Lecture 7:

Mesh representations and Mesh Processing

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2025

Let's start with a bit on measurements of surfaces

Surface tangent

Surface normal (N) is orthogonal to all tangents

$$N \cdot df(X) = 0 \ \forall X$$

A common visualization of normals

Encode normal direction as RGB color as difference from gray

R = 0.5 + 0.5 N.xG = 0.5 + 0.5 N.y

Notice: scale and bias normal values so we can represent negative components of normal as valid colors

Curvature is change in normal

Radius of curvature

A small triangle mesh

8 vertices, 12 triangles

A large triangle mesh

David

Digital Michelangelo Project 28,184,526 vertices 56,230,343 triangles

Even larger meshes

Recall: image upsampling

Convert representation of signal given by samples taken at black dots into a representation given at new set of denser samples (red dots)

Recall: image upsampling

Upsampling via Nearest neighbor interpolation

Recall: image upsampling

Upsampling via bilinear interpolation

Recall: image downsampling

Convert representation of signal given by samples taken at black dots into a representation given at new set of sparser samples (red dots)

Recall: image resampling

Convert representation of signal given by samples taken at black dots into a representation given at new set of samples (red dots)

Examples of geometry processing

Mesh upsampling — subdivision

Increase resolution via interpolation

Mesh downsampling — simplification

Decrease resolution; try to preserve shape/appearance

Mesh resampling — regularization

Modify sample distribution to improve quality

More geometry processing tasks

Today

How to represent meshes (data structures)

- How to perform a number of basic mesh processing operations
 - Subdivision (upsampling)
 - Mesh simplification (downsampling)
 - Mesh resampling

Mesh representations

Basic mesh representation: list of triangles

Another representation: Lists of vertexes / indexed triangle

Comparison

- List of triangles
 - GOOD: simple
 - BAD: contains redundant per-vertex information

- List of vertexes + list of indexed triangles
 - GOOD: sharing vertex position information reduces memory usage
 - GOOD: ensures integrity of the mesh (changing a vertex's position in 3D space causes that vertex in all the polygons to move)

Mesh topology vs surface geometry

Same vertex positions, different mesh topology

Same topology, different vertex positions

Smooth surfaces

- Intuitively, a *surface* is the boundary or "shell" of an object
- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
 - If you zoom in far enough (at any point) looks like a plane*
 - E.g., the Earth from space vs. from the ground

*...or can easily be flattened into the plane, without cutting or ripping.

Why is the manifold property valuable?

- Makes life simple: all surfaces look the same (at least locally)
- Gives us coordinates! (at least locally)

Isn't every shape manifold?

No, for instance:

Center point never looks like the plane, no matter how close we get.

More examples of smooth surfaces

■ Which of these shapes are manifold?

A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:
 - 1. Every edge is contained in only two polygons (no "fins")
 - 2. The polygons containing each vertex make a single "fan"

What about boundary?

- The boundary is where the surface "ends."
- E.g., waist and ankles on a pair of pants.
- Locally, looks like a *half* disk
- Globally, each boundary forms a loop

- one polygon per boundary edge
- boundary vertex looks like "pacman"

Topological validity: manifold

A 2D manifold is a surface that when cut with a small sphere always yields a disk (or a half disk on the boundary)

Manifolds have useful properties

- A 2D manifold is a surface that when cut with a small sphere always yields a disk
- If a mesh is manifold, we can rely on these useful properties: *
 - An edge connects exactly two faces
 - An edge connects exactly two vertices
 - A face consists of a ring of edges and vertices
 - A vertex consists of a ring of edges and faces
 - Euler's polyhedron formula holds: #f #e + #v = 2(for a surface topologically equivalent to a sphere) (Check for a cube: 6 - 12 + 8 = 2)

^{*} Some of these properties only apply to non-border mesh regions

Topological validity: orientation consistency

Both facing front

Inconsistent orientations

Non-orientable (e.g., Moebius strip)

Simple example: triangle-neighbor data structure

```
// definition of a triangle
struct Tri {
   Vert* v[3]; // contained vertex
   Tri* t[3]; // adjacent triangle
// definition of a triangle vertex
struct Vert {
   Vec3
         pos;
  Tri* t;
```


Triangle-neighbor — mesh traversal

Find next triangle counter-clockwise around vertex v from triangle t

```
Tri* ccw_tri(Vert *v, Tri *t)
{
    if (v == t->v[0])
       return t[0];
    if (v == t->v[1])
       return t[1];
    if (v == t->v[2])
       return t[2];
}
```


Half-edge data structure

```
struct Halfedge {
   Halfedge *twin,
   Halfedge *next;
   Vertex *vertex;
   Edge *edge;
   Face *face;
struct Vertex {
   Vec3 pos;
   Halfedge *halfedge;
struct Edge {
   Halfedge *halfedge;
struct Face {
   Halfedge *halfedge;
```

Key idea: two half-edges act as "glue" between mesh elements

Each vertex, edge and face points to one of its half edges

Half-edge structure facilitates mesh traversal

- Use twin and next pointers to move around mesh
- Process vertex, edge, and/or face pointers

Example 1: process all vertices of a face

```
Halfedge* h = f->halfedge;
do {
   do_work(h->vertex);
   h = h->next;
}
while( h != f->halfedge );
```


Half-edge structure facilitates mesh traversal

Example 2: process all edges around a vertex

```
Halfedge* h = v->halfedge;
do {
   do_work(h->edge);
   h = h->twin->next;
}
while( h != v->halfedge );
```


Local mesh operations

Half-Edge — local mesh editing

- Consider basic operations for linked list: insert, delete
- Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers (Care is needed to preserve mesh manifold property)

Half-edge – edge flip

Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

- In implementation: you'll perform a long list of half-edge pointer reassignments
- However, no mesh elements created/destroyed

Thought experiment: defining edge flip on N-gons?

■ I find it very use to think about this case...

What is a "reasonable" thing to do.

Does your approach reduce to triangle edge

flips in the N=3 case?

Half-edge – edge split

Insert midpoint m of edge (c,b), connect to get four triangles:

- Must add elements to mesh (new vertex, faces, edges)
- Again, many half-edge pointer reassignments

Half-edge – edge collapse

Replace edge (c,d) with a single vertex m:

- Must delete elements from the mesh
- Again, many half-edge pointer reassignments

Global mesh operations: geometry processing

- Mesh subdivision (form of subsampling)
- Mesh simplification (form of downsampling)
- Mesh regularization (form of resampling)

Subdivision — upsampling a mesh

Upsampling via subdivision

- Replace vertex positions with weighted average of neighbors
- Main considerations:
 - interpolating vs. approximating
 - limit surface continuity ($C^1, C^2, ...$)
 - behavior at irregular vertices
- Many options:
 - Quad: Catmull-Clark
 - Triangle: Loop, butterfly, sqrt(3)

Loop subdivision

Common subdivision rule for triangle meshes "C2" smoothness away from irregular vertices Approximating, not interpolating

Loop subdivision algorithm

Split each triangle into four

■ Compute new vertex positions using weighted sum of prior vertex positions:

New vertices

(weighted sum of vertices on split edge, and vertices "across from" edge)

Old vertices

(weighted sum of edge adjacent vertices)

Loop subdivision algorithm

Example, for degree 6 vertices ("regular" vertices)

Loop subdivision results

Common subdivision rule for triangle meshes "C2" smoothness away from irregular vertices Approximating, not interpolating

Credit: Simon Fuhrman
Stanford CS248A, Winter 2025

Semi-regular meshes

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6

Must have a few extraordinary points (degree not equal to 6)

Extraordinary vertex

Proof: always an extraordinary vertex

Our triangle mesh (topologically equivalent to sphere) has V vertices, E edges, and T triangles

$$E = 3/2 T$$

- There are 3 edges per triangle, and each edge is part of 2 triangles
- Therefore E = 3/2T

$$T = 2V - 4$$

- Euler Convex Polyhedron Formula: T E + V = 2
- > V = 3/2 T T + 2 > T = 2V 4

If all vertices had 6 triangles, T = 2V

- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, E = 6/2V = > 3/2T = 6/2V = > T = 2V

T cannot equal both 2V – 4 and 2V, a contradiction

- Therefore, the mesh cannot have 6 triangles for every vertex

Loop subdivision via edge operations

First, split edges of original mesh in any order:

Next, flip new edges that touch a new and old vertex:

(Don't forget to update vertex positions!)

Continuity of loop subdivision surface

- At extraordinary vertices
 - Surface is at least C¹ continuous

- **■** Everywhere else ("ordinary" regions)
 - Surface is C² continuous

Loop subdivision results

Catmull-Clark Subdivision

Catmull-Clark subdivision (regular quad mesh)

Catmull-Clark subdivision (regular quad mesh)

Catmull-Clark subdivision (regular quad mesh)

Catmull-Clark vertex update rules (quad mesh)

$$f = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

$$e = \frac{v_1 + v_2 + f_1 + f_2}{4}$$

Edge point

Vertex point
$$v = \frac{f_1}{m_4} v m_2$$

$$v = \frac{f_1 + f_2 + f_3 + f_4 + 2(m_1 + m_2 + m_3 + m_4) + 4p}{16}$$

midpoint of edge, not "edge point" old "vertex point"

Catmull-Clark vertex update rules (general mesh)

f = average of surrounding vertices

$$e = \frac{f_1 + f_2 + v_1 + v_2}{4}$$

These rules reduce to earlier quad rules for ordinary vertices / faces

$$v = \frac{\overline{f}}{n} + \frac{2\overline{m}}{n} + \frac{p(n-3)}{n}$$

 \bar{m} = average of adjacent midpoints

 \bar{f} = average of adjacent face points

n =valence of vertex

p = old "vertex" point

Continuity of Catmull-Clark surface

- At extraordinary points
 - Surface is at least C¹ continuous

- Everywhere else ("ordinary" regions)
 - Surface is C² continuous

What about sharp creases?

Loop with Sharp Creases

Catmull-Clark with Sharp Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

Creases and boundaries

Insert new midpoint vertex,

weights as shown

- Can create creases in subdivision surfaces by marking certain edges as "sharp". Surface boundary edges can be handled the same way
 - Use different subdivision rules for vertices along these "sharp" edges

Update existing vertices,

weights as shown

Subdivision in action ("Geri's Game", Pixar)

- Subdivision used for entire character:
 - Hands and head
 - Clothing, tie, shoes

Subdivision in action (Pixar's "Geri's Game")

Mesh simplification (downsampling)

How do we resample meshes? (reminder)

Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling:

Still need to intelligently decide which edges to modify!

Mesh simplification

Goal: reduce number of mesh elements while maintaining overall shape

Estimate: error introduced by collapsing an edge?

How much geometric error is introduced by collapsing an edge?

Sketch of Quadric Error Mesh Simplification

Simplification via quadric error

- Iteratively collapse edges
- Which edges? Assign score with quadric error metric*
 - Approximate distance to surface as sum of squared distances to planes containing nearby triangles
 - Iteratively collapse edge with smallest score
 - Greedy algorithm... great results!

What's the "surface error" from an edge collapse

- What's the error introduced by collapsing an edge?
- Intuition: how far is the new vertex (e.g., the edge midpoint) from the original surface...
- Approximate error by sum of distances original position of triangles now touching V_{mid}

Distance from point to a line (and a plane)

Line is defined by:

- Its normal: N
- A point x₀ on the line

The line (in 2D) is all points x, where $x - x_0$ is orthogonal to N. (N, x, x_0 are 2-vectors)

 $\mathbf{N} \cdot (\mathbf{x} - \mathbf{x_0}) = 0$

 $\mathbf{N}^{\mathrm{T}}(\mathbf{x} - \mathbf{x_0}) = 0$

And a plane (in 3D) is all points x where $x - x_0$ is orthogonal to N.

(And for a plane in 3, N, x, x_0 are 3-vectors)

Some plug and chug...

Let:
$$\mathbf{N} = \begin{bmatrix} a & b & c \end{bmatrix}$$

 $\mathbf{x} = \begin{bmatrix} x & y & z \end{bmatrix}$

So signed distance from x to plane with normal N and point x₀ is:

$$\mathbf{N} \cdot (\mathbf{x} - \mathbf{x_0}) = \mathbf{N} \mathbf{x} - \mathbf{N} \mathbf{x_0} =$$

$$ax + by + cz - (ax_0 + by_0 + cz_0) =$$

$$ax + by + cz + d$$

Where:
$$d = -(ax_0 + by_0 + cz_0)$$

Now, consider homogeneous form of point x: (I'll call it u), and a vector v describing the plane.

$$\mathbf{u} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} a & b & c & d \end{bmatrix}$$

Signed distance between point and plane is:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^\mathsf{T}$$

So squared distance is

$$(\mathbf{u}\mathbf{v}^{\mathsf{T}}) \cdot (\mathbf{u}\mathbf{v}^{\mathsf{T}}) =$$
 $(\mathbf{u}\mathbf{v}^{\mathsf{T}})(\mathbf{u}\mathbf{v}^{\mathsf{T}})^{\mathsf{T}} =$
 $(\mathbf{u}\mathbf{v}^{\mathsf{T}})(\mathbf{v}\mathbf{u}^{\mathsf{T}}) =$
 $\mathbf{u}(\mathbf{v}^{\mathsf{T}}\mathbf{v})\mathbf{u}^{\mathsf{T}} =$
 $\mathbf{u}(\mathbf{q}\mathbf{u}^{\mathsf{T}})$

Quadric error matrix (encodes squared distance)

Let:

$$\mathbf{u} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} a & b & c & d \end{bmatrix}$$

$$Q = egin{bmatrix} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & c^2 & cd \ ad & bd & cd & d^2 \ \end{bmatrix}$$

Signed distance between point and plane is:

$$\mathbf{u}\cdot\mathbf{v}=\mathbf{u}\mathbf{v}^\mathsf{T}$$

So squared distance is

$$(\mathbf{u}\mathbf{v}^{\mathsf{T}}) \cdot (\mathbf{u}\mathbf{v}^{\mathsf{T}}) =$$
 $(\mathbf{u}\mathbf{v}^{\mathsf{T}})(\mathbf{u}\mathbf{v}^{\mathsf{T}})^{\mathsf{T}} =$
 $(\mathbf{u}\mathbf{v}^{\mathsf{T}})(\mathbf{v}\mathbf{u}^{\mathsf{T}}) =$
 $\mathbf{u}(\mathbf{v}^{\mathsf{T}}\mathbf{v})\mathbf{u}^{\mathsf{T}} =$
 $\mathbf{u}(\mathbf{q}\mathbf{u}^{\mathsf{T}}\mathbf{v})\mathbf{u}^{\mathsf{T}} =$

Distance is 2nd degree ("quadric") polynomial in x,y,z

Cost of edge collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint V_{mid}, measure quadric error at this point
- Error at V_{mid} given by $v_{mid}(Q_0 + Q_1)v_{mid}^T$ ◆ See next slide for Q_i
- Intuition: cost is sum of squared differences to original position of triangles now touching V_{mid}

- Even Better idea: choose point on edge (not necessarily the midpoint) that minimizes quadric error
- More details: Garland & Heckbert 1997

"Quadric error metric at mesh vertex"

Heuristic: "error metric at vertex V" is sum of squared distances to triangles connected to V Encode this as a single quadric matrix per vertex that is the sum of quadric error matrices for all triangles

Quadric error simplification: algorithm

- Compute quadric error matrix Q for each triangle's plane
- Set Q at each vertex to sum of Q's from neighbor triangles
- Set Q at each edge to sum of Q's at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target # of triangles:
 - collapse edge (i,j) with smallest cost to get new vertex m
 - $add Q_i$ and Q_j to get quadric Q_m at vertex m
 - update cost of edges touching vertex m

Quadric error mesh simplification

Mesh Regularization

What makes a "good" triangle mesh?

- One rule of thumb: triangle shape
- One rule of thumb: triangle shape
- More specific condition: Delaunay
 - "Circumcircle interiors contain no vertices."
- Not always a good condition, but often*
 - Good for simulation
 - Not always best for shape approximation

^{*}See Shewchuk, "What is a Good Linear Element"

What else constitutes a good mesh?

- Rule of thumb: regular vertex degree
- Triangle meshes: ideal is every vertex with valence 6:

Why? Better triangle shape, important for (e.g.) subdivision:

*See Shewchuk, "What is a Good Linear Element"

Isotropic remeshing

Goal: try to make triangles uniform in shape and size

How do we make a mesh "more delaunay"?

- Already have a good tool: edge flips!
- If $\alpha+\beta>\pi$, flip it!

■ In practice: a simple, effective way to improve mesh quality

How do we improve degree?

- Edge flips!
- If total deviation from degree 6 gets smaller, flip it!

Iterative edge flipping acts like "discrete diffusion" of degree

No (known) guarantees; works well in practice

How do we make triangles "more round"?

- Delaunay doesn't mean equilateral triangles
- Can often improve shape by centering vertices:

Isotropic remeshing algorithm*

- Repeat four steps:
 - Split edges over 4/3rds mean edge length
 - Collapse edges less than 4/5ths mean edge length
 - Flip edges to improve vertex degree

- Center vertices tangentially

Things to remember

- Triangle mesh representations
 - Triangles vs points+triangles
 - Half-edge structure for mesh traversal and editing
- Geometry processing basics
 - Local operations: flip, split, and collapse edges
 - Upsampling by subdivision (Loop, Catmull-Clark)
 - Downsampling by simplification (Quadric error)
 - Regularization by isotropic remeshing

Acknowledgements

Thanks to Keenan Crane, Ren Ng, Pat Hanrahan, James O'Brien, Steve Marschner for presentation resources