
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Lecture 18:

Image and Video Compression +
Image Processing Basics

Stanford CS248A, Winter 2025

Recurring themes in the course
Choosing the right representation for a task
- e.g., choosing the right basis

Exploiting human perception for computational e!ciency
- Approximations in algorithms can be tolerable if humans do not notice

Convolution as a useful operator
- To remove high-frequency content from images
- What else can we do with convolution?

Stanford CS248A, Winter 2025

Image Compression

Stanford CS248A, Winter 2025

A recent sunset in Half Moon Bay

Picture taken on my iPhone (12 MPixel sensor)
4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image
JPG compressed image = 2.9 MB

Stanford CS248A, Winter 2025

Stanford CS248A, Winter 2025

Review from last class: color spaces

Stanford CS248A, Winter 2025

Last time: displays producing color
- Given a set of primary lights, each with its own spectral

distribution (e.g. R,G,B display pixels):

- We can adjust the brightness of these lights and add them
together to produce a linear subspace of spectral distribution:

- The color is now described by the scalar values:

sR(�), sG(�), sB(�)
<latexit sha1_base64="2TN4Zj751gDoyyKNGnIOmORk2Ec=">AAACinicbVFdT9RAFJ2tqLCKLvrIywRiAkSbFkOE+ELUBHhD4wrJtmlup3fZCfPRzEyRtWniT/DX+Kp/g3/DdHdj2MWTTHLuuffMx5m8FNy6KLrpBA+WHj56vLzSffJ09dnz3tqLb1ZXhmGfaaHNeQ4WBVfYd9wJPC8NgswFnuWXH9v+2RUay7X66sYlphIuFB9yBs5LWW/HZl+2EuENBWy/TqjNjubLD//KrLcZhdEE9D6JZ2TzcPsnaXGarXVOkkKzSqJyTIC1gzgqXVqDcZwJbLpJZbEEdgkXOPBUgUSb1pNHNfSVVwo61MYv5ehEvevw2xgYN/OStHYsc2+W4EZ2sdeK/+sNKjfcT2uuysqhYtOzh5WgTtM2NFpwg8yJsSfADPfXp2wEBpjz0XYThd+ZlhJUsVMnPm2Xg2nqxFQCB29ivE7rKNwrXVPvhnt43TQLjpE2P+442pl0NjozNl0ffrwY9X3S3w0Pwuiz/4QTMsUyWScbZIvE5B05JMfklPQJI7/Ib/KH/A1Wg7fBQfB+Ohp0Zp6XZA7Bp1vLhscC</latexit><latexit sha1_base64="2TN4Zj751gDoyyKNGnIOmORk2Ec=">AAACinicbVFdT9RAFJ2tqLCKLvrIywRiAkSbFkOE+ELUBHhD4wrJtmlup3fZCfPRzEyRtWniT/DX+Kp/g3/DdHdj2MWTTHLuuffMx5m8FNy6KLrpBA+WHj56vLzSffJ09dnz3tqLb1ZXhmGfaaHNeQ4WBVfYd9wJPC8NgswFnuWXH9v+2RUay7X66sYlphIuFB9yBs5LWW/HZl+2EuENBWy/TqjNjubLD//KrLcZhdEE9D6JZ2TzcPsnaXGarXVOkkKzSqJyTIC1gzgqXVqDcZwJbLpJZbEEdgkXOPBUgUSb1pNHNfSVVwo61MYv5ehEvevw2xgYN/OStHYsc2+W4EZ2sdeK/+sNKjfcT2uuysqhYtOzh5WgTtM2NFpwg8yJsSfADPfXp2wEBpjz0XYThd+ZlhJUsVMnPm2Xg2nqxFQCB29ivE7rKNwrXVPvhnt43TQLjpE2P+442pl0NjozNl0ffrwY9X3S3w0Pwuiz/4QTMsUyWScbZIvE5B05JMfklPQJI7/Ib/KH/A1Wg7fBQfB+Ohp0Zp6XZA7Bp1vLhscC</latexit><latexit sha1_base64="2TN4Zj751gDoyyKNGnIOmORk2Ec=">AAACinicbVFdT9RAFJ2tqLCKLvrIywRiAkSbFkOE+ELUBHhD4wrJtmlup3fZCfPRzEyRtWniT/DX+Kp/g3/DdHdj2MWTTHLuuffMx5m8FNy6KLrpBA+WHj56vLzSffJ09dnz3tqLb1ZXhmGfaaHNeQ4WBVfYd9wJPC8NgswFnuWXH9v+2RUay7X66sYlphIuFB9yBs5LWW/HZl+2EuENBWy/TqjNjubLD//KrLcZhdEE9D6JZ2TzcPsnaXGarXVOkkKzSqJyTIC1gzgqXVqDcZwJbLpJZbEEdgkXOPBUgUSb1pNHNfSVVwo61MYv5ehEvevw2xgYN/OStHYsc2+W4EZ2sdeK/+sNKjfcT2uuysqhYtOzh5WgTtM2NFpwg8yJsSfADPfXp2wEBpjz0XYThd+ZlhJUsVMnPm2Xg2nqxFQCB29ivE7rKNwrXVPvhnt43TQLjpE2P+442pl0NjozNl0ffrwY9X3S3w0Pwuiz/4QTMsUyWScbZIvE5B05JMfklPQJI7/Ib/KH/A1Wg7fBQfB+Ohp0Zp6XZA7Bp1vLhscC</latexit>

RsR(�) +GsG(�) +B sB(�)
<latexit sha1_base64="LVQIOiqJL9Q+qlLtKnelhba/mrM=">AAAClHicbZHLahRBFIZr2lscbxOzyMJNYRASTZruYFAXgZAgMRuJwTGB6aaprj6TKVKXpuq0ZtI0+Bw+jVt9A9/G6plBJhMPFPx85/x1+SsvpXAYRX86wa3bd+7eW7rfffDw0eMnveWnX5ypLIc+N9LYs5w5kEJDHwVKOCstMJVLOM0vDtr+6VewThj9GcclpIqdazEUnKFHWe/1SbJJXXaynkhvKtgGfUUPk02XHc6T/Zbs/yNZby0Ko0nRmyKeibW9je+kreNsuXOUFIZXCjRyyZwbxFGJac0sCi6h6SaVg5LxC3YOAy81U+DSevK8hr7wpKBDY/3SSCd03uG3sWzcXEfKubHKvVkxHLnFXgv/1xtUOHyb1kKXFYLm07OHlaRoaBsfLYQFjnLsBeNW+OtTPmKWcfQhdxMN37hRiuniZZ343DFntqkTW0kYbMVwmdZRuFNiU2+HO3DZNAuOkbFXc452Jp2NzoxN14cfL0Z9U/S3w3dh9Ml/whGZ1hJ5Rp6TdRKTN2SPfCDHpE84+UF+kl/kd7Aa7AYHwfvpaNCZeVbItQo+/gXhesl/</latexit><latexit sha1_base64="LVQIOiqJL9Q+qlLtKnelhba/mrM=">AAAClHicbZHLahRBFIZr2lscbxOzyMJNYRASTZruYFAXgZAgMRuJwTGB6aaprj6TKVKXpuq0ZtI0+Bw+jVt9A9/G6plBJhMPFPx85/x1+SsvpXAYRX86wa3bd+7eW7rfffDw0eMnveWnX5ypLIc+N9LYs5w5kEJDHwVKOCstMJVLOM0vDtr+6VewThj9GcclpIqdazEUnKFHWe/1SbJJXXaynkhvKtgGfUUPk02XHc6T/Zbs/yNZby0Ko0nRmyKeibW9je+kreNsuXOUFIZXCjRyyZwbxFGJac0sCi6h6SaVg5LxC3YOAy81U+DSevK8hr7wpKBDY/3SSCd03uG3sWzcXEfKubHKvVkxHLnFXgv/1xtUOHyb1kKXFYLm07OHlaRoaBsfLYQFjnLsBeNW+OtTPmKWcfQhdxMN37hRiuniZZ343DFntqkTW0kYbMVwmdZRuFNiU2+HO3DZNAuOkbFXc452Jp2NzoxN14cfL0Z9U/S3w3dh9Ml/whGZ1hJ5Rp6TdRKTN2SPfCDHpE84+UF+kl/kd7Aa7AYHwfvpaNCZeVbItQo+/gXhesl/</latexit><latexit sha1_base64="LVQIOiqJL9Q+qlLtKnelhba/mrM=">AAAClHicbZHLahRBFIZr2lscbxOzyMJNYRASTZruYFAXgZAgMRuJwTGB6aaprj6TKVKXpuq0ZtI0+Bw+jVt9A9/G6plBJhMPFPx85/x1+SsvpXAYRX86wa3bd+7eW7rfffDw0eMnveWnX5ypLIc+N9LYs5w5kEJDHwVKOCstMJVLOM0vDtr+6VewThj9GcclpIqdazEUnKFHWe/1SbJJXXaynkhvKtgGfUUPk02XHc6T/Zbs/yNZby0Ko0nRmyKeibW9je+kreNsuXOUFIZXCjRyyZwbxFGJac0sCi6h6SaVg5LxC3YOAy81U+DSevK8hr7wpKBDY/3SSCd03uG3sWzcXEfKubHKvVkxHLnFXgv/1xtUOHyb1kKXFYLm07OHlaRoaBsfLYQFjnLsBeNW+OtTPmKWcfQhdxMN37hRiuniZZ343DFntqkTW0kYbMVwmdZRuFNiU2+HO3DZNAuOkbFXc452Jp2NzoxN14cfL0Z9U/S3w3dh9Ml/whGZ1hJ5Rp6TdRKTN2SPfCDHpE84+UF+kl/kd7Aa7AYHwfvpaNCZeVbItQo+/gXhesl/</latexit>

R, G, B
<latexit sha1_base64="QByaFQdX/vzs2ihQ1+egrnL8uh0=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KGVXBPVW9KDeqri22C4lm2bb0CS7JFmhLP0XXjyoePXnePPfmLZ70NYHA4/3ZpiZFyacaeO6387C4tLyymphrbi+sbm1XdrZfdBxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB5djv/FElWaxvDfDhAYC9ySLGMHGSo93lXblyha66JTKbtWdAM0TLydlyFHvlL7a3ZikgkpDONa65bmJCTKsDCOcjortVNMEkwHu0ZalEguqg2xy8QgdWqWLoljZkgZN1N8TGRZaD0VoOwU2fT3rjcX/vFZqorMgYzJJDZVkuihKOTIxGr+PukxRYvjQEkwUs7ci0scKE2NDKtoQvNmX54l/XD2vurcn5dpNnkYB9uEAjsCDU6jBNdTBBwISnuEV3hztvDjvzse0dcHJZ/bgD5zPH5SVjxs=</latexit><latexit sha1_base64="QByaFQdX/vzs2ihQ1+egrnL8uh0=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KGVXBPVW9KDeqri22C4lm2bb0CS7JFmhLP0XXjyoePXnePPfmLZ70NYHA4/3ZpiZFyacaeO6387C4tLyymphrbi+sbm1XdrZfdBxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB5djv/FElWaxvDfDhAYC9ySLGMHGSo93lXblyha66JTKbtWdAM0TLydlyFHvlL7a3ZikgkpDONa65bmJCTKsDCOcjortVNMEkwHu0ZalEguqg2xy8QgdWqWLoljZkgZN1N8TGRZaD0VoOwU2fT3rjcX/vFZqorMgYzJJDZVkuihKOTIxGr+PukxRYvjQEkwUs7ci0scKE2NDKtoQvNmX54l/XD2vurcn5dpNnkYB9uEAjsCDU6jBNdTBBwISnuEV3hztvDjvzse0dcHJZ/bgD5zPH5SVjxs=</latexit><latexit sha1_base64="QByaFQdX/vzs2ihQ1+egrnL8uh0=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KGVXBPVW9KDeqri22C4lm2bb0CS7JFmhLP0XXjyoePXnePPfmLZ70NYHA4/3ZpiZFyacaeO6387C4tLyymphrbi+sbm1XdrZfdBxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB5djv/FElWaxvDfDhAYC9ySLGMHGSo93lXblyha66JTKbtWdAM0TLydlyFHvlL7a3ZikgkpDONa65bmJCTKsDCOcjortVNMEkwHu0ZalEguqg2xy8QgdWqWLoljZkgZN1N8TGRZaD0VoOwU2fT3rjcX/vFZqorMgYzJJDZVkuihKOTIxGr+PukxRYvjQEkwUs7ci0scKE2NDKtoQvNmX54l/XD2vurcn5dpNnkYB9uEAjsCDU6jBNdTBBwISnuEV3hztvDjvzse0dcHJZ/bgD5zPH5SVjxs=</latexit>

One pixel

Stanford CS248A, Winter 2025

Color spaces
Need three numbers to specify a color
- But what three numbers?
- A color space is an answer to this question

Common example: color space de"ned by a display
- De"ne colors by what R, G, B scalar values will produce them on your monitor

- Output spectra s = rR + gG + bB for some display primary spectra r, g, b
- This a device dependent representation of color: if I choose R,G,B by looking at my display and

send those values to you, you may not see the same color on your display (which might have
di#erent primaries, etc.)

Stanford CS248A, Winter 2025

Standard color spaces
Standardized RGB (sRGB)
- Makes a particular monitor’s primaries the

RGB standard
- Other color devices simulate that monitor by

calibration
- sRGB is usable as an interchange color

space; widely adopted today

Stanford CS248A, Winter 2025

Another color space: CIE XYZ color space

▪ Example: Converting from CIE RGB to CIE XYZ:

2

4
X
Y
Z

3

5 =
1

0.17697

2

4
0.49 0.31 0.20

0.17687 0.81240 0.01063
0.00 0.01 0.99

3

5

2

4
R
G
B

3

5

- Consider display with 3 primaries (primaries need not be monochromatic light)
- Compute XYZ coords of light emitted by display when providing display (1,0,0), (0,1,0), (0,0,1)
- Light generated by display is linear combination of these vectors (non-negative weights)

▪ Converting from color coordinates in one space to another:

= RxX+RyY +RzZ

= GxX+GyY +GzZ

= BxX+ByY +BzZ

color of R primary ([1,0,0] on display)

color of G primary ([0,1,0] on display)

color of B primary ([0,1,0] on display)

2

4
X
Y
Z

3

5 =

2

4
Rx Gx Bx

Ry Gy By

Rz Gz Bz

3

5

2

4
R
G
B

3

5

color in space
of display primaries

XYZ representation

Stanford CS248A, Winter 2025

HSV (hue-saturation-value) color space
Axes of space correspond to natural notions of “characteristics” of color

Stanford CS248A, Winter 2025

Perceptual dimensions of color
Hue
- the “kind” of color, regardless of attributes
- colorimetric correlate: dominant wavelength
- artist’s correlate: the chosen pigment color

Saturation
- the “colorfulness”
- colorimetric correlate: purity
- artist’s correlate: fraction of paint from the colored tube

Lightness (or value)
- the overall amount of light
- colorimetric correlate: luminance
- artist’s correlate: tints are lighter, shades are darker

Stanford CS248A, Winter 2025

Munsell book of color

Swatch identi"ed by three numbers: hue, value (lightness), and chroma (color purity)

Stanford CS248A, Winter 2025

Review from last time: detectors
Sensor’s response is proportional to amount of light arriving at sensor

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

Stanford CS248A, Winter 2025

Encoding numbers
More bits → can represent more unique numbers
8 bits → 256 unique numbers (0-255)

[Credit: lambert and waters]

Stanford CS248A, Winter 2025

Luminance (brightness)
Product of radiance and the eye’s luminous e!ciency

https://upload.wikimedia.org/wikipedia/commons/a/a0/Luminosity.png

Dark adapted eye
(scoptic): response
mainly due to rods

Daytime adapted
eye (photoptic): response
mainly due to cones

Y (p,!) =

Z 1

0
L(p,!,�)V (�) d�

� (nm)

Y =

Z
�(�)V (�) d�

▪ How to measure the eye’s response curve ?Y =

Z
�(�)V (�) d�

- Adjust power of monochromatic light source of wavelength until it matches the brightness of reference
555 nm source (photopic case)

- Notice: the sensitivity of photopic eye is maximized at ~ 555 nm

Y =

Z
�(�)V (�) d�

▪ Luminous e!ciency is measure of how bright light
at a given wavelength is perceived by a human (due
to the eye’s response to light at that wavelength)

Maximum (phototopic)
response: 555 nm

Stanford CS248A, Winter 2025

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the "rst. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)

Stanford CS248A, Winter 2025

Idea 1:
What is the most e!cient way to encode intensity values as a byte?

Idea: encode based on how the brain perceives brightness (lightness), not based on the
response of eye

Stanford CS248A, Winter 2025

Consider an image with pixel values encoding luminance
(linear in energy hitting sensor)

In this visualization: Pixel can represent 8 unique
luminance values (3-bits/pixel)

Here: lines indicate luminance associated with each
unique pixel value

Note that “spacing” of pixel values is linear in luminance
(pixel value encode equally spaced sensor responses)

L* = Y.45

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Stanford CS248A, Winter 2025

Problem: quantization error

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insu!cient precision to represent brightness in darker regions of image

Dark regions of image: perceived di#erence between pixels that di#er by
one step in luminance is large!
(quantization error: gradients in luminance will not appear smooth.)

Bright regions of image: perceived di#erence between pixels that di#er by
one step in luminance is small! (human may not even be able to perceive
di#erence between pixels that di#er by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot di#erentiate <1% di#erences in luminance

Stanford CS248A, Winter 2025

Store lightness, not luminance

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to lightness (perceived
brightness), not evenly in luminance (make more e!cient use of available bits)

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

Stanford CS248A, Winter 2025

Equal steps (in luminance)

[Everything on this slide is dark to make it easier to see the di#erences]

Stanford CS248A, Winter 2025

Idea 2:
Chrominance (“chroma”) subsampling

The human visual system is less sensitive to detail in chromaticity than in luminance
- So it is su!cient to sample chroma more sparsely in space

Stanford CS248A, Winter 2025

Y’CbCr color space
Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

Non-linear RGB
(primed notation indicates
perceptual (non-linear) space)

CbCr plane at a "xed value of Y’

Stanford CS248A, Winter 2025

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS248A, Winter 2025

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS248A, Winter 2025

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS248A, Winter 2025

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS248A, Winter 2025

Chroma subsampling
Y’CbCr is an e!cient representation for storage (and transmission) because Y’ can be stored at higher resolution than
CbCr without signi"cant loss in perceived visual quality

4:2:2 representation:

Store Y’ at full resolution
Store Cb, Cr at full vertical resolution,
but only half horizontal resolution

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31
Cb01 Cb21
Cr01 Cr21

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:

Store Y’ at full resolution
Store Cb, Cr at half resolution in both
dimensions

X:Y:Z notation:
X = width of block
Y = number of chroma samples in "rst row
Z = number of chroma samples in second row

Real-world 4:2:0 examples:
most JPG images and H.264 video

Stanford CS248A, Winter 2025

Idea 3:
Low frequency content is predominant in the real world

The human visual system is less sensitive to high frequency sources of error in images

So a good compression scheme needs to accurately represent lower frequencies, but it can
be acceptable to sacri"ce accuracy in representing higher frequencies

Stanford CS248A, Winter 2025

Recall: frequency content of images

Spectrum of imageSpatial domain result

Stanford CS248A, Winter 2025

Recall: frequency content of images

Spectrum (after low-pass "lter)
All frequencies above cuto# have 0 magnitude

Spatial domain result

Stanford CS248A, Winter 2025

Recall: frequency content of images

Spatial domain result
(strongest edges)

Spectrum (after high-pass "lter)
All frequencies below threshold

have 0 magnitude

Stanford CS248A, Winter 2025

A recent sunset in Half Moon Bay

Stanford CS248A, Winter 2025

(with noise added)A recent sunset in Half Moon Bay

Stanford CS248A, Winter 2025

(with more noise added)A recent sunset in Half Moon Bay

Stanford CS248A, Winter 2025

A recent sunset in Half Moon Bay

Original image Noise added
(increases high frequency content)

More noise added

Stanford CS248A, Winter 2025

What is a good representation for manipulating
frequency content of images?

Hint:

Stanford CS248A, Winter 2025

Image transform coding using the
discrete cosign transform (DCT)

x=

64 cosine basis vectors
(each vector is 8x8 image)

64 basis coe!cients
8x8 pixel block

(64 coe!cients of signal in
“pixel basis”)

In practice: DCT is applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

basis[i, j] =

[0,0]

[7,7]

Stanford CS248A, Winter 2025

Examples of other bases
This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

DCT Walsh-Hadamard Haar Wavelet

Pixel Basis
(Compact: each coe!cient in representation
only e#ects a single pixel of output)

Stanford CS248A, Winter 2025

Quantization

Quantization produces small values for coe!cients (only few bits needed per coe!cient)
Quantization zeros out many coe!cients

Changing JPEG quality setting in your favorite photo app
modi"es this matrix (“lower quality” = higher values for
elements in quantization matrix)

Result of DCT
(representation of image in cosine basis)

Quantization Matrix

=

[Credit: Wikipedia, Pat Hanrahan]

Stanford CS248A, Winter 2025

JPEG compression artifacts
Noticeable 8x8 pixel block boundaries

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression

Noticeable error near high gradients

Low Quality Medium Quality

Stanford CS248A, Winter 2025

JPEG compression artifacts

Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not be a
good compression scheme for illustrations
and rasterized text?

Original Image
(actual size)

Stanford CS248A, Winter 2025

Images with high frequency content do not exhibit
as high of compression ratios. Why?

Original image: 2.9MB JPG

High noise: 28.9 MB JPG

Medium noise: 22.6 MB JPG

Uncompressed image:
4032 x 3024 x 24 bytes/pixel = 36.6 MB

Photoshop JPG compression level = 10
used for all compressed images

Stanford CS248A, Winter 2025

Lossless compression of quantized DCT values

Quantized DCT Values

Reordering
Entropy encoding: (lossless)

Reorder values
Run-length encode (RLE) 0’s
Hu#man encode non-zero values

Image credit: Wikipedia

Stanford CS248A, Winter 2025

JPEG compression summary

Credit: Pat Hanrahan

Coe!cient reordering

RLE compression of zeros

Entropy compression of
non-zeros

Compressed bits

Lossless compression!

Quantization loses information
(lossy compression!)

Stanford CS248A, Winter 2025

JPEG compression summary
Convert image to Y’CbCr
Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y’, Cb, Cr):

For each 8x8 block of values
Compute DCT
Quantize results (information loss occurs here)
Reorder values
Run-length encode 0-spans
Hu#man encode non-zero values

Stanford CS248A, Winter 2025

Key idea: exploit characteristics of human perception to build
e!cient image storage and image processing systems

▪ Separation of luminance from chrominance in color representation (Y’CrCb) allows reduced resolution in
chrominance channels (4:2:0)

▪ Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable
values uniformly in perceptual space)

▪ JPEG compression signi"cantly reduces "le size at cost of quantization error in high spatial frequencies
- Human brain is more tolerant of errors in high frequency image components than in low frequency ones
- Images of the real world are dominated by low-frequency components

Stanford CS248A, Winter 2025

Video compression: example
30 second video: 1920 x 1080, @ 30fps

Uncompressed: 8-bits per channel RGB → 24 bits/pixel → 6.2MB/frame
(6.2 MB * 30 sec * 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: 531MB
Actual H.264 video "le size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Go Swallows!

Stanford CS248A, Winter 2025

Video compression adds two main ideas
Exploiting redundancy:

- Intra-frame redundancy: value of pixels in neighboring regions of a frame are good
predictor of values for other pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time are a good predictor for
the current frame’s pixels (temporal redundancy)

Stanford CS248A, Winter 2025

Motion vector visualization

Image credit: Keyi Zhang

Stanford CS248A, Winter 2025

Residual: di#erence between predicted image and original image

Original pixels

Predicted pixels
(Prediction B)

Residual
(ampli"ed for visualization)

Predicted pixels
(Prediction A)

Residual
(ampli"ed for visualization)

In video compression schemes, the residual
image is compressed using lossy compression
techniques like those described in the earlier
part of this lecture. Better predictions lead to
smaller and more compressible residuals!

Stanford CS248A, Winter 2025

Video compression overview

Predict
Pixels

Compress
Residual
(Lossy)

Source
Video

Compressed
Video Stream

Prediction parameters

Compute
Residual

Compress
Residual + params

(Lossless)

Compressed residual

Prediction

Stanford CS248A, Winter 2025

Image processing basics
(Only if time)

Stanford CS248A, Winter 2025

Example image processing operations

Increase contrast

Stanford CS248A, Winter 2025

Increasing contrast with “S curve”
Per-pixel operation:
output(x,y) = f(input(x,y))

Input pixel intensity
Ou

tp
ut

 pi
xe

l in
te

ns
ity

Stanford CS248A, Winter 2025

Example image processing operations

Image Invert:
out(x,y) = 1 - in(x,y)

Stanford CS248A, Winter 2025

Example image processing operations

Blur

Stanford CS248A, Winter 2025

Example image processing operations

Sharpen

Stanford CS248A, Winter 2025

Edge detection

Stanford CS248A, Winter 2025

A “smarter” blur (doesn’t blur over edges)

Stanford CS248A, Winter 2025

Review: convolution

output signal input signal
(e.g. the input image)

"lter

It may be helpful to consider the e#ect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “blurred” version of g where the output at x is the average value of the input
between x-0.5 to x+0.5

-0.5 0.5

1

Stanford CS248A, Winter 2025

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image"lter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “"lter weights”, “"lter kernel”)

(f ⇤ I)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

Stanford CS248A, Winter 2025

Simple 3x3 box blur
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

Stanford CS248A, Winter 2025

7x7 box blur
Original

Blurred

Stanford CS248A, Winter 2025

Gaussian blur
Obtain "lter coe!cients by sampling 2D Gaussian function

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution
falls o# with distance)
- In practice: truncate "lter beyond certain distance for e!ciency

Stanford CS248A, Winter 2025

7x7 gaussian blur
Original

Blurred

Stanford CS248A, Winter 2025

What does convolution with this "lter do?
2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

Stanford CS248A, Winter 2025

3x3 sharpen "lter
Original

Sharpened

Stanford CS248A, Winter 2025

Recall: blurring is removing high frequency content

SpectrumSpatial domain result

Stanford CS248A, Winter 2025

Spectrum (after low-pass "lter)
All frequencies above cuto# have 0 magnitude

Spatial domain result

Recall: blurring is removing high frequency content

Stanford CS248A, Winter 2025

Sharpening is adding high frequencies
Let I be the original image
High frequencies in image I = I - blur(I)
Sharpened image = I + (I-blur(I))

“Add high frequency content”

Stanford CS248A, Winter 2025

Original image (I)

Image credit:
Kayvon’s parents

Stanford CS248A, Winter 2025

Blur(I)

Stanford CS248A, Winter 2025

I - blur(I)

Stanford CS248A, Winter 2025

I + (I - blur(I))

Stanford CS248A, Winter 2025

What does convolution with these "lters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

Stanford CS248A, Winter 2025

Gradient detection "lters
Horizontal gradients

Vertical gradients

Note: you can think of a "lter as a “detector” of a
pattern, and the magnitude of a pixel in the output
image as the “response” of the "lter to the region
surrounding each pixel in the input image (this is a
common interpretation in computer vision)

Stanford CS248A, Winter 2025

Sobel edge detection
Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

Stanford CS248A, Winter 2025

Cost of convolution with N x N "lter?
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N "lter: N2 x WIDTH x HEIGHT

Stanford CS248A, Winter 2025

Separable "lter
A "lter is separable if can be written as the outer product of two other "lters. Example: a
2D box blur

- Exercise: write 2D gaussian and vertical/horizontal gradient detection "lters as
product of 1D "lters (they are separable!)

Key property: 2D convolution with separable "lter can be written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

Stanford CS248A, Winter 2025

Implementation of 2D box blur via two 1D convolutions
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image for NxN "lter:
2N x WIDTH x HEIGHT

Stanford CS248A, Winter 2025

Bilateral "lter

Example use of bilateral "lter: removing noise while preserving image edges

Original Processed

Stanford CS248A, Winter 2025

Bilateral "lter

The bilateral "lter is an “edge preserving” "lter: down-weight contribution of pixels on the “other side” of strong edges. f

(x) de"nes what “strong edge means”

Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di#erence. (non-linear "lter: like the
median "lter, the "lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di#erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

Stanford CS248A, Winter 2025

Bilateral "lter
Visualization of bilateral "lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi"cantly di#erent intensity
as p contribute little to "ltered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: "lter weights for pixel p Filtered output image

Stanford CS248A, Winter 2025

Bilateral "lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral "lter

Stanford CS248A, Winter 2025

Summary
Last two lectures: representing images
- Choice of color space (di#erent representations of color)
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate representation of high frequency components)

Basic image processing operations
- Per-pixel operations out(x,y) = f(in(x,y)) (e.g., contrast enhancement)
- Image "ltering via convolution (e.g., blur, sharpen, simple edge-detection)
- Non-linear, data-dependent "lters (avoid blurring over strong edges, etc.)

