
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2025

Lecture 1:

Course Introduction: 
Welcome to Computer Graphics!
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Hi!
Haoyi 

Josephine 
the (Graphics) Cat

Kayvon Fatahalian

Jitong
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Discussion: 
Why study computer graphics?
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Why generate visual information?

(Allan Ajifo)
(Petar Milošević)

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!



Stanford CS248A, Winter 2025

Movies

Avatar (2009)
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Computer games
This image is rendered in real-time on a modern GPU



Computer games
This image is rendered in real-time on a modern GPU
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Supercomputing for games

Specialized processors for performing graphics computations.

~ 82 TFLOPs fp32 *
* Doesn’t include additional 190 TFLOPS of 
ray tracing compute and 165 TFLOPS of fp15 
DNN compute

NVIDIA Founder’s Edition RTX 4090 GPU
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Virtual reality experiences
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Augmented reality

Apple Vision Pro
~11.4M visible pixels per panel 

(28 Mpixel display)
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Meike Hakkart 
http://maquenda.deviantart.com/art/Lion-done-in-illustrator-327715059

Digital illustration
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Graphical user interfaces

Ivan Sutherland, “Sketchpad” (1963) Doug Engelbart 
Mouse
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Modern graphical user interfaces

2D drawing and animation are ubiquitous in computing. 
Typography, icons, images, transitions, transparency, … 

(all rendered at high frame rate for rich experience) 
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Digital photography

NASA | Walter Iooss | Steve McCurry  
Harold Edgerton | NASA | National Geographic
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Computational cameras
Panoramic stitching

David Ili!

High dynamic range (HDR) photography
Portrait mode 
(simulate e!ects of large aperture lens)
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Turning images into 3D worlds

Kerbl et al. 2023
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Computer aided design

For mechanical, architectural, electronic, optical, … 

SolidWorks SketchUp
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Product design and visualization

Ikea - 75% of catalog is rendered imagery (several years ago… likely a lot more now)
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Architectural design

Bilbao Guggenheim, Frank Gehry
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3D fabrication
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Data visualization

Science, engineering, medicine, journalism, …

Tableau
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Simulation

Flight simulator, driving simulator, surgical simulator, … 

Driving simulator 
Toyota Higashifuji Technical Center

da Vinci surgical robot 
Intuitive Surgical
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Graphics/simulation used for training ML models

NV Drive Sim: 
autonomous driving simulator

AI Habitat: 
simulator for training AI agents
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“A bento box with rice, 
edamame, ginger, 
and sushi. 
Top down view, 
white background. 
Sushi in right bin of bento box. 
Edamame in top left.” 

Transformative generative AI capabilities
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Emerging generative AI for creating textured 3D meshes
Vintage copper rotary telephone with intricate detailing. A Victorian mansion made of stone bricks with ornate trim, bay 

windows, and a wraparound porch.

[Structured 3D Latents for Scalable and Versatile 3D Generation, Xiang et al. 2024]
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Foundations of computer graphics
All these applications demand sophisticated theory and systems  

Science and mathematics 
- Physics of light, color, optics  
- Math of curves, surfaces, geometry, perspective, … 
- Sampling 
- Machine learning and optimization 

Systems 
- Parallel, heterogeneous processing 
- Graphics-speci"c programming systems  
- Input/output devices 

Art and psychology 
- Perception: color, stereo, motion, image quality, … 
- Art and design: composition, form, lighting, ...
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ACTIVITY: modeling and drawing a cube
Goal: generate a realistic drawing of a cube 
Key questions: 
- Modeling: how do we describe the cube? 
- Rendering: how do we then visualize this model?
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ACTIVITY: modeling the cube
Suppose our cube is... 
- centered at the origin (0,0,0) 
- has dimensions 2 x 2 x 2 
QUESTION: What are the coordinates of the cube vertices?

A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

QUESTION: What about the edges?
AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH
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ACTIVITY: drawing the cube
We now have a digital description of the geometry of the cube:

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

How do we draw this 3D cube as a 2D (#at) image? 

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH
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Perspective projection
Objects look smaller as they get further away (“perspective”) 
Why does this happen? 
Consider simple (“pinhole”) model of a camera:

2D image

3D object

camera
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For those that didn’t do this in grade school

http://janneinosaka.blogspot.com/2010/03/pinhole-time.html

Pin hole Place photosensitive paper here
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Perspective projection: side view
Where exactly does a point p = (x,y,z) on the tree end up on the image? 
Let’s call the image point q=(u,v)

p=(x,y,z)

q=(u,v) 3D object

im
ag

e



Stanford CS248A, Winter 2025

Perspective projection: side view
Where exactly does a point p = (x,y,z) on the tree end up on the image? 
Let’s call the image point q=(u,v) 
Notice two similar triangles: 

p=(x,y,z)

q=(u,v)

1
z

y

v 3D object

im
ag

e

Assume camera has unit size, coordinates relative to pinhole c 
Then v/1 = y/z… v = y/z 
Likewise, horizontal o!set u= x/z

c
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Can you visualize what it should look like?
Consider a cube with these vertices:

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

Now imagine a camera positioned at (2,3,5) looking at 
the cube… can you picture what it should look like?

Self-check



Pick two vertices that share an edge and do it yourself! 
- Let’s assume camera is at point c=(2,3,5) 
- Convert (X,Y,Z) of both endpoints of cube edge to screen point (u,v): 

1. Subtract camera point c from vertex (X,Y,Z) to get (x,y,z) 
2. Divide x and y by z to get (u,v)—write as a fraction 

- Then draw a line between (u1,v1) and (u2,v2) for all edges
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ACTIVITY: draw image made by pinhole camera

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

Vertex position 
relative to camera

Vertex position in absolute 
world coordinates
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Render a cube!

0 1/12 1/6 1/4 1/3 5/12 1/2 7/12 2/3 3/4 5/6 11/12 1

1

1/12

1/6

1/4

1/3

5/12

1/2

7/12

2/3

3/4

5/6

11/12

Projected coordinates:
A: (1/4, 1/2)
B: (3/4, 1/2)

A B

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

EDGES
AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

- Assume camera is at point c=(2,3,5) 
- Convert (X,Y,Z) of both endpoints of edge to (u,v): 

1. Subtract camera c from vertex (X,Y,Z) to get (x,y,z) 
2. Divide x and y by z to get (u,v) 

- Draw line between (u1,v1) and (u2,v2)



Stanford CS248A, Winter 2025

How did we do?

0 1/12 1/6 1/4 1/3 5/12 1/2 7/12 2/3 3/4 5/6 11/12 1

1

1/12

1/6

1/4

1/3

5/12

1/2

7/12

2/3

3/4

5/6

11/12

2D coordinates (after projection):

Keep in mind, this image is mirrored since it is a 
pinhole projection. Mirror the result about the origin 
(0,0) and you get…

A: (1/4, 1/2)
B: (3/4, 1/2)

C: (1/4, 1)
D: (3/4, 1)

E: (1/6, 1/3)
F: (1/2, 1/3)

G: (1/6, 2/3)
H: (1/2, 2/3)

AB

A B

C D

E F

G H

CD

EF

G

x

y

Recall: camera at (2,3,5), looking in -Z direction, cube centered at origin
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How did we do?

Mirrored

(0,0) +u

+v

-v-u
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But wait… 
How do we draw lines on a computer?
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CNC sharpie drawing machine   ;-)

http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/
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Oscilloscope
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Cathode ray tube

[Credit: http://propagation.ece.gatech.edu/ECE3025/tutorials/CathodeRayTube/CRToverview.htm]
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Frame bu!er: memory for a raster display

image = “2D array of colors”
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Output for a raster display
Common abstraction of a raster display: 
- Image represented as a 2D grid of “pixels” (picture elements)  ** 
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel “as a little square” next class. But let’s go with it for now. ;-)
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Flat panel displays

B.Woods, Android Pit

Low-Res LCD Display

High resolution color LCD, OLED, …
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4K TV
4K UHD TV resolution: 
3840 x 2160 pixels (8.3 megapixels) 

HDTV resolution: 
1920 x 1080 (2.1 megapixels)

Photo credit: Mike Mozart (via Flickr)
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A raster display converts an image (a color value at each pixel) 
into emitted light

Display pixel on my laptop 
(close up photo)
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Close up photo of pixels on a modern display
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LCD screen pixels (closeup)

iphonearena.com iphonearena.com

iPhone 6S Galaxy S5
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LCD screen

https://www.#exenable.com/blog/how-lcds-work/
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LCD (liquid crystal display) pixel
Principle: block or transmit  
light by twisting polarization 

Illumination from backlight 
(e.g. #uorescent or LED) 

Intermediate intensity 
levels by partial twist

[Image credit: H&B "g. 2-16]
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DMD projection display
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Array of micro-mirror pixels 

DMD = Digital micro-mirror device
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DMD projection display

[T
ex

as
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]

Array of micro-mirror pixels 

DMD = Digital micro-mirror device
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What pixels should we color in to depict a line?
“Rasterization”: process of converting a continuous object (a line, a 

polygon, etc.) to a discrete representation on a “raster” grid (pixel grid) 
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What pixels should we color in to depict a line?
Light up all pixels intersected by the line?
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What pixels should we color in to depict a line?
Diamond rule (used by modern GPUs): 

light up pixel if line passes through associated diamond 
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What pixels should we color in to depict a line?
Is there a right answer? 

(consider a drawing a “line” with thickness) 
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How do we "nd the pixels satisfying a chosen 
rasterization rule?

Could check every single pixel in the image to see if it meets the condition... 

- O(n2) pixels in image vs. at most O(n) “lit up” pixels 

- Must be able to do better! (e.g., seek algorithm that does work proportional to 
number of pixels painted when drawing the line) 
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Incremental line rasterization
Let’s say a line is represented with integer endpoints: (u1,v1), (u2,v2) 
Slope of line: s = (v2-v1) / (u2-u1) 
Consider an easy special case: 
- u1 < u2, v1 < v2 (line points toward upper-right) 
- 0 < s < 1 (more change in x than y)

v = v1;
for( u=u1; u<=u2; u++ )
{
   v += s;
   draw( u, round(v) )
}

Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

u1 u2

v1

v2

Assume integer coordinates 
are at pixel centers

(u1,v1)

(u2,v2)
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Line drawing of cube
We know how to compute to location of points in 3D on a 2D screen 
We know how to draw lines between those points.
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We just rendered a simple line drawing of a cube. 

But to render more realistic pictures 
(or animations) we need a much richer model of the world. 

surfaces 
materials 

lights 
cameras
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2D shapes

patches may overlap a color sample so depth samples from differ-
ent patches always compare with the latter patch in render order
“winning”.

Prior to rendering any set of patches, a depth clear to zero is neces-
sary to reset the depth buffer. This could be done with a “cover” op-
eration that simply zeros the depth buffer (without modifying other
buffers) or with a scissored depth buffer clear.

Once the render order issues are resolved, color shading is a matter
of bicubic interpolation [Sun et al. 2007] in the TES.

This is a lot of complexity to match the PDF specification’s patch
rendering order. Certainly if the hardware’s tessellation generator
simply guaranteed an order consistent with the PDF specification,
even at the cost of some less optimal hardware efficiency, rendering
PDF gradient meshes would be much more straightforward.

Another option is detecting via CPU preprocessing of the patch
mesh whether or not actual mesh overlaps are present [Randria-
narivony and Brunnett 2004]. When not present, gradient mesh
rendering could be much more straightforward and efficient. In
practice, we know overlaps are rare in real gradient mesh content.

Coarse Level-of-detail Control Graphics hardware tessellation
has a limited maximum level-of-detail for tessellation. When the
level-of-detail is clamped to a hardware limit for tessellation, tes-
sellation artifacts may arise. We monitor the relative size of tes-
sellated patches such that their maximum level-of-detail does not
grossly exceed the scale of two or three pixels in window space.
If this happens, patches need to be subdivided manually to ensure
the patch mesh avoids objectionable tessellation artifacts. Care is
necessary to maintain a water-tight subdivided patch mesh. This is
done by ensuring exactly matching level-of-detail computations on
mutual edges of adjacent patches.

8 Comparing GPU versus CPU Rendering

Our contributions for GPU-acceleration are best understood in con-
trast with Illustrator’s pre-existing CPU rendering approach. All
but a cursory description of Illustrator’s CPU rendering approach is
beyond the scope of this paper. Illustrator’s CPU rendering closely
follows the PDF standard [Adobe Systems 2008]. AGM’s CPU
renderer relies on a robust, expertly-tuned, but reasonably conven-
tional active edge list algorithm [Foley et al. 1990] for rasterizing
arbitrary paths including Bézier segments [Turner 2007]. Table 1
lists the differences between the CPU and GPU approaches in orga-
nizing the framebuffer storage for rendering. Table 2 lists the ways
rendering is different between the CPU and GPU approaches.

9 Performance

We benchmarked our GPU-accelerated rendering mode against
AGM’s CPU-based renderer on six Illustrator documents pictured
in Figure 10. We selected these scenes for their availability, artistic
content, and complexity. Table 3 quantitatively summarizes each
scene’s complexity. We consider these scenes representative of the
kind of complex artwork we wish to encourage by making its au-
thoring more interactive.

9.1 Benchmarking RGB Artwork

Table 4 presents our benchmarking results for RGB color model
rendering. Our benchmarking method executes a script that zooms
and pans over the content to mimic the kind of fast view changes an

(a) WF BambooScene.ai

(b) archerfish.ai (c) Blue Mirror.ai

(d) whale2.ai

(e) Tropical Reef.ai

(f) bigBlend2.ai

Figure 10: Challenging Illustrator artwork for benchmarking.

146:10        •        V. Batra et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 146, Publication Date: August 2015

[Source: Batra 2015]
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Complex 3D surfaces

Platonic noid

[Kaldor 2008]

[Utah Teapot]
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Modeling 
material properties

[Jakob 2014]

[Wann Jensen 2001]

[Zhao 2013]
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Realistic lighting environments 
Wall-E, (Pixar 2008)
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Animation: modeling motion

https://www.youtube.com/watch?v=6G3O60o5U7w

Luxo Jr. (Pixar 1986)
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Course Logistics
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About this course

A broad overview of major topics and techniques in interactive computer graphics: 
geometry, rendering, imaging 

Learn by implementing: 
- Focus on implementing fundamental data structures and algorithms that are 

reused across all areas of graphics 
- We expect that you can understand/write/debug C/C++ code
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Course programming assignments

1. 2D drawing (2 weeks) 2. Geometry editing (2 weeks)

3. Path tracer (2 weeks) 4. Self-selected project 
extend existing project, or choose your own 

(~3 weeks)

Man Designed by Alekksall / Freepik. Woman designed by Dooder / Freepik
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Assignments / grading
(60%) Four programming assignments 
- Done in teams of up to two students (yes, you can work alone if you wish) 

(25%) Five written exercises 
- BI-weekly written exercises (think of these as possible exam problems) 

- Graded partially on correctness, partially on participation 
- Done in teams of three. We assign the teams randomly each assignment 

(15%) Exam 
- Evening exam on Wed March 5th (not in class)
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The course web site
We have no textbook for this class and so the lecture slides are the primary course reference
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FAQ
How are CS248A and CS248B related? 
- They are explicitly designed to be independent starter courses for the visual computing track. There is no 

assumption you’ve taken CS248A before CS248B or vice versa. 
- The biggest point of content overlap is the lecture on transforms (lecture 3) 

Are lectures recorded? 
- Yes, since this is an GCOE class. 
- My expectation is that all local students come to class. I may or may not "nd ways to encourage it!



Stanford CS248A, Winter 2025

FAQ
Is there a "nal? 
- No… the "nal exam slot is used for our project showcase 
- There will be one exam that will on the evening of Wed March 5th. 

Do I need a partner for programming assignments? 
- No, each year there are students that choose to do all the programming assignments alone 
- Need a partner: we will "nd one for you, via our partner search form  

- What are the prereqs for CS248A? 
- You should have the math background: linear algebra (at least MATH 51) and 3D calculus  
- You should have the C/C++ coding background (at least CS107) 
- CS148 is not a pre-req
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Back to drawing… 
We talked about drawing lines, what about triangles?
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Input: 
2D position of triangle vertices: P0, P1, P2

Drawing a triangle ("triangle rasterization”)

Output: 
Set of pixels “covered” by the triangle

(Converting a representation of a triangle into an image)

P0

P1

P2
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Why triangles?
Triangles are a basic block for creating more complex shapes and surfaces
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(one pixel)

Detailed surface modeled by tiny triangles
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Triangles - a fundamental primitive
Why triangles? 
- Most basic polygon 

- Can break up other polygons into triangles 
- Allows programs to optimize one implementation 

- Triangles have unique properties 
- Guaranteed to be planar 
- Well-de"ned interior 
- Well-de"ned method for interpolating values at vertices over triangle (a topic of a future 

lecture)
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What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4
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One option: compute fraction of pixel area covered by triangle, then color pixel according to 
this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10% 
of pixel, then pixel should be 
10% red?
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Analytical coverage schemes get tricky when considering occlusion of one 
triangle by another

Two regions of triangle 1 contribute to pixel.  
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other 
half covered by triangle 2
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Idea: let’s call a pixel “inside” the triangle if the pixel center is 
inside the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center
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So here’s our triangle…
(Overlaid over a pixel grid)
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What’s wrong with this picture? 

Jaggies!

(This is the result of rasterizing the triangle using our method)
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Next time, we’ll talk about drawing a triangle in more rigor 
- How do we compute if a point is inside a triangle? 
- What’s up with these “jagged” lines and triangle edges? 
- What can we do about it to improve image quality?

See you next time!

Slide acknowledgements: 
Thanks to Keenan Crane and Ren Ng


