
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Lecture 6:

Introduction to Geometry

Stanford CS248A, Winter 2025

Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations

Stanford CS248A, Winter 2025

What is geometry?

ge•om•et•ry /jēˈämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths,
 angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”

Stanford CS248A, Winter 2025

Examples of geometry

Photo of original Utah teapot
(now sitting in Computer History

Museum in Mountain View)

Martin Newell’s early teapot renderings
(Martin created teapot model in 1975 using Bezier curves)

Stanford CS248A, Winter 2025

Examples of geometry

Cornell Box: Originally created in 1984
(This image was rendered in 1985 by Cohen and Greenberg)

Stanford CS248A, Winter 2025

Examples of geometry

The Stanford Bunny
(Mesh created by reconstruction from laser scans)

Photograph of scanned statue
(Statue purchased by Greg Turk at
a store on University Ave in 1994)

Stanford CS248A, Winter 2025

Examples of geometry
Laser scan of Michelangelo’s David
(Stanford’s Digital Michelangelo project, 1999)

Stanford CS248A, Winter 2025

Examples of geometry

Stanford CS248A, Winter 2025

Examples of geometry

Photo credit:Natasha Moustache/TAS23

Stanford CS248A, Winter 2025

Examples of geometry

Stanford CS248A, Winter 2025

Examples of geometry

Stanford CS248A, Winter 2025

Examples of geometry

Stanford CS248A, Winter 2025

Examples of geometry

Curly hair in Pixar’s “Brave” (2012)

Stanford CS248A, Winter 2025

What’s the best way to encode geometry on a computer?

Stanford CS248A, Winter 2025

Many ways to digitally encode geometry
EXPLICIT
- point cloud
- polygon mesh
- subdivision, NURBS
- ...
IMPLICIT
- level set
- algebraic surface
- L-systems
- ...
Each choice best suited to a di!erent task/type of geometry

Stanford CS248A, Winter 2025

“Implicit” representations of geometry
Points aren’t known directly, but satisfy some relationship
E.g., unit sphere is all points such that x2+y2+z2=1
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0

Stanford CS248A, Winter 2025

Many implicit representations in graphics
algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals
...

(Will see some of these a bit later.)

Stanford CS248A, Winter 2025

But "rst, let’s play a game:

I’m thinking of an implicit surface f(x,y,z)=0

Find any point on it.

Stanford CS248A, Winter 2025

Give up?

y

xz

(1.5, 0, 0)

My function was f(x,y,z) = x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).

Stanford CS248A, Winter 2025

Let’s play another game.

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1

I want to see if a point is inside it.

Stanford CS248A, Winter 2025

Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16 = 7/8

7/8 < 1

YES.

How about the point (3/4, 1/2, 1/4)?

(3/4, 1/2, 1/4)

N

P0

P = (x, y)
V

Stanford CS248A, Winter 2025

Recall: implicit form of a line
Easy to test if a point is on the “positive” or negative side of the line

L(x, y) = V ·N = Ax+By + C

L(x, y) > 0

L(x, y) = 0 (for points on the line)

(for points on the shaded side of the line)

Stanford CS248A, Winter 2025

“Explicit” representations of geometry
All points are given directly
E.g., points on sphere are

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)

Stanford CS248A, Winter 2025

“Explicit” representations of geometry
More generally:
Example: a triangle

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x = f(�, �) = a+ �(b� a) + �(c� a)

Stanford CS248A, Winter 2025

Many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
NURBS
point clouds
...

(Will see some of these a bit later.)

Stanford CS248A, Winter 2025

But "rst, let’s play another game:

I’ll give you an explicit surface.

You give me some points on it.

Stanford CS248A, Winter 2025

Sampling an explicit surface

y

xz

My surface is f(u, v) = (1.5, u, v).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values (u,v)!

Stanford CS248A, Winter 2025

Let’s play another game.

I have a new surface f(u,v).

I want to see if a point is inside it.

Stanford CS248A, Winter 2025

Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = (2+cos(u))cos(v), 2+cos(u))sin(v), sin(u))

...NO!

(1, √3, 5/4)

How about the point (1,√3,5/4)?

Stanford CS248A, Winter 2025

CONCLUSION:
Some representations work better than others—

depending on the task!

Stanford CS248A, Winter 2025

Di!erent representations will be better suited to
di!erent types of geometry.

Let’s take a look at some common representations
used in computer graphics.

Stanford CS248A, Winter 2025

Algebraic surfaces (implicit)
Surface is zero set of a polynomial in x, y, z (“algebraic variety”)
Examples:

What about more complicated shapes?

Very hard to come up with polynomials for complex shapes!

Stanford CS248A, Winter 2025

Constructive solid geometry (implicit)
Build more complicated shapes using Boolean operations
Basic operations on volumes: UNION

INTERSECTION

DIFFERENCE

Then build more
complex expressions:

Stanford CS248A, Winter 2025

Blobby surfaces (implicit)
Instead of booleans, gradually blend surfaces together:

Easier to understand in 2D:
(Gaussian centered at p)

(Sum of Gaussians centered at di!erent points)

�p(x) := e�|x�p|2

f = 0.5 f = 0.4 f = 0.3

Stanford CS248A, Winter 2025

Level set methods (implicit)
Implicit surfaces have some nice features (e.g., merging/splitting)
But, hard to describe complex shapes in closed form
Alternative: store a grid of values approximating a continuous function (samples of the function)

-.45

-.25

-.15

.10

.20

-.35

-.20

-.10

.05

.25

-.30

-.10

.10

.25

.55

-.25

-.10

.15

.35

.60

-.55

-.30

-.20

-.05

.15

Surface is determined by where the interpolated value equals zero
Provides much more explicit control over shape
Often demands sophisticated !ltering (trilinear, tricubic…)

Stanford CS248A, Winter 2025

Level sets from medical data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density

Stanford CS248A, Winter 2025

Level sets in physical simulation
Level set encodes distance to air-liquid boundary

See http://physbam.stanford.edu

Stanford CS248A, Winter 2025

Sparse level set storage
Drawback: storage for 2D surface is now O(n3)
Can reduce cost by storing only a narrow band of distances around surface:

In this "gure:
red = clearly within water
blue = clearly outside water

green = regions where we store level set values to encode surface

Stanford CS248A, Winter 2025

Neural representations for compressing distance functions
Simple solution:
- Train a DNN to evaluate distance_to_surface(x,y,z)
- Use conventional dense or sparse grid representation to create

training data pairs
- Good: massive compression (surface represented by weights of DNN)
- Bad: very high evaluation cost (must evaluate large DNN to

determining distance from surface

More recent “hybrid” approaches:
- Use neural code to represent local surface structure
- Store neural “code” at cells of traditional uniform grid, or sparse grid

- e.g., code[x,y,z]
- Train a “tiny” DNN to produce distance(x,y,z) = DNN(x,y,z, code[x,y,z])
- Idea: DNN only has to translate code into a surface location = much

cheaper to evaluate

Stanford CS248A, Winter 2025

Fractals (implicit)
No precise de"nition; exhibit self-similarity, detail at all scales
New “language” for describing natural phenomena
Hard to control shape!

Stanford CS248A, Winter 2025

Mandelbrot set - zooming in

(Colored according to how quickly each point diverges/converges.)

Stanford CS248A, Winter 2025

Mandelbrot set - de"nition
For each point c in the plane:
- double the angle
- square the magnitude
- add the original point c
- repeat

If the point remains bounded (never goes to ∞), it’s in the set.

Stanford CS248A, Winter 2025

Mandelbrot set - examples

starting point
(converges)

(periodic)

(diverges)

Stanford CS248A, Winter 2025

Implicit representations - pros and cons
Pros:
- Description can be very compact (e.g., a polynomial)
- Easy to determine if a point is in our shape (just plug it in!)
- Other queries may also be easy (e.g., distance to surface)
- For simple shapes, exact description/no sampling error
- Easy to handle changes in topology (e.g., %uid)
Cons:
- Expensive to "nd all points in the shape (e.g., for drawing)
- Very di"cult to model complex shapes

Stanford CS248A, Winter 2025

What about explicit representations?

Stanford CS248A, Winter 2025

Point cloud (explicit)
Easiest representation: list of points (x,y,z)
Often augmented with normals
Easily represent any kind of geometry
Useful for LARGE datasets (>>1 point/pixel)
Hard to interpolate undersampled regions
Hard to do processing / simulation / …

Stanford CS248A, Winter 2025

Point cloud via laser scanning

Image Credit: 3Dling

Stanford CS248A, Winter 2025

Another example: Microsoft XBox 360 Kinect

Illuminant
(Infrared Laser + di!user)

RGB Sensor
640x480

Monochrome Infrared
Sensor

Image credit: iFixIt

Stanford CS248A, Winter 2025

Structured light

z

zref

d

f

Reference plane

Known light
source

b

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is ine&cient!
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image)

x

Stanford CS248A, Winter 2025

Infrared image of Kinect illuminant output

Credit: www.futurepicture.org

Stanford CS248A, Winter 2025
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Stanford CS248A, Winter 2024

3D volumes

Credit: Voxel Ville NFT (voxelville.io)

Consider storage requirements:
10243 cells (let’s assume boolean per cell for occupancy)

Typical challenge:
limited resolution

Stanford CS248A, Winter 2025

Polygon mesh (explicit)
Store vertices and polygons (most often triangles or quads)
Easier to do processing/simulation, adaptive sampling
More complicated data structures
Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)

Stanford CS248A, Winter 2025

Triangle mesh (explicit)
Store vertices as triples of coordinates (x,y,z)
Store triangles as triples of indices (i,j,k)
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

TRIANGLES

Use linear interpolation to de"ne points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c

Stanford CS248A, Winter 2025

Linear interpolation of samples (in 1D)

f(t) = (1� t)f0 + tf1

x0 x1

t =
x� x0

x1 � x0

x

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

Stanford CS248A, Winter 2025

Can think of linear interpolation as linear combination of
two functions

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1x

(1� t)

t

f(t) = (1� t)f0 + tf1

Weights are given by the two values (f0 and f1) being interpolated

Stanford CS248A, Winter 2025

Note: this is the idea of representing a function in a new basis, again!

f0

x0 x1

f1

f(t) = f0

<latexit sha1_base64="Iq0qZESomoSHdE8uz8BeXp1VXjs=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexKRC9C0IvHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeAo4X5E+0qEglG00mNYwjNyTcKu2y0U3bI7A1kmXkaKkKHWLXx1ejFLI66QSWpM23MT9MdUo2CST/Kd1PCEsiHt87alikbc+OPZxRNyapUeCWNtSyGZqb8nxjQyZhQFtjOiODCL3lT8z2unGF75Y6GSFLli80VhKgnGZPo+6QnNGcqRJZRpYW8lbEA1ZWhDytsQvMWXl0njvOxVyhf3lWL1JosjB8dwAiXw4BKqcAc1qAMDBc/wCm+OcV6cd+dj3rriZDNH8AfO5w+Bk4+D</latexit>

+f1

<latexit sha1_base64="bg8yLqW8U6L15nvFBicezevYStg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiFT0WvXisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NYW9/Y3Cpul3Z29/YPyodHTZ1kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWju5nfekKleSIfzTjFIKYDySPOqLGSf0GintcrV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKmpdVr1a9eqhV6rd5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/r2aN9Q==</latexit>

B1
0(t)

<latexit sha1_base64="UWrEkM6IZ8AVhAhHuTUwUxcGZS0=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8u43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH1ujvc=</latexit>

B1
1(t)

<latexit sha1_base64="l9zR3P63Mbi01oRWMpaAxLBrIwk=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8p43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH71jvg=</latexit>

My function f is represented as a superposition
(weighted sum) of a set of basis functions

-415 x +

=

-30 x +

-61 x +

…
 4 x +

-22 x +

 1 x +

 2 x

…

=

0.1 x

0.75 x

0.5 x

+

+

Stanford CS248A, Winter 2025

Problem with piecewise linear interpolation: derivates not
continuous

x0 x1 x2

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

f(x2) = f2

<latexit sha1_base64="u4RR/dNIFlVICPnIzGk4gPNe5PI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkpSKnoRil48VrAf0Iaw2W7apZtN2N2IJfRvePGgiFf/jDf/jds0B219MPB4b4aZeX7MmdK2/W0V1tY3NreK26Wd3b39g/LhUUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uR27ncfqVQsEg96GlM3xCPBAkawNtIgqD559XN0jQKv7pUrds3OgFaJk5MK5Gh55a/BMCJJSIUmHCvVd+xYuymWmhFOZ6VBomiMyQSPaN9QgUOq3DS7eYbOjDJEQSRNCY0y9fdEikOlpqFvOkOsx2rZm4v/ef1EB1duykScaCrIYlGQcKQjNA8ADZmkRPOpIZhIZm5FZIwlJtrEVDIhOMsvr5JOveY0ahf3jUrzJo+jCCdwClVw4BKacActaAOBGJ7hFd6sxHqx3q2PRWvBymeO4Q+szx+26pAu</latexit>

Stanford CS248A, Winter 2025

Smooth interpolation?
continuous
"rst derivative

f0

x0 x1

f1
f2

x2

Stanford CS248A, Winter 2025

Bernstein basis
Why limit ourselves to just linear interpolation?
More %exibility by using higher-order polynomials
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree 0≤x≤1

1
2

1

1
2

1

Stanford CS248A, Winter 2025

Bézier curves (explicit)
A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment!
For n=3, get “cubic Bézier”:
Important features:
1. interpolates endpoints
2. tangent to end segments
3. contained in convex hull (nice for rasterization)

Stanford CS248A, Winter 2025

Piecewise Bézier curves (explicit)
More interesting shapes: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier

Stanford CS248A, Winter 2025

Vector fonts

Baskerville font - represented as cubic Bézier splines

credit: Randall Branding

The Quick Brown
Fox Jumps Over
The Lazy Dog
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789

Stanford CS248A, Winter 2025

Bézier curves — tangent continuity
To get “seamless” curves, want points and tangents to line up:

Ok, but how?
Each curve is cubic: au3 + bu2 + cu + d
Q: How many constraints vs. degrees of freedom?
Q: Could you do this with quadratic Bézier? Linear Bézier?

Stanford CS248A, Winter 2025

Tensor product
Can use a pair of curves to get a surface
Value at any point (u,v) given by product of a curve f(u) and a curve g(v) (sometimes called
the “tensor product”):

u

v

Stanford CS248A, Winter 2025

Bézier patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1

Stanford CS248A, Winter 2025

Bézier surface
Just as we connected Bézier curves, can connect Bézier patches to get a surface:

Very easy to draw: just dice each patch into regular (u,v) grid!

Stanford CS248A, Winter 2025

Many di!erent spline patch schemes
NURBS, Gregory, Pm, polar…
Tradeo!s:
- degrees of freedom
- continuity
- di&culty of editing
- cost of evaluation
- generality
- …
As usual: pick the right tool for the job!

Stanford CS248A, Winter 2025

Subdivision (explicit or implicit?)
Alternative starting point for curves/surfaces: subdivision
Start with control curve
Insert new vertex at each edge midpoint
Update vertex positions according to "xed rule
For careful choice of averaging rule, yields smooth curve
- Some subdivision schemes correspond to well-known spline schemes!

Slide cribbed from Don Fussell.

Stanford CS248A, Winter 2025

Subdivision surfaces (explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise

Stanford CS248A, Winter 2025

Subdivision in action (Pixar’s “Geri’s Game”)

Stanford CS248A, Winter 2025

Measurements of surfaces

Stanford CS248A, Winter 2025

Surface tangent

Stanford CS248A, Winter 2025

Surface normal (N) is orthogonal to all tangents

Stanford CS248A, Winter 2025

A common visualization of normals
Encode normal direction as RGB color as di!erence from gray

Image credit: https://www.3dgep.com/forward-plus/

R = 0.5 + 0.5 N.x
G = 0.5 + 0.5 N.y
B = 0.5 + 0.5 N.z

Notice: scale and bias normal values so we can represent
negative components of normal as valid colors

Stanford CS248A, Winter 2025

Curvature is change in normal

Stanford CS248A, Winter 2025

Radius of curvature

curvature

Stanford CS248A, Winter 2025

Acknowledgements
Thanks to Keenan Crane and Ren Ng for slide materials

