Lecture 8:

Geometric Queries

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2025

Last time

How to perform a number of basic mesh processing operations
- Subdivision (upsampling)

Ty
SRR
00 0.
TR
TR
TN
NN

Y
X
"

AR

- Maesh simplification (downsampling)
- In supplemental video

- Mesh resampling
- In supplemental video

Stanford (5248A, Winter 2025

Geometric queries — motivation

\\

Intersecting triangles (collisions)

Closest point on surface queries Stanford (5248, Winter 2025

Closest point queries

Given a point, in space (e.g., a new sample point), how do we find the closest point on a
given surface?

- Q: Does implicit/explicit representation make this easier?
- Q: Does our half-edge data structure help?

- Q: What's the cost of the naive algorithm? N
- Q: How do we find the distance to a single triangle anyway? P v

Stanford (5248A, Winter 2025

Many types of geometric queries

m Plenty of other things we might like to know:
- Do two triangles intersect?

- Are we inside or outside an object?

- Does one object contain another? \ /
\/ i/

Data structures we’ve seen so far not really designed for this...

Need some new ideas!
TODAY: come up with simple (aka: slow) algorithms

NEXT TIME: intelligent ways to accelerate geometric queries

Stanford (5248A, Winter 2025

Warm up: closest point on point

Given a query point (px,py), how do we find the closest point on the point (ay,ay)?

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
~§
N

Bonus question: what'’s the distance?

Stanford (5248A, Winter 2025

Slightly harder: closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal

- Remember: a line is all points x such that NTx=c

m How do | find the point on the line closest to my query point p?

[B =

Stanford (5248A, Winter 2025

Review: matrix form of a line (and a plane)

Line is defined by: N:-(x—xg)=0
- Its normal: N NT(X — %) =0
- A point Xo on the line
POTIENE NTx = NTx,
X N'x = c
SR X — X0 N
......................... L\
Xo

The line (in 2D) is all points X,
where X - Xo Is orthogonal to N.

(N, X, Xo on this slide are 2-vectors)

(And a plane (in 3D) is all points x where X - Xo is orthogonal to N.)
(N, X, X0 are 3-vectors)

Stanford (5248A, Winter 2025

Closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal

- Remember: aline is all points x such that NTx=c

m How do | find the point on line that is closest to my query point p?

|\

Xo

Many ways to do it: N'(p +tN) =c

— t=c—Nlp

= p +tN =

Nix=c

p+ (c—N'p)N

Stanford (5248A, Winter 2025

Harder: closest point on line segment
m Two cases: endpoint or interior '\I\)

2P

m Already have basic components:
- point-to-point
- point-to-line

m Algorithm?
- find closest point on line
- checkifitis between endpoints
- if not, take closest endpoint

m How do we know if it's between endpoints?
- write closest point on line as a+t(b-a)
- iftis between 0 and 1, it’s inside the segment!

Stanford (5248A, Winter 2025

Even harder: closest point on triangle in 2D

m What are all the possibilities for the closest point?
m Almost just minimum distance to three line segments:

Q: What about a point inside the triangle?

Stanford (5248A, Winter 2025

Closest point on triangle in 3D

m Not so different from 2D case
m Algorithm:
- Project point onto plane of triangle
- Use three half-plane tests to classify point (vs. half plane)
- Ifinside thetriangle, we're done!
- Otherwise, find closest point on associated vertex or edge

m By the way, how do we find closest point on plane?
m Same expression as closest pointonaline! p+(c-N'p)N

inford (S248A, Winter 2025

Closest point on triangle mesh in 3D?

m Conceptually easy:
- loop over all triangles
- compute closest point to current triangle

- keep globally closest point

m Q: What’s the cost?
m What if we have billions of faces?

m NEXT TIME: Better data structures!

‘7 3303 s Sl & T T e s
/ ~. r ey
v 40304 - e .-
& - e e E ‘1 s . - . .- .-
o4 S A e bt 3
3 4 b :: i {:fg*g RS
3 N S,
144 v Yeny I—o’i Fwwse >
HTETT
X "‘r POSS¢ -
_j :w e {37 T :
'-(- » -
1
) 4 S
- 1
.~3;3; \’.,'ﬁ:“.n
— v 'tj,:' tv—';: N
0 - - b
fre fiiit e A
vty |a=
\ [issees. A
4 “TX(

- 4] *.i\ »
—<: "._o -.',V’V- - \)'iﬁ -
e Lot Ak quw
- . : - ' "_:_‘f E - = , ;'0;&0.
: > *91,‘.}: g p i) T e et
,.f . - 4 3 A_:*“ » N :—::' -
& j-s - 1
-

-
N :é:;':" - ; [4_

prbrrar
FA AP A

L PP A
-~y

- '

Nerws 1113 : »
- SIS : 117 SR isEisan :
'ff:ﬁ;‘;“l‘fi - *~ 5 - $: ‘ .. ;- ..0" f’r‘ -;—I' ;:;o«;
S, e — -~ g . - J ,g:[&:l . *
ISR | - +4 _""11*“ A

LB
4
i
..
+
T
* I&o
T4+
IR
|
11t
r—t-+
]
A
g
3
1
Y
»--{r—"‘"
HH
13 Jfﬁ‘
NSV SN
Lraaais
-

s |
Jfov'p.fsgvrf — -
o op gt - - 7 { P] gt
e rav : '.; F;T - | F +
A::J‘"fr::.?fo-' of’ +4- T e bedd {' ™t "'f}fy '4"13» “;‘ I ,::’ |
» ';:¢".“f‘."‘" 71 ’ ‘*f IA"I $ted &S e Sbed : “J”'.f.‘f__"n 113
—~ 4SS pffppfdd —r u ; ‘}f oa-o—.' _.H’x I:f'. ___::A.
IJOfm—‘M.‘*’”“ - ded ol 0 - i ‘Hj'f.. :
i da il LD . T LL L St g f - -~ >
3 eeas e ’ .y 11 i 4 4-'4'1,' sm
".‘*.‘ 1*’ - 4_.7‘,1 > a4 +- +.—~ ‘_I . = ag @B "_F-' +
23 ~1r T 'ﬁ*w‘:r g
+ T T

oxf’ 211111t """'*f*—‘a PEPEP IS S g 0'
*"".‘.::ﬂ.’_""o e e b ew Mf»zo»o-poc: I,;.;—II"-,’ .""—1, N = 1L
e JoI+vaofo¢¢iJ0‘ ox.. ;,,,‘,.;.I'JV’ |'4"‘~' ‘_:-4-»..“' 411 0‘,"?.‘7_.;",, - ',I'
z A AR A T

igaasa NSRS ESaEE! T T

Stanford (S248A, Winter 2025

Closest point to implicit surface?

m If we change our representation of geometry, algorithms can change completely
m E.g., how might we compute the closest point on an implicit surface described via its distance

function? y

m Oneidea:
- startat the query point

- compute gradient of distance (using, e.g., finite
differences)

- take a little step (decrease distance)
- repeat until we're at the surface (zero distance)

Stanford (5248A, Winter 2025

Different query: ray-mesh intersection

m A“ray”is an oriented line starting at a point
m Think about a ray of light traveling from the sun

m Want to know where a ray pierces a surface
- Notice: this is a different query than finding the closest point on surface from ray’s origin.

m Applications?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection

m Ray might pierce surface in many places!

Stanford (5248A, Winter 2025

Ray equation

Can express ray as... origin R
__r(t)=o+td -
point along ray \
Position along ray

(some students think “time”)

7’
/
’
Y4
7’
7’
7’
’
7’
7’

7’ E

’]

Stanford (5248A, Winter 2025

Intersecting a ray with an implicit surface

Recall implicit surfaces: all points x such that f(x) =0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o0 + td
|dea: replace “x” with “r(t)” in 1st equation, and solve for t
Example: unit sphere

F(x) =[x =1
= f(r(t)) = o+ td]> -1

d2 12 +2(0-d)t+ o2 —1=0

"~ N\ —’ |

—

a

b C

Note: |[d|* =1 since d is a unit vector

—0-d -

- /lo-d)? —Jo + 1

quadratic formula:

; —b+ Vb2 — 4ac

v

Why two solutions?

2a /

Stanford (5248A, Winter 2025

Ray-plane intersection

m Suppose we have a plane NTx =
- N-unit normal
- ¢-offset
m How do we find intersection with ray r(t) = o + td?

(1)

m Keyidea: again, replace the point x with the ray equation t:
N'r(t) = c
m Now solve fort:

NT
NT(o+td)=c —p—C_N0O
: . N'd
m And plug t back into ray equation:
_NT
r(t) = oA - °d

N'd

Stanford (5248A, Winter 2025

Ray-triangle intersection

m Triangleisin aplane...
m Algorithm:

- Compute ray-plane intersection
- Q: What do we do now?

Stanford (5248A, Winter 2025

Barycentric coordinates (as ratio of areas)

C Barycentric coords are signed areas:

a=As/A
B8 =Ap/A
v =Ac/A

Why must coordinates sum to one?
Why must coordinates be hetween 0 and 1?

Useful: Heron’s formula:

Area of triangle formed 1
Ao = ~(b— _
by points: a, b, x “ 79 (a) x (x—a

Stanford (5248A, Winter 2025

Ray-triangle intersection

m Algorithm:
- Compute ray-plane intersection

- Compute barycentric coordinates of hit point

- [f barycentric coordinates are all positive, point is in triangle

m Many different techniques if you care about efficiency

GO g|€ ray triangle intersection methods

Web Shopping Videos News Images More ~ Search tools

About 443,000 results (0.44 seconds)

Moller—Trumbore intersection algorithm - Wikipedia, the free ...
hitps://en.wikipedia.org/.../Méller—Trumbore_intersection_alg... ¥ Wikipedia
The Mdller—Trumbore ray-triangle intersection algorithm, named after its inventors
Tomas Moller and Ben Trumbore, is a fast method for calculating the ...

[POFI Fast Minimum Storage Ray-Triangle Intersection.pdf

https://www.cs.virginia.edu/.../Fast%20MinimumSt... ¥ University of Virginia
by PC AB - Cited by 650 - Related articles

We present a clean alaorithm for determinina whether a rav intersects a trianale. ... ble

[PBFI Optimizing Ray-Triangle Intersection via Automated Search
www.cs.utah.edu/~aek/research/triangle.pdf ¥ University of Utah
by A Kensler - Cited by 33 - Related articles

method is used to further optimize the code produced via the fitness function. ... For
these 3D methods we optimize ray-triangle intersection in two different ways.

[POFl Comparative Study of Ray-Triangle Intersection Algorithms
www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf ~
by V Shumskiy - Cited by 1 - Related articles

Stanford (5248A, Winter 2025

Ray-triangle intersection (another way)

m Parameterize triangle with vertices Po, P1, P2 using
barycentric coordinates *

f(u,v) — Po

U(Pl — Po)

v(P2 — Po) = (1 —u—v)po

m (Can think of a triangle as an affine map of the unit triangle

4
1

* I'm writing u,v instead of beta, gamma to make explicit representation of triangle very clear.

upi

UvPp2

Stanford (5248A, Winter 2025

Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:
Po + u(p1 — Po) + v(pP2 — Po) = 0 + td

Solve foru, v, t: o
U

P1—Po P2—PpPo —d| |v| =0—po
_— 1 |t
o M N
M ™~ transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane.
It’s a point in 2D triangle test now! ,

O P2 M (0 — po)

Stanford (5248A, Winter 2025

-mesh intersection

mesh

How do we know if a mesh

One more query

tersects itself?

m GEOMETRY
m ANIMATION

ion occurred?

IS

How do we know if a colli

' ,
\ 7

Stanford (S248A, Winter 2025

IS
RESOLT

S/

s/

AVAY

e
v,

AVATAVA
VAVATAVAVA

./
W)

kS
A%y
AVATAA

IO

Wt ,‘ ,
v, aVay,; N SL
Vsvavay
D/

AV

VA A VAVAVAY
AW A VA VAVAYS o TAVAY

AVAVAVAYA

Nodo
AL

I A7
AV

S/
NN

vﬂb‘%‘vg‘
N/
P,
\ 7 VLA
"‘5A:0'
2SS

pYAY,
’AV‘

5,

>
VATAVAVav. YR
F!L‘L‘b‘lﬂb«“(ﬂb
\AUAA N e

Warm up: point-point intersection

m Q: How do we know if p intersects a?
m A:...checkif they're the same point!

(px:‘ p)’)

(a1l aZ)

Stanford (5248A, Winter 2025

Slightly harder: point-line intersection

m Q: How do we know if a point intersects a given line?
m A:...plugitinto the line equation!

[B =

Nix=c

Stanford (5248A, Winter 2025

Line-line intersection

m Two lines: ax=b and cx=d

m Q:How do we find the intersection?

m A:Seeif thereis a simultaneous solution

m Leads to linear system: " 1T - N

Stanfexd (5248A, Winter 2025

Degenerate line-line intersection?

m What if lines are almost parallel?
m Small change in normal can lead to big change in intersection!

m Instability very common, very important with geometric predicates. Demands special
care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates Stanford CS248A, Winter 2025

Triangle-triangle intersection?

m Lots of ways to do it

m Basicidea:

- Q:Anyideas?
- One way: reduce to edge-triangle intersection

- Check if each line passes through plane (ray-triangle)
- Then do interval test

m Whatif triangle is moving?

- Important case for animation
- Can think of triangles as prisms in time

- Turns dynamic problem (in nD + time) into purely geometric problem in (n+1)-
dimensions

Stanford (5248A, Winter 2025

Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the closest point of intersection
of r with the scene

t _closest = inf
for each primitive p in scene:
t = p.intersect(r)
if t >= 0 && t < t closest:
t closest =t

// closest hit is:
// r.o + t closest * r.d

(Assume p.intersect(r) returns value of t corresponding to the
point of intersection with ray r)

Complexity? O(N)

Can we do better? Of course. .. but you'll
have to wait until next class

Stanford (5248A, Winter 2025

Rendering via ray casting:
(one common use of ray-scene intersection tests)

Stanford (5248A, Winter 2025

Rasterization and ray casting are two algorithms for
solving the same problem:
determining surface “visibility” from a virtual camera

Stanford (5248A, Winter 2025

Recall triangle visibility problem:

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)

Stanford (S248A, Winter 2025

The visibility problem (rasterization perspective)

m What scene geometry is visible at each screen sample?
- What scene geometry projects onto screen sample points? (coverage)

- Which geometry is visible from the camera at each sample? (occlusion)

e —
m-"""""'::::::-""'"_"_'-_:-_::;:;_04—.:‘.::::”. ___
_.---—:::;:::—‘-’—'" ::: Pinhole
e Camera
(0,0)
Virtual
Sensor

Stanford (5248A, Winter 2025

Basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project _triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample

if (depth of t at s is closer than z_closest[s])

update z closest[s] and color[s]

“Given a triangle, find the samples it covers”

(finding the samples is relatively easy since they are distributed uniformly on screen)

More efficient hierarchical rasterization:

For each TILE of image

If triangle overlaps tile
test all samples in tile

Stanford (5248A, Winter 2025

The visibility problem (described differently)

m In terms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through
the opening of a pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor

Stanford (5248A, Winter 2025

Basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”

Stanford (5248A, Winter 2025

Basic rasterization vs. ray casting

m Rasterization:

- Quter loop: iterate over all triangles (“for all triangles”)
- Store closest surface seen so far for all screen samples
- Done via the depth buffer (requires constant-time access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory
- Naturally supports unbounded size scenes (since algorithm iterates over the triangles)

m Ray casting:
- Outer loop: iterate over all screen samples (“for all rays”)

- Do not have to store closest surface seen so far for the entire screen (just the current ray)

- Easy solution for rendering transparent surfaces: Process surfaces in the order they are encountered
along the ray: front-to-back (find first “hit’, then “second’; etc)

- Must store entire scene geometry in a manner that allows fast access
- (Can be challenging for very large scenes

Stanford (5248A, Winter 2025

In other words...

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in (x,y) in plane of projection

Stanford (5248A, Winter 2025

Generality of ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?

Virtual
Sensor

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating

from the same point (most often: the camera)
Stanford (5248A, Winter 2025

How to compute if a surface point is in shadow?
L

Assume you have an algorithm for

: : ¥, <
ray-scene intersection... .

Q)

(I

Stanford (5248A, Winter 2025

A simple shadow computation algorithm

m Trace ray from point P to location L; of light source J . Ly
m Ifray hits scene object before reaching light I =
source... then Pisin shadow ¢

-
——
—
—

Q)

Stanford (5248A, Winter 2025

Direct illumination + reflection + transparency
\ 4

‘il R ‘ - | -
a A a B W B a ¥ a e/ a - a a
\») ™
L]

T e i

;'.'

’4.

: -~
AN ol e,
' A

-
e

g)

-
- -*;__ : ‘Q : .
2 ;.W S : -5‘}1’_’; : ‘)".i“
-~ Lo - 4

D v——

'2’Yh_‘;‘.';€i(_ M. ?

"y
[N

P \'M
T T

1 U=zl

Rina}

Next time: spatial acceleration data structures

m Testing every primitive in the scene to find ray-scene intersection is slow!

m Consider accelerating a linear scan through an array with binary search
- We can apply a similar type of thinking to accelerating 3D geometric queries

Stanford (5248A, Winter 2025

Acknowledgements

m Thanks to Keenan Crane for presentation resources

Stanford (5248A, Winter 2025

