Lecture 10:

Radiometry, BRDFs, and the Reflection Equation

Interactive Computer Graphics Stanford CS248A, Winter 2025

Things you know so far!

- Representing geometry
 - As triangle meshes, subdivision surfaces, implicit surfaces, etc.
- Visibility and occlusion
 - Rasterization: determining what point on what triangle covers a sample
 - Ray tracing: determining what triangle a ray hits
- Today: basics of lights and materials
 - Computing the "appearance" of the surface at a point
 - Thinking about "appearance" in terms of reflected light (electromagnetic energy)

"Shading" in drawing

- Depicting the appearance of the surface
- Due to factors like surface material, lighting conditions

Lighting

Lighting

Credit: Wikipedia (Nasir ol Molk Mosque)

Lighting

Portrait Lighting Cheat Sheet

45° 90° 135° 180° 225° 270° 315°

Flash @45°

Down

Flash @0°

Flash @45° Up

Red semi-gloss paint

Ford mystic lacquer paint

Mirror

Gold

A renderer measures light energy along a ray

Up until now in the course I've said that we are sampling "the color of the surface" visible along a ray... but now let's make that more precise.

Renderer measures light energy along a ray

Multiple light sources

What is light?

Light is electromagnetic radiation that is visible to the eye

What do lights do?

Cree 11 W LED light bulb ("60 Watt" incandescent replacement)

- Physical process converts input energy into photons
 - Each photon carries a small amount of energy
- Over some amount of time, light fixture consumes some amount of energy, Joules
 - Some input energy is turned into heat, some into photons
- **■** Energy of photons hitting an object ~ exposure
 - Film, sensors, sunburn, solar panels, ...
- In graphics we generally assume "steady state" process
 - Rate of energy consumption = power, Watts (Joules/second)

Measuring illumination: radiant flux (power)

- Given a sensor, we can count how many photons reach it
 - Over a period of time, gives the power received by the sensor
- Given a light, consider counting the number of photons emitted by it
 - Over a period of time, gives the power emitted by the light
- Energy carried by a photon:

$$Q = \frac{hc}{\lambda}$$

$$h \approx 6.626 \times 10^{-34}$$

Measuring illumination: radiant flux (power)

■ Flux: energy per unit time (Watts) received by the sensor (or emitted by the light)

$$\Phi = \lim_{\Delta \to 0} \frac{\Delta Q}{\Delta t} = \frac{\mathrm{d}Q}{\mathrm{d}t} \begin{bmatrix} \mathbf{J} \\ \mathbf{s} \end{bmatrix}$$

■ Time integral of flux is total radiant energy

$$Q = \int_{t_0}^{t_1} \Phi(t) \, \mathrm{d}t$$

Spectral power distribution

Describes distribution of energy by wavelength

Figure credit:

"Warm" vs. "cool" white light LED

Radiant intensity

The radiant intensity is the power per unit solid angle emanating from a point source.

$$I(\omega) \equiv \frac{d\Phi}{d\omega}$$

 $\left\lceil \frac{W}{sr} \right\rceil$

Units = Watts per steradian

Angles and solid angles

Angle

$$\frac{l}{r}$$

⇒ circle has 2 π radians

Solid angle

$$\Omega = \frac{A}{R^2}$$

⇒ sphere has 4 π steradians

Review of spherical coordinates

Differential solid angles

Sphere with radius r

$$dA = (r d\theta)(r \sin\theta d\phi)$$
$$= r^2 \sin\theta d\theta d\phi$$

Differential solid angles

Sphere with radius r

$$dA = (r d\theta)(r \sin\theta d\phi)$$
$$= r^2 \sin\theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^2} = \sin\theta \ d\theta \ d\phi$$

Integrating solid angle over the unit sphere

Sphere S^2

$$d\omega = \sin\theta \, d\theta \, d\phi$$

$$\Omega = \int_{S^2} d\omega$$

$$= \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\theta \, d\phi$$

$$= 4\pi$$

A sphere subtends 4π steradians.

Isotropic point source

Radiating total power Φ . Radiating with same intensity \emph{I} in all directions.

Anisotropic intensity distributions

Measuring illumination: irradiance

- Flux: time density of energy
- Irradiance: area density of flux

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

$$\frac{\Phi}{A}$$

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

$$E(\mathbf{p}) = \lim_{\Delta \to 0} \frac{\Delta \Phi(\mathbf{p})}{\Delta A} = \frac{\mathrm{d}\Phi(\mathbf{p})}{\mathrm{d}A} \left[\frac{\mathrm{W}}{\mathrm{m}^2} \right]$$
 Units = Watts per area

Beam power in terms of irradiance

Consider beam with flux Φ incident on surface with area A

Projected area

Consider beam with flux Φ incident on angled surface with area A'

A = projected area of surface relative to direction of beam

Lambert's Law

Irradiance at surface is proportional to cosine of angle between light direction and surface normal.

$$A = A' \cos \theta$$

$$E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}$$

Why do we have seasons?

Earth's axis of rotation: ~23.5° off axis

[Image credit: Pearson Prentice Hall]

Irradiance falloff with distance

Assume light is emitting flux Φ in a uniform angular distribution

Compare irradiance at surface of two spheres:

$$E_1 = \frac{\Phi}{4\pi r_1^2}$$

$$E_2 = \frac{\Phi}{4\pi r_2^2}$$

$$\frac{E_2}{E_1} = \frac{r_1^2}{r_2^2}$$

Why does a room get darker farther from a light source?

Measuring illumination: radiance

■ Radiance (L) is the solid angle density of irradiance (irradiance per unit direction) where the differential surface area is oriented to face in the direction ω

In other words, radiance is energy along a ray defined by origin point p and direction ω

$$L(\mathbf{p}, \omega) = \lim_{\Delta \to 0} \frac{\Delta \Phi(\mathbf{p}, \omega)}{\Delta A \Delta \omega} = \frac{\mathrm{d}^2 \Phi(\mathbf{p}, \omega)}{\mathrm{d} A \, \mathrm{d} \omega}$$

Radiance as energy in an infinitesimal small beam

Outgoing from a region: energy leaving an tiny patch of area leaving in the direction of a tiny solid angle

Incoming to a region: Energy arriving at a tiny patch of area from a tiny solid angle.

Properties of radiance

- Fundamental field quantity that characterizes the distribution of light in an environment
 - Radiance is the quantity associated with a ray
 - Ray tracers compute the radiance along a ray

- If we assume ray travel through a vacuum, radiance is invariant along a ray
 - For now, we won't consider "participating media" like fog, smoke, clouds, dust, etc.

1st Law: conservation of radiance

The radiance in the direction of a light ray remains constant as the ray propagates through empty space

$$d^2\Phi_1 = d^2\Phi_2$$

$$d^2\Phi_1 = L_1 d\omega_1 dA_1$$

$$d^2\Phi_2 = L_2 d\omega_2 dA_2$$

$$d\omega_1 dA_1 = \frac{dA_1 dA_2}{r^2} = d\omega_2 dA_1$$

$$\therefore L_1 = L_2$$

Quiz

Does radiance increase under a magnifying glass?

How much light hits the surface at point p?

(What is irradiance at point p?)

How much light hits the surface at point p from multiple light

SOURCES? (What is irradiance at point p?)

How much light hits the surface at point p from light from all directions?

$$\int_{S^2} L(\omega_i) \cos \theta_i \, d\omega_i = \int_0^{2\pi} \int_0^{\pi} L(\theta_i, \phi_i) \cos \theta_i \sin \theta_i \, d\theta_i d\phi_i$$

Types of lights

Attenuated omnidirectional point light

(emits equally in all directions, energy arriving at point P (radiant intensity) falls off with distance: 1/R² falloff)

■ Infinite directional light in direction *d*(infinitely far away, all points in scene receive light with radiance L from direction *d*

Spot light

Does not emit equally in all directions... intensity falls off in directions away from main spotlight direction *d*

$$\omega = \text{normalize}(\mathbf{p} - \mathbf{p_L})$$

$$L(\omega) = 0$$
 if $\omega \cdot \mathbf{d} > \cos \theta$ $= L_0$ otherwise

Or, if spotlight intensity falls off from direction d

$$L(\omega) \propto \omega \cdot \mathbf{d}$$

Spot light

Environment light (represented by a texture map)

Pixel (x,y) stores radiance L from direction (ϕ,θ)

So far... we've discussed how to compute the light arriving at a surface point (radiance along incoming ray)

How much light is REFLECTED from p toward po?

Bidirectional reflectance distribution function (BRDF)

Gives fraction of light arriving at surface point p from incoming direction* ω_i is reflected in the direction ω_0 (outgoing direction)

$$f(\mathbf{p}, \omega_i, \omega_o)$$

^{* (}Convention: ω_i is oriented out from the surface "towards the incoming direction")

Measuring BRDFs: the Stanford Gonioreflectometer

The reflection equation

Gives radiance reflected from point p in direction direction ω_0 due to light incident on

the surface at p.

$$L_{\rm o}({
m p},\omega_{
m o}) = \int_{\Omega^2} f_{
m r}({
m p},\omega_{
m i}
ightarrow \omega_{
m o}) L_{
m i}({
m p},\omega_{
m i}) \, \cos heta_{
m i} \, {
m d}\omega_{
m i}$$

BRDF Illumination

Units of the BRDF

$$f_{\rm r}(\omega_{\rm i} \to \omega_{\rm o}) \equiv \frac{\mathrm{d}L_{\rm o}(\omega_{\rm o})}{\mathrm{d}E_{\rm i}(\omega_{\rm i})} \quad \left[\frac{1}{sr}\right]$$

"For a given change in incident irradiance, how much does exit radiance change"

BRDF energy conservation

Reflectance
$$\rho = \frac{\Phi_{\rm o}}{\Phi_{\rm i}} = \frac{\int_{\Omega_{\rm o}} L_{\rm o}(\omega_{\rm o}) \cos \theta_{\rm o} \, \mathrm{d}\omega_{\rm o}}{\int_{\Omega_{\rm i}} L_{\rm i}(\omega_{\rm i}) \cos \theta_{\rm i} \, \mathrm{d}\omega_{\rm i}}$$

$$0 \le \rho \le 1$$

Reflection models

- Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident (same) side without change in frequency
- Choice of reflection function determines surface appearance

What is this material?

Light is scattered equally in all directions

Diffuse / Lambertian material

Uniform colored diffuse BRDF
Albedo (fraction of light reflected) is same
for all surface points p

Textured diffuse BRDF
Albedo is spatially varying,
and is encoded in texture map.

BRDF for diffuse surface with albedo ρ

Let's call the overall reflectance (albedo) of the surface $\, ho$

Total outgoing surface irradiance
$$\rho E = \int_{H^2} f_r E \cos\theta_o \, d\omega_o \qquad L_o(\omega_o)$$

$$\rho = f_r \int_{H^2} \cos \theta_o \, d\omega_o$$

$$\rho = f_r \pi$$

$$f_r = \frac{\rho}{\pi}$$

So given a desired $\,
ho\,$, the BRDF should be the constant $\dot{-}$

Next time we'll talk about more types of materials: Glossy materials, mirrors, glass, etc

Summary

- Appearance of a surface is determined by:
 - The amount of light reaching the surface from different directions
 - Surface irradiance: the amount of light arriving at a surface point
 - Radiance: the amount of light arriving at a surface point from a given direction
 - The reflectance properties of the surface:
 - BRDF(w_i,w_o): the fraction of energy from direction w_i reflected in direction w_o

Acknowledgements

Thanks to Keenan Crane, Ren Ng, Pat Hanrahan and Matt Pharr for presentation resources