
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2025

Lecture 6:

Introduction to Geometry
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Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations
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What is geometry?

ge•om•et•ry   /jēˈämətrē/ n. 
1. The study of shapes, sizes, patterns, and positions. 
2. The study of spaces where some quantity (lengths, 
    angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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Examples of geometry

Photo of original Utah teapot 
(now sitting in Computer History 

Museum in Mountain View)

Martin Newell’s early teapot renderings 
(Martin created teapot model in 1975 using Bezier curves)
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Examples of geometry

Cornell Box: Originally created in 1984 
(This image was rendered in 1985 by Cohen and Greenberg)
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Examples of geometry

The Stanford Bunny 
(Mesh created by reconstruction from laser scans)

Photograph of scanned statue 
(Statue purchased by Greg Turk at 
a store on University Ave in 1994)
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Examples of geometry
Laser scan of Michelangelo’s David 
(Stanford’s Digital Michelangelo project, 1999)
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Examples of geometry
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Examples of geometry

Photo credit:Natasha Moustache/TAS23
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry

Curly hair in Pixar’s “Brave” (2012)
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What’s the best way to encode geometry on a computer?
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- algebraic surface 
- L-systems 
- ... 
Each choice best suited to a di!erent task/type of geometry



Stanford CS248A, Winter 2025

“Implicit” representations of geometry
Points aren’t known directly, but satisfy some relationship 
E.g., unit sphere is all points such that x2+y2+z2=1 
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...

(Will see some of these a bit later.)
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But "rst, let’s play a game: 

I’m thinking of an implicit surface f(x,y,z)=0  

Find any point on it.
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Give up?

y

xz

( 1.5, 0, 0 )

My function was f(x,y,z) = x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).
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Let’s play another game. 

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1 

I want to see if a point is inside it.
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Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16  =  7/8

7/8 < 1

YES.

How about the point ( 3/4, 1/2, 1/4 )?

( 3/4, 1/2, 1/4 )



N

P0

P = (x, y)
V
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Recall: implicit form of a line
Easy to test if a point is on the “positive” or negative side of the line

L(x, y) = V ·N = Ax+By + C

L(x, y) > 0

L(x, y) = 0 (for points on the line)

(for points on the shaded side of the line)
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“Explicit” representations of geometry
All points are given directly 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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“Explicit” representations of geometry
More generally: 
Example: a triangle
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x
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Many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
NURBS 
point clouds 
...

(Will see some of these a bit later.)
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But "rst, let’s play another game: 

I’ll give you an explicit surface. 

You give me some points on it.
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Sampling an explicit surface

y

xz

My surface is f( u, v ) = ( 1.5, u, v ).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values (u,v)!



Stanford CS248A, Winter 2025

Let’s play another game. 

I have a new surface f(u,v). 

I want to see if a point is inside it.
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Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = ( 2+cos(u))cos(v), 2+cos(u))sin(v), sin(u) )

...NO!

( 1, √3, 5/4 )

How about the point (1,√3,5/4)?
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CONCLUSION: 
Some representations work better than others—

depending on the task!
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Di!erent representations will be better suited to 
di!erent types of geometry. 

Let’s take a look at some common representations 
used in computer graphics.
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Algebraic surfaces (implicit)
Surface is zero set of a polynomial in x, y, z (“algebraic variety”) 
Examples: 

What about more complicated shapes? 

Very hard to come up with polynomials for complex shapes!
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Constructive solid geometry (implicit)
Build more complicated shapes using Boolean operations 
Basic operations on volumes: UNION

INTERSECTION

DIFFERENCE

Then build more 
complex expressions:
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Blobby surfaces (implicit)
Instead of booleans, gradually blend surfaces together: 

Easier to understand in 2D:
(Gaussian centered at p)

(Sum of Gaussians centered at di!erent points)

�p(x) := e�|x�p|2

f = 0.5 f = 0.4 f = 0.3
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Level set methods (implicit)
Implicit surfaces have some nice features (e.g., merging/splitting) 
But, hard to describe complex shapes in closed form 
Alternative: store a grid of values approximating a continuous function (samples of the function)
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Surface is determined by where the interpolated value equals zero 
Provides much more explicit control over shape 
Often demands sophisticated !ltering (trilinear, tricubic…)
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Level sets from medical data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density
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Level sets in physical simulation
Level set encodes distance to air-liquid boundary

See http://physbam.stanford.edu
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Sparse level set storage
Drawback: storage for 2D surface is now O(n3) 
Can reduce cost by storing only a narrow band of distances around surface:

In this "gure: 
red = clearly within water 
blue = clearly outside water

green = regions where we store level set values to encode surface
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Neural representations for compressing distance functions 
Simple solution: 
- Train a DNN to evaluate distance_to_surface(x,y,z) 
- Use conventional dense or sparse grid representation to create 

training data pairs 
- Good: massive compression (surface represented by weights of DNN) 
- Bad: very high evaluation cost (must evaluate large DNN to 

determining distance from surface

More recent “hybrid” approaches: 
- Use neural code to represent local surface structure 
- Store neural “code” at cells of traditional uniform grid, or sparse grid 

- e.g., code[x,y,z] 
- Train a “tiny” DNN to produce distance(x,y,z) = DNN(x,y,z, code[x,y,z]) 
- Idea: DNN only has to translate code into a surface location = much 

cheaper to evaluate
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Fractals (implicit)
No precise de"nition; exhibit self-similarity, detail at all scales 
New “language” for describing natural phenomena 
Hard to control shape!
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Mandelbrot set - zooming in

(Colored according to how quickly each point diverges/converges.)
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Mandelbrot set - de"nition
For each point c in the plane: 
- double the angle 
- square the magnitude 
- add the original point c 
- repeat

If the point remains bounded (never goes to ∞), it’s in the set.
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Mandelbrot set - examples

starting point
(converges)

(periodic)

(diverges)
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Implicit representations - pros and cons
Pros: 
- Description can be very compact (e.g., a polynomial) 
- Easy to determine if a point is in our shape (just plug it in!) 
- Other queries may also be easy (e.g., distance to surface) 
- For simple shapes, exact description/no sampling error 
- Easy to handle changes in topology (e.g., %uid) 
Cons: 
- Expensive to "nd all points in the shape (e.g., for drawing) 
- Very di"cult to model complex shapes
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What about explicit representations?
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Point cloud (explicit)
Easiest representation: list of points (x,y,z) 
Often augmented with normals 
Easily represent any kind of geometry 
Useful for LARGE datasets (>>1 point/pixel) 
Hard to interpolate undersampled regions 
Hard to do processing / simulation / …
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Point cloud via laser scanning

Image Credit: 3Dling
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Another example: Microsoft XBox 360 Kinect

Illuminant 
(Infrared Laser + di!user)

RGB Sensor 
640x480

Monochrome Infrared 
Sensor 

Image credit: iFixIt
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Structured light

z

zref

d

f

Reference plane

Known light 
source

b

System: one light source emitting known beam + one camera measuring scene appearance  
If the scene is at reference plane, image that will be recorded by camera is known 
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is ine&cient! 
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) 

x
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Infrared image of Kinect illuminant output

Credit: www.futurepicture.org
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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3D volumes

Credit: Voxel Ville NFT (voxelville.io) 

Consider storage requirements: 
10243 cells (let’s assume boolean per cell for occupancy)

Typical challenge: 
limited resolution
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Polygon mesh (explicit)
Store vertices and polygons (most often triangles or quads) 
Easier to do processing/simulation, adaptive sampling 
More complicated data structures 
Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)
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Triangle mesh (explicit)
Store vertices as triples of coordinates (x,y,z) 
Store triangles as triples of indices (i,j,k) 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Use linear interpolation to de"ne points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c
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Linear interpolation of samples (in 1D)

f(t) = (1� t)f0 + tf1

x0 x1

t =
x� x0

x1 � x0

x

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>
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Can think of linear interpolation as linear combination of 
two functions

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1x

(1� t)

t

f(t) = (1� t)f0 + tf1

Weights are given by the two values (f0 and f1) being interpolated
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Note: this is the idea of representing a function in a new basis, again!

f0

x0 x1

f1

f(t) = f0

<latexit sha1_base64="Iq0qZESomoSHdE8uz8BeXp1VXjs=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexKRC9C0IvHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeAo4X5E+0qEglG00mNYwjNyTcKu2y0U3bI7A1kmXkaKkKHWLXx1ejFLI66QSWpM23MT9MdUo2CST/Kd1PCEsiHt87alikbc+OPZxRNyapUeCWNtSyGZqb8nxjQyZhQFtjOiODCL3lT8z2unGF75Y6GSFLli80VhKgnGZPo+6QnNGcqRJZRpYW8lbEA1ZWhDytsQvMWXl0njvOxVyhf3lWL1JosjB8dwAiXw4BKqcAc1qAMDBc/wCm+OcV6cd+dj3rriZDNH8AfO5w+Bk4+D</latexit>

+f1

<latexit sha1_base64="bg8yLqW8U6L15nvFBicezevYStg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiFT0WvXisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NYW9/Y3Cpul3Z29/YPyodHTZ1kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWju5nfekKleSIfzTjFIKYDySPOqLGSf0GintcrV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKmpdVr1a9eqhV6rd5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/r2aN9Q==</latexit>

B1
0(t)

<latexit sha1_base64="UWrEkM6IZ8AVhAhHuTUwUxcGZS0=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8u43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH1ujvc=</latexit>

B1
1(t)

<latexit sha1_base64="l9zR3P63Mbi01oRWMpaAxLBrIwk=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8p43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH71jvg=</latexit>

My function f is represented as a superposition 
(weighted sum) of a set of basis functions

-415 x     +

=

-30  x     +

-61  x     +

…
 4   x     +

-22  x     +

 1   x     +

 2   x    

…

=

0.1  x

0.75  x

0.5  x

+

+
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Problem with piecewise linear interpolation: derivates not 
continuous

x0 x1 x2

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

f(x2) = f2

<latexit sha1_base64="u4RR/dNIFlVICPnIzGk4gPNe5PI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkpSKnoRil48VrAf0Iaw2W7apZtN2N2IJfRvePGgiFf/jDf/jds0B219MPB4b4aZeX7MmdK2/W0V1tY3NreK26Wd3b39g/LhUUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uR27ncfqVQsEg96GlM3xCPBAkawNtIgqD559XN0jQKv7pUrds3OgFaJk5MK5Gh55a/BMCJJSIUmHCvVd+xYuymWmhFOZ6VBomiMyQSPaN9QgUOq3DS7eYbOjDJEQSRNCY0y9fdEikOlpqFvOkOsx2rZm4v/ef1EB1duykScaCrIYlGQcKQjNA8ADZmkRPOpIZhIZm5FZIwlJtrEVDIhOMsvr5JOveY0ahf3jUrzJo+jCCdwClVw4BKacActaAOBGJ7hFd6sxHqx3q2PRWvBymeO4Q+szx+26pAu</latexit>
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Smooth interpolation?
continuous 
"rst derivative

f0

x0 x1

f1
f2

x2
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Bernstein basis
Why limit ourselves to just linear interpolation? 
More %exibility by using higher-order polynomials 
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree 0≤x≤1

1
2

1

1
2

1
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Bézier curves (explicit)
A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment! 
For n=3, get “cubic Bézier”: 
Important features: 
1. interpolates endpoints 
2. tangent to end segments 
3. contained in convex hull (nice for rasterization)
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Piecewise Bézier curves (explicit)
More interesting shapes: piece together many Bézier curves 
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier



Stanford CS248A, Winter 2025

Vector fonts

Baskerville font - represented as cubic Bézier splines

credit: Randall Branding

The Quick Brown 
Fox Jumps Over 
The Lazy Dog 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789
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Bézier curves — tangent continuity
To get “seamless” curves, want points and tangents to line up:

Ok, but how? 
Each curve is cubic: au3 + bu2 + cu + d 
Q: How many constraints vs. degrees of freedom? 
Q: Could you do this with quadratic Bézier?  Linear Bézier?
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Tensor product
Can use a pair of curves to get a surface 
Value at any point (u,v) given by product of a curve f(u) and a curve g(v) (sometimes called 
the “tensor product”):

u

v
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Bézier patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1
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Bézier surface
Just as we connected Bézier curves, can connect Bézier patches to get a surface:

Very easy to draw: just dice each patch into regular (u,v) grid!
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Many di!erent spline patch schemes
NURBS, Gregory, Pm, polar… 
Tradeo!s: 
- degrees of freedom 
- continuity 
- di&culty of editing 
- cost of evaluation 
- generality 
- … 
As usual: pick the right tool for the job!
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Subdivision (explicit or implicit?)
Alternative starting point for curves/surfaces: subdivision 
Start with control curve 
Insert new vertex at each edge midpoint 
Update vertex positions according to "xed rule 
For careful choice of averaging rule, yields smooth curve 
- Some subdivision schemes correspond to well-known spline schemes!

Slide cribbed from Don Fussell.
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Subdivision surfaces (explicit)
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rule: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise
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Subdivision in action (Pixar’s “Geri’s Game”)
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Measurements of surfaces
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Surface tangent
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Surface normal (N) is orthogonal to all tangents
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A common visualization of normals
Encode normal direction as RGB color as di!erence from gray 

Image credit: https://www.3dgep.com/forward-plus/

R = 0.5 + 0.5 N.x  
G = 0.5 + 0.5 N.y 
B = 0.5 + 0.5 N.z 

Notice: scale and bias normal values so we can represent 
negative components of normal as valid colors
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Curvature is change in normal
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Radius of curvature

curvature
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