
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2025

Lecture 2:

Drawing a Triangle 
(+ the basics of sampling and anti-aliasing)
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Last time
A very simple notion of digital image representation (that we are about to challenge!) 

▪ An image = a 2D array of color values
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Last time: displaying an image
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Aside: other sub pixel layouts
So what is a pixel, anyway? 
(More on this soon)
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Last time: what pixels should we color in to draw a line?

One possible heuristic: light up all pixels intersected by the line?
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Input: 
2D position of triangle vertices: P0, P1, P2

Today: drawing a triangle

Output: 
set of pixels “covered” by the triangle

(Converting a representation of a triangle into an image)

P0

P1

P2

"Triangle rasterization”
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Idea from last time: let’s call a pixel “inside” the triangle if 
the pixel center is inside the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center
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Today we will draw triangles using a simple method: 
point sampling 

(testing whether a speci!c points are inside the triangle) 

Before talking about sampling in 2D, 
let’s consider sampling in 1D !rst…
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Consider a 1D signal: f (x)

x

f (x)
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Sampling: taking measurements of a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: !ve measurements (“samples”) of  f(x)

A discrete representation of f(x) is given by the samples f(x0), f(x1), f(x2), f(x3), f(x4)
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Audio !le: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz
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Sampling a function
Evaluating a function at a point is sampling the function’s value 

We can discretize a function by periodic sampling 

Sampling is a core idea in graphics. In this class we’ll sample signals parameterized by:  
time (1D), area (2D), angle (2D), volume (3D), paths through a scene (in!nite-D) etc …

for(int x = 0; x < xmax; x++)
    output[x] = f(x);
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Reconstruction: given a set of samples, how might we attempt to 
reconstruct the original (continuous) signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)
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x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

Reconstruction: given a set of samples, how might we attempt to 
reconstruct the original (continuous) signal f(x)?
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Piecewise constant approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)
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Piecewise linear approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation
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How can we represent the signal more accurately?

Answer: sample signal more densely (increase sampling rate)

x1x0 x2 x3 x4

frecon (x)

f (x)
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Reconstruction from sparse sampling 

x1x0 x2 x3 x4

frecon (x)

= reconstruction via linear interpolation

(5 samples)
f (x)
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More accurate reconstructions result from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation

frecon (x)

(9 samples)
f (x)



Stanford CS248A, Winter 2025

More accurate reconstructions result from denser sampling

x2x0 x4 x6 x8 x10 x12 x14 x16

= reconstruction via linear interpolation

x1 x3 x5 x7 x9 x11 x13 x15

f (x)

frecon (x)

(17 samples)
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Drawing a triangle by 2D sampling
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Image as a 2D matrix of pixels

(0,0) (1,0)

(0,1)

(0,4) (9,4)

(9,0)

(1,1)

Here I’m showing a 10 x 5 pixel image 
Identify pixel by its integer (x,y) coordinates 
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Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels!
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Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels! 
(I removed pixel boundaries from the !gure to encourage you to forget about pixels!)
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De!ne binary function: inside(tri,x,y) 

inside(t,x,y) = 
1 

0 

(x,y) in triangle t 

otherwise
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Sampling the binary function: inside(tri,x,y)

Pixel (x,y)

1

2

3

4

Here I chose the sample position to be 
the pixel center.

= triangle covers sample, should color in pixel

= triangle does not cover sample, do not color in pixel

(x + 0.5, y + 0.5)

Boundary of a pixel



Stanford CS248A, Winter 2025

Sample coverage at pixel centers
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Sample coverage at pixel centers
I only want you to think about evaluating triangle-point coverage! 
NOT TRIANGLE-PIXEL OVERLAP!
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Rasterization = sampling a 2D binary function
Rasterize triangle tri by sampling the function  
f(x,y) = inside(tri,x,y) 

for (int x = 0; x < xmax; x++) 
  for (int y = 0; y < ymax; y++) 
    image[x][y] = f(x + 0.5, y + 0.5);
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Evaluating  inside(tri,x,y)
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Triangle = intersection of three half planes

P0

P1

P2



Stanford CS248A, Winter 2025

Point-slope form of a line

P0=(x0, y0)

P1=(x1, y1)

(You might have seen this in high school)

y � y0 = m(x� x0)

m =
y1 � y0
x1 � x0
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Each line de!nes two half-planes
Implicit line equation 

- L(x,y) = Ax + By + C 
- On the line:       L(x,y) = 0 

- “Negative side” of line:  L(x,y) < 0  

- “Positive” side of line: L(x,y) > 0

> 0

< 0

= 0
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Line equation derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector
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Line equation derivation

(x,y)

Perp(x, y) = (y,�x)General Perpendicular  
Vector in 2D

(y,-x)
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Line equation derivation

Line Normal Vector

N

TP0

P1

N = Perp(T ) = (y1 � y0,�(x1 � x0))
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Line equation derivation

N

P0

P1

Now consider a point P=(x,y).  
Which side of the line is it on?

P = (x, y)
V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)
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Line equation tests

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N > 0
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Line equation tests

N

P0

P1
P = (x, y)

L(x, y) = V ·N = 0

V
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Line equation tests

N

P0

P1

P = (x, y)

V

L(x, y) = V ·N < 0
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Line equation derivation

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N = �(y � y0)(x1 � x0) + (x� x0)(y1 � y0)

= (y1 � y0)x� (x1 � x0)y + y0(x1 � x0)� x0(y1 � y0)

= Ax+By + C

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)N = Perp(T ) = (y1 � y0,�(x1 � x0))

T
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Point-in-triangle test

P0

P1

P2

L0(x, y) < 0

“inside”

“outside”

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci =  Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)  

Li (x, y)  = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2

L1(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci =  Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)  

Li (x, y)  = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2

L2(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci =  Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)  

Li (x, y)  = Ai x + Bi y + Ci

Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the triangle if it 
is inside all three edges. 

inside(sx, sy) =
L0 (sx, sy) < 0 &&
L1 (sx, sy) < 0 &&
L2 (sx, sy) < 0

Note: actual implementation of inside(sx,sy) 
involves ≤ checks based on the triangle coverage 
edge rules (see next slide)

Sample points inside triangle are highlighted red.
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Edge cases (literally)
Is this sample point covered by triangle 1? or triangle 2? or both?

1

2
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A detail: rasterization “edge rules”
When edge falls directly on a screen sample point, the sample is classi!ed as within triangle if the edge is a “top 
edge” or “left edge” 

- Top edge: horizontal edge that is above all other edges 
- Left edge:  an edge that is not exactly horizontal and is on the left side of the triangle.(triangle can have one or 

two left edges)

Source: Direct3D Programming Guide, Microsoft
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Finding covered samples: incremental triangle traversal

P0

P1

P2

E#cient incremental update: 

Li (x+1,y) = Li (x,y) + dYi = Li (x,y) + Ai

Li (x,y+1) = Li (x,y) - dXi = Li (x,y) + Bi

Incremental update saves computation: 
Only one addition per edge, per sample test 
Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi 

Bi = dXi = Xi+1 - Xi

Ci =  Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)  

Li (x, y)  = Ai x + Bi y + Ci

            
Li (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks 

Test all samples in block against triangle in parallel

Advantages: 
- Simplicity of parallel execution overcomes cost of extra 

point-in-triangle tests (most triangles are big enough 
to cover many samples) 

- Can skip sample testing work: entire block not in 
triangle (“early out”), entire block entirely within 
triangle (“early in”) 

- Additional advantages related to accelerating occlusion 
computations (not discussed today)

All modern graphics processors (GPUs) have special-purpose hardware for e#ciently performing 
point-in-triangle tests 



We have the ability to determine if any point in the image is inside or outside the triangle
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Where are we now

▪ How to we interpret these results as an image to display? 
(Recall, there’s no pixels above, just samples)
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Recall: pixels on a screen

Laptop display pixel

Each image sample sent to the display is converted into 
a little square of light of the appropriate color: 
(a pixel = picture element) 

* Thinking of each screen pixel as emitting a square of uniform intensity 
light of a single color is a an approximation to how real displays work, 
but it will do for now.
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So, if we send the display this sampled signal…

…and each value determines the light emitted from a pixel… 
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The display physically emits this signal

Given our simpli!ed “square pixel” display assumption, the emitted 
light is a piecewise constant reconstruction of the samples
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Compare: the continuous triangle function 
(This is the function we sampled)
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What’s wrong with this picture? 

Jaggies!

(This is the reconstruction emitted by the display)
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Jaggies (staircase pattern)

Is this the best we can do?
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Reminder: how can we represent a signal more accurately?
Sample signal more densely! (increase sampling rate)

VS.
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Sampling using one sample per pixel
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Supersampling: step 1

2x2 supersampling

Sample the input signal more densely in the image plane 
In this example: take 2 x 2 samples in the area spanned by a pixel

But how do we use these samples to drive a display, since there are four times more samples than display pixels! !

Extent of one 
display pixel
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Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel
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Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel
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Supersampling: step 2
Average the N x N samples “inside” each pixel

Averaging down
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Displayed result
This is the corresponding signal emitted by the display 
(value provided to each display pixel is the average of the values sampled in that region) 

75%

100% 100% 50%

50%50%50%25%
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Images rendered using one sample per pixel
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4x4 supersampling + downsampling

Each pixel’s value is the average of the values of the 4x4 samples per pixel

(16 samples per pixel)
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Let’s understand what just happened 
in a more principled way
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More examples of sampling artifacts in computer graphics
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Jaggies (staircase pattern)
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Moiré patterns in imaging

lystit.com

Full resolution image 1/2 resolution image: 
skip pixel odd rows and columns
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Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU
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Sampling artifacts in computer graphics
Artifacts due to sampling - “Aliasing” 
- Jaggies – sampling to sparsely in space 
- Wagon wheel e$ect – sampling to sparsely in time 
- Moire – undersampling images (and texture maps) 
- [Many more] … 

We notice this in fast-changing signals, when we sample the signal too sparsely
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Sines and cosines

cos 2⇡x

sin 2⇡x
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Frequencies 

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T
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Representing sound wave as a superposition 
(linear combination) of frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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Audio spectrum analyzer: representing sound as a sum of its 
constituent frequencies

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies
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Images as a superposition of cosines

i=0
j=0

= x

8x8 images
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Images as a superposition of cosines

8x8 image

-415 x     +

=

-30  x     +

-61  x     +

…

 4   x     +

-22  x     +

…

 1   x     +

 2   x    

8x8 basis images



Stanford CS248A, Winter 2025

How to compute frequency-domain 
representation of a signal?
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Fourier transform
Represent any function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830
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Fourier transform
Convert representation of signal from primal domain (spatial/temporal) to frequency 
domain by projecting signal into its component frequencies

2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:
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The Fourier transform decomposes a signal into its 
constituent frequencies

spatial 
domain

frequency 
domain

F (�) =
⇥�

�⇥

f(x)e�i�xdx F (�) =
⇥�

�⇥

f(x)e�i�xdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx
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Visualizing the frequency content of images

SpectrumSpatial domain result

The visualization below is the 2D frequency 
domain equivalent of the 1D audio spectrum 
I showed you earlier *
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Constant signal (in primal domain) 

(0,0)

Frequency domainSpatial domain
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                                — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain
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                              — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain
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sin(2⇡/16)y

Frequency domainSpatial domain
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sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain
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exp(�r2/162)

Frequency domainSpatial domain
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exp(�r2/322)

Frequency domainSpatial domain
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Question:

exp(�r2/162)

Frequency domainSpatial domain

exp(�r2/322)

Why does a “smoother” exponential 
function in the spatial domain look 
“more compact” in the frequency domain?
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exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain
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Image !ltering 
(in the frequency domain)
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Manipulating the frequency content of images

Frequency domainSpatial domain

The visualization below is the 2D 
frequency domain equivalent of the 1D 
audio spectrum I showed you earlier *
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Low frequencies only (smooth gradients)

(after low-pass !lter) 
All frequencies above cuto$ have 0 magnitude

Frequency domainSpatial domain
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass !lter)
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass !lter)
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High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass !lter) 
All frequencies below threshold have 0 

magnitude
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An image as a sum of its frequency components

+ + +

=
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Back to our problem of artifacts in images

Jaggies!
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Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal: sampled 
adequately for reasonable 
reconstruction

High-frequency signal is insu#ciently 
sampled: reconstruction incorrectly 
appears to be from a low frequency signal
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Undersampling creates frequency “aliases”

High-frequency signal is insu#ciently sampled: samples erroneously appear to be from a 
low-frequency signal 

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”
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Example: sampling rate vs signal frequency

Max signal freq =1/32

                              — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
Sampling at twice the frequency of the signal: no aliasing! *

sampling = every 16 pixels

* Technically in this example there is no “pre-aliasing”.  There is “post-aliasing” if reconstruction from these measurements is not perfect
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                              — frequency 1/16; 16 pixels per cycle

Example: sampling rate vs signal frequency
sin(2⇡/16)x

Max signal freq =1/16

Sampling at same frequency as signal: dramatic aliasing! (due to undersampling)

sampling = every 16 pixels
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Anti-aliasing idea: 
remove high frequency information from a signal 

before sampling it
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Video: point vs antialiased sampling

Single point in time Motion blurred
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Video: point sampling in time
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 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.
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Video: motion-blurred sampling
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 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.
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Rasterization is sampling in 2D space

Sample

Note jaggies in rasterized triangle  
(pixel values are either red or white: sample is in or out of triangle)
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Anti-aliasing by pre-!ltering the signal

Pre-!lter 
(remove high frequency detail)

Sample

Note anti-aliased edges of rasterized triangle: 
pixel values take intermediate values 
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Pre-!ltering by “supersampling” then “blurring” (averaging)

Coarsely sampled signal 
(to store in image, or send to display)

Reconstructed signal with high frequencies reduced 
(Blurring via averaging over pixel, etc)

Dense sampling of signal 
(supersampling)

Original signal 
(with high frequency edge)

Reconstruction on display
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Images rendered using one sample per pixel
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Anti-aliased results
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Bene!ts of anti-aliasing

Jaggies Pre-!ltered
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Filtering = convolution
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

1x1 + 3x2 + 5x1 = 12  

12Result
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16

3x1 + 5x2 + 3x1 = 16  

Result
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Result

5x1 + 3x2 + 7x1 = 18  

12 16 18
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Box !lter (used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box !lter

1

9
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2D convolution with box !lter blurs the image

Original image Blurred 
(convolve with box !lter)

Hmm… this reminds me of a low-pass !lter…
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Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image!lter

Consider                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “!lter weights”, “!lter kernel”)
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Convolution theorem

* =

x =

Spatial 
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

Convolution in the spatial domain is equal to multiplication in the frequency domain, 
and vice versa

convolve
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Convolution theorem
Convolution in the spatial domain is equal to multiplication in the frequency domain, 
and vice versa 

Pre-!ltering option 1:  
- Filter by convolution in the spatial domain 

Pre-!ltering option 2:  
- Transform to frequency domain (Fourier transform) 
- Multiply by Fourier transform of convolution kernel 
- Transform back to spatial domain (inverse Fourier)
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Box function = “low pass” !lter

Spatial domain Frequency domain
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Wider !lter kernel = retain only lower frequencies

Spatial domain Frequency domain
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Wider !lter kernel = lower frequencies
As a !lter is localized in the spatial domain,  
it spreads out in frequency domain 

Conversely, as a !lter is localized in frequency domain, it spreads out in the 
spatial domain
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How can we reduce aliasing error?
Increase sampling rate 
- Higher resolution displays, sensors, framebu$ers… 
- But: costly and may need very high resolution to su#ciently reduce aliasing 

Anti-aliasing 
- Simple idea: remove (or reduce) high frequencies before sampling 
- How to !lter out high frequencies before sampling?
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Anti-aliasing by averaging values in pixel area
Convince yourself the following are the same: 

Option 1: 
- Convolve f(x,y) by a 1-pixel box-blur 
- Then sample the resulting signal at the center of every pixel  

Option 2: 
- Compute the average value of f(x,y) in the pixel
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Anti-aliasing by computing average pixel value
When  rasterizing one triangle, the value of f(x,y) = inside(tri,x,y) averaged over the area of 
a pixel is equal to the amount of the pixel covered by the triangle. 

Original 

Filtered

1 pixel width
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Today’s summary
Drawing a triangle = sampling triangle/screen coverage 
Pitfall of sampling: aliasing 
Reduce aliasing by pre!ltering signal 
- Supersample 
- Reconstruct via convolution (average coverage over pixel)  

- Higher frequencies removed 
- Sample reconstructed signal once per pixel 

There is much, much more to sampling theory and practice… 
- If interested see: Stanford EE261 - The Fourier Transform and its Applications
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