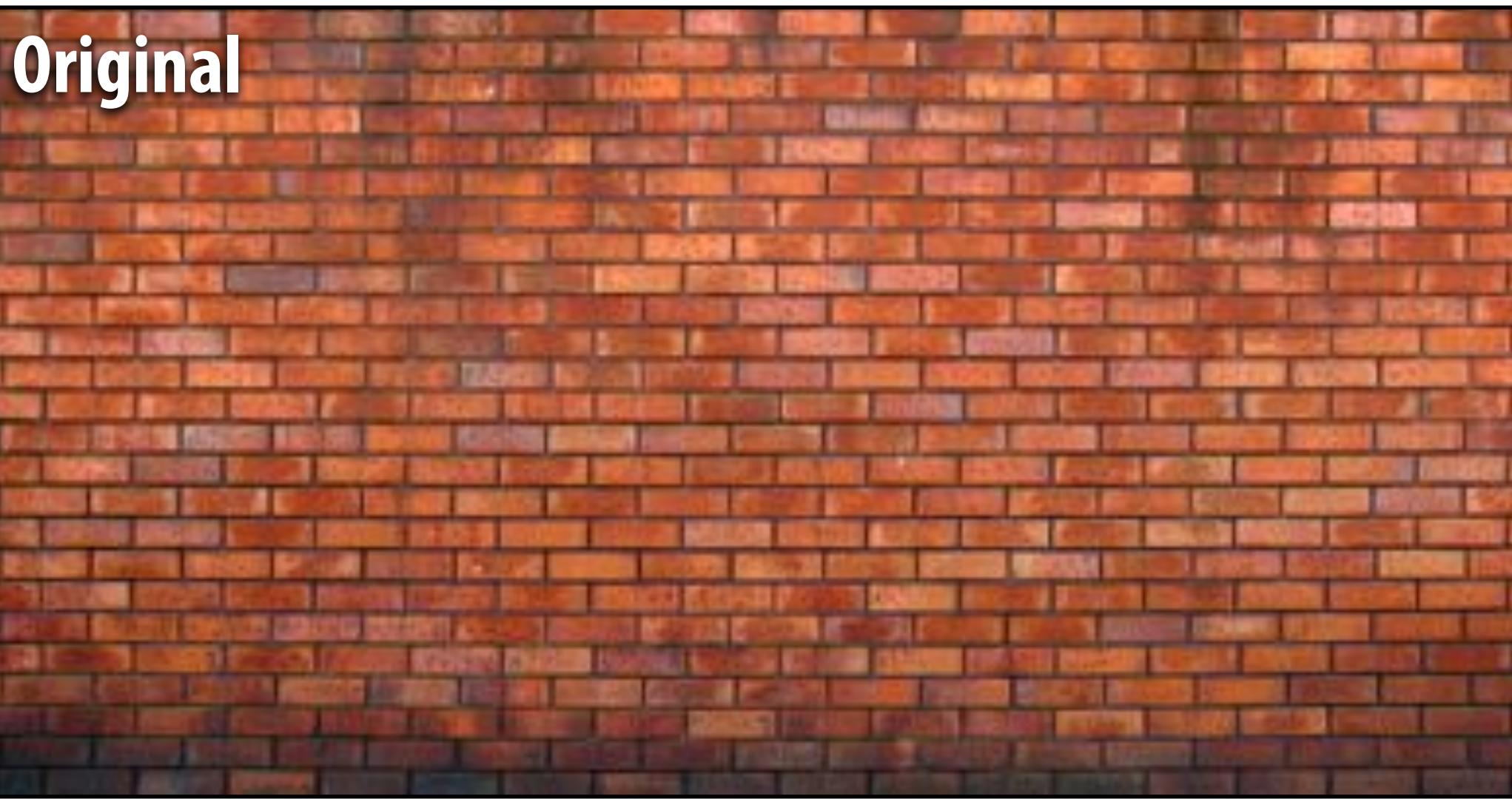
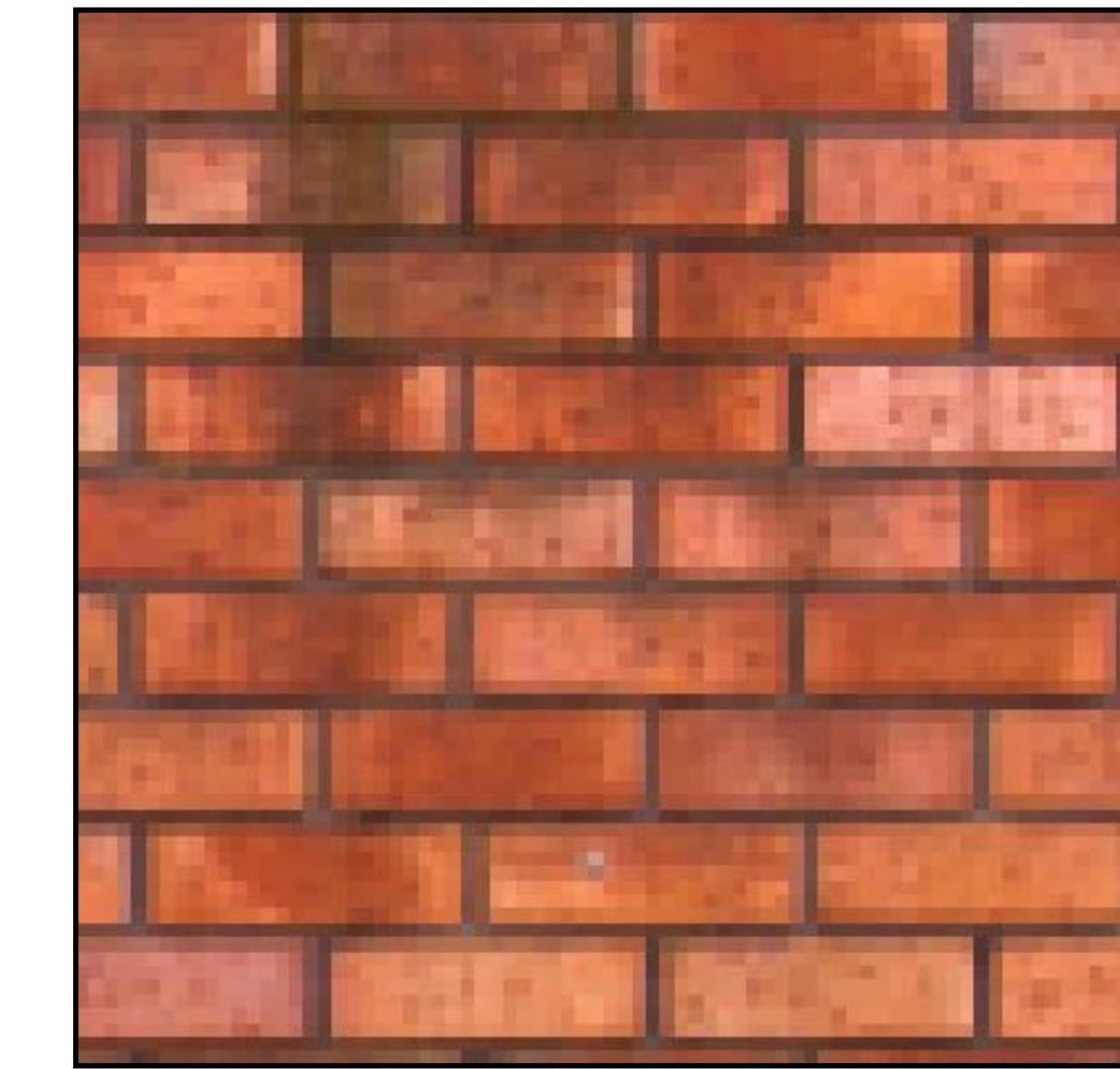
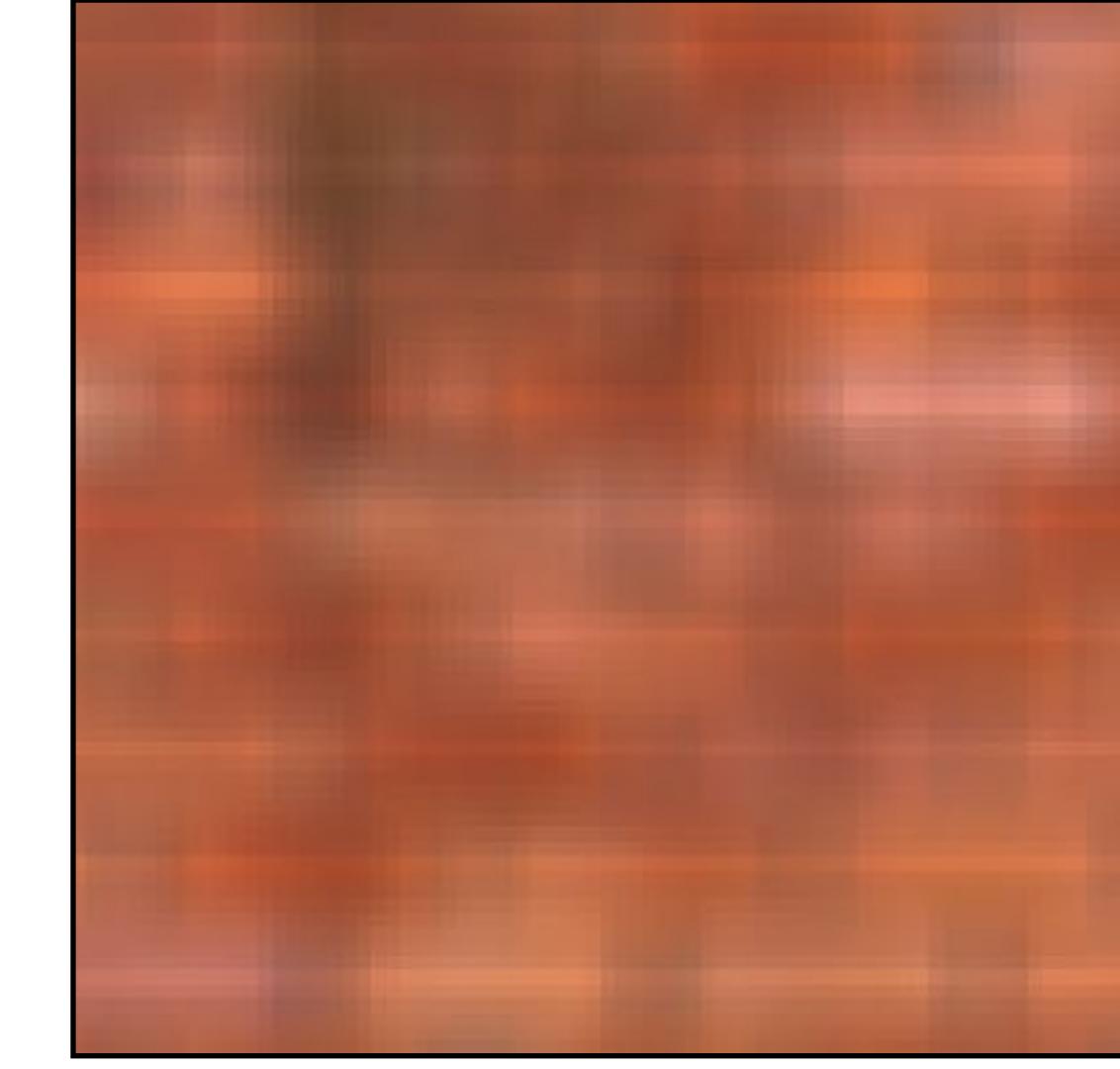
# Simple 3x3 box blur

```
float input[(WIDTH+2) * (HEIGHT+2)];  
float output[WIDTH * HEIGHT];  
  
float weights[] = {1./9, 1./9, 1./9,  
                   1./9, 1./9, 1./9,  
                   1./9, 1./9, 1./9};  
  
for (int j=0; j<HEIGHT; j++) {  
    for (int i=0; i<WIDTH; i++) {  
        float tmp = 0.f;  
        for (int jj=0; jj<3; jj++)  
            for (int ii=0; ii<3; ii++)  
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];  
        output[j*WIDTH + i] = tmp;  
    }  
}
```



For now: ignore boundary pixels and  
assume output image is smaller than  
input (makes convolution loop bounds  
much simpler to write)

# 7x7 box blur



# Gaussian blur

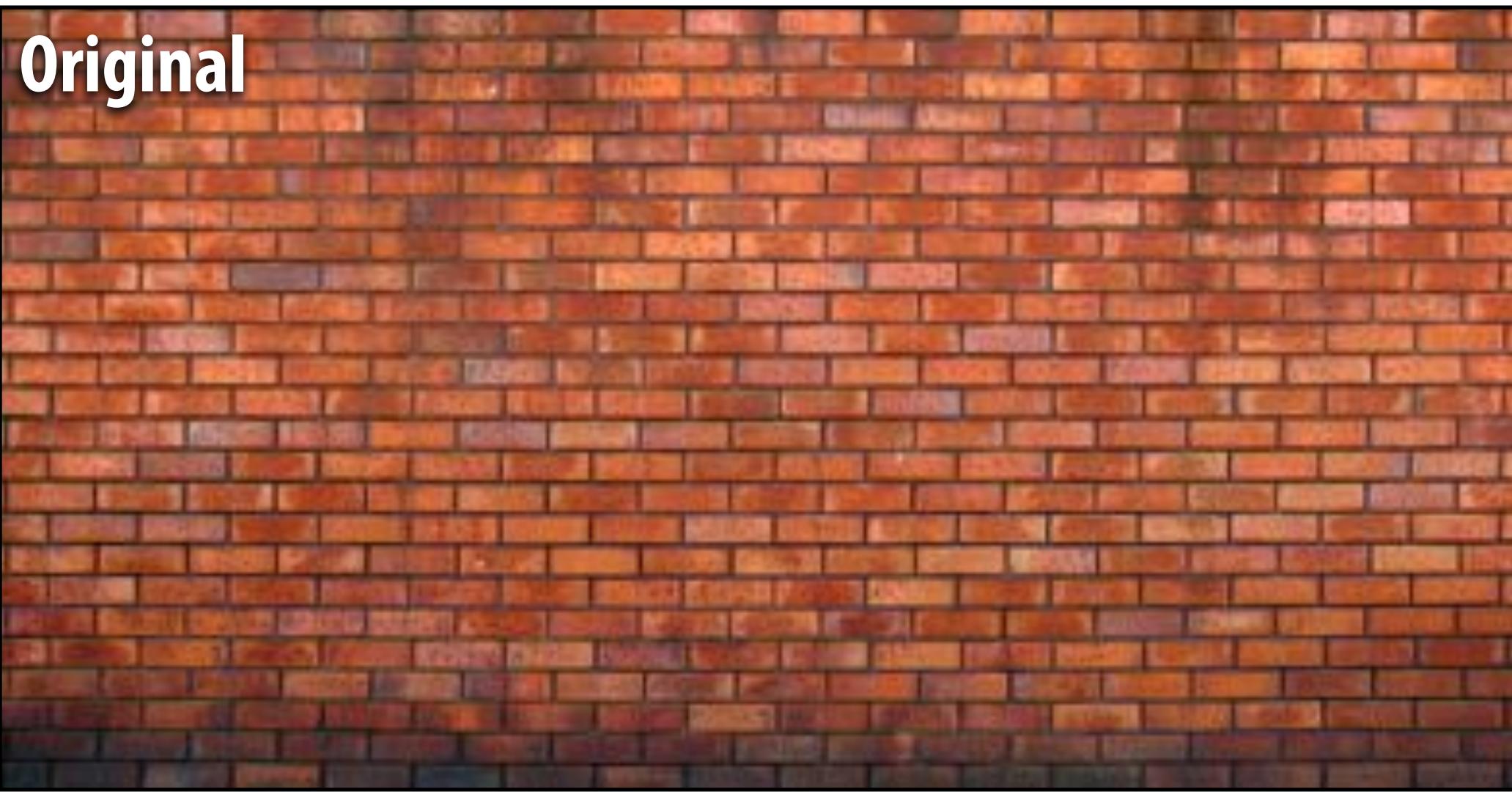
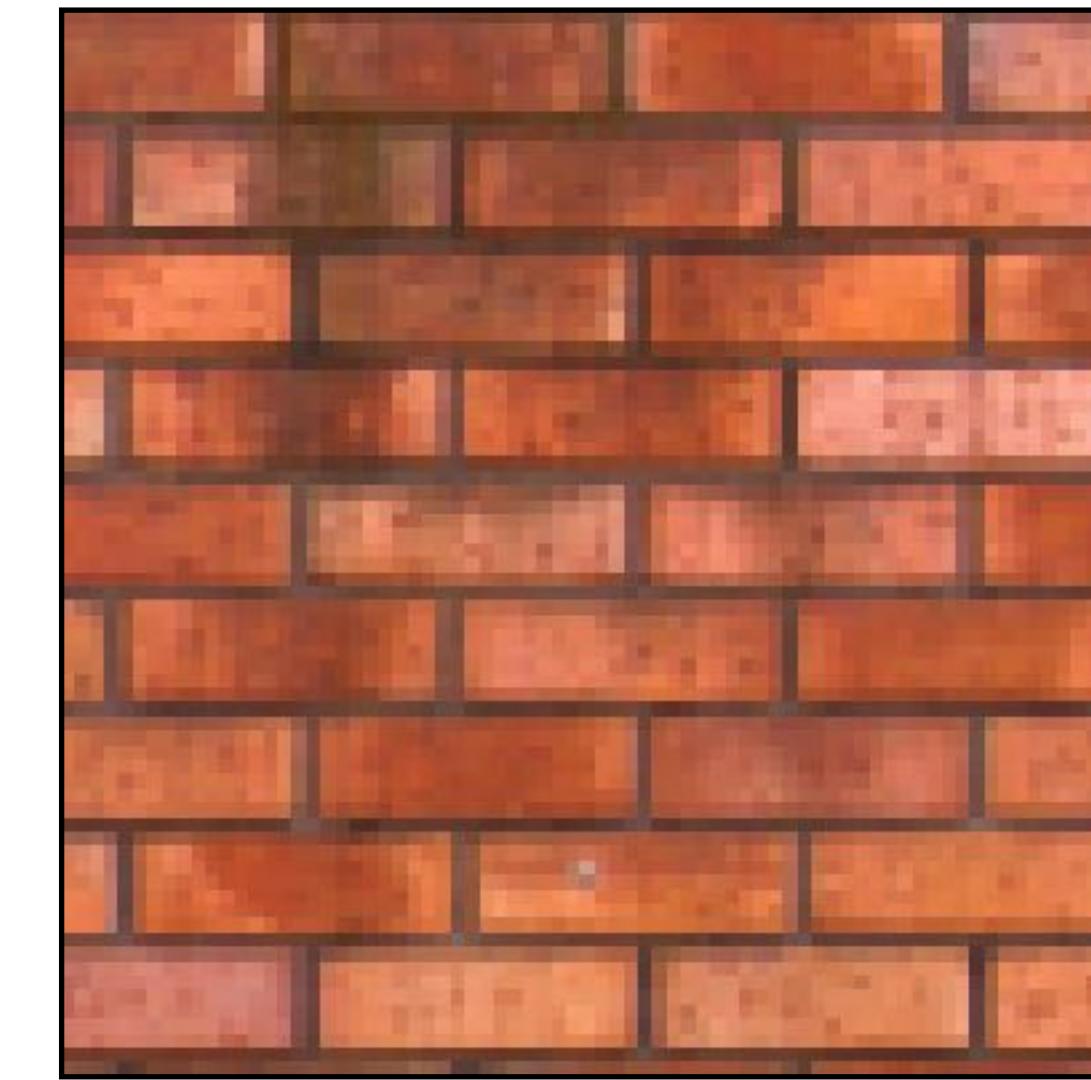
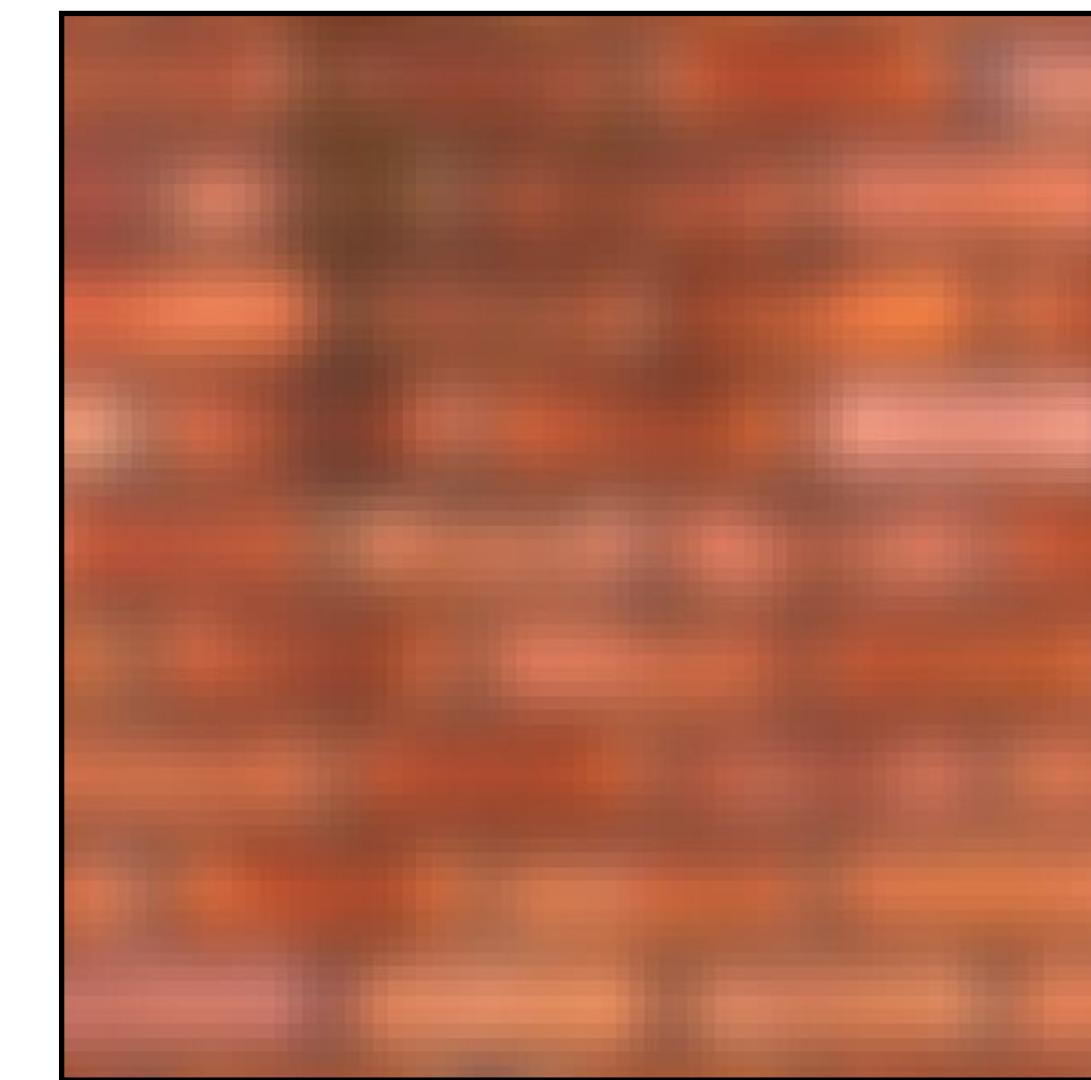
- Obtain filter coefficients by sampling 2D Gaussian function

$$f(i, j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- Produces weighted sum of neighboring pixels (contribution falls off with distance)
  - In practice: truncate filter beyond certain distance for efficiency

$$\begin{bmatrix} .075 & .124 & .075 \\ .124 & .204 & .124 \\ .075 & .124 & .075 \end{bmatrix}$$

# 7x7 gaussian blur

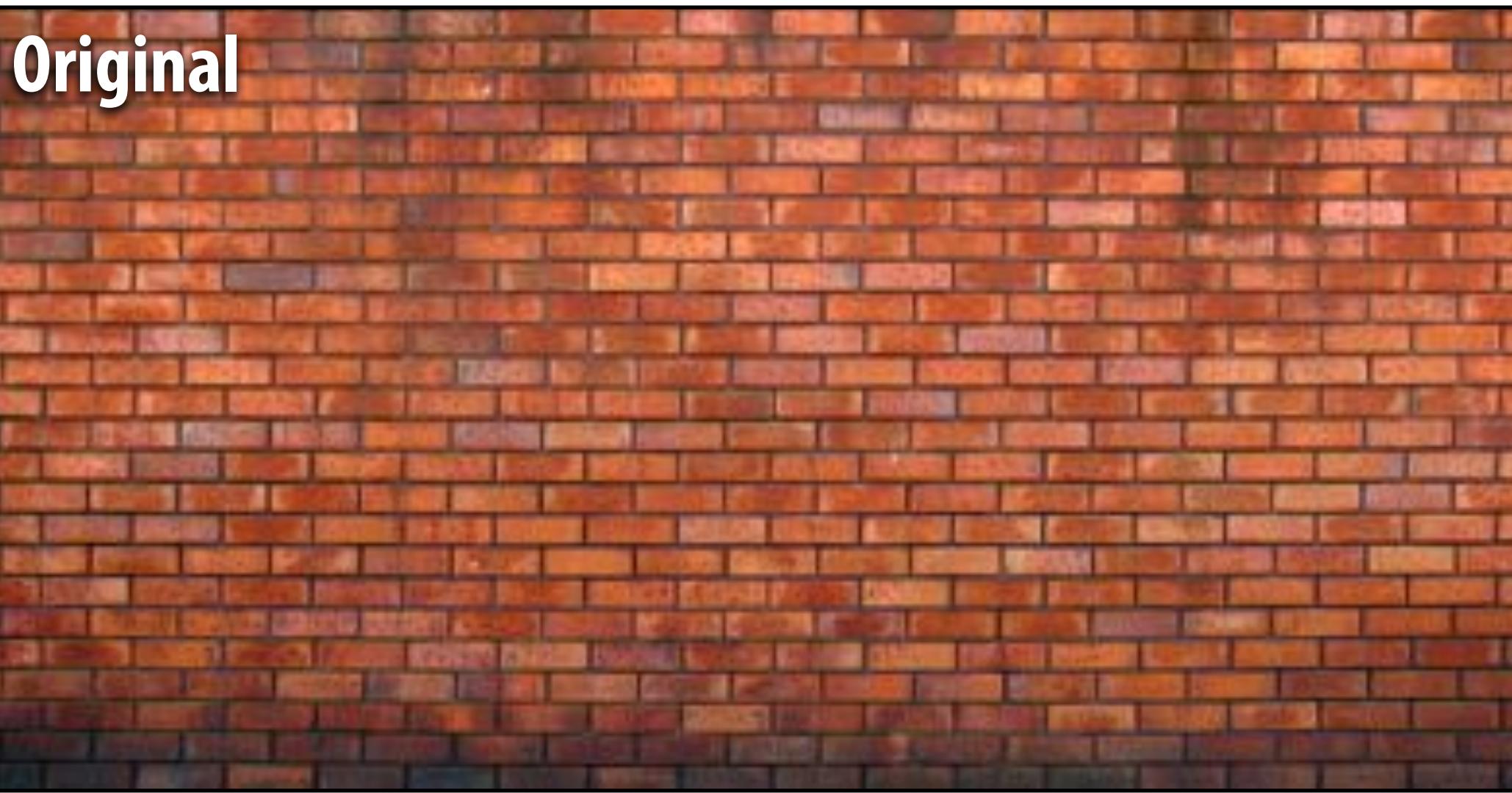
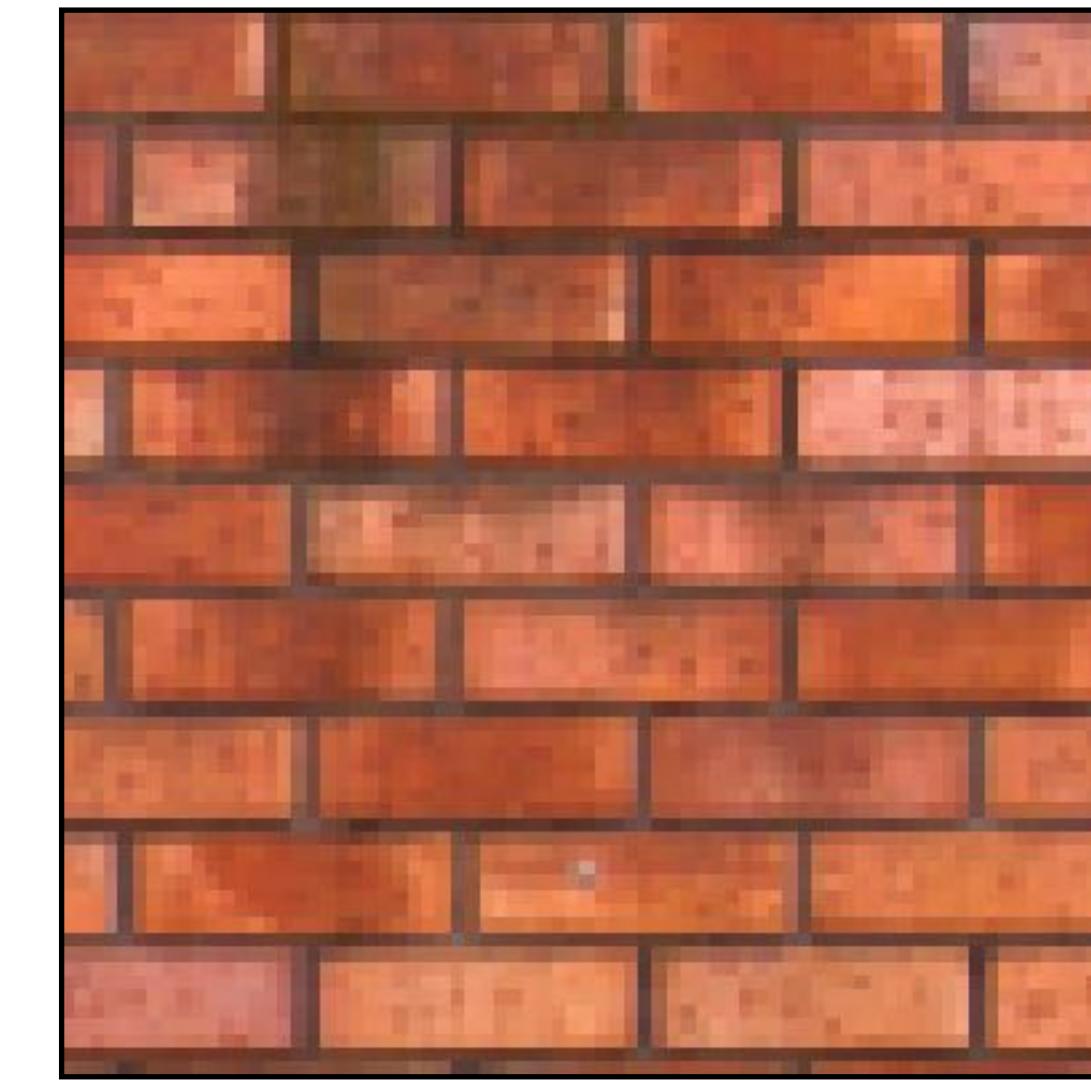
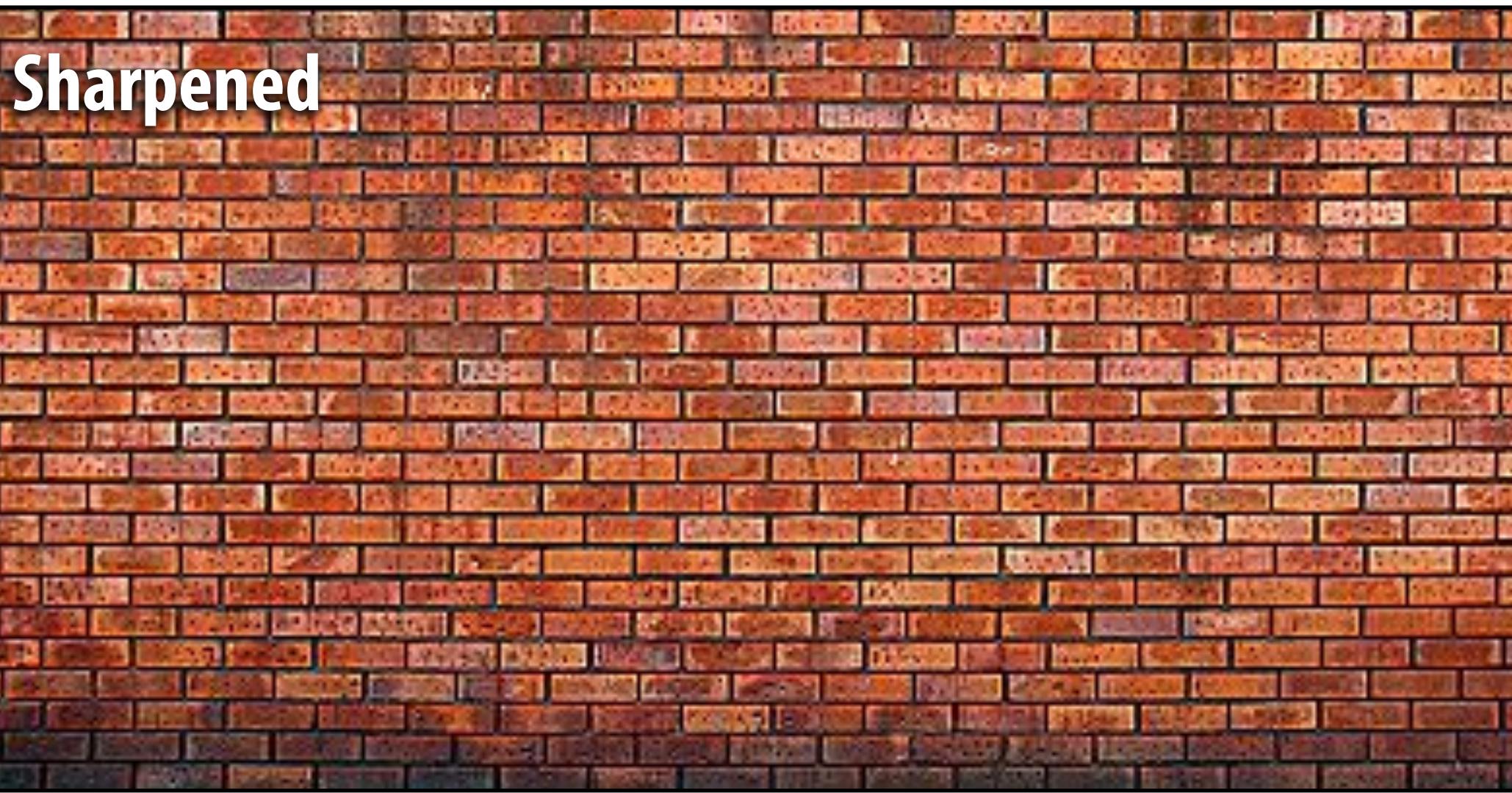
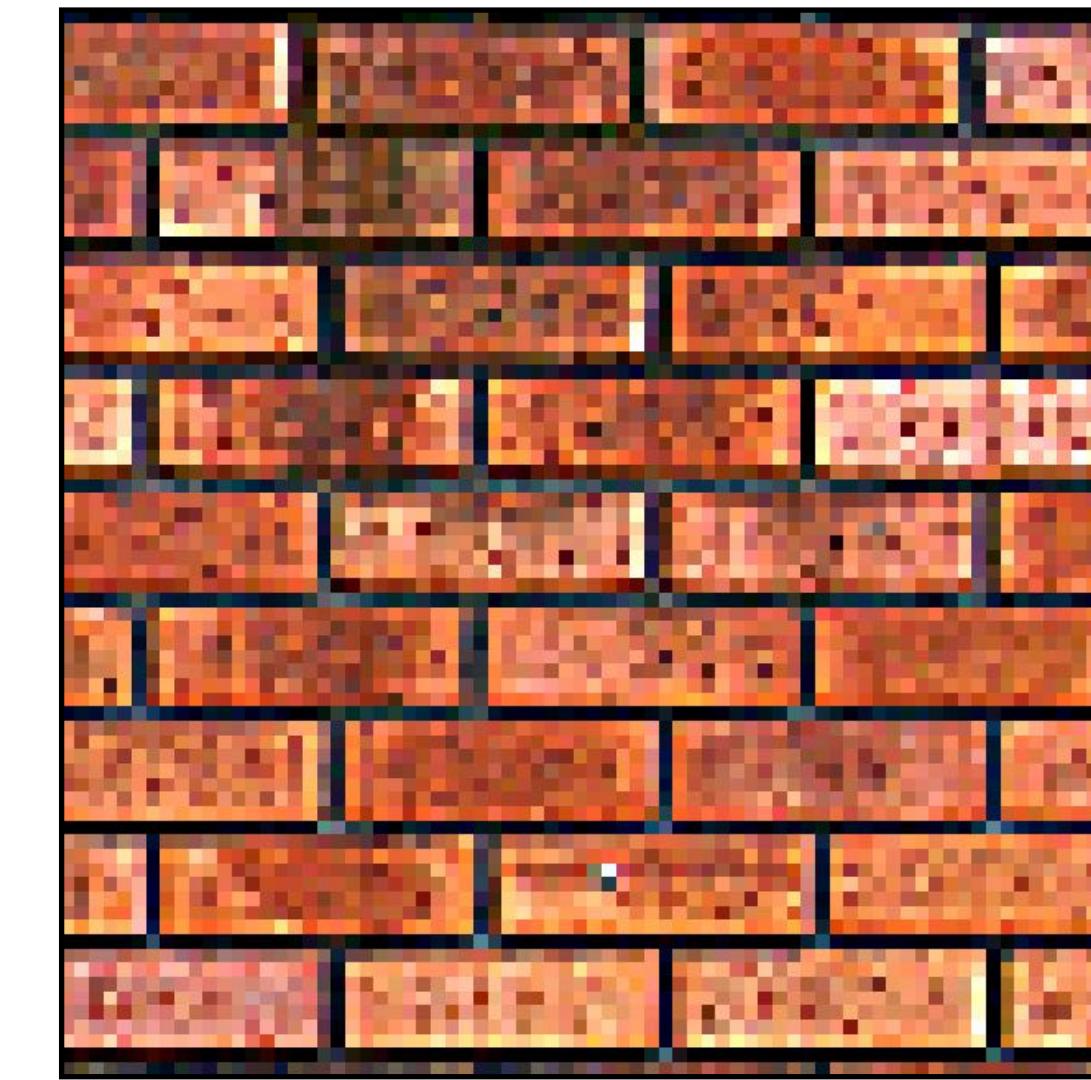


# What does convolution with this filter do?

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sharpens image!

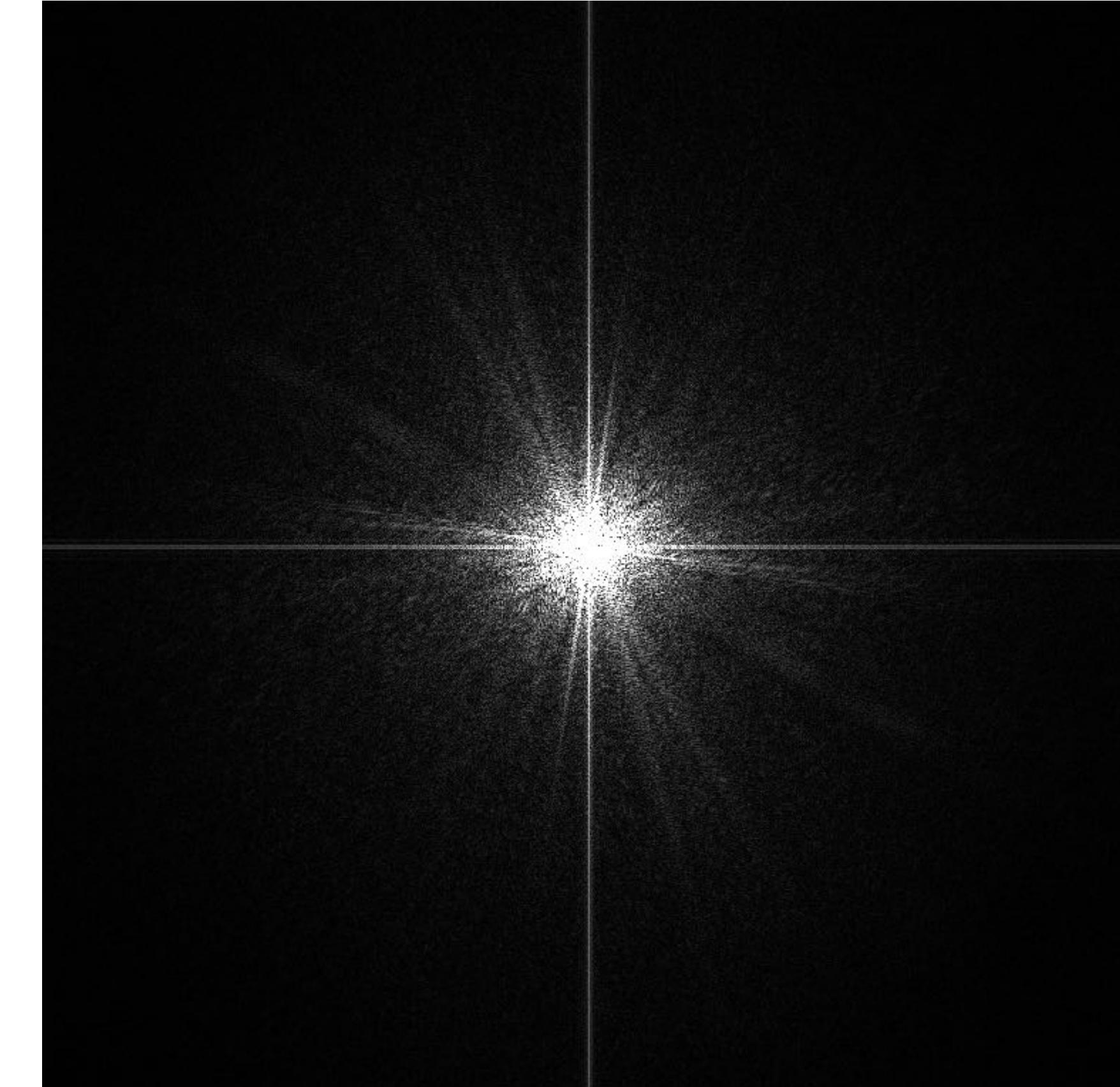
# 3x3 sharpen filter



# Recall: blurring is removing high frequency content



Spatial domain result

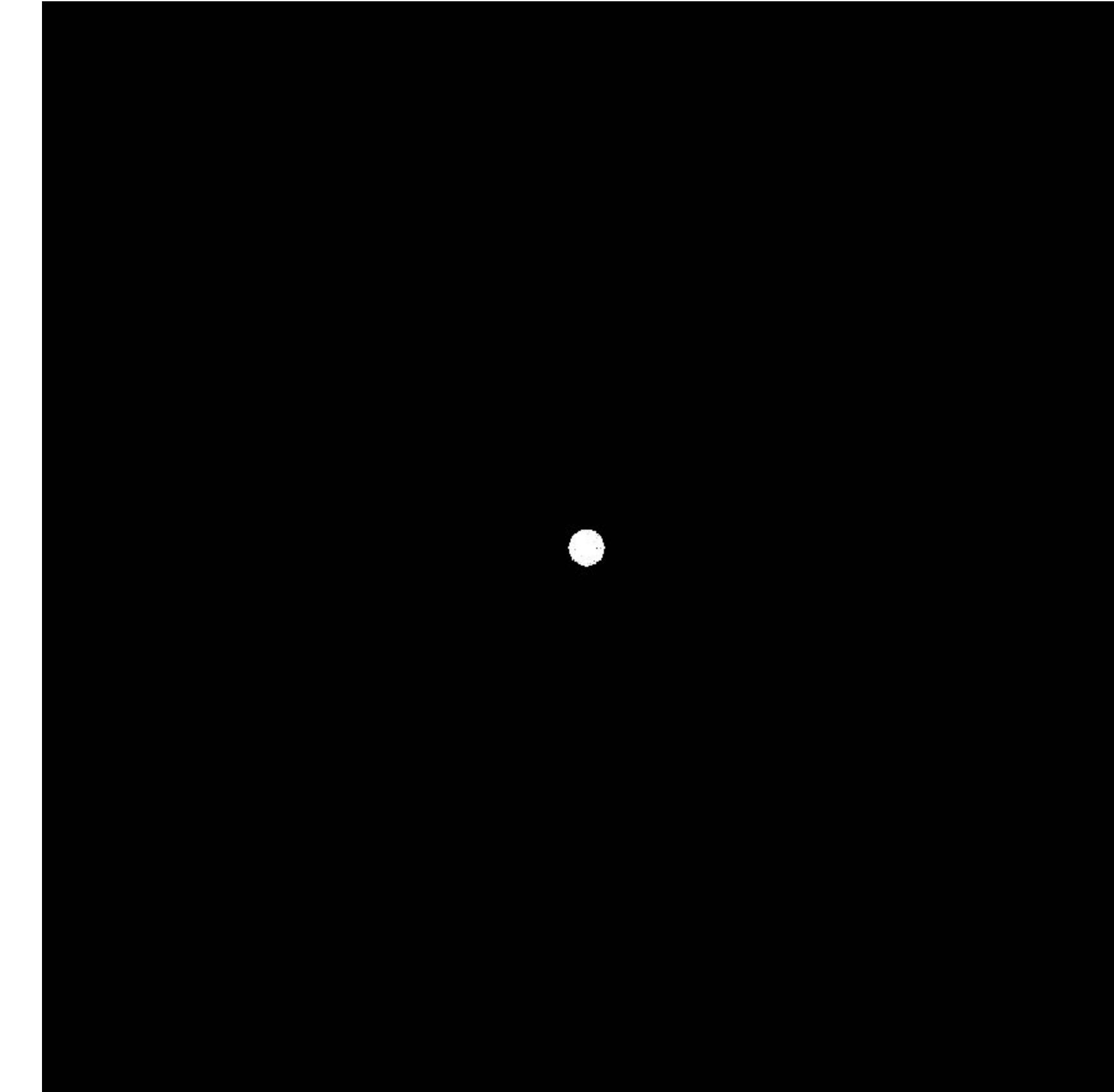


Spectrum

# Recall: blurring is removing high frequency content



Spatial domain result



Spectrum (after low-pass filter)  
All frequencies above cutoff have 0 magnitude

# Sharpening is adding high frequencies

- Let  $I$  be the original image
- High frequencies in image  $I = I - \text{blur}(I)$
- Sharpened image =  $I + (I - \text{blur}(I))$



“Add high frequency content”

# Original image (I)



Image credit:  
Kayvon's parents

Blur(I)



$I - \text{blur}(I)$



$I + (I - \text{blur}(I))$



# What does convolution with these filters do?

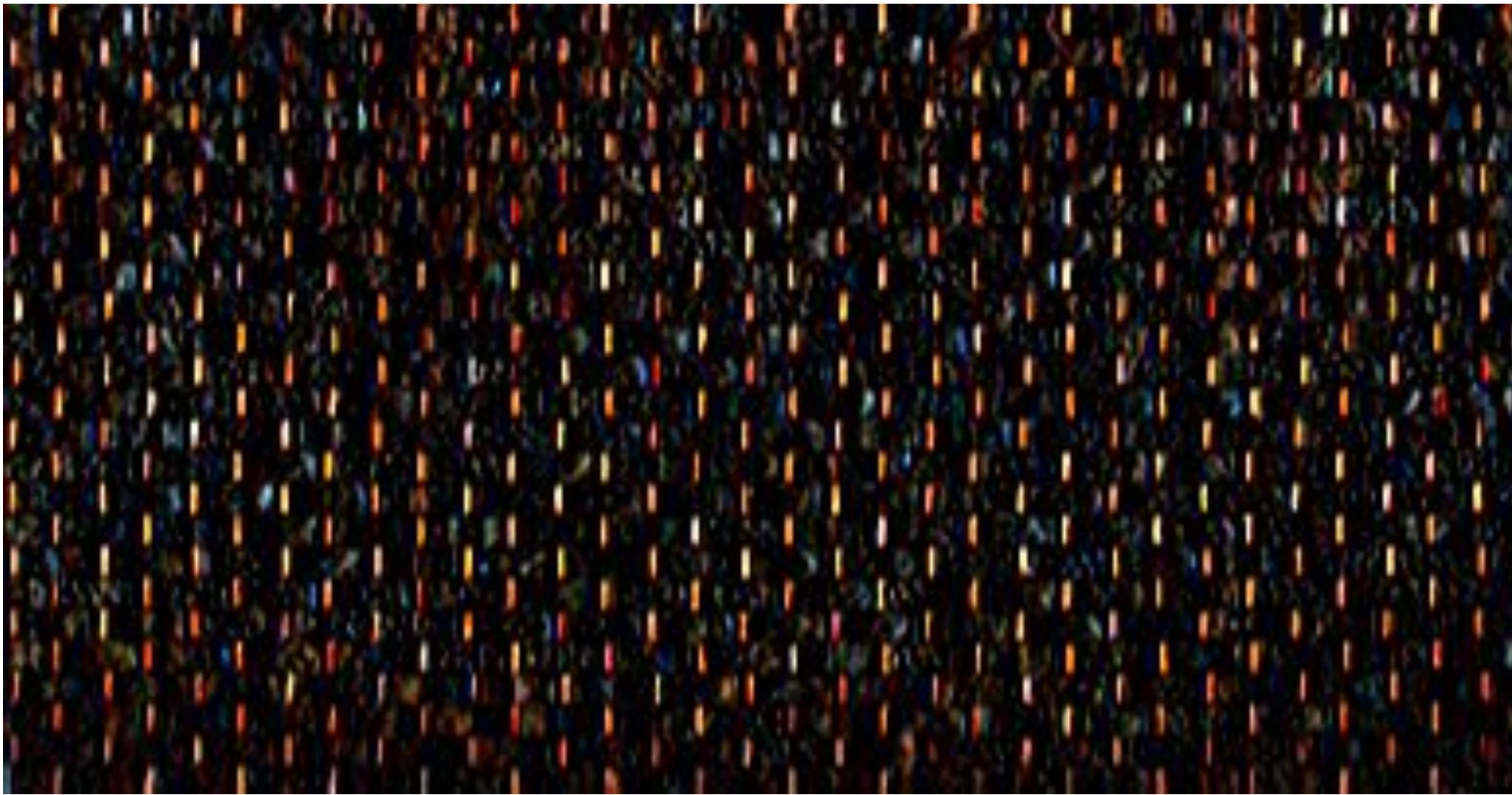
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Extracts horizontal  
gradients

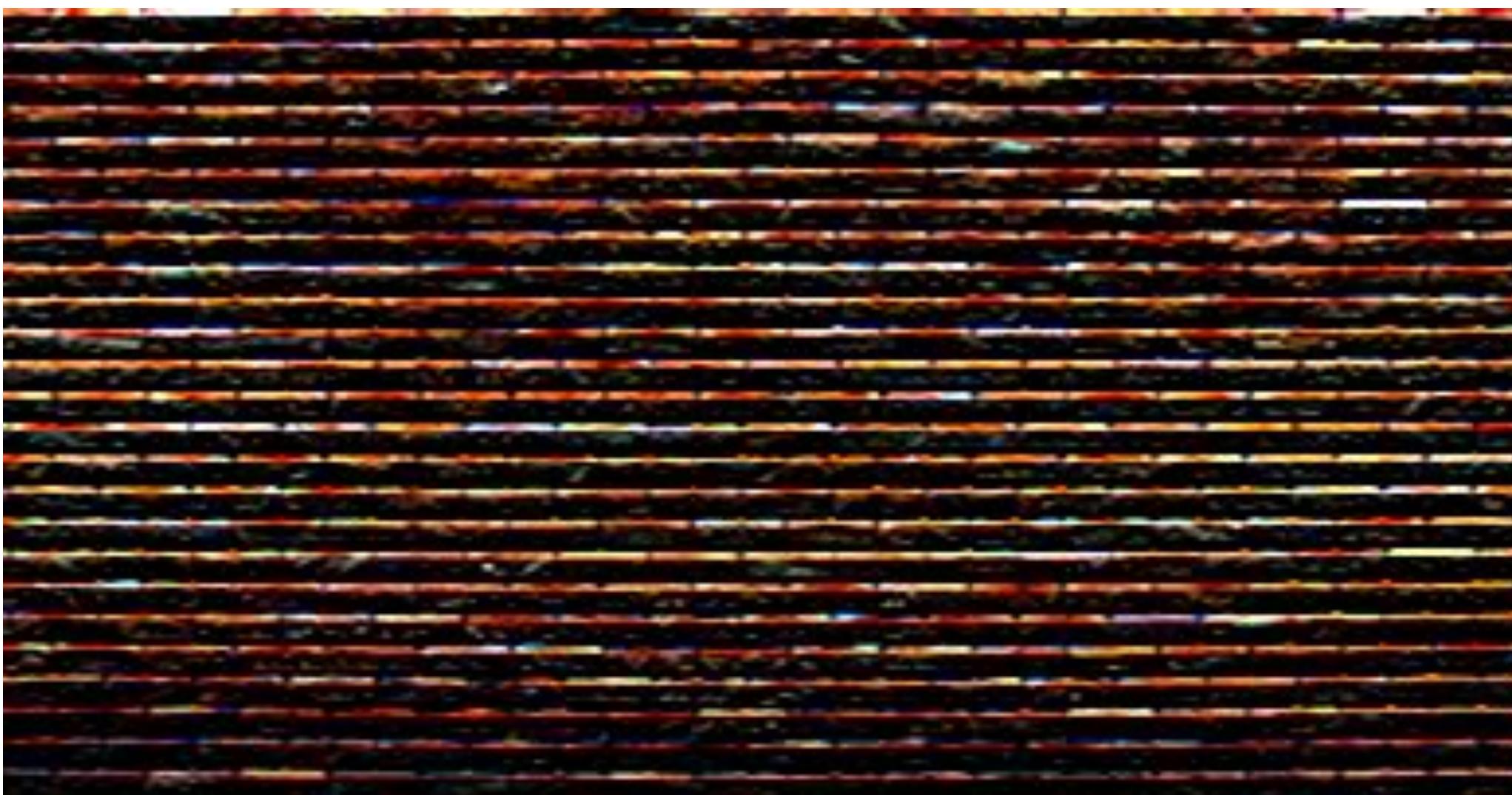
$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Extracts vertical  
gradients

# Gradient detection filters



**Horizontal gradients**



**Vertical gradients**

**Note: you can think of a filter as a “detector” of a pattern, and the magnitude of a pixel in the output image as the “response” of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)**

# Sobel edge detection

- Compute gradient response images

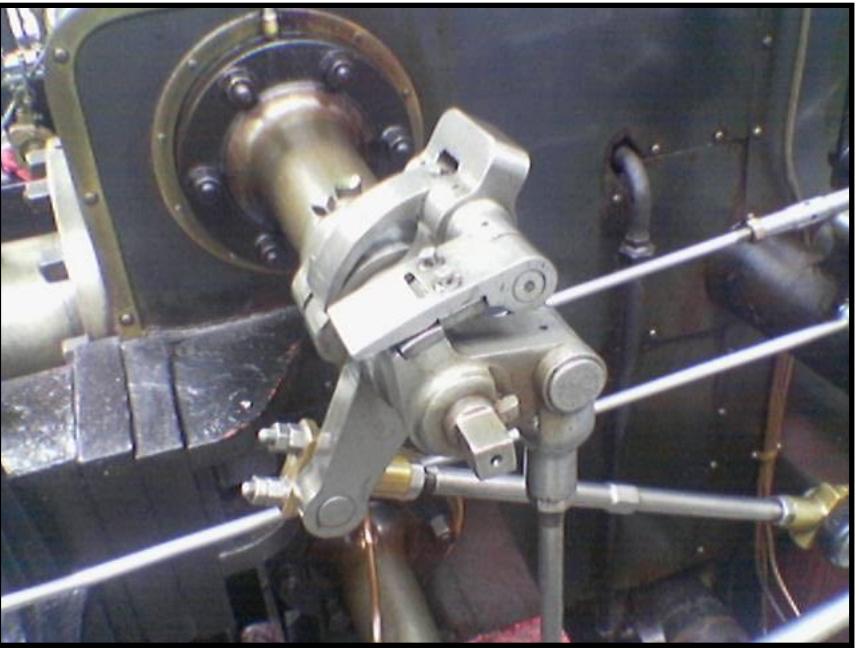
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$

$$G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

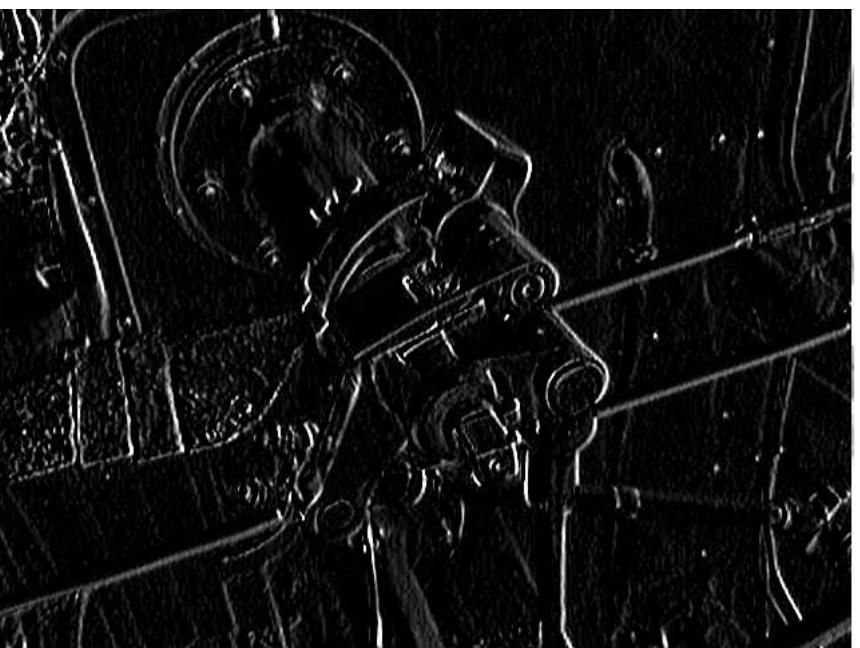
- Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$

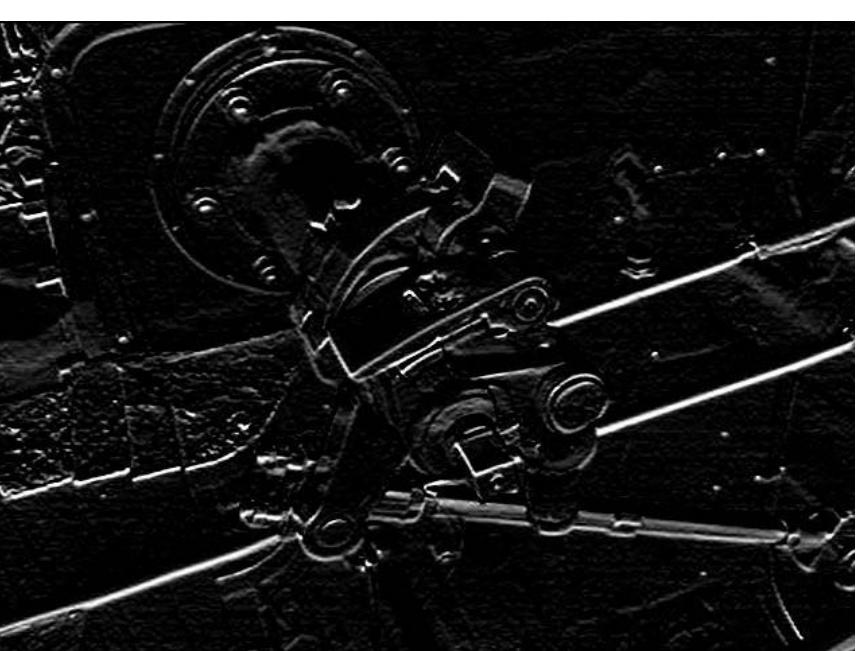
Pixel-wise operation on images



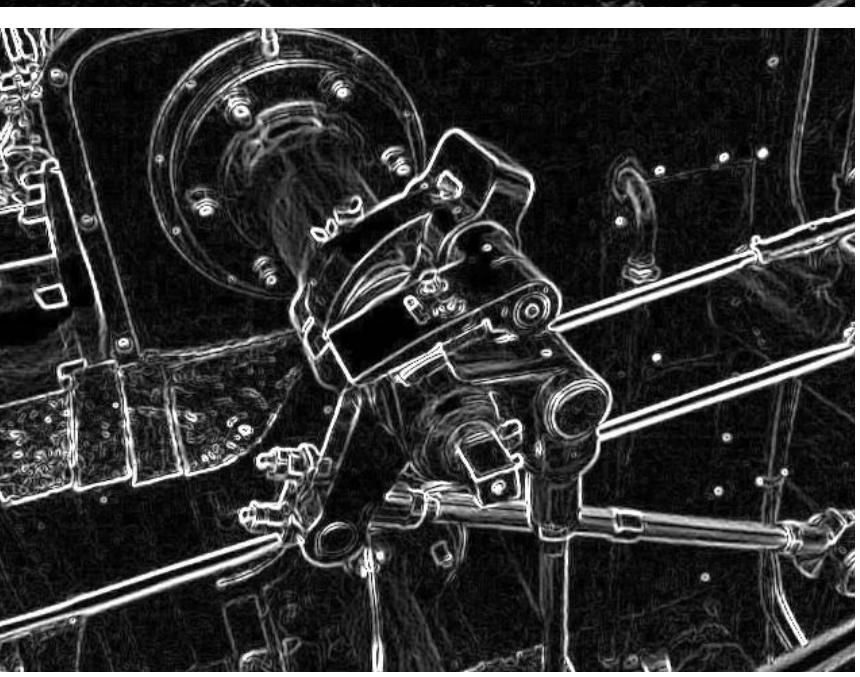
$G_x$



$G_y$



$G$



# Cost of convolution with $N \times N$ filter?

```
float input[(WIDTH+2) * (HEIGHT+2)];  
float output[WIDTH * HEIGHT];  
  
float weights[] = {1./9, 1./9, 1./9,  
                   1./9, 1./9, 1./9,  
                   1./9, 1./9, 1./9};  
  
for (int j=0; j<HEIGHT; j++) {  
    for (int i=0; i<WIDTH; i++) {  
        float tmp = 0.f;  
        for (int jj=0; jj<3; jj++)  
            for (int ii=0; ii<3; ii++)  
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];  
        output[j*WIDTH + i] = tmp;  
    }  
}
```

In this  $3 \times 3$  box blur example:  
Total work per image =  $9 \times \text{WIDTH} \times \text{HEIGHT}$

For  $N \times N$  filter:  $N^2 \times \text{WIDTH} \times \text{HEIGHT}$

# Separable filter

- A filter is separable if can be written as the outer product of two other filters. Example: a 2D box blur

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} [1 \quad 1 \quad 1]$$

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)
- Key property: 2D convolution with separable filter can be written as two 1D convolutions!

# Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int ii=0; ii<3; ii++)
            tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
        tmp_buf[j*WIDTH + i] = tmp;
    }

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
        output[j*WIDTH + i] = tmp;
    }
}
```

Total work per image for NxN filter:  
 $2N \times \text{WIDTH} \times \text{HEIGHT}$

# Bilateral filter



**Example use of bilateral filter: removing noise while preserving image edges**

# Bilateral filter

$$\text{BF}[I](p) = \frac{1}{W_p} \sum_{i,j} f(|I(x-i, y-j) - I(x, y)|) G_\sigma(i, j) I(x-i, y-j)$$

Normalization

For all pixels in support region of Gaussian kernel

Gaussian blur kernel

Re-weight based on difference in input image pixel values

Input image

$$W_p = \sum_{i,j} f(|I(x-i, y-j) - I(x, y)|) G_\sigma(i, j)$$

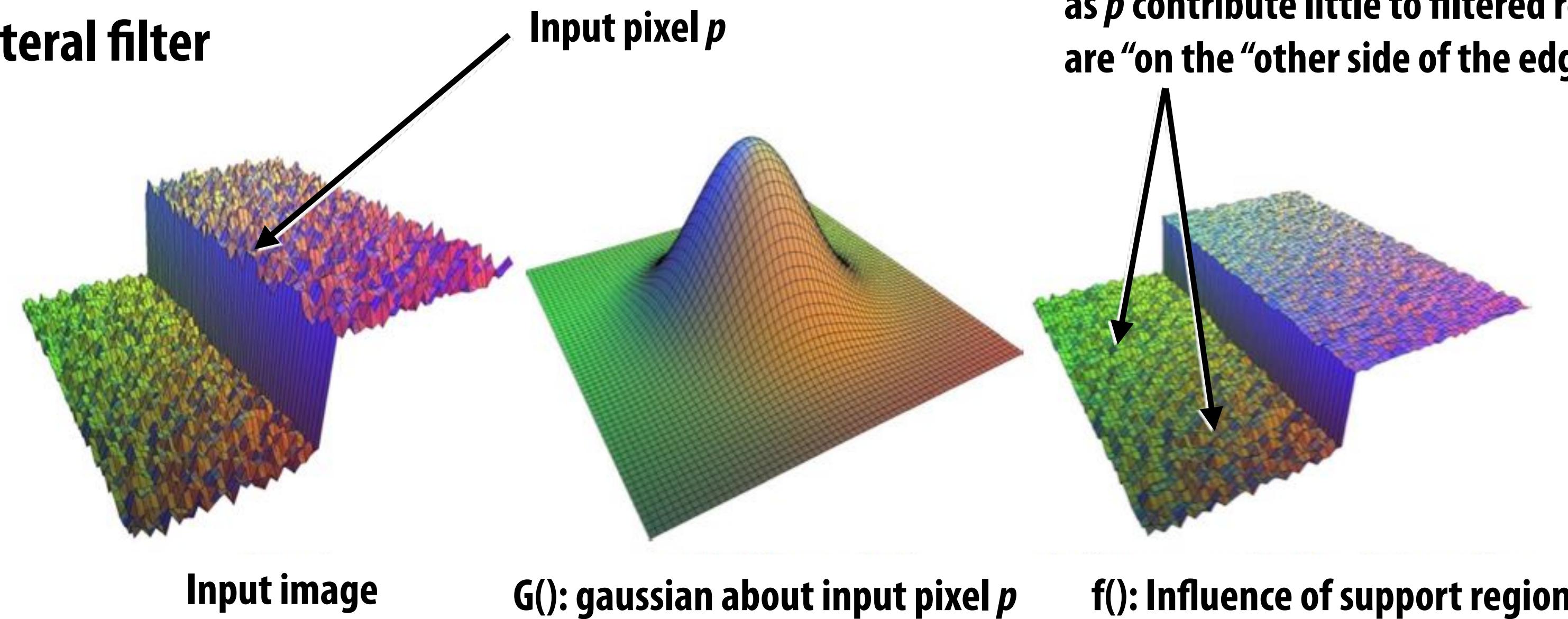
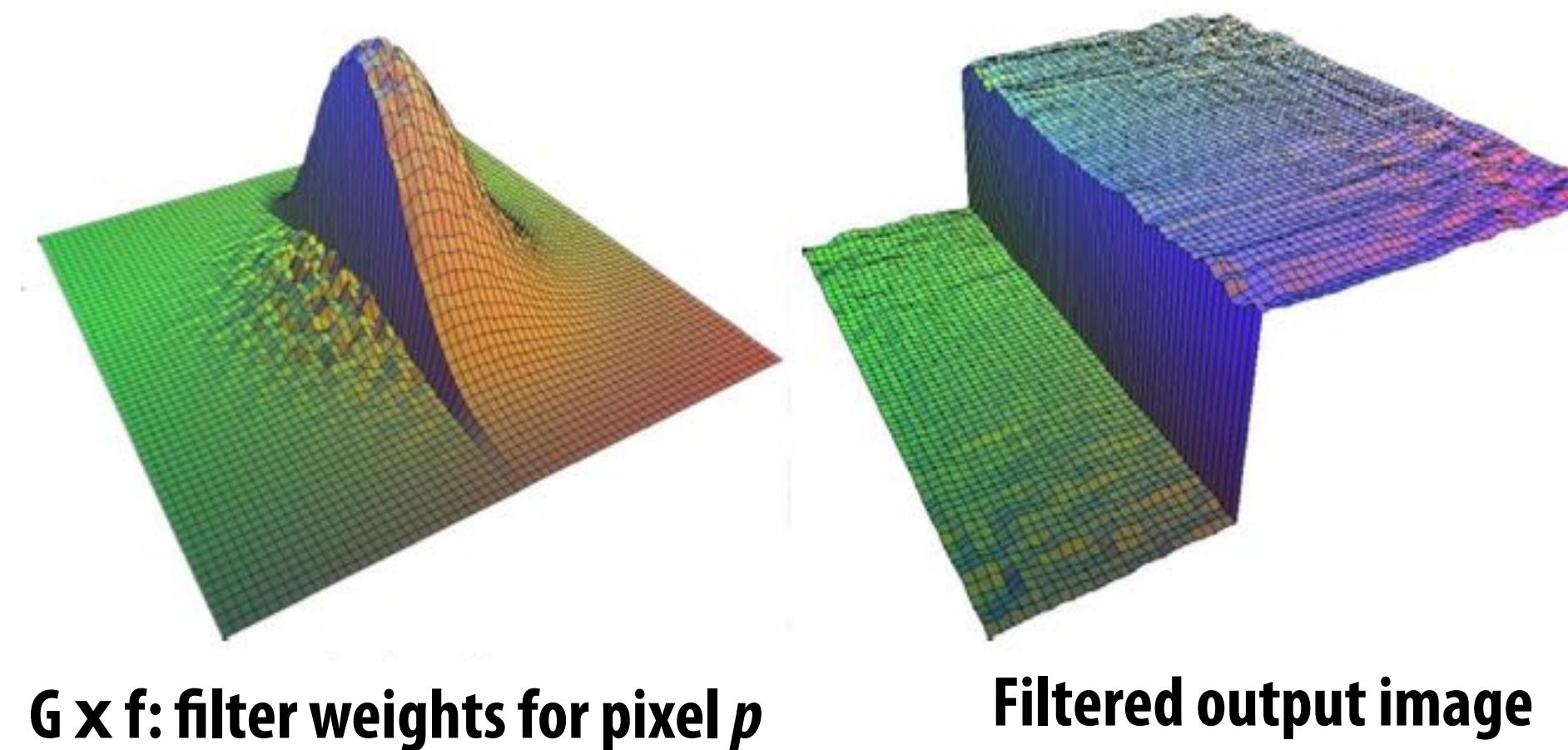
- The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges.  $f(x)$  defines what “strong edge means”
- Spatial distance weight term  $f(x)$  could itself be a gaussian
  - Or very simple:  $f(x) = 0$  if  $x > \text{threshold}$ , 1 otherwise

Value of output pixel  $(x,y)$  is the weighted sum of all pixels in the support region of a truncated gaussian kernel

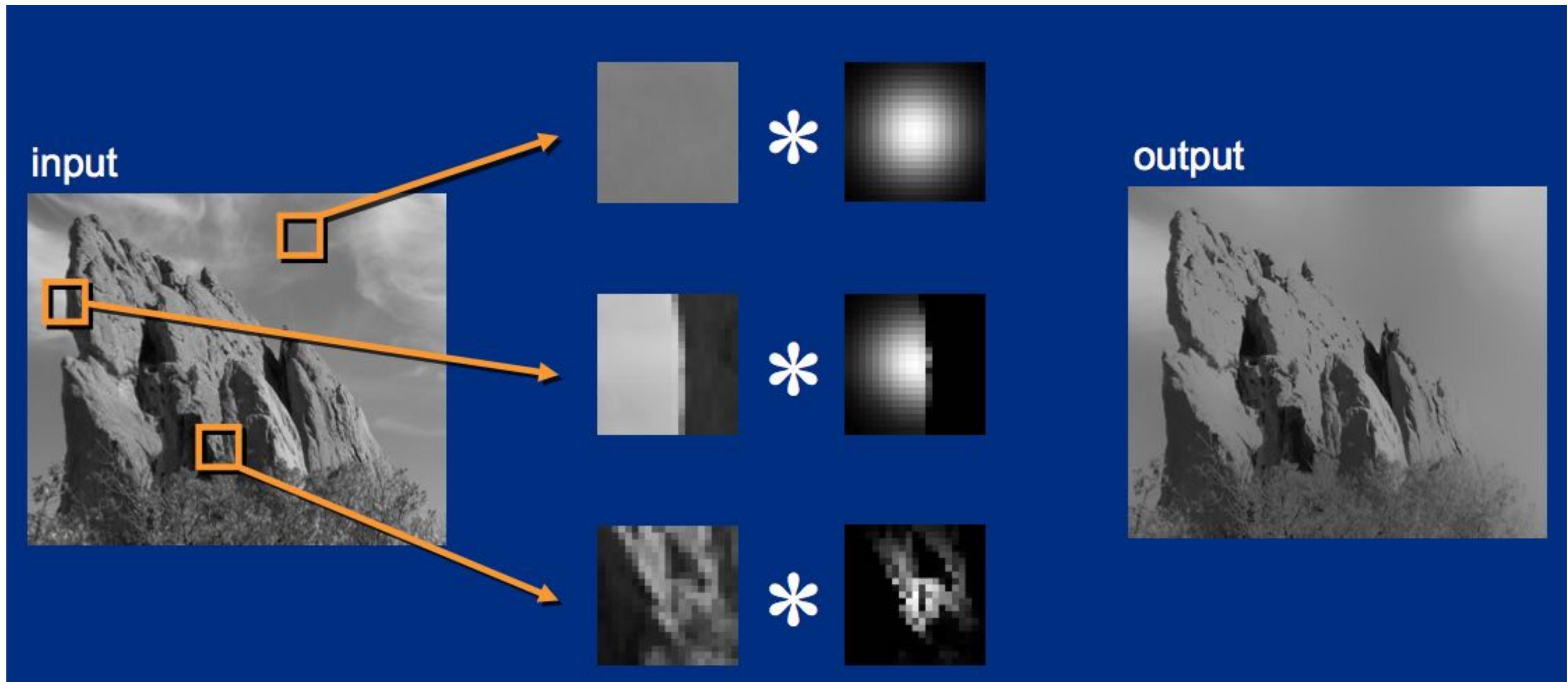
But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the median filter, the filter’s weights depend on input image content)

# Bilateral filter

## ■ Visualization of bilateral filter



# Bilateral filter: kernel depends on image content



See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

# Summary

## ■ Last two lectures: representing images

- Choice of color space (different representations of color)
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate representation of high frequency components)

## ■ Basic image processing operations

- Per-pixel operations  $\text{out}(x,y) = f(\text{in}(x,y))$  (e.g., contrast enhancement)
- Image filtering via convolution (e.g., blur, sharpen, simple edge-detection)
- Non-linear, data-dependent filters (avoid blurring over strong edges, etc.)