
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Lecture 2:

Drawing a Triangle
(+ the basics of sampling and anti-aliasing)

Stanford CS248A, Winter 2025

Last time
A very simple notion of digital image representation (that we are about to challenge!)

▪ An image = a 2D array of color values

Stanford CS248A, Winter 2025

Last time: displaying an image

Stanford CS248A, Winter 2025

Aside: other sub pixel layouts
So what is a pixel, anyway?
(More on this soon)

Stanford CS248A, Winter 2025

Last time: what pixels should we color in to draw a line?

One possible heuristic: light up all pixels intersected by the line?

Stanford CS248A, Winter 2025

Input:
2D position of triangle vertices: P0, P1, P2

Today: drawing a triangle

Output:
set of pixels “covered” by the triangle

(Converting a representation of a triangle into an image)

P0

P1

P2

"Triangle rasterization”

Stanford CS248A, Winter 2025

Idea from last time: let’s call a pixel “inside” the triangle if
the pixel center is inside the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center

Stanford CS248A, Winter 2025

Today we will draw triangles using a simple method:
point sampling

(testing whether a speci!c points are inside the triangle)

Before talking about sampling in 2D,
let’s consider sampling in 1D !rst…

Stanford CS248A, Winter 2025

Consider a 1D signal: f (x)

x

f (x)

Stanford CS248A, Winter 2025

Sampling: taking measurements of a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: !ve measurements (“samples”) of f(x)

A discrete representation of f(x) is given by the samples f(x0), f(x1), f(x2), f(x3), f(x4)

Stanford CS248A, Winter 2025

Audio !le: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz

Stanford CS248A, Winter 2025

Sampling a function
Evaluating a function at a point is sampling the function’s value

We can discretize a function by periodic sampling

Sampling is a core idea in graphics. In this class we’ll sample signals parameterized by:
time (1D), area (2D), angle (2D), volume (3D), paths through a scene (in!nite-D) etc …

for(int x = 0; x < xmax; x++)
 output[x] = f(x);

Stanford CS248A, Winter 2025

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Stanford CS248A, Winter 2025

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

Stanford CS248A, Winter 2025

Piecewise constant approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)

Stanford CS248A, Winter 2025

Piecewise linear approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation

Stanford CS248A, Winter 2025

How can we represent the signal more accurately?

Answer: sample signal more densely (increase sampling rate)

x1x0 x2 x3 x4

frecon (x)

f (x)

Stanford CS248A, Winter 2025

Reconstruction from sparse sampling

x1x0 x2 x3 x4

frecon (x)

= reconstruction via linear interpolation

(5 samples)
f (x)

Stanford CS248A, Winter 2025

More accurate reconstructions result from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation

frecon (x)

(9 samples)
f (x)

Stanford CS248A, Winter 2025

More accurate reconstructions result from denser sampling

x2x0 x4 x6 x8 x10 x12 x14 x16

= reconstruction via linear interpolation

x1 x3 x5 x7 x9 x11 x13 x15

f (x)

frecon (x)

(17 samples)

Stanford CS248A, Winter 2025

Drawing a triangle by 2D sampling

Stanford CS248A, Winter 2025

Image as a 2D matrix of pixels

(0,0) (1,0)

(0,1)

(0,4) (9,4)

(9,0)

(1,1)

Here I’m showing a 10 x 5 pixel image
Identify pixel by its integer (x,y) coordinates

Stanford CS248A, Winter 2025

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels!

Stanford CS248A, Winter 2025

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels!
(I removed pixel boundaries from the !gure to encourage you to forget about pixels!)

Stanford CS248A, Winter 2025

De!ne binary function: inside(tri,x,y)

inside(t,x,y) =
1

0

(x,y) in triangle t

otherwise

Stanford CS248A, Winter 2025

Sampling the binary function: inside(tri,x,y)

Pixel (x,y)

1

2

3

4

Here I chose the sample position to be
the pixel center.

= triangle covers sample, should color in pixel

= triangle does not cover sample, do not color in pixel

(x + 0.5, y + 0.5)

Boundary of a pixel

Stanford CS248A, Winter 2025

Sample coverage at pixel centers

Stanford CS248A, Winter 2025

Sample coverage at pixel centers
I only want you to think about evaluating triangle-point coverage!
NOT TRIANGLE-PIXEL OVERLAP!

Stanford CS248A, Winter 2025

Rasterization = sampling a 2D binary function
Rasterize triangle tri by sampling the function
f(x,y) = inside(tri,x,y)

for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 image[x][y] = f(x + 0.5, y + 0.5);

Stanford CS248A, Winter 2025

Evaluating inside(tri,x,y)

Stanford CS248A, Winter 2025

Triangle = intersection of three half planes

P0

P1

P2

Stanford CS248A, Winter 2025

Point-slope form of a line

P0=(x0, y0)

P1=(x1, y1)

(You might have seen this in high school)

y � y0 = m(x� x0)

m =
y1 � y0
x1 � x0

Stanford CS248A, Winter 2025

Each line de!nes two half-planes
Implicit line equation

- L(x,y) = Ax + By + C
- On the line: L(x,y) = 0

- “Negative side” of line: L(x,y) < 0

- “Positive” side of line: L(x,y) > 0

> 0

< 0

= 0

Stanford CS248A, Winter 2025

Line equation derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector

Stanford CS248A, Winter 2025

Line equation derivation

(x,y)

Perp(x, y) = (y,�x)General Perpendicular
Vector in 2D

(y,-x)

Stanford CS248A, Winter 2025

Line equation derivation

Line Normal Vector

N

TP0

P1

N = Perp(T) = (y1 � y0,�(x1 � x0))

Stanford CS248A, Winter 2025

Line equation derivation

N

P0

P1

Now consider a point P=(x,y).
Which side of the line is it on?

P = (x, y)
V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Stanford CS248A, Winter 2025

Line equation tests

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N > 0

Stanford CS248A, Winter 2025

Line equation tests

N

P0

P1
P = (x, y)

L(x, y) = V ·N = 0

V

Stanford CS248A, Winter 2025

Line equation tests

N

P0

P1

P = (x, y)

V

L(x, y) = V ·N < 0

Stanford CS248A, Winter 2025

Line equation derivation

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N = �(y � y0)(x1 � x0) + (x� x0)(y1 � y0)

= (y1 � y0)x� (x1 � x0)y + y0(x1 � x0)� x0(y1 � y0)

= Ax+By + C

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)N = Perp(T) = (y1 � y0,�(x1 � x0))

T

Stanford CS248A, Winter 2025

Point-in-triangle test

P0

P1

P2

L0(x, y) < 0

“inside”

“outside”

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Stanford CS248A, Winter 2025

Point-in-triangle test

P0

P1

P2

L1(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Stanford CS248A, Winter 2025

Point-in-triangle test

P0

P1

P2

L2(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Stanford CS248A, Winter 2025

Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the triangle if it
is inside all three edges.

inside(sx, sy) =
L0 (sx, sy) < 0 &&
L1 (sx, sy) < 0 &&
L2 (sx, sy) < 0

Note: actual implementation of inside(sx,sy)
involves ≤ checks based on the triangle coverage
edge rules (see next slide)

Sample points inside triangle are highlighted red.

Stanford CS248A, Winter 2025

Edge cases (literally)
Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

Stanford CS248A, Winter 2025

A detail: rasterization “edge rules”
When edge falls directly on a screen sample point, the sample is classi!ed as within triangle if the edge is a “top
edge” or “left edge”

- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the triangle.(triangle can have one or

two left edges)

Source: Direct3D Programming Guide, Microsoft

Stanford CS248A, Winter 2025

Finding covered samples: incremental triangle traversal

P0

P1

P2

E#cient incremental update:

Li (x+1,y) = Li (x,y) + dYi = Li (x,y) + Ai

Li (x,y+1) = Li (x,y) - dXi = Li (x,y) + Bi

Incremental update saves computation:
Only one addition per edge, per sample test
Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = dXi = Xi+1 - Xi

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Stanford CS248A, Winter 2025

Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:
- Simplicity of parallel execution overcomes cost of extra

point-in-triangle tests (most triangles are big enough
to cover many samples)

- Can skip sample testing work: entire block not in
triangle (“early out”), entire block entirely within
triangle (“early in”)

- Additional advantages related to accelerating occlusion
computations (not discussed today)

All modern graphics processors (GPUs) have special-purpose hardware for e#ciently performing
point-in-triangle tests

We have the ability to determine if any point in the image is inside or outside the triangle

Stanford CS248A, Winter 2025

Where are we now

▪ How to we interpret these results as an image to display?
(Recall, there’s no pixels above, just samples)

Stanford CS248A, Winter 2025

Stanford CS248A, Winter 2025

Recall: pixels on a screen

Laptop display pixel

Each image sample sent to the display is converted into
a little square of light of the appropriate color:
(a pixel = picture element)

* Thinking of each screen pixel as emitting a square of uniform intensity
light of a single color is a an approximation to how real displays work,
but it will do for now.

Stanford CS248A, Winter 2025

So, if we send the display this sampled signal…

…and each value determines the light emitted from a pixel…

Stanford CS248A, Winter 2025

The display physically emits this signal

Given our simpli!ed “square pixel” display assumption, the emitted
light is a piecewise constant reconstruction of the samples

Stanford CS248A, Winter 2025

Compare: the continuous triangle function
(This is the function we sampled)

Stanford CS248A, Winter 2025

What’s wrong with this picture?

Jaggies!

(This is the reconstruction emitted by the display)

Stanford CS248A, Winter 2025

Jaggies (staircase pattern)

Is this the best we can do?

Stanford CS248A, Winter 2025

Reminder: how can we represent a signal more accurately?
Sample signal more densely! (increase sampling rate)

VS.

Stanford CS248A, Winter 2025

Sampling using one sample per pixel

Stanford CS248A, Winter 2025

Supersampling: step 1

2x2 supersampling

Sample the input signal more densely in the image plane
In this example: take 2 x 2 samples in the area spanned by a pixel

But how do we use these samples to drive a display, since there are four times more samples than display pixels! !

Extent of one
display pixel

Stanford CS248A, Winter 2025

Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel

Stanford CS248A, Winter 2025

Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel

Stanford CS248A, Winter 2025

Supersampling: step 2
Average the N x N samples “inside” each pixel

Averaging down

Stanford CS248A, Winter 2025

Displayed result
This is the corresponding signal emitted by the display
(value provided to each display pixel is the average of the values sampled in that region)

75%

100% 100% 50%

50%50%50%25%

Stanford CS248A, Winter 2025

Images rendered using one sample per pixel

Stanford CS248A, Winter 2025

4x4 supersampling + downsampling

Each pixel’s value is the average of the values of the 4x4 samples per pixel

(16 samples per pixel)

Stanford CS248A, Winter 2025

Let’s understand what just happened
in a more principled way

Stanford CS248A, Winter 2025

More examples of sampling artifacts in computer graphics

Stanford CS248A, Winter 2025

Jaggies (staircase pattern)

Stanford CS248A, Winter 2025

Moiré patterns in imaging

lystit.com

Full resolution image 1/2 resolution image:
skip pixel odd rows and columns

Stanford CS248A, Winter 2025

Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU

Stanford CS248A, Winter 2025

Sampling artifacts in computer graphics
Artifacts due to sampling - “Aliasing”
- Jaggies – sampling to sparsely in space
- Wagon wheel e$ect – sampling to sparsely in time
- Moire – undersampling images (and texture maps)
- [Many more] …

We notice this in fast-changing signals, when we sample the signal too sparsely

Stanford CS248A, Winter 2025

Sines and cosines

cos 2⇡x

sin 2⇡x

Stanford CS248A, Winter 2025

Frequencies

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T

Stanford CS248A, Winter 2025

Representing sound wave as a superposition
(linear combination) of frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x)

Stanford CS248A, Winter 2025

Audio spectrum analyzer: representing sound as a sum of its
constituent frequencies

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

Stanford CS248A, Winter 2025

Images as a superposition of cosines

i=0
j=0

= x

8x8 images

Stanford CS248A, Winter 2025

Images as a superposition of cosines

8x8 image

-415 x +

=

-30 x +

-61 x +

…

 4 x +

-22 x +

…

 1 x +

 2 x

8x8 basis images

Stanford CS248A, Winter 2025

How to compute frequency-domain
representation of a signal?

Stanford CS248A, Winter 2025

Fourier transform
Represent any function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

Stanford CS248A, Winter 2025

Fourier transform
Convert representation of signal from primal domain (spatial/temporal) to frequency
domain by projecting signal into its component frequencies

2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:

Stanford CS248A, Winter 2025

The Fourier transform decomposes a signal into its
constituent frequencies

spatial
domain

frequency
domain

F (�) =
⇥�

�⇥

f(x)e�i�xdx F (�) =
⇥�

�⇥

f(x)e�i�xdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx

Stanford CS248A, Winter 2025

Visualizing the frequency content of images

SpectrumSpatial domain result

The visualization below is the 2D frequency
domain equivalent of the 1D audio spectrum
I showed you earlier *

Stanford CS248A, Winter 2025

Constant signal (in primal domain)

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

 — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

exp(�r2/162)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

exp(�r2/322)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

Question:

exp(�r2/162)

Frequency domainSpatial domain

exp(�r2/322)

Why does a “smoother” exponential
function in the spatial domain look
“more compact” in the frequency domain?

Stanford CS248A, Winter 2025

exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

Image !ltering
(in the frequency domain)

Stanford CS248A, Winter 2025

Manipulating the frequency content of images

Frequency domainSpatial domain

The visualization below is the 2D
frequency domain equivalent of the 1D
audio spectrum I showed you earlier *

Stanford CS248A, Winter 2025

Low frequencies only (smooth gradients)

(after low-pass !lter)
All frequencies above cuto$ have 0 magnitude

Frequency domainSpatial domain

Stanford CS248A, Winter 2025

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass !lter)

Stanford CS248A, Winter 2025

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass !lter)

Stanford CS248A, Winter 2025

High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass !lter)
All frequencies below threshold have 0

magnitude

Stanford CS248A, Winter 2025

An image as a sum of its frequency components

+ + +

=

Stanford CS248A, Winter 2025

Back to our problem of artifacts in images

Jaggies!

Stanford CS248A, Winter 2025

Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal: sampled
adequately for reasonable
reconstruction

High-frequency signal is insu#ciently
sampled: reconstruction incorrectly
appears to be from a low frequency signal

Stanford CS248A, Winter 2025

Undersampling creates frequency “aliases”

High-frequency signal is insu#ciently sampled: samples erroneously appear to be from a
low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”

Stanford CS248A, Winter 2025

Example: sampling rate vs signal frequency

Max signal freq =1/32

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
Sampling at twice the frequency of the signal: no aliasing! *

sampling = every 16 pixels

* Technically in this example there is no “pre-aliasing”. There is “post-aliasing” if reconstruction from these measurements is not perfect

Stanford CS248A, Winter 2025

 — frequency 1/16; 16 pixels per cycle

Example: sampling rate vs signal frequency
sin(2⇡/16)x

Max signal freq =1/16

Sampling at same frequency as signal: dramatic aliasing! (due to undersampling)

sampling = every 16 pixels

Stanford CS248A, Winter 2025

Anti-aliasing idea:
remove high frequency information from a signal

before sampling it

Stanford CS248A, Winter 2025

Video: point vs antialiased sampling

Single point in time Motion blurred

Stanford CS248A, Winter 2025

Video: point sampling in time

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.

Stanford CS248A, Winter 2025

Video: motion-blurred sampling

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.

Stanford CS248A, Winter 2025

Rasterization is sampling in 2D space

Sample

Note jaggies in rasterized triangle
(pixel values are either red or white: sample is in or out of triangle)

Stanford CS248A, Winter 2025

Anti-aliasing by pre-!ltering the signal

Pre-!lter
(remove high frequency detail)

Sample

Note anti-aliased edges of rasterized triangle:
pixel values take intermediate values

Stanford CS248A, Winter 2025

Pre-!ltering by “supersampling” then “blurring” (averaging)

Coarsely sampled signal
(to store in image, or send to display)

Reconstructed signal with high frequencies reduced
(Blurring via averaging over pixel, etc)

Dense sampling of signal
(supersampling)

Original signal
(with high frequency edge)

Reconstruction on display

Stanford CS248A, Winter 2025

Images rendered using one sample per pixel

Stanford CS248A, Winter 2025

Anti-aliased results

Stanford CS248A, Winter 2025

Bene!ts of anti-aliasing

Jaggies Pre-!ltered

Stanford CS248A, Winter 2025

Filtering = convolution

Stanford CS248A, Winter 2025

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Stanford CS248A, Winter 2025

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

1x1 + 3x2 + 5x1 = 12

12Result

Stanford CS248A, Winter 2025

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16

3x1 + 5x2 + 3x1 = 16

Result

Stanford CS248A, Winter 2025

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Result

5x1 + 3x2 + 7x1 = 18

12 16 18

Stanford CS248A, Winter 2025

Box !lter (used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box !lter

1

9

Stanford CS248A, Winter 2025

2D convolution with box !lter blurs the image

Original image Blurred
(convolve with box !lter)

Hmm… this reminds me of a low-pass !lter…

Stanford CS248A, Winter 2025

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image!lter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “!lter weights”, “!lter kernel”)

Stanford CS248A, Winter 2025

Convolution theorem

* =

x =

Spatial
Domain

Frequency
Domain

Fourier
Transform

Inv. Fourier
Transform

Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

convolve

Stanford CS248A, Winter 2025

Convolution theorem
Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

Pre-!ltering option 1:
- Filter by convolution in the spatial domain

Pre-!ltering option 2:
- Transform to frequency domain (Fourier transform)
- Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Stanford CS248A, Winter 2025

Box function = “low pass” !lter

Spatial domain Frequency domain

Stanford CS248A, Winter 2025

Wider !lter kernel = retain only lower frequencies

Spatial domain Frequency domain

Stanford CS248A, Winter 2025

Wider !lter kernel = lower frequencies
As a !lter is localized in the spatial domain,
it spreads out in frequency domain

Conversely, as a !lter is localized in frequency domain, it spreads out in the
spatial domain

Stanford CS248A, Winter 2025

How can we reduce aliasing error?
Increase sampling rate
- Higher resolution displays, sensors, framebu$ers…
- But: costly and may need very high resolution to su#ciently reduce aliasing

Anti-aliasing
- Simple idea: remove (or reduce) high frequencies before sampling
- How to !lter out high frequencies before sampling?

Stanford CS248A, Winter 2025

Anti-aliasing by averaging values in pixel area
Convince yourself the following are the same:

Option 1:
- Convolve f(x,y) by a 1-pixel box-blur
- Then sample the resulting signal at the center of every pixel

Option 2:
- Compute the average value of f(x,y) in the pixel

Stanford CS248A, Winter 2025

Anti-aliasing by computing average pixel value
When rasterizing one triangle, the value of f(x,y) = inside(tri,x,y) averaged over the area of
a pixel is equal to the amount of the pixel covered by the triangle.

Original

Filtered

1 pixel width

Stanford CS248A, Winter 2025

Today’s summary
Drawing a triangle = sampling triangle/screen coverage
Pitfall of sampling: aliasing
Reduce aliasing by pre!ltering signal
- Supersample
- Reconstruct via convolution (average coverage over pixel)

- Higher frequencies removed
- Sample reconstructed signal once per pixel

There is much, much more to sampling theory and practice…
- If interested see: Stanford EE261 - The Fourier Transform and its Applications

Stanford CS248A, Winter 2025

Acknowledgements
Thanks to Ren Ng, Pat Hanrahan, Keenan Crane for slide materials

