Lecture 18:

Image and Video Compression +
Image Processing Basics

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2025




Recurring themes in the course

m Choosing the right representation for a task
- e.g., choosing the right basis

m Exploiting human perception for computational efficiency
- Approximations in algorithms can be tolerable if humans do not notice

m Convolution as a useful operator

- To remove high-frequency content from images
- What else can we do with convolution?
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Image Compression
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A recent sunsetinialfMoon Bay

aken on my iPhone (12 MPixel sensor)
024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image
pressed image =2.9 MB
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Review from last class: color spaces
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Last time: displays producing color One pixel

- Given a set of primary lights, each with its own spectral
distribution (e.g. R,G,B display pixels):

sr(A), sqg(A), sB(A)

- We can adjust the brightness of these lights and add them
together to produce a linear subspace of spectral distribution:

RSR()\) -+ GS(;()\) -+ BSB()\)

- The color is now described by the scalar values:

R, G, B
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Color spaces

m Need three numbers to specify a color
- But what three numbers?
- A color space is an answer to this question

m  Common example: color space defined by a display
- Define colors by what R, G, B scalar values will produce them on your monitor
- Qutput spectras =rR + gG + bB for some display primary spectrar, g, b

- This a device dependent representation of color: if | choose R,G,B by looking at my display and
send those values to you, you may not see the same color on your display (which might have

different primaries, etc.)
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Standard color spaces

m Standardized RGB (sRGB)

- Makes a particular monitor’s primaries the
RGB standard

- Other color devices simulate that monitor by
calibration

- SRGB is usable as an interchange color
space; widely adopted today

ooooooooooooo
DDDDDD
DPI Height 72
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Another color space: CIE XYZ color space

®m  (Converting from color coordinates in one space to another:

— Consider display with 3 primaries (primaries need not be monochromatic light)
— Compute XYZ coords of light emitted by display when providing display (1,0,0), (0,1,0), (0,0,1)
— Light generated by display is linear combination of these vectors (non-negative weights)

color of R primary ([1,0,0] on display) — . X + RyY + R.Z - - _

G,Y +G.Z wp
color of B primary ([0,1,0] on display) — 5. X + ByY + B.Z

color of G primary ([0,1,0] ondisplay) — (7, X

XYZ representation

®m  Example: Converting from CIE RGB to CIE XYZ:

X . 049 031  0.20
V| = oo |017687  0.81240  0.01063
zZ| 000 001 099 ||

3 QX

color in space
of display primaries
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HSV (hue-saturation-value) color space

Axes of space correspond to natural notions of “characteristics” of color

S
-
(D

———

HSB Sliders H 3

3 I | 26°

P Y. | 67%

Brightness
G  100%
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Perceptual dimensions of color

m Hue
- the“kind” of color, regardless of attributes
- colorimetric correlate: dominant wavelength
- artist’s correlate: the chosen pigment color

m Saturation
- the“colorfulness”
- colorimetric correlate: purity
- artist’s correlate: fraction of paint from the colored tube

m Lightness (or value)
- the overall amount of light
- colorimetric correlate: luminance
- artist’s correlate: tints are lighter, shades are darker
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Munsell book of color

The Munsell Book of Color L

Swatch identified by three numers: hue, value (Iighness), nd ra (color purity)
Stanford C5248A, Winter 2025



Review from last time: detectors

Sensor’s response is proportional to amount of light arriving at sensor

Figure credit: Steve Marschner

photons

® 9

» signal

R

incident

photons
per unit
wavelength

detection
efficiency
(percent)

detected

photons
per unit
wavelength

A

many —

100 -

many —

0

incoming spectrum

B(\)

400

|

spectral response function

r(A)

area = signal
(overall response)

700
wavelength (nanometers)

O (A\)r(\)dA
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Encoding numbers

B More bits — can represent more unique numbers
B 8 bits = 256 unique numbers (0-255)

[Credit: lambert and waters] Stanford CS248A, Winter 2025



Luminance (brightness)

Product of radiance and the eye’s luminous efficiency

Maximum (phototopic)
response: 555 nm

| Darkadaptedeye . ~ Daytime adapted
03 (scoptic): response"_,.-‘" . eye (photoptic): response-
Y @ ( )\) V ( )\) d )\ s mainly due to roq‘lsj mainly due to cones
Vv ()\) 0:5
B Luminous efficiency is measure of how bright light '
at a given wavelength is perceived by a human (due
to the eye’s response to light at that wavelength) oal

A (nm)

B How to measure the eye’s response curve V' ()\)?

— Adjust power of monochromatic light source of wavelength A until it matches the brightness of reference
555 nm source (photopic case)

— Notice: the sensitivity of photopic eye is maximized at ~ 555 nm

https://upload.wikimedia.org/wikipedia/commons/a/a0/Luminosity.png Stanford (5248A, Winter 2025



Lightness (perceived brightness) aka luma

rrrrrrr

Lightness (L*) <«—— Luminance(Y) = L % /\j\

(Perceived by brain) (Response of eye) o’ N ]
Spectral sensitivity of eye Radiance
a (eye’s response curve) (energy spectrum
from scene)

Dark adapted eye: L* C Y0.4

Bright adapted eye: L* o Y05

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: Y, = 2Y;

20.4

Total output appears = 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’)
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ldea 1:

m What is the most efficient way to encode intensity values as a byte?

m Idea: encode based on how the brain perceives brightness (lightness), not based on the
response of eye
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Consider an image with pixel values encoding luminance
(linear in energy hitting sensor)

A
: __L*=Y45
— '/--_ E
// [ [ [ [ [ [J
P In this visualization: Pixel can represent 8 unique
” o . .

{ — > luminance values (3-bits/pixel)
L 0.75”‘ /’
A // Here: lines indicate luminance associated with each
% — unique pixel value
o= //
n 0.5 // [ [ [ [ [ [
@ v d Note that “spacing” of pixel values is linear in luminance
S (pixel value encode equally spaced sensor responses)
o

0.25}
ll
= . . . . $ * . * . $ . . . * $ . _ . . >
0| 0.25 0.5 0.75 1
Luminance (Y)
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Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

A
| % — V.45
1 /
l ‘%‘4'_ Bright regions of image: perceived difference hetween pixels that differ by
I one step in luminance is small! (human may not even be able to perceive
T | difference between pixels that differ by one step in luminance!)
x 0.
2 /
S
_g\ | //
E 05t Dark regions of image: perceived difference between pixels that differ by
2 ] ; one step in luminance is large!
O | ¥ (quantization error: gradients in luminance will not appear smooth.)
(V) /
K
0.28f
l‘
—_— —rt———t s >
| 0.25 0.5 0.75 1

Luminance (Y)
Rule of thumb: human eye cannot differentiate <1% differences in luminance
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Store lightness, not luminance

|dea: distribute representable pixel values evenly with respect to lightness (perceived
brightness), not evenly in luminance (make more efficient use of available bits)

1 I

0.751

Perceived brightness: L*

0.28f /

/

-

/

...........

Luminance (Y)

Solution: pixel stores Y045
Must compute (pixel_value)2-2 prior to display on L(D

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

Stanford (5248A, Winter 2025



[Everything on this slide is dark to make it easier to see the differences]

Equal steps (in luminance)




|dea 2:

m Chrominance (“chroma”) subsampling

m The human visual system is less sensitive to detail in chromaticity than in luminance
- Soitis sufficient to sample chroma more sparsely in space

Stanford (5248A, Winter 2025



Y'ChCr color space

Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

Non-linear RGB
Cb (primed notation indicates
perceptual (non-linear) space)

0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9

Conversion from R'G'B’ to Y'Cbh(Cr:
65.738- R,  129.057-G,,  25.064- B,

Y = 16
, o 2% 256 256
ChCr plane at a fixed value of Y o i —37.945- R, 74494 - G, 112.439- B,
g ST 256 256 256
- 112439- R,  94.154-G,  18.285- B,
Cr= leof 256 256 256

Image credit: Wikipedia Stanford CS248A, Winter 2025



Example: compression in Y'Ch(Cr

Original picture of Kayvon

Stanford (S248A, Winter 2025



Example: compression in Y'Ch(Cr

Contents of ChCr color channels downsampled by a factor of 20 in each dimension

(400x reduction in number of samples)
Stanford (5248A, Winter 2025



Example: compression in Y'Ch(Cr

Full resolution sampling of luma (Y’)

Stanford (5248A, Winter 2025



Example: compression in Y'Ch(Cr

Reconstructed result
(looks pretty good)

Stanford (S248A, Winter 2025



Chroma subsampling

Y'ChCr is an efficient representation for storage (and transmission) because Y’ can be stored at higher resolution than
ChCr without significant loss in perceived visual quality

Y00 Y'10 Y20 Y30 Y00 Y'10 Y'20 Y30
Croo Crao Croo Cryo

Yo Y1 Y'2 Y3 Yo Y1 Y2 Y31
Cbos Cha,

Cro Cry

4:2:2 representation: 4:2:0 representation:

Store Y’ at full resolution
Store Ch, Cr at full vertical resolution,
but only half horizontal resolution

Store Y’ at full resolution

Store Ch, Cr at half resolution in both
dimensions

Real-world 4:2:0 examples:

X:Y:Z notation: most JPG images and H.264 video

X = width of block
Y = number of chroma samples in first row
Z = number of chroma samples in second row

Stanford (5248A, Winter 2025



|dea 3:

m Low frequency content is predominant in the real world
m The human visual system is less sensitive to high frequency sources of error in images

m 50 a good compression scheme needs to accurately represent lower frequencies, but it can
be acceptable to sacrifice accuracy in representing higher frequencies

Stanford (5248A, Winter 2025



Recall: frequency content of images

Spatial domain result Spectrum of image

Stanford (5248A, Winter 2025



Recall: frequency content of images

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (5248A, Winter 2025



Recall: frequency content of images

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude

Stanford (5248A, Winter 2025



liMoon Bay.




Fata
AESA
;f...,zm %










What is a good representation for manipulating
frequency content of images?

Hint;

Stanford (5248A, Winter 2025



Image transform coding using the
discrete cosign transform (DCT)

64 basis coefficients 64 cosine basis vectors
(each vector is 8x8 image)

8x8 pixel block
(64 coefficients of signal in l
“pixel basis”)
N . 1 J 1
l basis[i, j] = cos !WN (a: + 5)] X (jzos [ﬂ'N (y + 5)]
[0,0]

—415 —-30 —-61 27 56 =20 -2 O]
d <22 =61 10 18 <=7 <=0 5
—47 7 77 =25 =20 10 5 -6

'l
| & -

| -49 12 3¢ -15 -10 6 2 2
— 2 -7 -13 -4 -2 2 -3 3
-8 3 2 -6 -2 1 4 2

—=
-
[

_|
[
-

-1 0 0 -2 -1 -3 4 -l
0 0 -1 -4 -1 0 1 2

.
g

X
LIERIR R0

e [7,7]
In practice: DCT is applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)
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Examples of other bases

This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

Pixel Basis
(Compact: each coefficient in representation
only effects a single pixel of output)

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

ANl
“Tanll}
-
===

Walsh-Hadamard

Haar Wavelet

Stanford (5248A, Winter 2025



Quantization

~415 30 —61 27 56 -20 —2 O 16 11 10 16 24 40 51 61
4 -2 61 10 13 -7 -9 5 12 12 14 19 26 58 60 55
47 7T 77 -25 -29 10 5 -6 14 13 16 24 40 57 69 56
49 12 34 -15 -10 6 2 2| / |14 17 22 29 51 87 30 62
2 7 <13 ~4 -2 9 5 8 18 22 37 56 63 109 103 77
8 3 2 -8 -2 1 4 2 24 35 55 64 81 104 113 92
4 0 0 =8 =1 -3 4§ =1 19 64 78 87 103 121 120 101
0 0 -1 -4 -1 0 1 2| 72 92 95 93 112 100 103 99 |

Result of DCT Quantization Matrix

(representation of image in cosine basis)
Changing JPEG quality setting in your favorite photo app

modifies this matrix (“lower quality” = higher values for

—26 -3 -6 2 2 ~1 0 0 . . :
0 -9 —4 1 1 0 0 0 elements in quantization matrix)
-3 1 5 =1 =1 0 0 0 JPEG Options
— 4 1 . 1 0 0 0 0 Matte: MNone E
- 1 O 0 0 0 0 00
0 0 0 0 0 0 0 0 — Image Options — Cancel
0 0 0 0 0 0 00 Quaity: [8_| (High B | g
! O 0 O 0 0 0 0 0 amall file large file o

Quantization produces small values for coefficients (only few bits needed per coefficient)
Quantization zeros out many coefficients

[Credit: Wikipedia, Pat Hanrahan] Stanford (5248A, Winter 2025



JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near high gradients

Low Quality — Medium Quality

Low-frequency regions of image represented accurately even under high compression Stanford CS248A, Winter 2025



JPEG compression artifacts

Original Image
(actual size)

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not be a
good compression scheme for illustrations
and rasterized text?

Quality Level 3 Quality Level 1

Stanford (5248A, Winter 2025



Images with high frequency content do not exhibit
as high of compression ratios. Why?

Original image: 2.9MB JPG

Medium noise: 22.6 MB JPG

High noise: 28.9 MB JPG

Photoshop JPG compression level =10
used for all compressed images

Uncompressed image:
4032 x 3024 x 24 bytes/pixel = 36.6 MB

Stanford (S248A, Winter 2025



Lossless compression of quantized DCT values

96 -3 -6 2 2 =1 0 0] —I
0 -2 -4 1 1 0 00
-8 1 B =1 <1 o 0 0
4 1 2 -1 0 0 00 A A |
1 0 0 0 0 0 00 Z _I
0 0 0 0 0 0 00 Al
0 0 0 0 0 0 00 =~ i

o 0 0 0 0 0 00 /1)

Quantized DCT Values “|
__

/.
’ /
o’ #
. ; - F 4 47 # ¢
/ 7 4 J 7/
’ ’ F
P 4 / F g
’,/ f r F 3
"4 ’ F " ’
F " " F P
F 4 / ! 4 9
_,"' - n na e
B - " 4  e— — | — — Ny e

Reordering

Entropy encoding: (lossless)
Reorder values
Run-length encode (RLE) 0's

Huffman encode non-zero values

Image credit: Wikipedia Stanford (S248A, Winter 2025



JPEG compression summary

—415 —-30 —-61 27 56 =20 -2 O] 16 11 10 16 24 40 51 617
4 -22 -61 10 13 -7 =9 35 12 12 14 19 26 583 60 355
-47 7 77 =25 =29 10 5 -6 14 13 16 24 40 57 69 56
—-49 12 34 -15 -10 6 2 2 / 14 17 22 29 51 37 30 62
12 -7 =13 -4 -2 2 -3 3 18 22 37 56 63 109 103 77
-3 3 2 -6 —2 1 4 2 24 35 55 64 81 104 113 92
-1 0 0 -2 -1 -3 4 -1 49 64 73 37 103 121 120 101
0 0 -1 -4 -1 0 1 2] 72 92 95 93 112 100 103 99
DCT Quantization Matrix
S 8 ik g el Laaaa Quantization loses information
-3 1 5 -1 -1 0 00| 4"~ (lossy compression!)
e -4 1 2 -1 0 0 00
- 1 0 0 0 0 0 00
0 0O 0 0 0 0 00
0 0O 0 0 0 0 00
| 0 0O o0 0 0 0 00

Quantized DCT -

2 A7 7 7

//?é/ 7 RLE compression of zeros .
e e < P _ ——  Compressed bits
] ANANNANA? Entropy compression of

[ / YAy / / Z A non-zeros

ANANAANA) . J

4 44 4 4 Lossless compression!

Coefficient reordering
Credit: Pat Hanrahan Stanford C5248A, Winter 2025



JPEG compression summary

Convert image to Y'ChCr
Downsample ChCr (to 4:2:2 0r4:2:0) (information loss occurs here)
For each color channel (Y, Ch, Cr):
For each 8x8 block of values
Compute DCT
Quantize results (information loss occurs here)
Reorder values
Run-length encode 0-spans
Huffman encode non-zero values

Stanford (5248A, Winter 2025



Key idea: exploit characteristics of human perception to build
efficient image storage and image processing systems

m Separation of luminance from chrominance in color representation (Y'CrCb) allows reduced resolution in
chrominance channels (4:2:0)

B Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable
values uniformly in perceptual space)

m JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
- Human brain is more tolerant of errors in high frequency image components than in low frequency ones
- Images of the real world are dominated by low-frequency components

Stanford (5248A, Winter 2025



Video compression: example

30 second video: 1920 x 1080, @ 30fps

Uncompressed: 8-bits per channel RGB — 24 bits/pixel = 6.2MB/frame

(6.2 MB *30sec* 30 fps =5.2 GB)

Size of data when each frames stored as JPG: 531MB

Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

sdes | 4 e s e VLN S 30N A -
R L TR St Ry
SAV SR % ™ . e f...-.\;., >
RS NN
. "-'.. p % . oA

-
.
- ':‘\‘" . Y ~ y
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Video compression adds two main ideas

m Exploiting redundancy:

- Intra-frame redundancy: value of pixels in neighboring regions of a frame are good
predictor of values for other pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time are a good predictor for
the current frame’s pixels (temporal redundancy)

Stanford (5248A, Winter 2025
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t

Motion vector visualiza

Stanford (S248A, Winter 2025
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Residual: difference between predicted image and original image

. .

Predicted pixels Residual
(Prediction A) (amplified for visualization)
Original pixels
—

In video compression schemes, the residual
image is compressed using lossy compression
techniques like those described in the earlier
part of this lecture. Better predictions lead to Predicted pixels Residual
smaller and more compressible residuals! (Prediction B) (amplified for visualization)

Stanford (5248A, Winter 2025



Video compression overview

Source  predict | i Compute - [ Compress J " Compress Compressed
. —_— ] E— Residual — | Residual T
Video : £slaualy params Video Stream
\ Pixels ’ Prediction \ Residual ) \ (Lossy) U (Lossless)
rn .
E Prediction parameters
Compressed residual

Stanford (5248A, Winter 2025



Image processing basics
(Only if time)

Stanford (5248A, Winter 2025



Example image processing operations

Increase contrast

Stanford (5248A, Winter 2025



Increasing contrast with “S curve”

Per-pixel operation:
output(x,y) = f(input(x,y))

Output pixel intensity

Input pixel intensity

Stanford (5248A, Winter 2025



Example image processing operations

Image Invert:
out(x,y) = 1-in(x,y)

Stanford (S248A, Winter 2025



Example image processing operations

Blur

Stanford (5248A, Winter 2025



Example image processing operations

v
: . e ISRV R 0 % R e ™ R T o™
- - ' - \ . A - e . ] . 2 X e - ! A VAT hrm o A dle LR il DR B
S - - . . 5 - . . ‘o LA oA 3 - s \ f SR (EA e e eyt et
¥ N . . : A . o i . . AT e
- -

o1 “ Y

S ady u, 9 N ~L-.,\’-""" ‘-..'iw

i ey gt S
.- M.,‘.“Vﬂwzs'\?‘: 4 oAl s “ At

LA

Sharpen
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Edge detection

Stanford (5248A, Winter 2025



A“smarter” blur (doesn’t blur over edges)

Stanford (S248A, Winter 2025



Review: convolution

O

Zanlat N

output signal filter input signal
(e.g. the input image)

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

f(m) — {1 ‘ZL" = 0:5 ........ 11

0 otherwise

0.5 4_““"4 . >
(f*g)(x) = / g(x —y)dy 0.5 0.5

/ —0.5

J * gisa”blurred” version of g where the output at x is the average value of the input

between x-0.5 to x+0.5
Stanford (5248A, Winter 2025



Discrete 2D convolution

TT

output image filter input image

Consider f(z7 9 ) thatis nonzero onlywhen: —1 < 72,7 < 1
Then:

(f * I)(z,y) Z f@i, ) I(x—1i,y— j)

1,7=—1
And we can represent f(i,j) as a 3x3 matrix of values where:

f (iv 7 ) — Fi, 7 (often called: “filter weights”, “filter kernel”)
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Simple 3x3 box blur

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH *x HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jj<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (i1nt 11=0; 1i1<3; 11++)

<4————  For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

tmp += input[(j+jj)*x(WIDTH+2) + (i+ii)] * weights[jjx3 + ii];

output[j*WIDTH + 1] = tmp;
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7x7 hox blur

Original

Stanford (S248A, Winter 2025



Gaussian blur

m Obtain filter coefficients by sampling 2D Gaussian function

1 i2 4 52

f(Z7]) — 27_‘_0_26 202

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— In practice: truncate filter beyond certain distance for efficiency

075 124 .075
124 204 124

075 124 .075

Stanford (5248A, Winter 2025



7X7 gaussian blur

Original

=l

Blurred
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What does convolution with this filter do?

0 —1 0
-1 o5 -1
0 -1 0

Sharpens image!



3x3 sharpen filter

Original
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Recall: blurring is removing high frequency content

Spatial domain result Spectrum
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Recall: blurring is removing high frequency content

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
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Sharpening is adding high frequencies

m Let/ be the original image
m High frequencies in image I = I - blur(/)
m Sharpenedimage =1 + (I-blur(Z))

=

“Add high frequency content”
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Original image (l)

Image credit:
Kayvon’s parents

VB —






| - blur(l)

—

o T . § o | C:‘






What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients



Gradient detection filters

DR I Horizontal gradients

Vertical gradients

-
T I—— D — S — S — —————

T R — A D, W —— T T — -~ - e

— e = Note: you can think of a filter as a “detector” of a
pattern, and the magnitude of a pixel in the output
image as the “response” of the filter to the region
surrounding each pixel in the input image (thisis a
common interpretation in computer vision)
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Sobel edge detection

m Compute gradient response images

Gy

Gy

1
—9

—1

1
0
1

0
0

—2
0
2

x 1

—1

® Find pixels with large gradients

G=1/G+G,>

YT Pixel-wise operation on images
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Cost of convolution with N x N filter?

float input[(WIDTH+2) x (HEIGHT+2)];

float output[WIDTH % HEIGHTI; In this 3x3 box blur example:

Total work perimage =9 x WIDTH x HEIGHT
float weights[] = {1./9, 1./9, 1./9,

1./9, 1./9, 1./9, For N x N filter;: N2 x WIDTH x HEIGHT
1./9, 1./9, 1./9};

for (int j=0; jj<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (i1nt 11=0; 1i1<3; 11++)
tmp += input[(j+jj)*(WIDTH+2) + (i+1ii)] * weights[jj*3 + ii];
output[j*WIDTH + 1] = tmp;
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Separable filter

m Afilteris separable if can be written as the outer product of two other filters. Example: a
2D box blur

I 1 1

1
3 *§[1 1 1]

— = =
—
—
|
|
—_

1l 2

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as
product of 1D filters (they are separable!)

m Key property: 2D convolution with separable filter can be written as two 1D convolutions!
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Implementation of 2D box blur via two 1D convolutions

int WIDTH = 1024
int HEIGHT = 1024;

float input[ (WIDTH+2) % (HEIGHT+2)]; : :
float tmp buf[WIDTH % (HEIGHT+2)]; Total work per image for NxN filter:

float output[WIDTH * HEIGHT]; 2N x WIDTH x HEIGHT
float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int 11i=0; 1i<3; 1ii++)
tmp += input[j*(WIDTH+2) + 1i+ii] * weights[ii];
tmp_buf[j*WIDTH + 1] = tmp;
}

for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + 1] = tmp;
}
}
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Bilateral filter

e~
\ - - - ~ o
0 o [ \ N
8 o N t
rI Ina g =
3 —~ “
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Processed
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Y.

- ./'
e |

7

Example use of bilateral filter: removing noise while preserving image edges
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Bi Iate I'd I ﬁ Ite I Gaussian blur kernel Input image

N,

Zf Iz —i,y—j) — 1(z,y)])Go(i,j)I(x — i,y — )

W
Normalization / f <

Re-weight based on difference

For all pixels in support region
P PP | in input image pixel values

of Gaussian kernel

Wy = Zf(\l(:v — i,y —4) — I(z,y)])Go (i, j)

m The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges.
(x) defines what “strong edge means”

m Spatial distance weight term f(x) could itself be a gaussian
= Orverysimple: f(x) =0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the
median filter, the filter’s weights depend on input image content)
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Bilateral filter

m Visualization of bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 Stanford (S248A, Winter 2025



Bilateral filter: kernel depends on image content

k B

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. Stanford (S248A, Winter 2025




Summary

m Last two lectures: representing images

- Choice of color space (different representations of color)
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate representation of high frequency components)

m Basicimage processing operations

- Per-pixel operations out(x,y) = f(in(x,y)) (e.g., contrast enhancement)
- Image filtering via convolution (e.g., blur, sharpen, simple edge-detection)
- Non-linear, data-dependent filters (avoid blurring over strong edges, etc.)
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