Lecture 14:

Modern Real-Time
Rendering Techniques

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2025
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Supercomputing for games

NVIDIA Founder’s Edition RTX 4090 GPU
~ 82 TFLOPs fp32 *

* Doesn’t include additional 190 TFLOPS of

ray tracing compute and 165 TFLOPS of fp15
DNN compute RN

Specialized processors for performing graphics computations.
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Last couple of lectures: ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
How much radiance is incident from a given direction?
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Rasterization: algorithm for “camera ray”- scene queries

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection

Note: rasterization does not yield uniform distribution in angle. .. angle between rays is smaller away from view
direction than it is in the center of the view because equal steps in Y are not equal steps in angle.
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Review: basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project _triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are distributed uniformly on screen) .
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Review: basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}
color|[s] = compute rejected radiance from triangle r.tri at hit point And as you know now, a performant

raytracer will use an
acceleration structure like a BVH.

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”
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Theme of this part of the lecture

A surprising number of advanced lighting effects can be approximated using the basic
primitives of the rasterization pipeline, without the need to actually ray trace the scene
geometry. We are going to approximate the use of ray tracing with:

m Rasterization
m Texture mapping
m Depth buffer for occlusion

These techniques have been the basis of high quality real-time rendering for decades.
Since ray tracing performance is not fast enough to be used in real-time applications.
Although this is changing...
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Shadows
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How much light is REFLECTED from p toward po

L(p, wo) Z f (P, wi, wo)V (P, Pi) Li cost; (Point light 1 is at P and emits L,)

/ ® P1
Visibility term: =

4 (Pa Pi) 1, if P is visible from P;
0, otherwise

(8

W1

Po

Pinhole

° PZ
= (Pointlight 2 is at P, and emits L,)
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Review: How to compute V' (p, p;) using ray tracing

m Traceray from point P to location P; of light source

m [fray hits scene object before reaching light
source... then Pis in shadow
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Point lights generate “hard shadows”

(Either a point is in shadow or it’s not)

| 1,ifpisvisible from L, P,
V(p, Pi) a { 0, otherwise o

A
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What if you didn’t have a ray tracer,
just a rasterizer?
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We want to shade these points
(aka “fragments” in rasterization pipeline)

What “shadow rays” do you need to
compute shading for this scene?

Surface
Camera

position
@
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Shadow mapping

[Williams 78]

1. Place camera at position of the scene’s point light source light

2. Render scene to compute depth of closest object to light along a uniformly spaced set
of “shadow rays” (note: answer is stored in depth buffer after rendering)

3. Store precomputed shadow ray intersection results in a texture map

Precomputed
shadow rays

“Shadow map” = depth map from
perspective of a point light.

(Store closest intersection along each
shadow ray in a texture)

Image credits: Segal et al. 92, NVIDIA
Stanford C5248A, Winter 2025



Result of shadow texture lookup approximates visibility
result when shading fragment at P

Precomputed shadow rays shown in red:
Pi Distance to closest object in scene has been precomputed and stored in “shadow map”

Camera

position Surface
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Interpolation error

Bilinear interpolation of shadow map values (red line) only approximates distance
to closest surface point in all directions from the camera

P;

| CRE
H ry g
=
———
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Shadow map
(depth map computed from P,)

Camera
position

. Surface

. s (Not actually in shadow,
r p but in shadow according to shadow map)

(Not in shadow)
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Shadow aliasing due to shadow map undersampling

Shadows computed using shadow map

Correct hard shadows
(result from computing visibility along ray between surface
point and light directly using ray tracing)

Image credit: Johnson et al. TOG 2005 Stanford (5248A, Winter 2025



Soft shadows

Hard shadows Soft shadows
(created by point light source) (created by ?7?)

Image credit: Pixar Stanford (S248A, Winter 2025



Area light
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Shadow cast by an area light (via ray tracing)

¢ o Notice that a fraction of the light from an area light

toward a point P may reach that point (partial occlusion)
®

P (partially illuminated)
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Percentage closer filtering (PCF) — hack!

(consider case where distance
from light to surface is 0.5)

m Instead of sampling shadow map once, perform multiple lookups 0/o/0/0/0fo]o]0]1
around desired texture coordinate 019 | Somiantanian | ' | -
0.0;0 0 0|1 1_1'1

) ) . o|o0(0j0 |0 fT]1 1|1

m Tabulate fraction of lookups that are in shadow, modulate light oo | GRREEEE | 1|1
intensity accordingly 0100011111

1 1‘1 1|2 _1 s S I I |

Hard shadows PCF shadows
(one lookup per fragment) (16 lookups per fragment)
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What PCF computes

The fraction of these rays that are shorter than |P-P,| ° o

P
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Shadow cast by an area light

¢ Actual illumination at P is given by
fraction of these rays that are occluded.

)
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Q. Why isn’t the surface in shadow completely black?
Answer: Assumption that some amount of “ambient light” (light scattered from off surfaces)
hits every
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Image credit: Brennan Shacklett

iy



—

This scene contains an environment light source that has equa

m b i e nt 0 cc I u S i 0 n illumination from all directions. (e.g., an overcast day)

All surfaces are diffuse reflectors.
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Hack: ambient obscurance

|dea: Offline, precompute “fraction of hemisphere” that is occluded within distance d from a point (e.g., via
a ray tracer)

Store this fraction in a texture map
When shading, attenuate environment lighting by this fraction
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“Screen-space” ambient occlusion in games

1. Render scene to depth buffer
2. Foreach pixel p, “ray trace” the depth buffer to estimatelocal [ J
occlusion of hemisphere - use a few samples per pixel I T S
3. Blurthe the per-pixel occlusion results to reduce noise T
4. When shading pixels, darken direct environment lighting by Depth buffer values
occlusion amount computed for the current pixel

R
.
.

‘$
“
.
.

without ambient occlusion with ambient occlusion
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Ambient occlusion

Direct Lighting (no self-shadowing computations)

R
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Reflections
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Reflections

Image credit: NVIDIA Stanford (S248A, Winter 2025
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Recall: perfect mirror material
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Recall: perfect mirror reflection

Light reflected from P in direction of Py is
incident on P; from reflection about surface at P.
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Rasterization: “camera” position can be reflection point

Environment mapping: Scene rendered 6 times, with ray
¢ o o o origin at center of reflective box
place ray origin at reflective object (produces “cube-map”)
Yields approximation to true reflection
results. Why? ’
—
Cube map: —

stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered using
the cube-map)

Center of projection /

Image credit: http://en.wikipedia.org/wiki/Cube_mapping Stanford (5248A, Winter 2025
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Indirect lighting
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Indirect lighting

Why is this gray wall tinted red?

-

Why is this point not black.<>

Image credit: Henrik Wann Jensen Stanford (5248A, Winter 2025



PrecomPUtEd Iighting Rendered result

m Precompute accurate lighting for a scene offline
using a ray tracer (possible for static lights)

m  “Bake” results of lighting into texture map

Light map

Stanford (5248A, Winter 2025



Precomputed lighting in Unity Engine

<— Visualization of light map texture coordinates

Image credit: Unity / Alex Lovett Stanford C5248A, Winter 2025



Today, there’s increasing use of real-time ray tracing

I've just shown you an array of different techniques for approximating different advanced lighting phenomenon using a
rasterizer

m Challenges:
- Different algorithm for each effect (code complexity)
- Algorithms may not compose
- They are only approximations to the physically correct solution (“hacks!”)
m These techniques were adopted because historically tracing rays to solve these problems was too costly for real-time us

This image was ray traced in real-time on a GPU
Stanford C5248A, Winter 2025



Real-time ray tracing challenge:

Need to shoot many rays per pixel to accurately estimate the
value of the rendering equation integral

Want high-performance interactive rendering

s



Innovation 1: hardware acceleration

Stanford (S248A, Winter 2025



Supercomputing for games

NVIDIA Founder’s Edition RTX 4090 GPU
~ 82 TFLOPs fp32 *

* Doesn’t include additional 190 TFLOPS of ray tracing
compute and 165 TFLOPS of fp15 DNN compute

Specialized processors for performing graphics computations.

Stanford (5248A, Winter 2025



Innovation 1:
Hardware innovation: custom GPU hardware for RT

NVIDIA GeForce RTX 4090 GPU



Fixed-function hardware for ray tracing

m GPU hardware accelerates ray-BVH traversal
and ray-triangle intersection

Memory Contro

Memory Controller

Optical Flow Accelerator

O

T

PCI Express 4.0 Host Interface

NVENC

NVENC

ter Enging

1PC

1PC

IPC

NVIDIA “Ada” Architecture (4xxx series)

NVDEC

NVDEC

SM

Register File (16,384 x 32-bit)

ADA 4™
GENERATION
TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

FP32 ADA 4™

-0 FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/IST LD/ST

Register File (16,384 x 32-bit)

FP32 oA

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 ADA 4™

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

128 KB L1 Data Cache / Shared Memory

Tex

RT CORE
3rd Generation

Tex
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D3D12’s DXR ray tracing “stages”

m Raytracing is abstracted as a graph of programmable “stages”
m TraceRay() is a function available in some of those stages

[ Ray Generation J Acceleration

TraceRay()

y

structure

s

Acceleration
Structure
Traversal

N [ Any Hit ] Can call TraceRay()

!

Y

J [ Intersection ]

NoO /Hlt’P\ Yes

L

Can call TraceRay() [ Miss ]

[ Closest Hit J Can call TraceRay()
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Example: ray generation shader (creates camera rays)

(// Thlis represents the geometry of our scene.
RaytracingAccelerationStructure scene register(t5);
[ shader ( "raygeneration") ]
void RayGenMain/()
{
// Get the location within the dispatched 2D grid of work items
// (often maps to pixels, so this could represent a pixel coordinate).
uint2 launchIndex = DispatchRaysIndex();
// Define a ray, consisting of origin, direction, and the t-interval
// we're interested in.
RayDesc ray;
ray.Origin = SceneConstants.cameraPosition.
ray.Direction = computeRayDirection( launchIndex ); // assume this function exists
ray.TMin = 0;
ray.TMax = 100000;
Payload payload;
// Trace the ray using the payload type we've defined.
// Shaders that are triggered by this must operate on the same payload type.
TraceRay( scene, 0 /*flags*/, OXFF /*mask*/, 0 /*hit group offset*/,
1 /*hit group index multiplier*/, 0 /*miss shader index*/, ray, payload );
outputTexture|launchIndex.xy] =|payload.color;
}

Example “hit shader”: Runs on ray hit to fill in payload

// Attributes contain hit information and are filled in by the intersection shader.
// For the built-in triangle intersection shader, the attributes always consist of
// the barycentric coordinates of the hit point.

struct Attributes

{
float2 barys;

}i

[shader("closesthit")]
void ClosestHitMain( inout Payload payload, in Attributes attr )
{
// Read the intersection attributes and write a result into the payload.
payload.color = float4( attr.barys.x, attr.barys.y,
1l - attr.barys.x - attr.barys.y, 1 );

// Demonstrate one of the new HLSL intrinsics: query distance along current ray
payload.hitDistance & RayTCurrent();

Stanford (5248A, Winter 2025



Innovation 2: more intelligent importance sampling

Stanford (S248A, Winter 2025



Recall “perfect” importance sampling

m Drawing samples from distribution proportion to f(x) yields zero variance estimates (only
need a single sample to estimate an integral if you draw that sample according to f(x)

m Butimpractical because to know p(x), you need to know the integral you are trying to
estimate!

ﬁ (.CC ) — Cf (CC ) <4—— Normalization to make a pdf
1

[ fz)da
f( ) o / (33) . / (5’3) o 1 Generalized MC estimator (regardless of what sample we draw, our estimator is 1/c)
)= p(x) c (x) c So variance in the estimate after taking N samples is 0.

Stanford (5248A, Winter 2025



Resampled importance sampling

m Modernvariance reduction techniquesinraytracing | pixel at the current frame
(ReSTIR =“resampled spatiotemporal importance
sampling) try to approximate the ideal pdf cf(x) by
randomly samples from a set of prior chosen samples
(“resampling”)

- Nearby samples in “space” (samples chosen to
compute integrals nearby on screen)

- Nearby samples in “times” (samples chosen at the
same screen location in prior frames)

___________ previous frame

------- previous frame — 1

---- previous frame — 2

Suggested reference for learning more:
“A Gentle Introduction to ReSTIR: Path Reuse in Real-time”, SIGGRAPH 2023 course notes *

* Disclaimer: gentle can be in the eye of the writer

Stanford (5248A, Winter 2025
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Better importance sampling algorithms

Path traced: 1 path/pixel (8 ms/frame) Path traced: 1 path/pixel using ReSTIR GI (8.9 ms/frame)

Key idea: cache good paths, reuse good paths found from from prior frames or for prior pixels in same frame

[Ouyang et al. 2021]

Stanford (5248A, Winter 2025



Innovation 3: Neural network based denoising

|ldea: Use neural image-to-image transfer methods to convert cheaper to
compute (but noisy) ray traced images into higher quality images that look
like they were produced by tracing many rays per pixel

Stanford (S248A, Winter 2025



This image was rendered using many paths per pixel (expensive)
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Rendering of surface albedo (“material color”)
(no illumination — very cheap)
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Denoised results
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16 paths/pixel (denoised)
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4096 paths/pixel (denoised)
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[Chaitanya 17]

Example: neural denoiser DNN

o — — — — — — — — — — — — — —— — — — — — — — — — —

Encoder Decoder
L il

Input to network is noisy RGB image * + additional normal, depth, and roughness channels
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

Depth Normal Roughness Albedo

- | e " S

* Actually the input is RGB demodulated by (divided by) texture albedo (don’t force network to learn what texture was)
Stanford (5248A, Winter 2025



4000 spp [Chaitanya 1 7]
Denoised (ground truth)

Denoising results

CoRrNELLBOX

SPONZA

CLASSROOM
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[Chaitanya 17]

Denoising results (challenging)

4000 spp
Denoised (ground truth)

Stanford (5248A, Winter 2025



More denoising examples

Original (noisy)

Original

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S248A, Winter 2025




More denoising examples

Denoised

Denoised

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S248A, Winter 2025
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Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S248A, Winter 2025




More denoising examples
Dénoised™ . |\ ‘
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Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S248A, Winter 2025




[Xiao 20]

Neural upsampl
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LOW-—RESOLUTION INPUT

Note: now we are talking about upsampling
(increasing image resolution), not denoising
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[Xiao 20]

Neura&upsamplmg (haIIucmatmg detall)

16X SUPERSAMPLING
4x4 upsampled result (16x more pixels)
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[Xiao 20]

Neural upsampling pipeline

Frame i
(Current) S
RGB to Feature 7ero ] Reconsfructed Frame |
-~ 4 YCbCr Extraction Upsampling d
Lero W f i
, »
Upsampling | S
Frame i-1 0
(T ¢ )
Rt Feature Lero Backward =
Extraction Upsampling Warping 5 S
= O
Frame i-2 4 . ) = o
SR ; Accumulative [
J SO Backward  —»| 2
i Extraction Upsampling Warnin o
Frame i-3 - R D
En— . Accumulative = —
Etracti J—{ S ; J—b Backward —> 8 . . o . . . . ore
Xiraction Upsampling _ Warping w Like denoising algorithms, this algorithm using auxiliary
Frame i-4 f < inputs like a depth map and motion vectors
e ; Accumulative
, SO Backward
Extraction Upsampling wWarnin

Main idea: gain resolution by aligning and merging multiple recent frames

Frame-to-frame alignment vectors provided by renderer
Learn a model that determines weights for combining aligned features (“feature reweighting”)

MOTION VECTORS
o Y71 ° 1/4
Then decode with neural decoder (“reconstruction”) Stanford C5248A, Winter 2025



[Xiao 20]

Closer look

Reference Stanford (S248A, Winter 2025



Summary: neural methods + rendering

m Neural methods now used to:
- Denoise images
- Upsample images
- Increase frame rate (temporal upsampling = frame interpolation)
- Anti-alias images

m All of these post-processing techniques serve to reduce the number of rays needed to
make a picture

m You can think of the responsibility of a modern ray tracer/renderer as: produce enough

samples of the scene so ML can “take it the rest of the way” and robustly hallucinate a
high-quality image.

Stanford (5248A, Winter 2025



Modern renderers designed in conjunction with denoiser

Image from Cyberpunk 2077

ReSTIR(oneframe) -y / After Denoising " High Sample Count
| * “Reference”
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Interactive ray tracing summary

m Until very recently, it was too expensive to perform ray tracing in real-time graphics systems

m S0 the computer graphics field developed many rasterization-based methods for approximating
ray traced effects (shadows, reflections, etc).

m Inlast decade: a major shift toward using more ray tracing in real-time graphics systems

m Driven by three innovations:

- Brute force: new ray tracing hardware supported by graphics APIs (D3D12/Vulkan) increases
the number of rays that can be traced per second

- Algorithmicinnovation: smarter ways to importance sample paths

- Introduction of ML into rendering: use ML to convert noisy low sample count images to

images that “look like” images that were ray traced at high sample counts, or to increase the
resolution of rendered images

Stanford (5248A, Winter 2025



