Lecture 8:

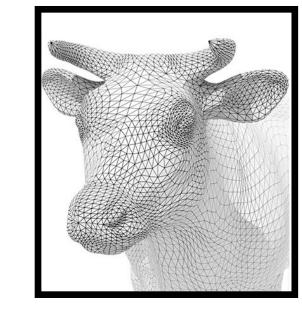
Geometric Queries

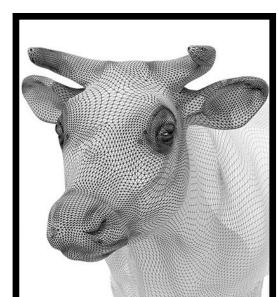
Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2025

Last time

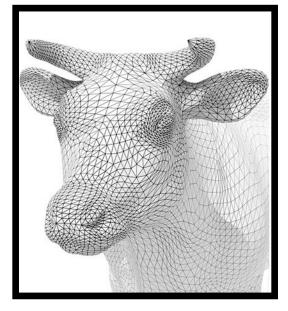
How to perform a number of basic mesh processing operations

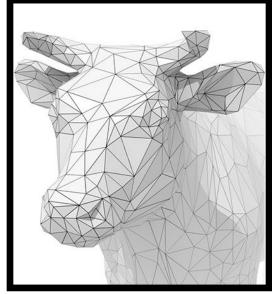
- Subdivision (upsampling)

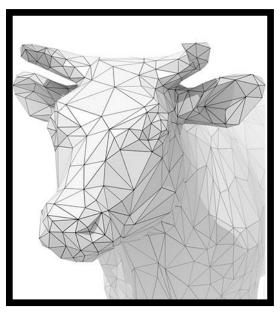


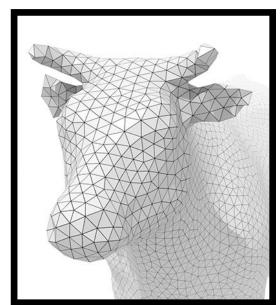


- Mesh simplification (downsampling)
 - In supplemental video
- Mesh resampling
 - In supplemental video



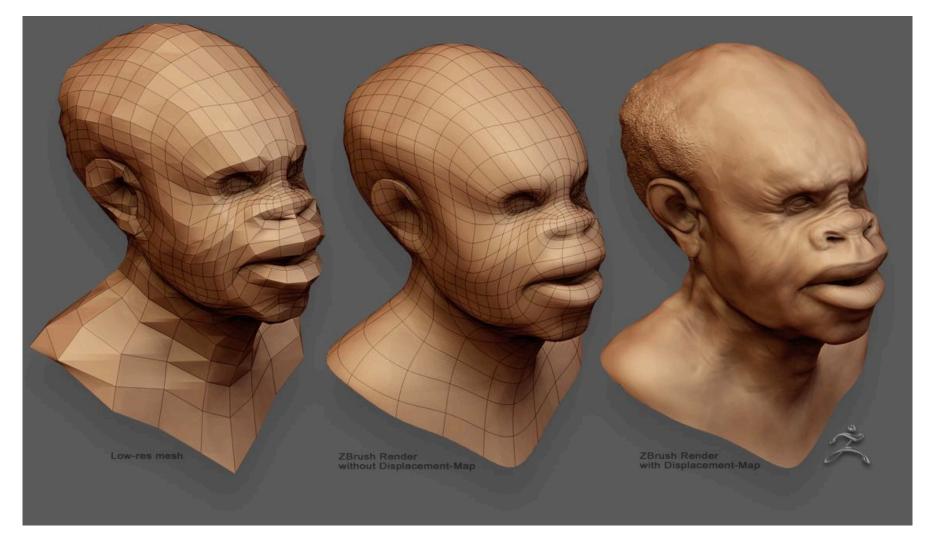






Geometric queries — motivation

Intersecting rays and triangles (ray tracing)



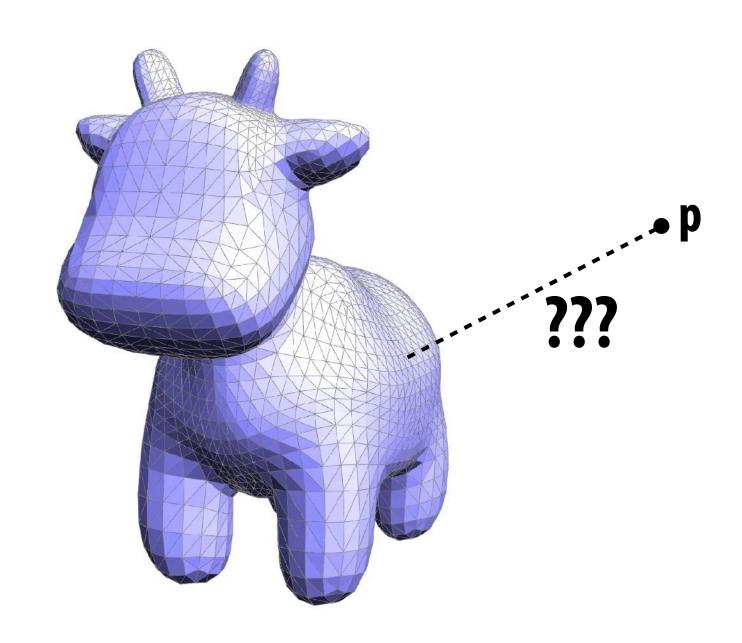
Closest point on surface queries

Intersecting triangles (collisions)

Closest point queries

Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?

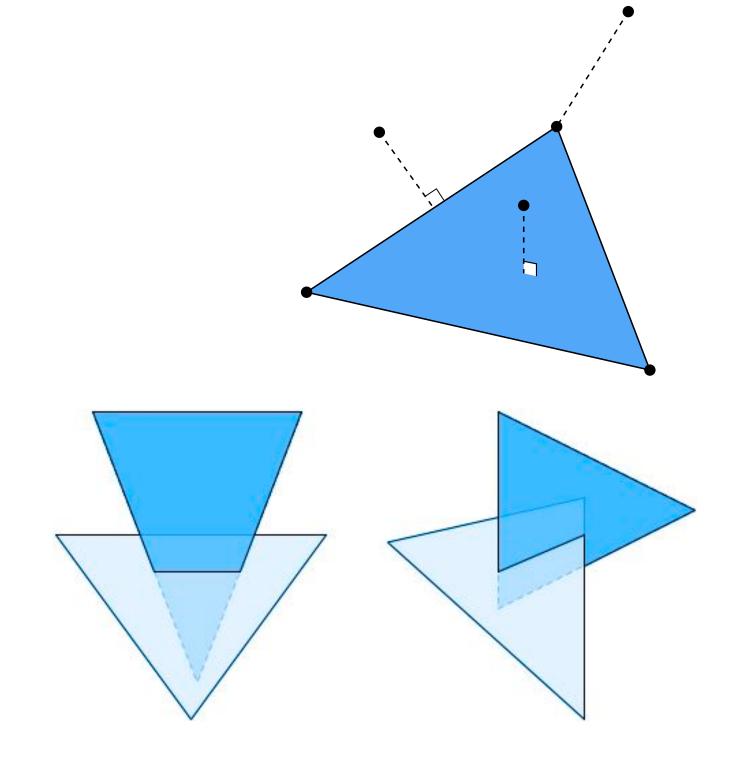
- Q: Does implicit/explicit representation make this easier?
- Q: Does our half-edge data structure help?
- Q: What's the cost of the naïve algorithm?
- Q: How do we find the distance to a single triangle anyway?



Many types of geometric queries

- Plenty of other things we might like to know:
 - Do two triangles intersect?
 - Are we inside or outside an object?
 - Does one object contain another?

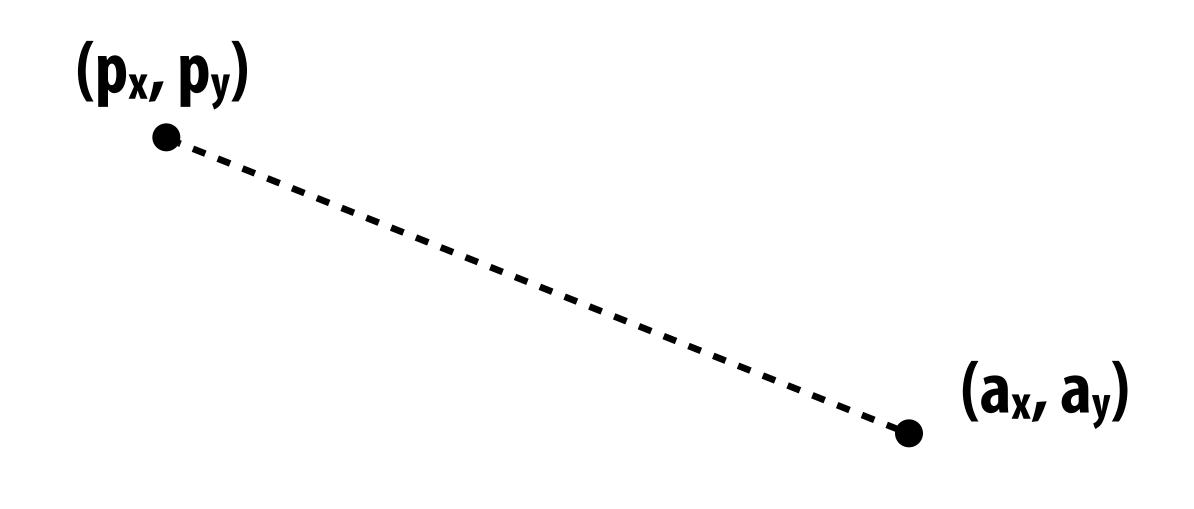
-



- Data structures we've seen so far not really designed for this...
- Need some new ideas!
- TODAY: come up with simple (aka: slow) algorithms
- NEXT TIME: intelligent ways to accelerate geometric queries

Warm up: closest point on point

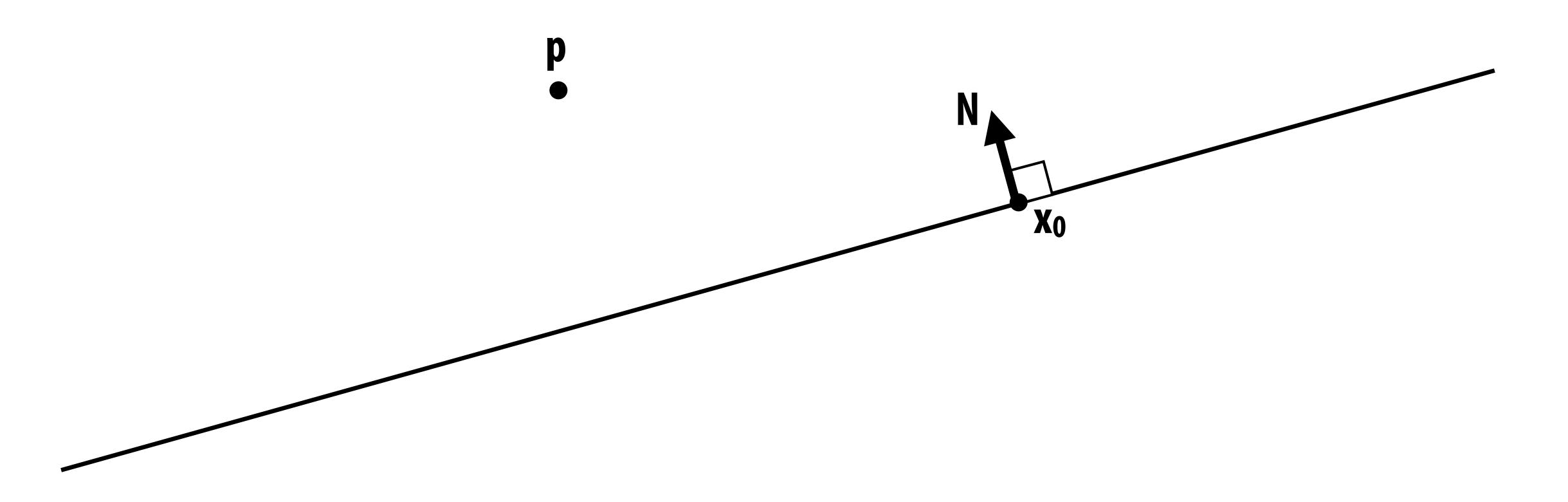
Given a query point (p_x,p_y) , how do we find the closest point on the point (a_x,a_y) ?



Bonus question: what's the distance?

Slightly harder: closest point on line

- Now suppose I have a line $N^Tx = c$, where N is the unit normal
 - Remember: a line is all points x such that $N^Tx = c$
- How do I find the point on the line closest to my query point p?



Review: matrix form of a line (and a plane)

Line is defined by:

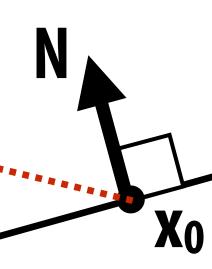
- Its normal: N
- A point x₀ on the line

$$\mathbf{N} \cdot (\mathbf{x} - \mathbf{x_0}) = 0$$

$$\mathbf{N}^{\mathrm{T}}(\mathbf{x} - \mathbf{x_0}) = 0$$

$$\mathbf{N}^{\mathrm{T}}\mathbf{x} = \mathbf{N}^{\mathbf{T}}\mathbf{x_0}$$

$$\mathbf{N}^{\mathrm{T}}\mathbf{x} = c$$



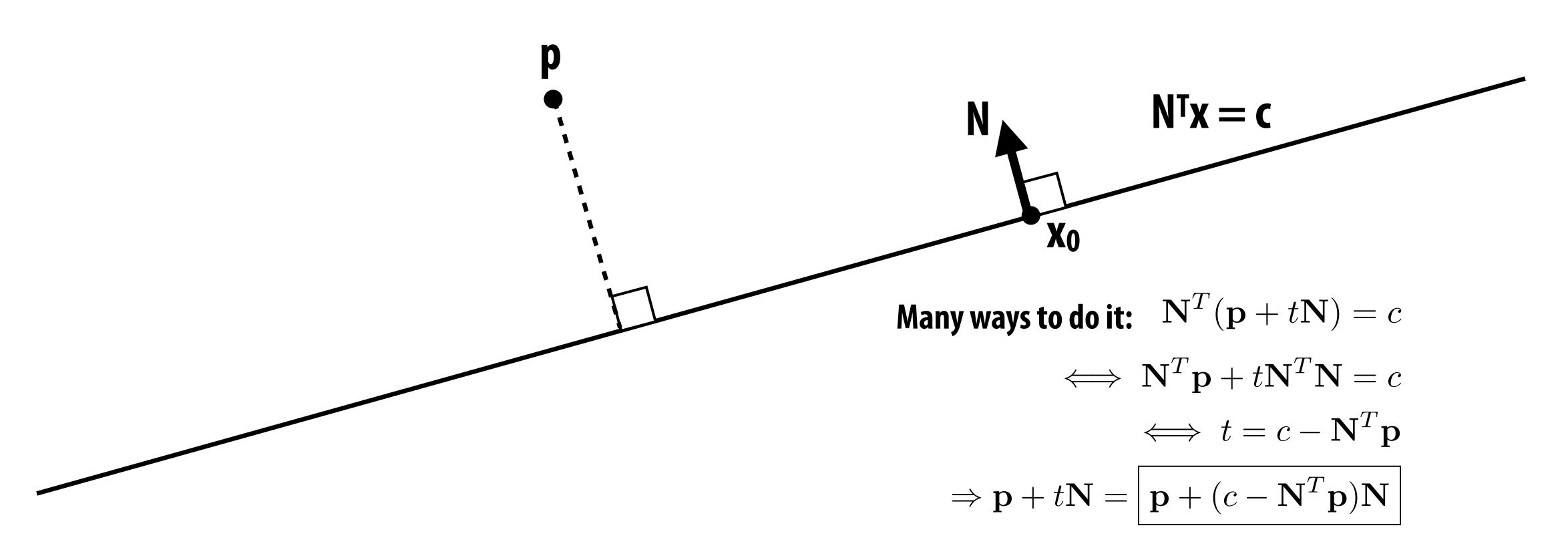
The line (in 2D) is all points x, where $x - x_0$ is orthogonal to N.

 $(N, x, x_0 \text{ on this slide are 2-vectors})$

(And a plane (in 3D) is all points x where $x - x_0$ is orthogonal to N.)

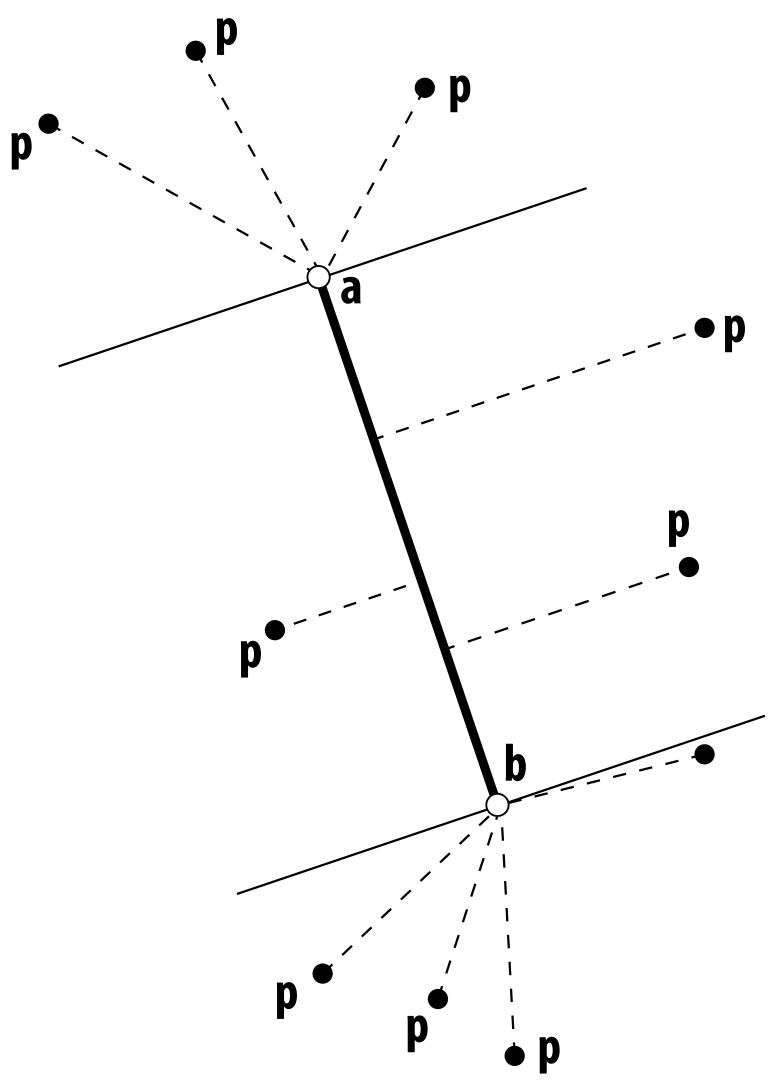
Closest point on line

- Now suppose I have a line $N^Tx = c$, where N is the unit normal
 - Remember: a line is all points x such that N^Tx=c
- How do I find the point on line that is closest to my query point p?



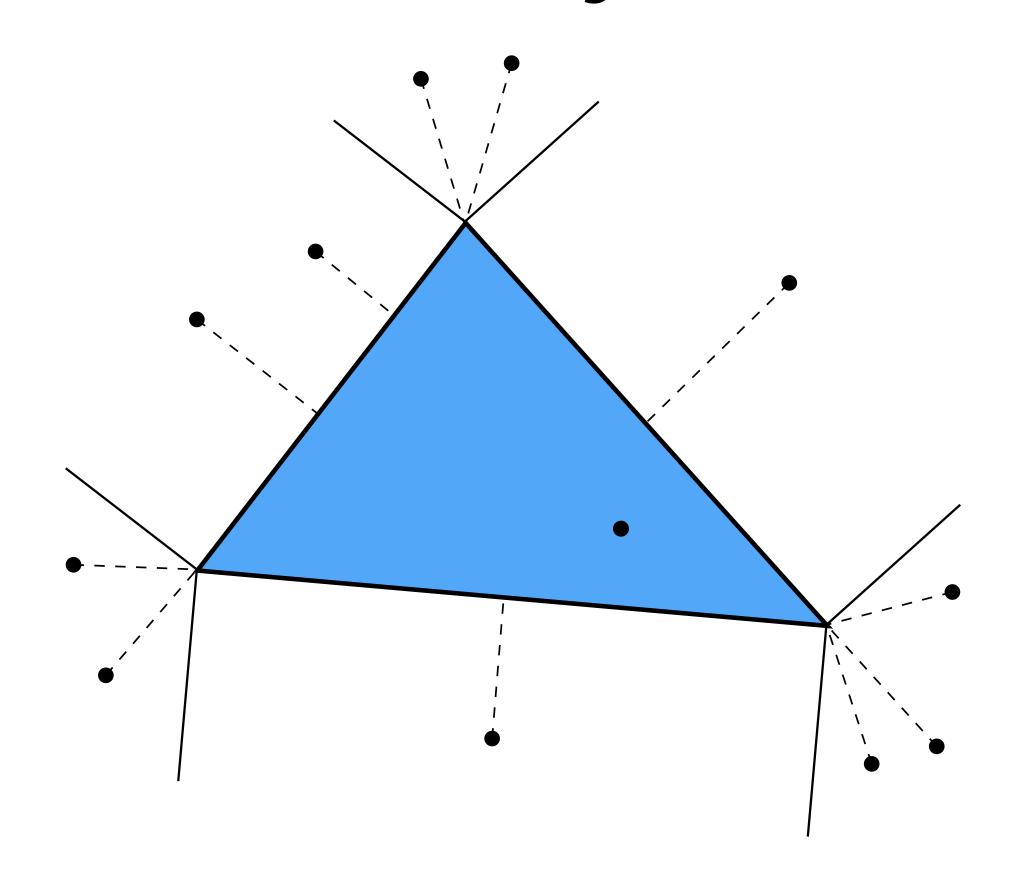
Harder: closest point on line segment

- Two cases: endpoint or interior
- Already have basic components:
 - point-to-point
 - point-to-line
- Algorithm?
 - find closest point on line
 - check if it is between endpoints
 - if not, take closest endpoint
- How do we know if it's between endpoints?
 - write closest point on line as a+t(b-a)
 - if t is between 0 and 1, it's inside the segment!



Even harder: closest point on triangle in 2D

- What are all the possibilities for the closest point?
- Almost just minimum distance to three line segments:



Q: What about a point inside the triangle?

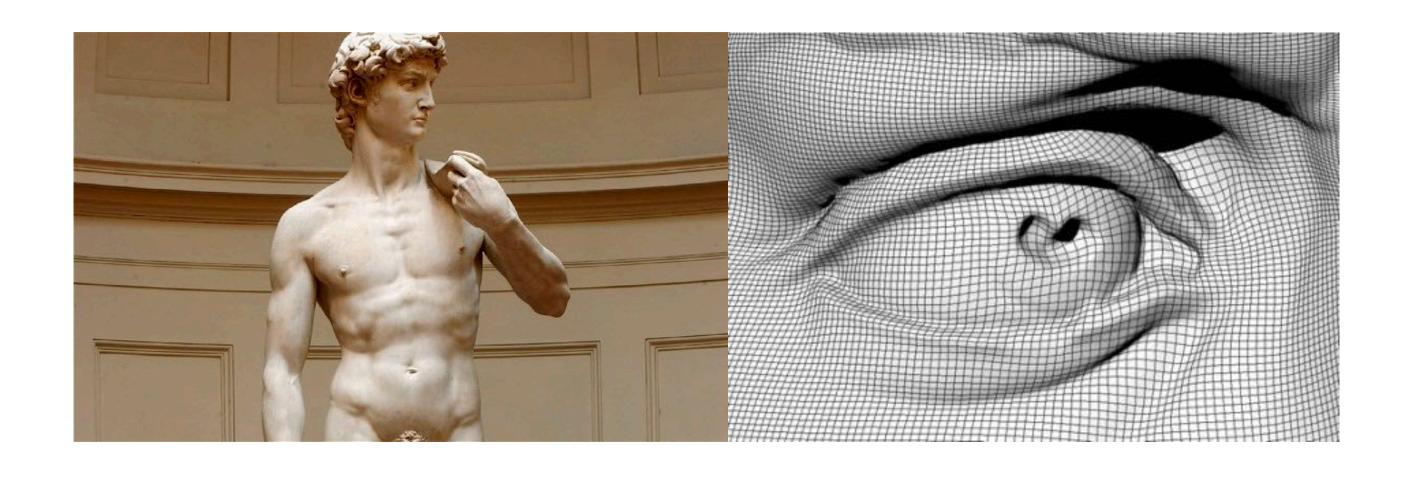
Closest point on triangle in 3D

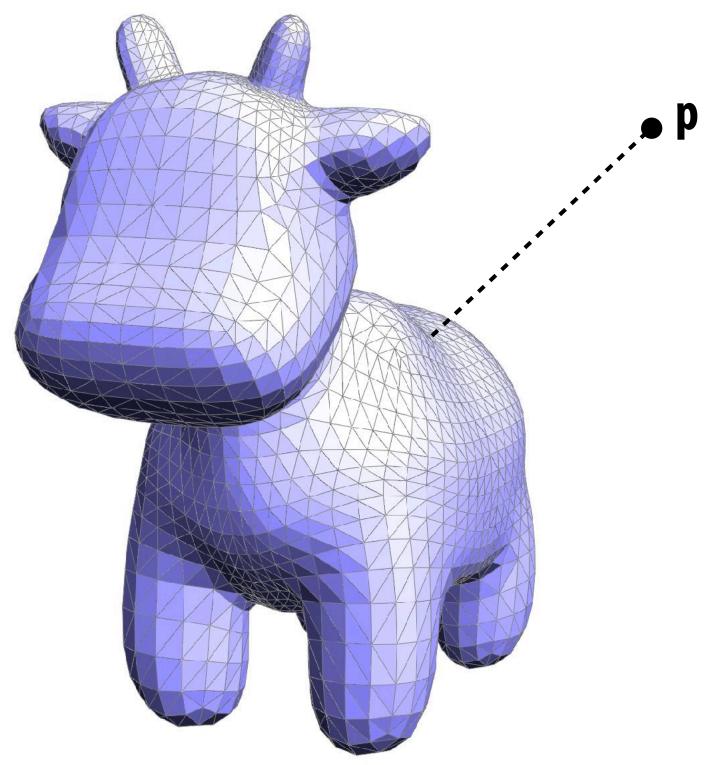
- Not so different from 2D case
- Algorithm:
 - Project point onto plane of triangle
 - Use three half-plane tests to classify point (vs. half plane)
 - If inside the triangle, we're done!
 - Otherwise, find closest point on associated vertex or edge

- By the way, how do we find closest point on plane?
- Same expression as closest point on a line! $p + (c N^Tp)N$

Closest point on triangle mesh in 3D?

- Conceptually easy:
 - loop over all triangles
 - compute closest point to current triangle
 - keep globally closest point
- Q: What's the cost?
- What if we have *billions* of faces?
- NEXT TIME: Better data structures!





Closest point to implicit surface?

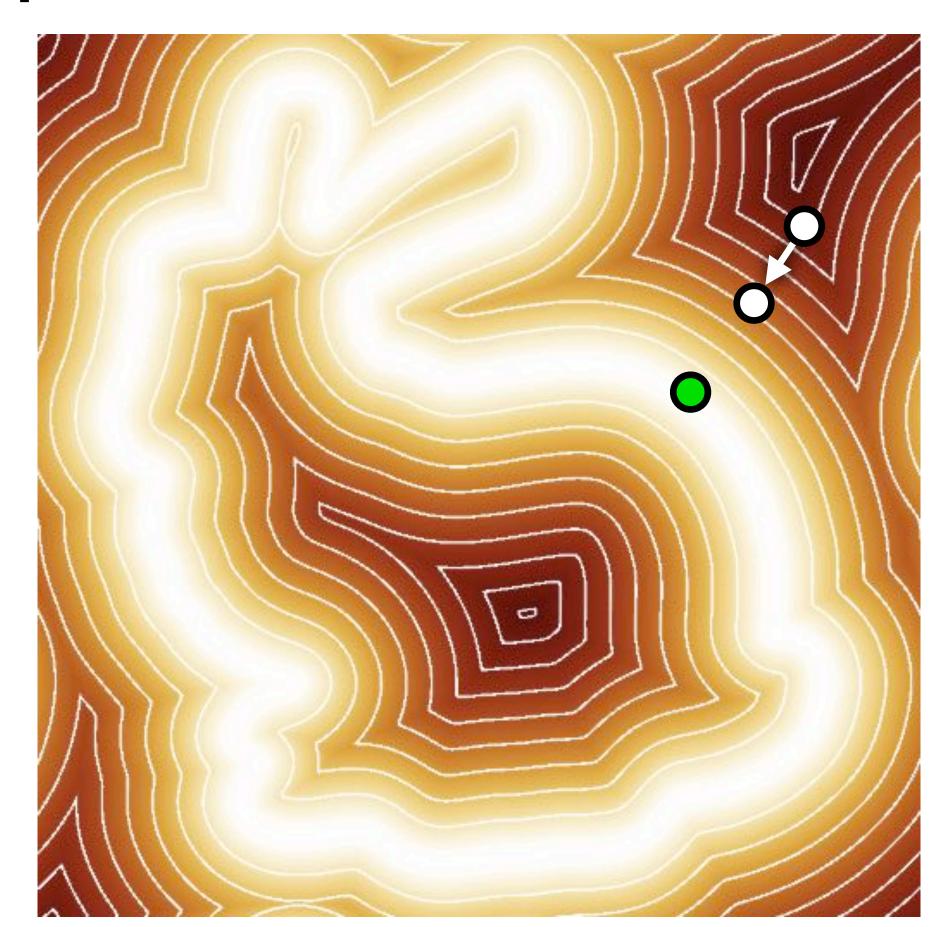
If we change our representation of geometry, algorithms can change completely

■ E.g., how might we compute the closest point on an implicit surface described via its distance

function?

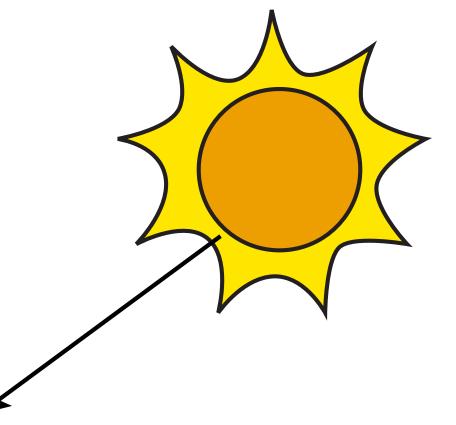
■ One idea:

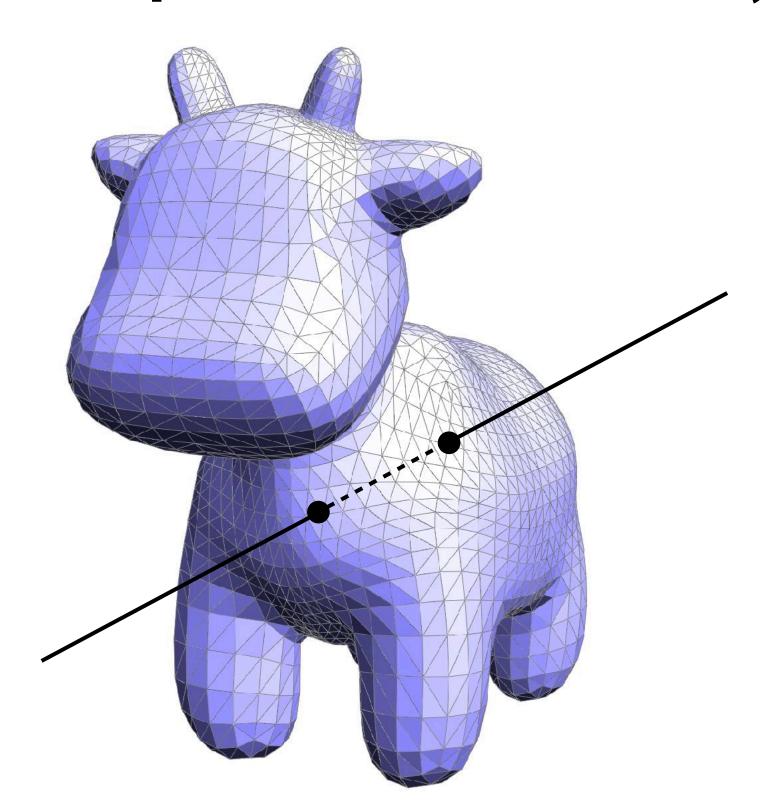
- start at the query point
- compute gradient of distance (using, e.g., finite differences)
- take a little step (decrease distance)
- repeat until we're at the surface (zero distance)



Different query: ray-mesh intersection

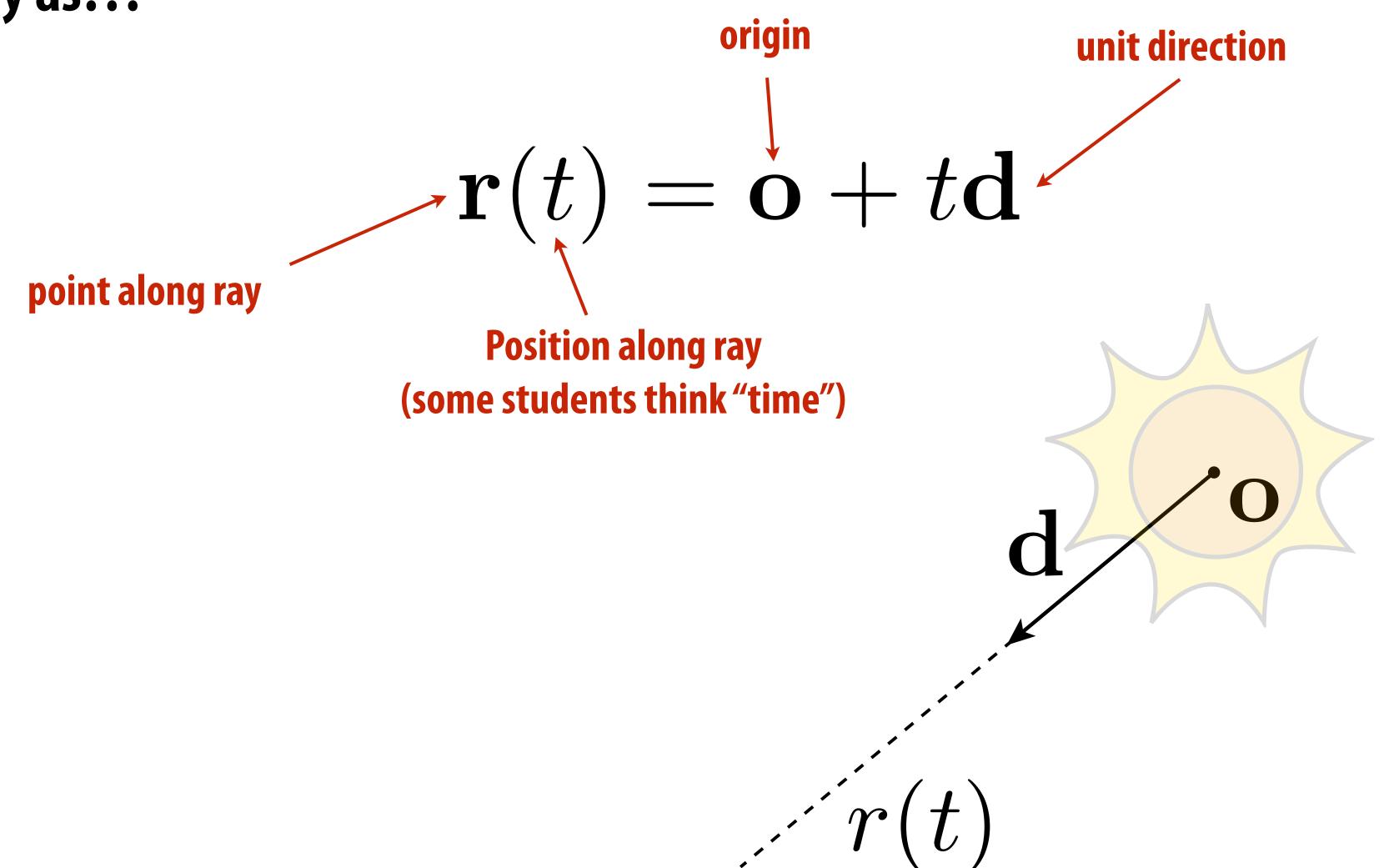
- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
 - Notice: this is a different query than finding the closest point on surface from ray's origin.
- Applications?
 - GEOMETRY: inside-outside test
 - RENDERING: visibility, ray tracing
 - ANIMATION: collision detection
- Ray might pierce surface in many places!





Ray equation

Can express ray as...



Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that f(x) = 0
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: r(t) = o + td
- Idea: replace "x" with "r(t)" in 1st equation, and solve for t
- **■** Example: unit sphere

$$f(\mathbf{x}) = |\mathbf{x}|^2 - 1$$

$$\Rightarrow f(\mathbf{r}(t)) = |\mathbf{o} + t\mathbf{d}|^2 - 1$$

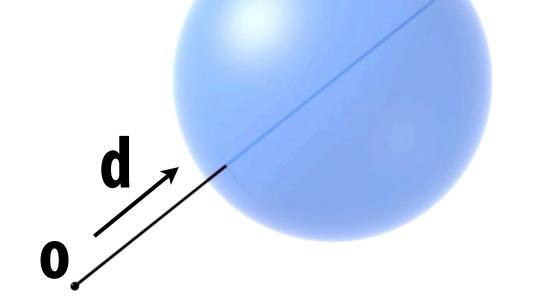
$$|\mathbf{d}|^2 t^2 + 2(\mathbf{o} \cdot \mathbf{d}) t + |\mathbf{o}|^2 - 1 = 0$$

Note: $|\mathbf{d}|^2 = 1$ since d is a unit vector

$$t = \left[-\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^2 - |\mathbf{o}|^2 + 1} \right]$$

quadratic formula:

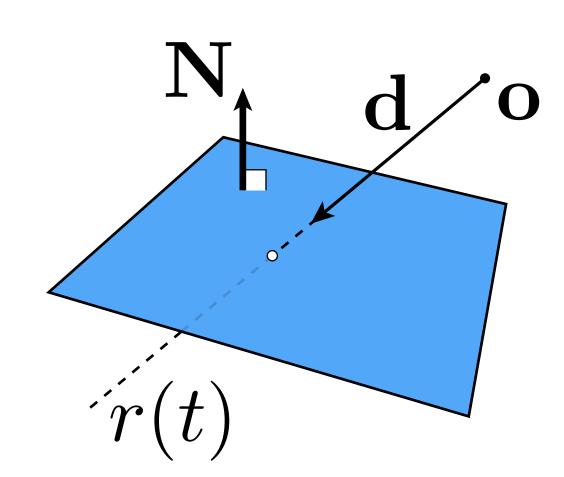
$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$



Why two solutions?

Ray-plane intersection

- Suppose we have a plane $N^Tx = c$
 - N unit normal
 - c offset
- How do we find intersection with ray r(t) = o + td?



■ Key idea: again, replace the point x with the ray equation t:

$$\mathbf{N}^{\mathsf{T}}\mathbf{r}(t) = c$$

Now solve for t:

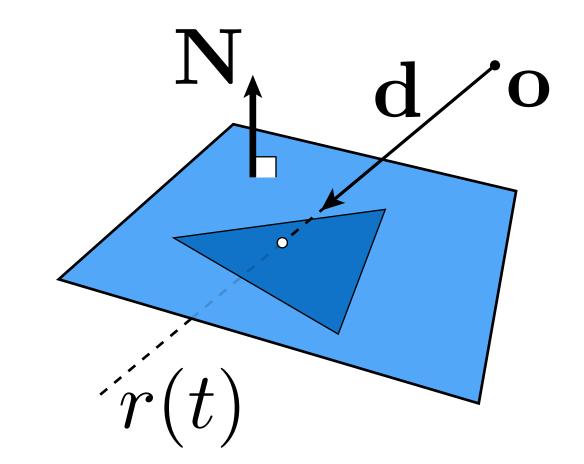
$$\mathbf{N}^{\mathsf{T}}(\mathbf{o} + t\mathbf{d}) = c \qquad \Rightarrow t = \frac{c - \mathbf{N}^{\mathsf{T}}\mathbf{o}}{\mathbf{N}^{\mathsf{T}}\mathbf{d}}$$

And plug t back into ray equation:

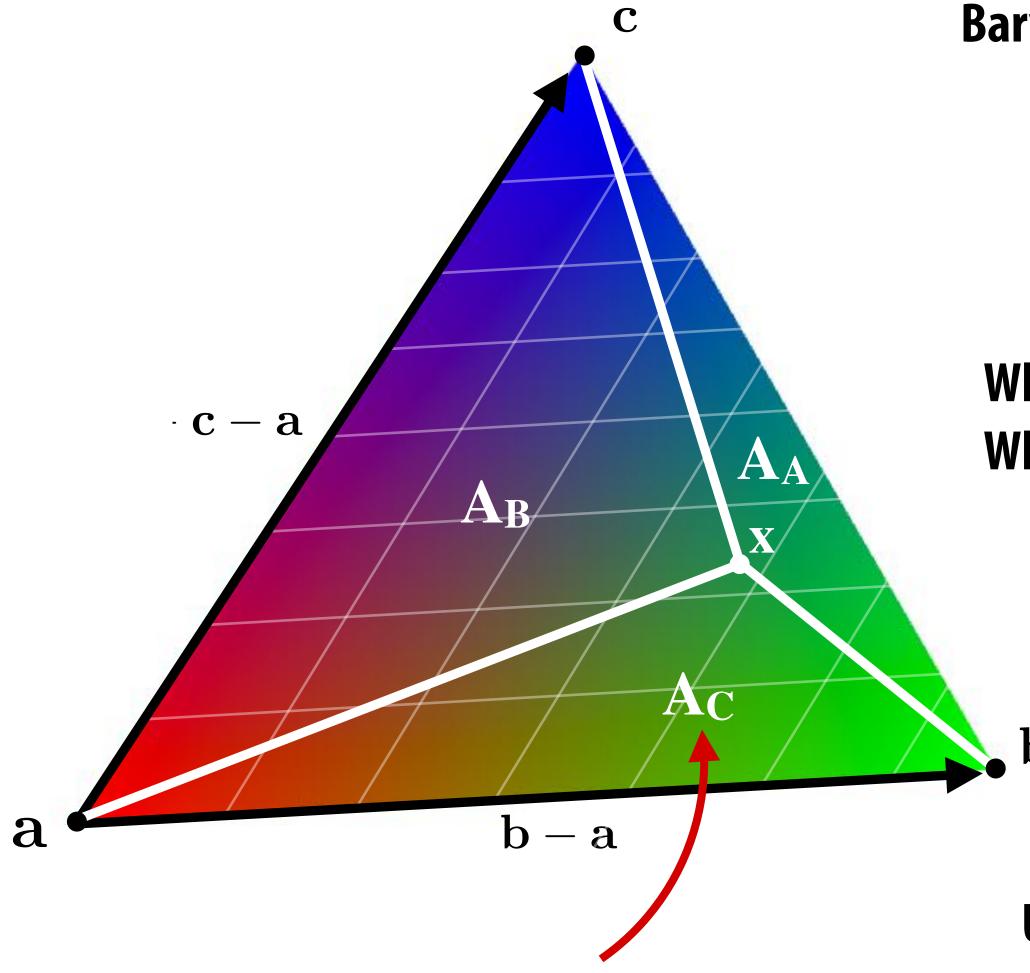
$$r(t) = \mathbf{o} + \frac{c - \mathbf{N}^\mathsf{T} \mathbf{o}}{\mathbf{N}^\mathsf{T} \mathbf{d}} \mathbf{d}$$

Ray-triangle intersection

- Triangle is in a plane...
- Algorithm:
 - Compute ray-plane intersection
 - Q: What do we do now?



Barycentric coordinates (as ratio of areas)



Area of triangle formed

by points: a, b, x

Barycentric coords are *signed* areas:

$$\alpha = A_A/A$$

$$\beta = A_B/A$$

$$\gamma = A_C/A$$

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?

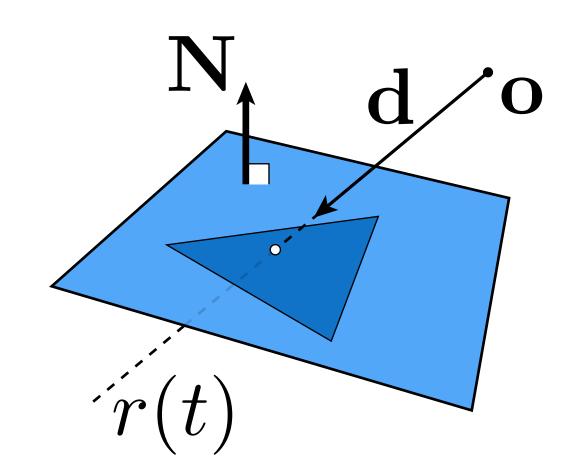
Useful: Heron's formula:

$$A_C = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (\mathbf{x} - \mathbf{a})$$

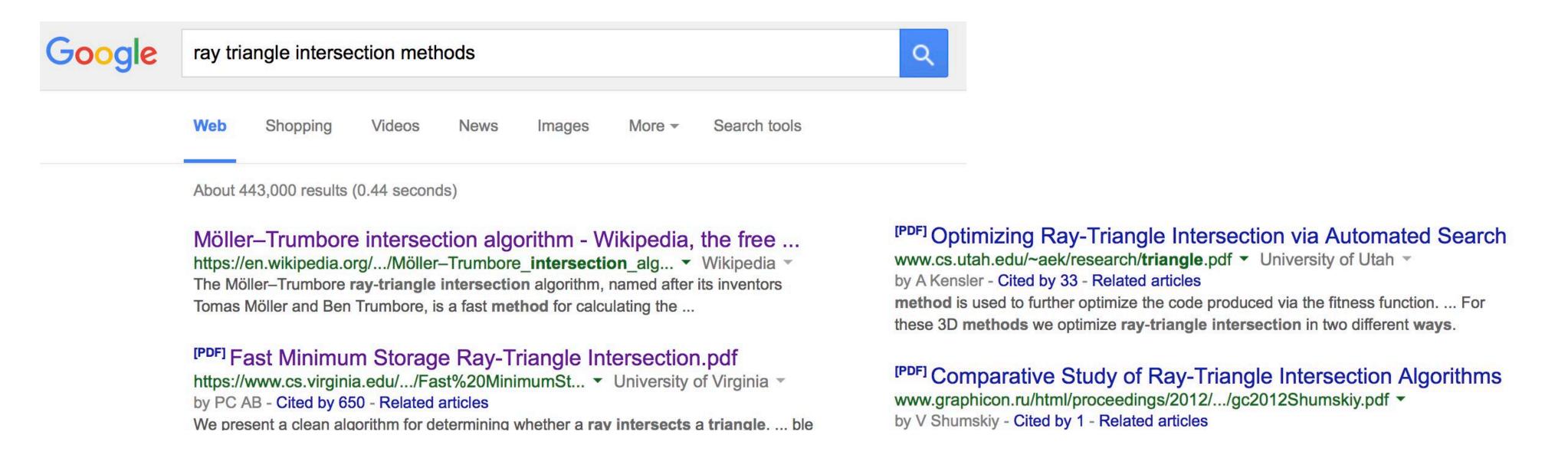
Ray-triangle intersection

Algorithm:

- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in triangle



Many different techniques if you care about efficiency

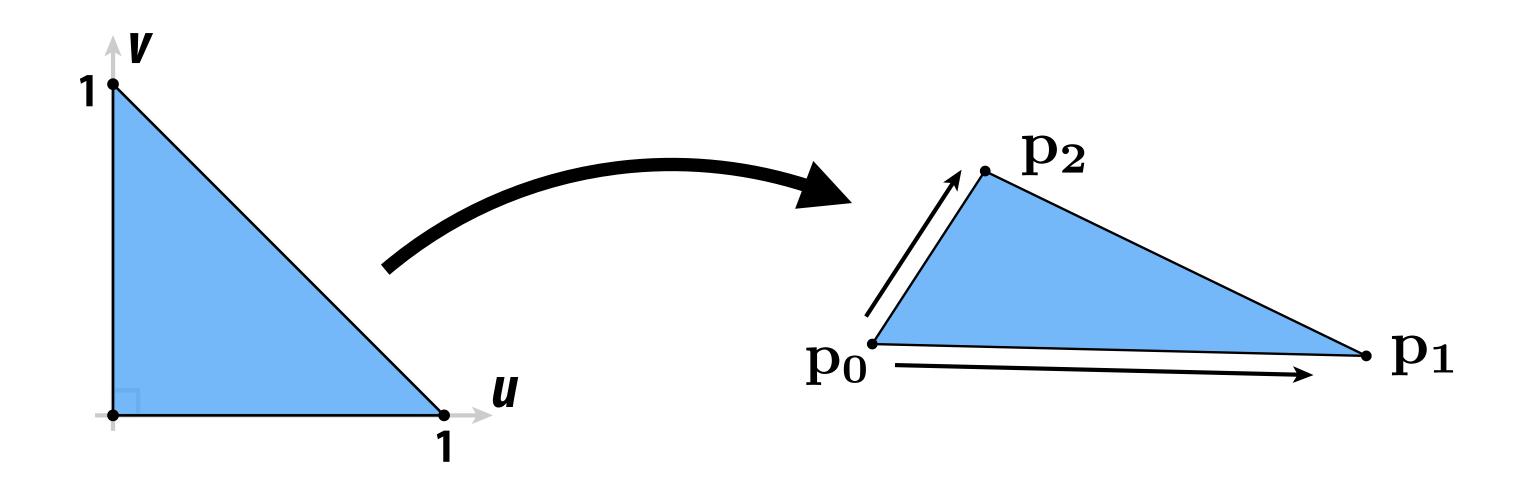


Ray-triangle intersection (another way)

■ Parameterize triangle with vertices P_0, P_1, P_2 using barycentric coordinates *

$$f(u, v) = \mathbf{p_0} + u(\mathbf{p_1} - \mathbf{p_0}) + v(\mathbf{p_2} - \mathbf{p_0}) = (1 - u - v)\mathbf{p_0} + u\mathbf{p_1} + v\mathbf{p_2}$$

■ Can think of a triangle as an affine map of the unit triangle



^{*} I'm writing u,v instead of beta, gamma to make explicit representation of triangle very clear.

Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

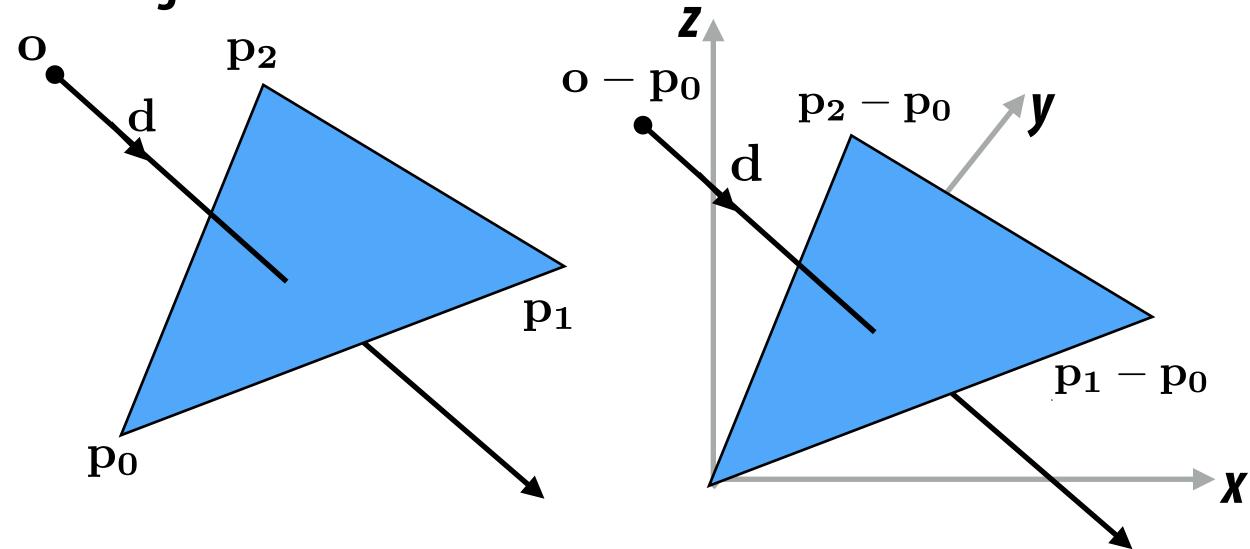
$$\mathbf{p_0} + u(\mathbf{p_1} - \mathbf{p_0}) + v(\mathbf{p_2} - \mathbf{p_0}) = \mathbf{o} + t\mathbf{d}$$

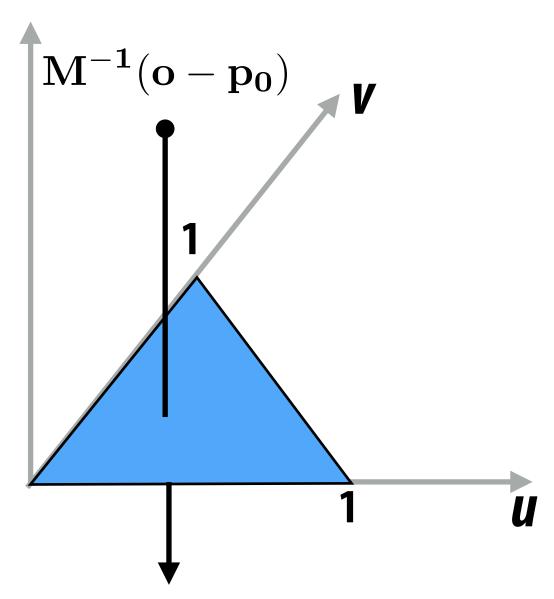
Solve for u, v, t:

$$\begin{bmatrix} \mathbf{p_1} - \mathbf{p_0} & \mathbf{p_2} - \mathbf{p_0} & -\mathbf{d} \end{bmatrix} \begin{bmatrix} u \\ v \\ t \end{bmatrix} = \mathbf{o} - \mathbf{p_0}$$

 ${
m M}^{-1}$ transforms triangle back to unit triangle in u,v plane, and transforms ray's direction to be orthogonal to plane.

It's a point in 2D triangle test now!





One more query: mesh-mesh intersection

- GEOMETRY: How do we know if a mesh intersects itself?
- ANIMATION: How do we know if a collision occurred?



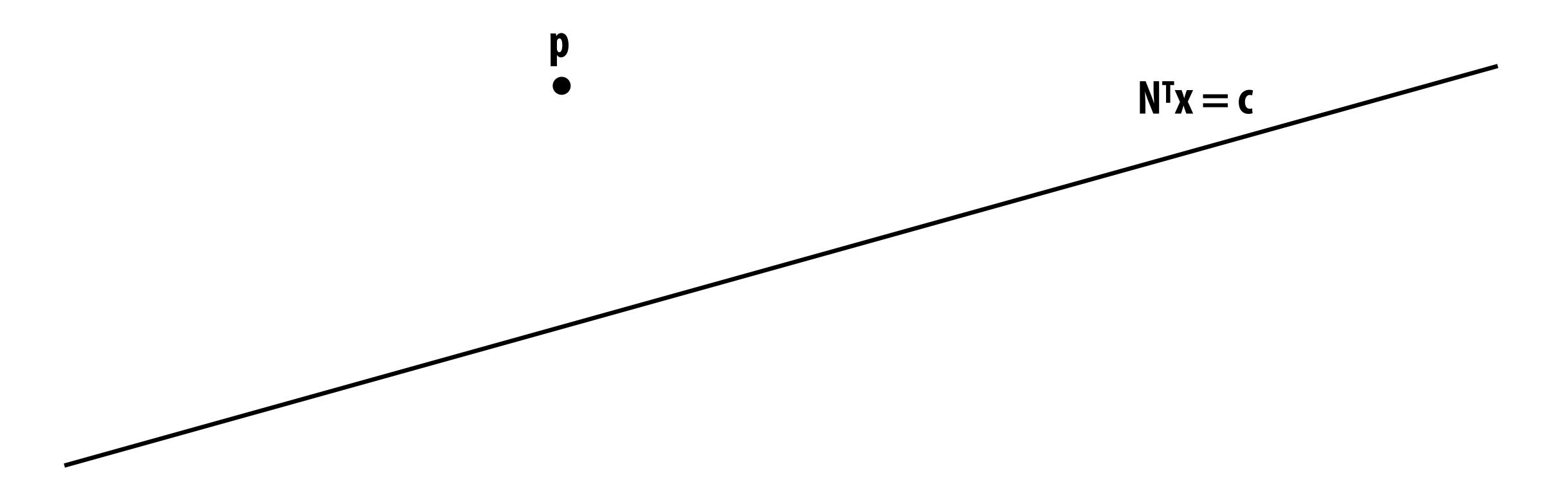
Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

 (a_1, a_2)

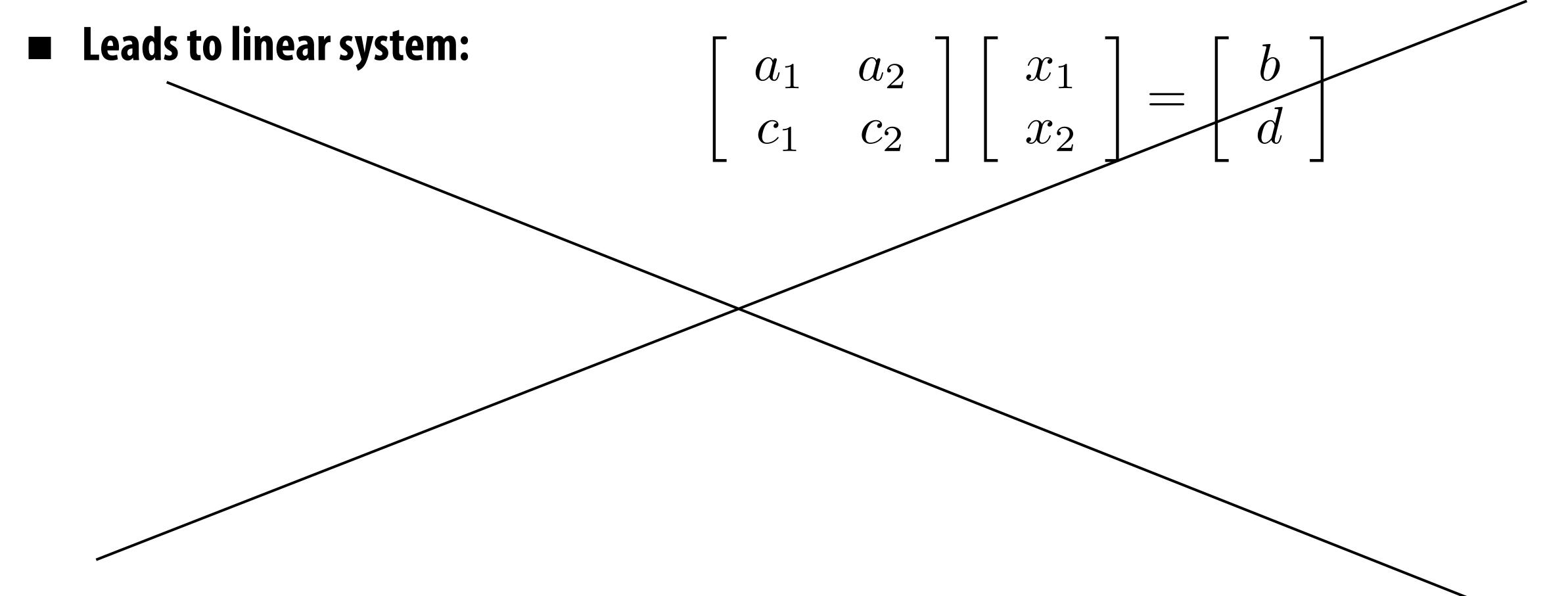
Slightly harder: point-line intersection

- Q: How do we know if a point intersects a given line?
- A: ...plug it into the line equation!



Line-line intersection

- Two lines: ax=b and cx=d
- Q: How do we find the intersection?
- A: See if there is a simultaneous solution

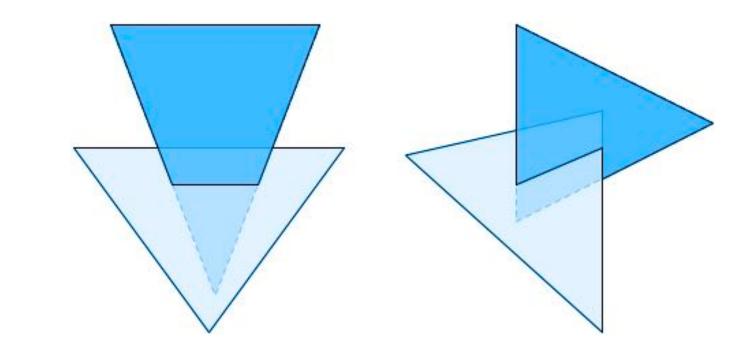


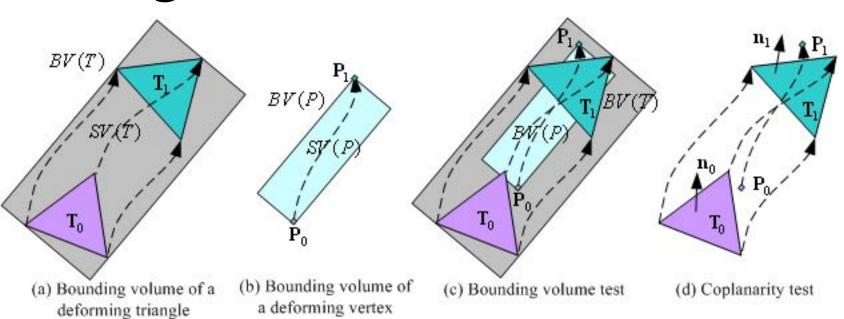
Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

Triangle-triangle intersection?

- Lots of ways to do it
- Basic idea:
 - Q: Any ideas?
 - One way: reduce to edge-triangle intersection
 - Check if each line passes through plane (ray-triangle)
 - Then do interval test
- What if triangle is moving?
 - Important case for animation
 - Can think of triangles as prisms in time
 - Turns dynamic problem (in nD + time) into purely geometric problem in (n+1)-dimensions





Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the closest point of intersection of r with the scene

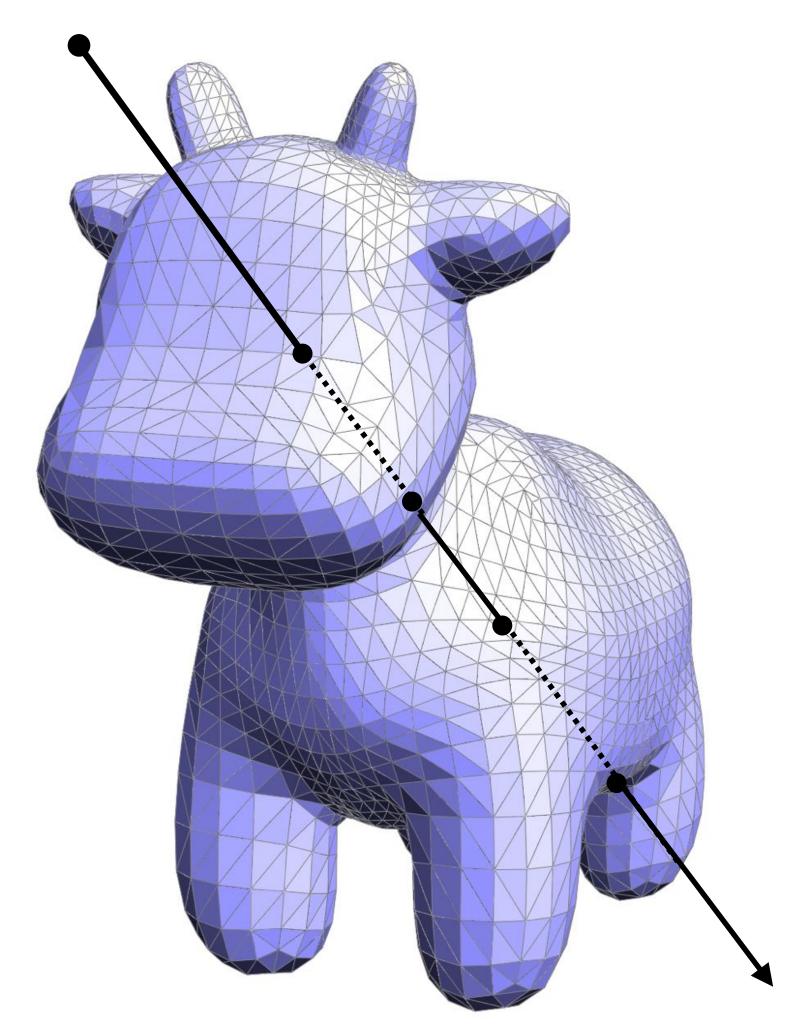
```
t_closest = inf
for each primitive p in scene:
    t = p.intersect(r)
    if t >= 0 && t < t_closest:
        t_closest = t

// closest hit is:
// r.o + t_closest * r.d</pre>
```

(Assume p.intersect(r) returns value of t corresponding to the point of intersection with ray r)

Complexity? O(N)

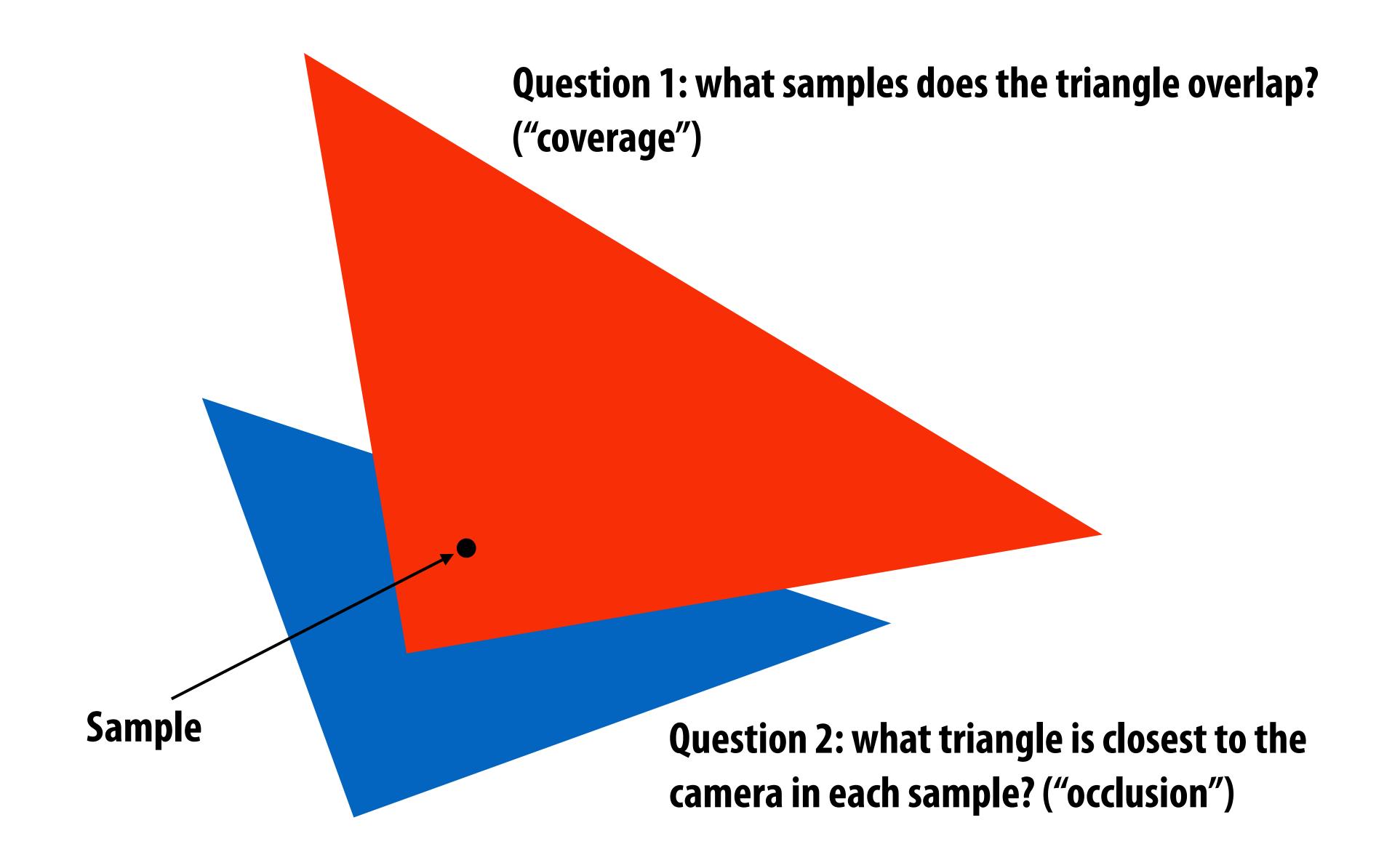
Can we do better? Of course... but you'll have to wait until next class



Rendering via ray casting: (one common use of ray-scene intersection tests)

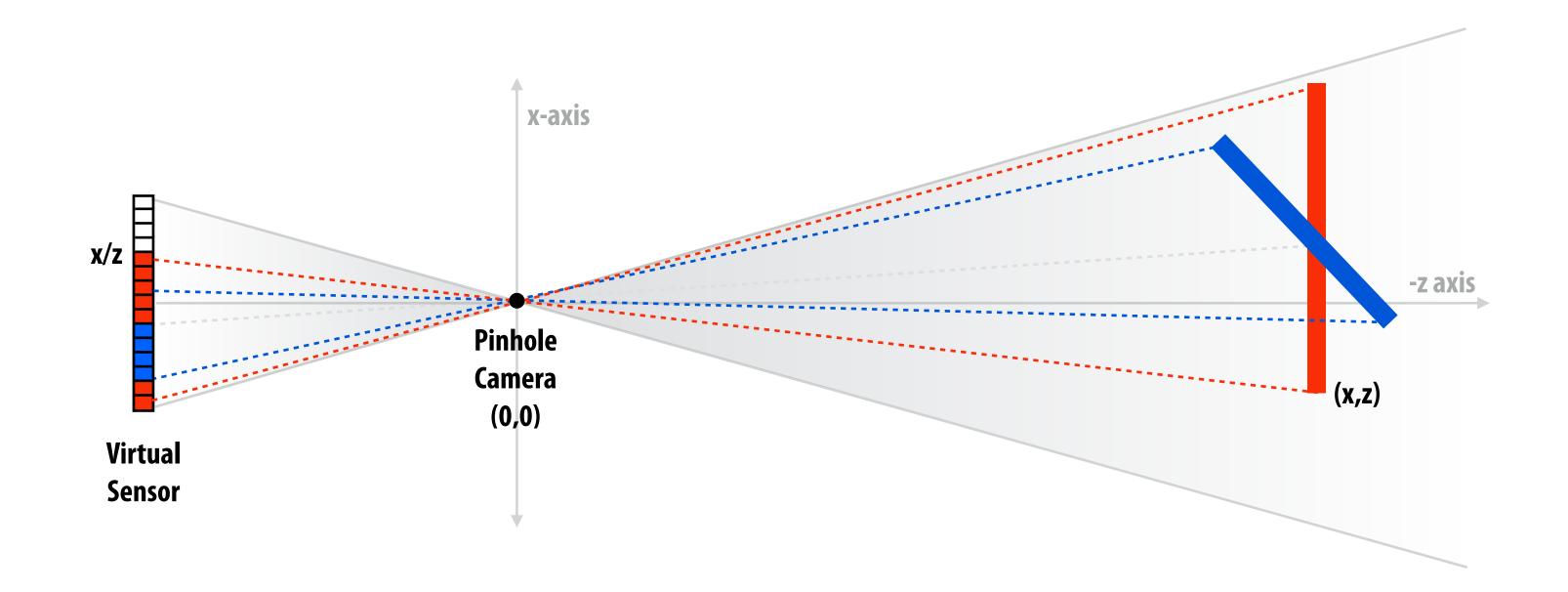
Rasterization and ray casting are two algorithms for solving the same problem: determining surface "visibility" from a virtual camera

Recall triangle visibility problem:



The visibility problem (rasterization perspective)

- What scene geometry is visible at each screen sample?
 - What scene geometry *projects* onto screen sample points? (coverage)
 - Which geometry is visible from the camera at each sample? (occlusion)



Basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

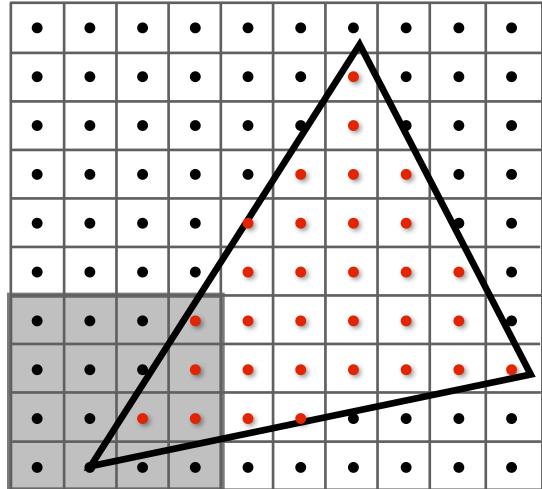
"Given a triangle, find the samples it covers"

(finding the samples is relatively easy since they are distributed uniformly on screen)

update z_closest[s] and color[s]

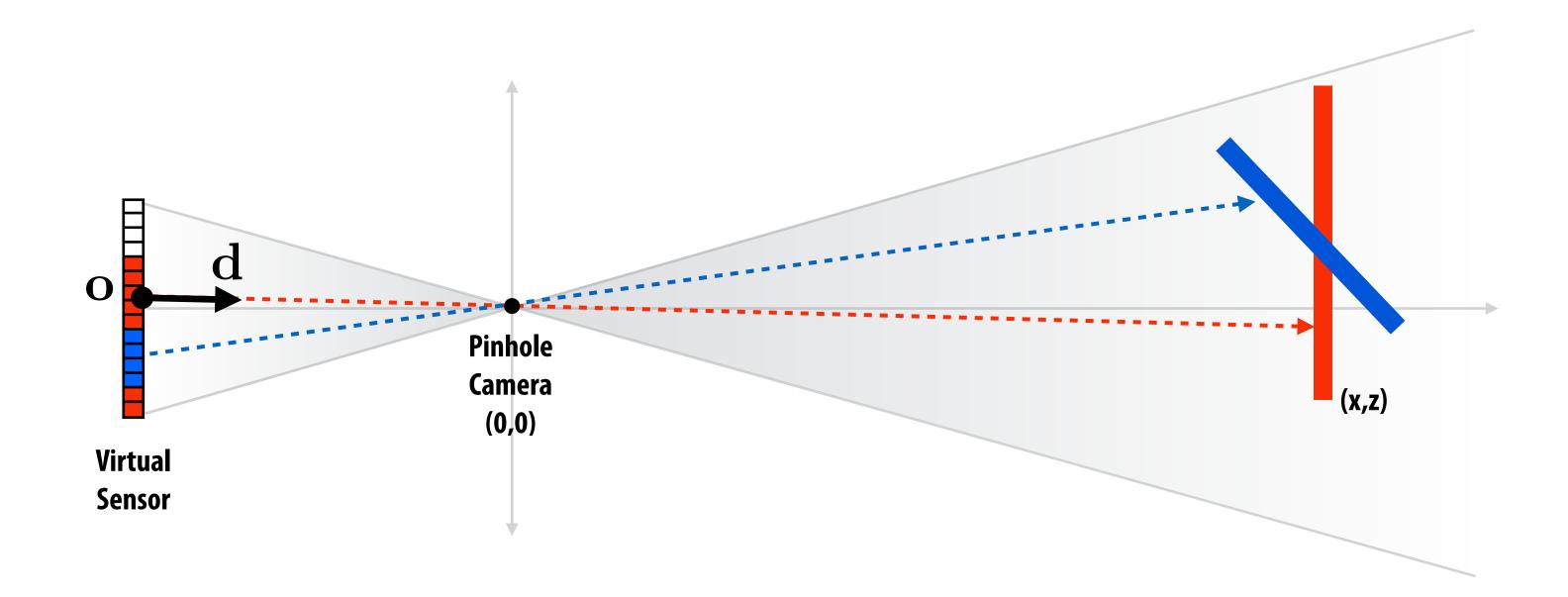
More efficient hierarchical rasterization:

For each TILE of image
If triangle overlaps tile
test all samples in tile



The visibility problem (described differently)

- In terms of casting rays from the camera:
 - Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the opening of a pinhole camera? (coverage)
 - What primitive is the first hit along that ray? (occlusion)



Basic ray casting algorithm

Sample = a ray in 3D

Coverage: 3D ray-triangle intersection tests (does ray "hit" triangle)

Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!

"Given a ray, find the closest triangle it hits."

Basic rasterization vs. ray casting

Rasterization:

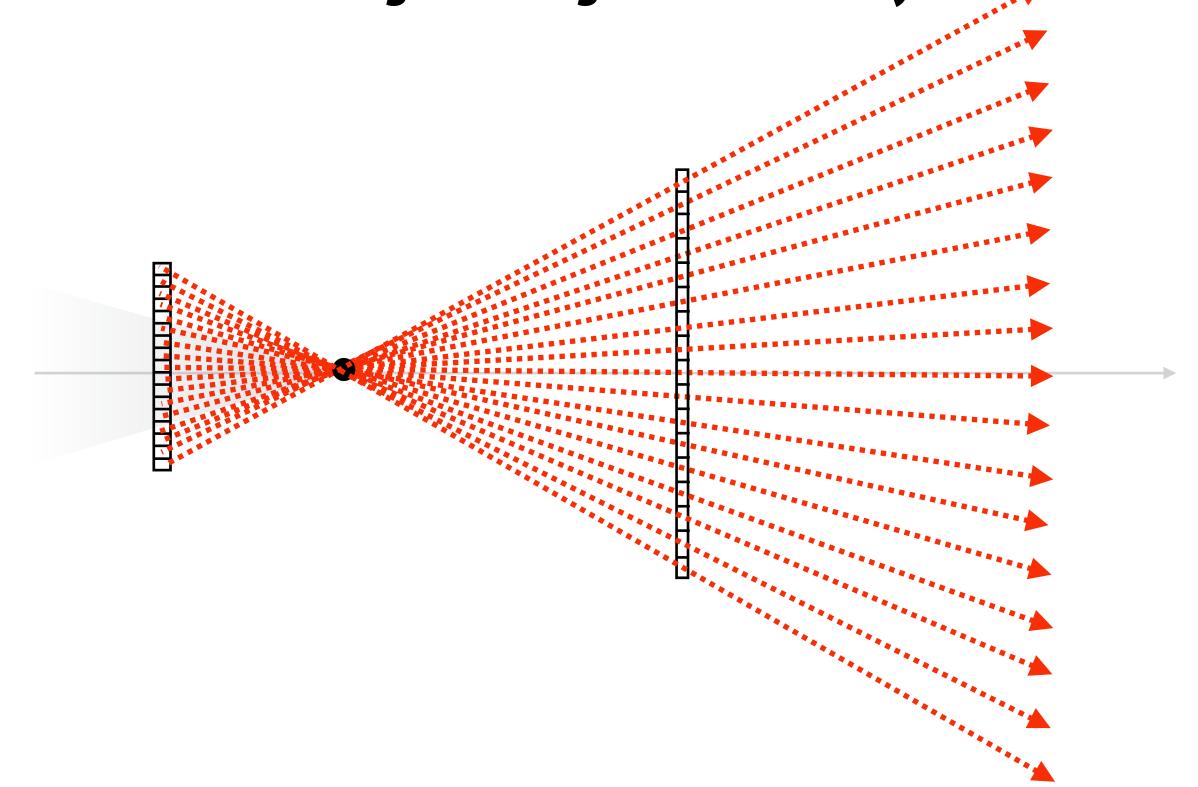
- Outer loop: iterate over all triangles ("for all triangles")
- Store closest surface seen so far for all screen samples
 - Done via the depth buffer (requires constant-time access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory
 - Naturally supports unbounded size scenes (since algorithm iterates over the triangles)

Ray casting:

- Outer loop: iterate over all screen samples ("for all rays")
 - Do not have to store closest surface seen so far for the entire screen (just the current ray)
 - Easy solution for rendering transparent surfaces: Process surfaces in the order they are encountered along the ray: front-to-back (find first "hit", then "second", etc)
- Must store entire scene geometry in a manner that allows fast access
 - Can be challenging for very large scenes

In other words...

- Rasterization is a efficient implementation of ray casting where:
 - Ray-scene intersection is computed for a batch of rays
 - All rays in the batch originate from same origin
 - Rays are distributed uniformly in (x,y) in plane of projection (Note: not uniform distribution in angle... angle between rays is smaller away from view direction)



Generality of ray-scene queries

What object is visible to the camera?

What light sources are visible from a point on a surface (is a surface in shadow?)

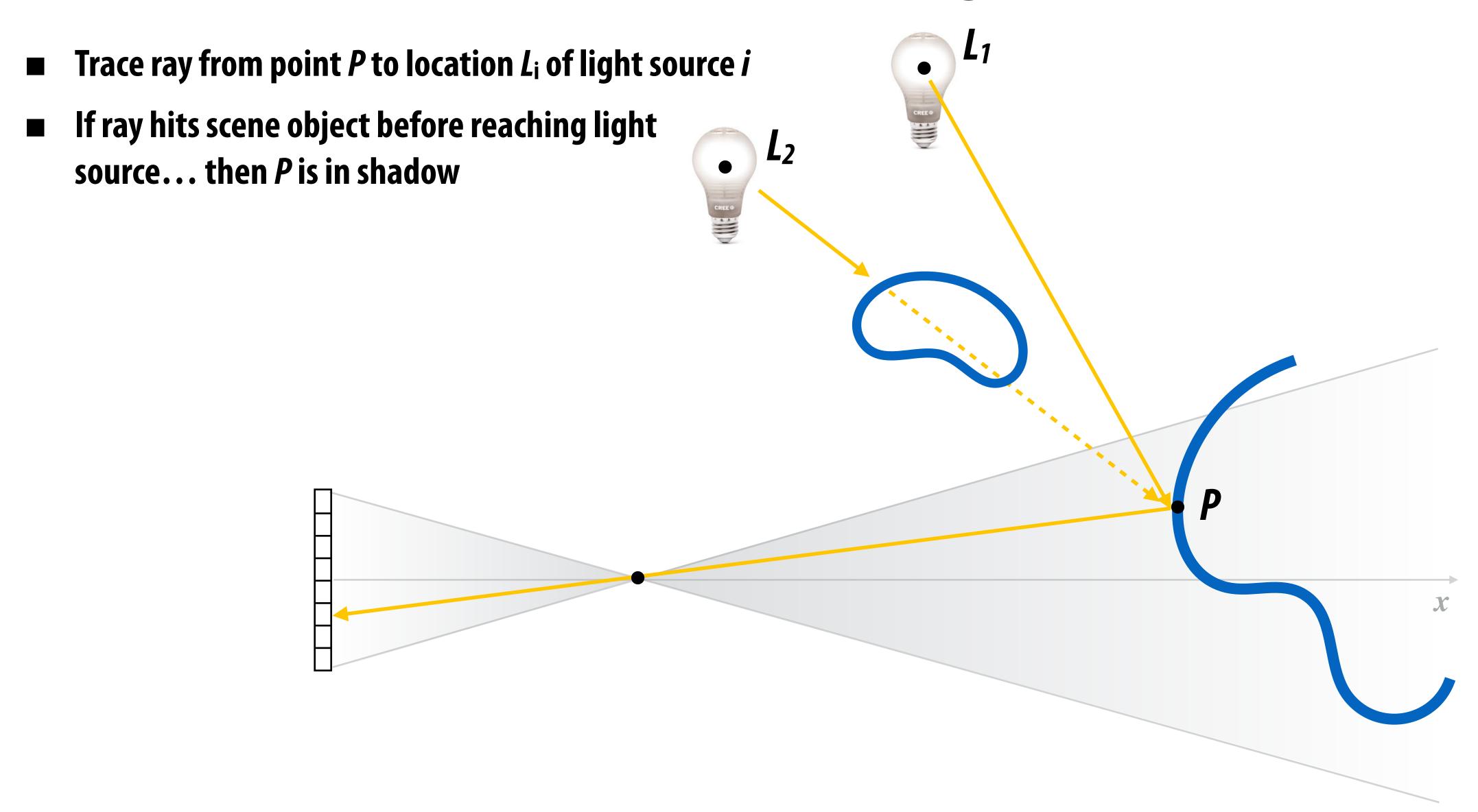
What reflection is visible on a surface? **Virtual** Sensor

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating from the same point (most often: the camera)

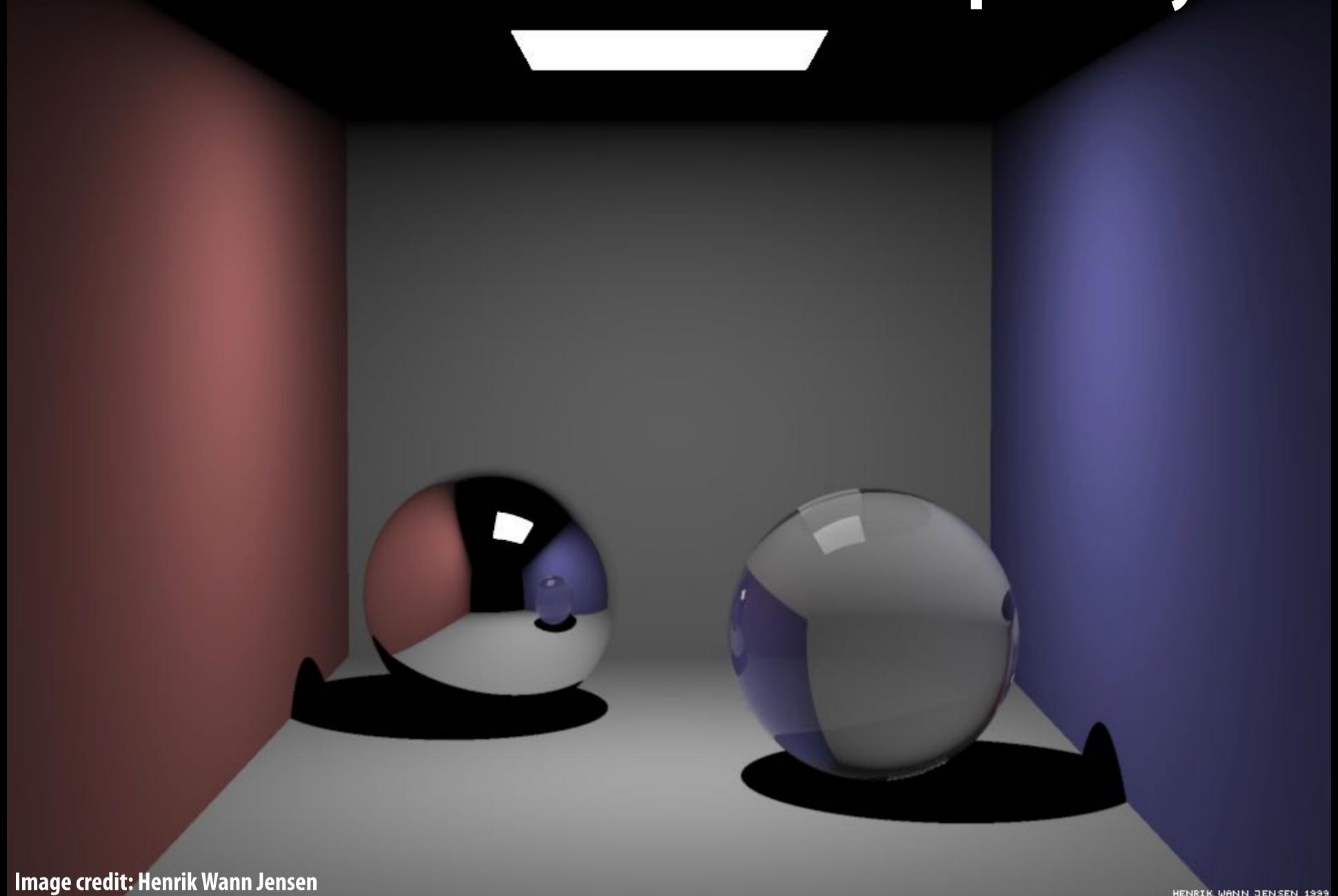
How to compute if a surface point is in shadow?

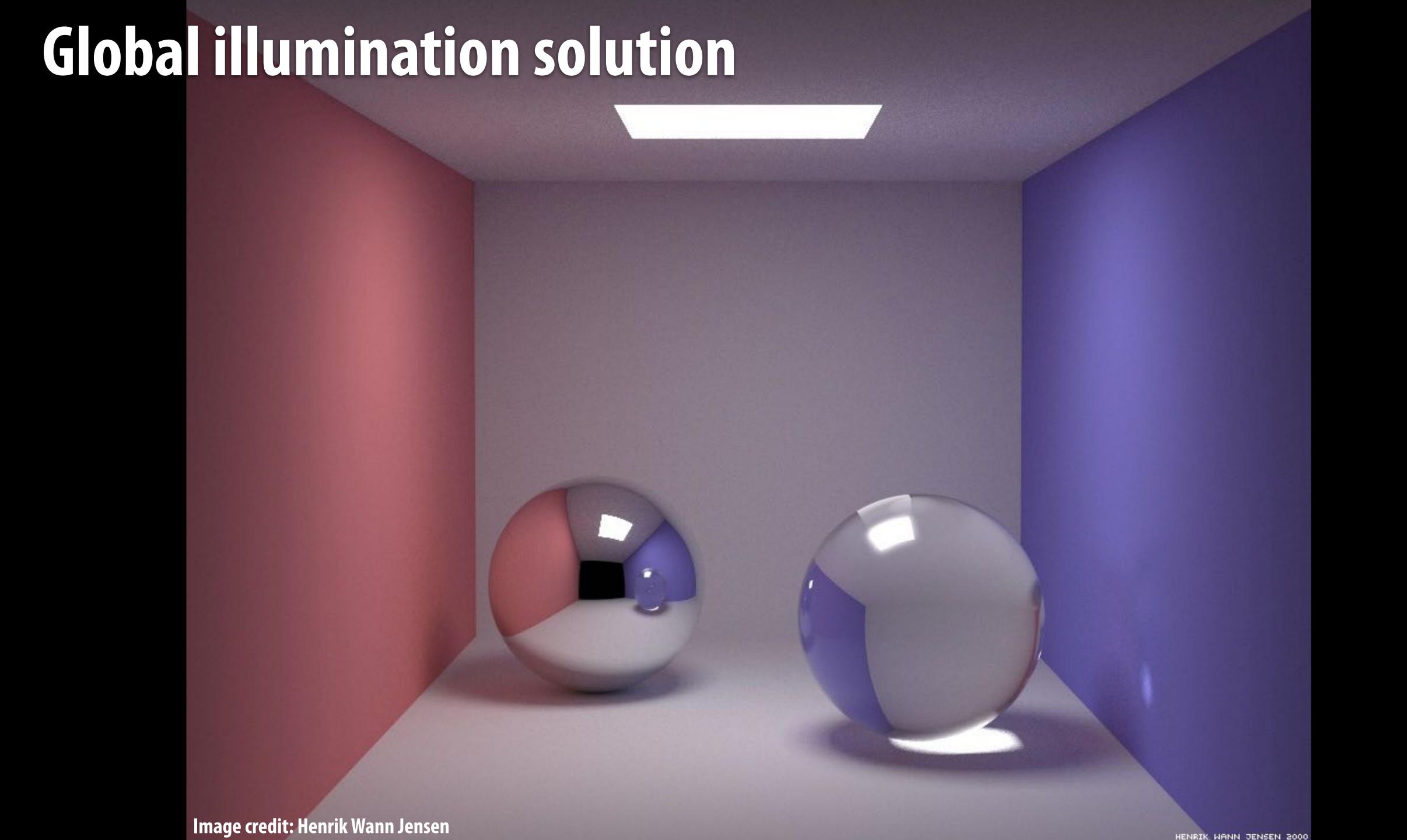
Assume you have an algorithm for ray-scene intersection...

A simple shadow computation algorithm



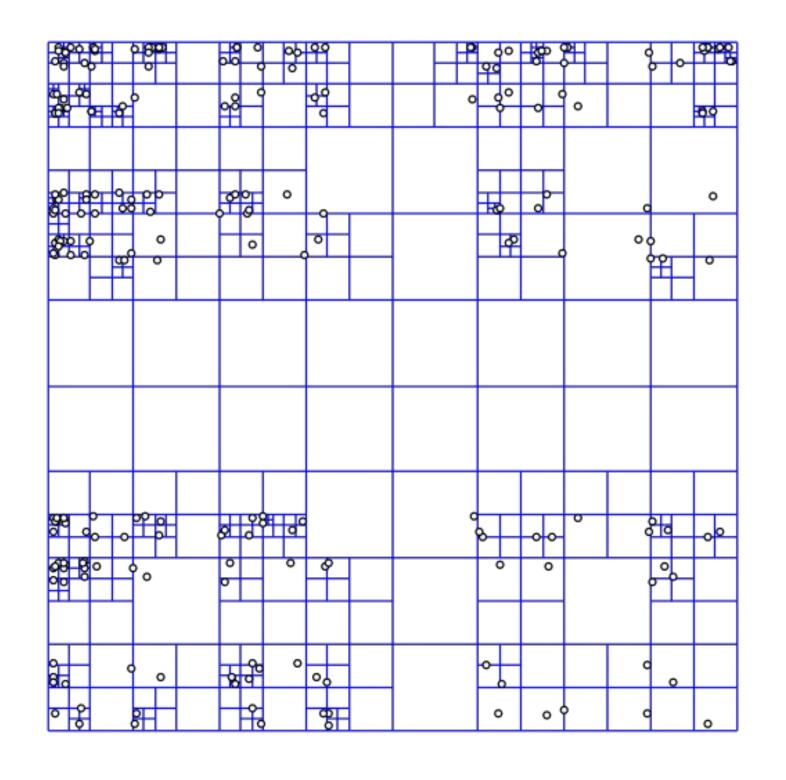
Direct illumination + reflection + transparency

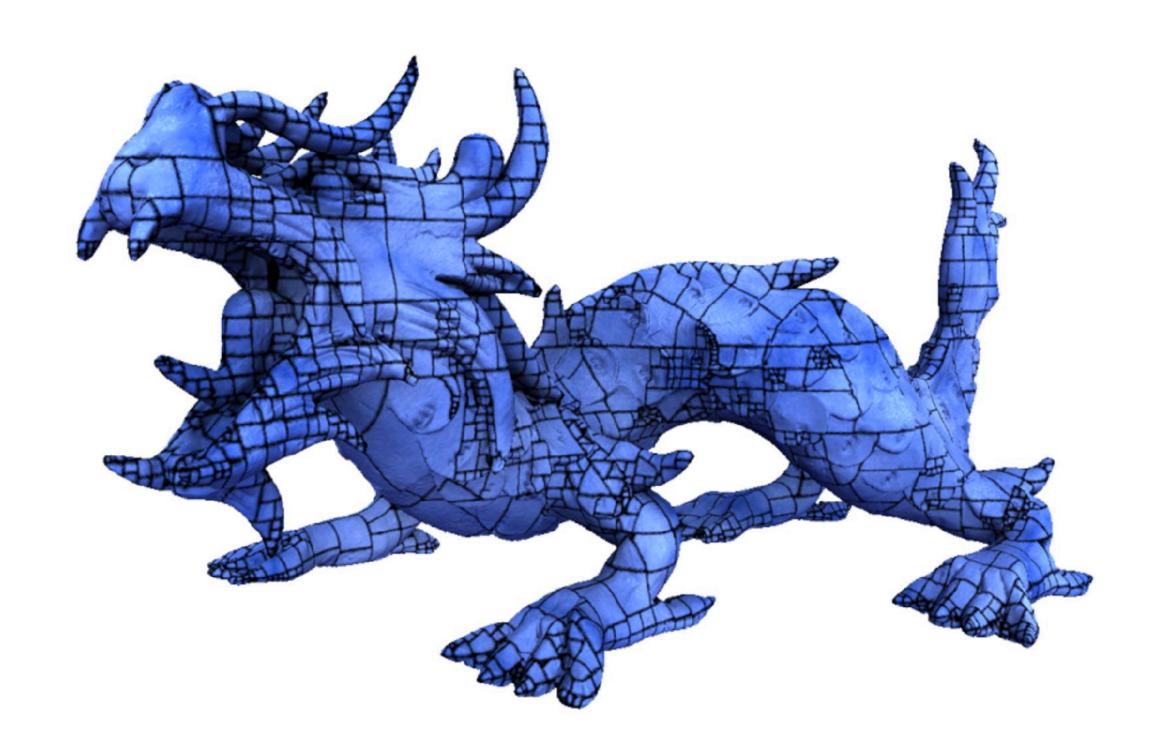




Next time: spatial acceleration data structures

- Testing every primitive in the scene to find ray-scene intersection is slow!
- Consider accelerating a linear scan through an array with binary search
 - We can apply a similar type of thinking to accelerating 3D geometric queries





Acknowledgements

■ Thanks to Keenan Crane for presentation resources