Lecture 11:

Materials (Part 2) +
Monte Carlo Integration Basics

Interactive Computer Graphics
Stanford (5248A, Winter 2025



Review: radiometry and illumination
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Review: differential solid angles

Sphere with radius r
A

7 s1no
e

‘ r '& ‘, dA = (rdO )(rsm0 do)
) { =7°sin0 dO dd

}
dw = d—? = s1n0 dO d¢

r
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Review: radiance

Radiance (L) is energy along a ray defined by origin point p and direction (v

4

dA

m Radiance is the solid angle density of irradiance (irradiance per unit direction)

where W denotes that the differential surface area is oriented to face in the direction
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Review: irradiance = power per unit area

Irradiance at surface is proportional to cosine of angle between light direction
and surface normal. (Lambert’s Law)
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How much light hits the surface at point p from multiple light
SOUrces? (Whatisirradiance at point p?)

Z L, cos@,;

Po

®
Pinhole
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How much light hits the surface at point p from light from

all directions?
(What is irradiance at point p?) L1

Po

®
Pinhole

27 T
/ L(wz) COS (9@ dwi — / / L(@Z, ¢z) COS 6’2 S1N (9@ d92d¢z
S 0 0
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Irradiance at point X from a uniform area source

Assume single light source in scene, so incoming light is 0 except from directions toward the light

B(x) = /H L) cosfd

—L / cos 6 dw
Constant / '

(it's a uniform source) — L Q

N

Total projected solid angle
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Irradiance at point X from a uniform area source

Reparameterize integral over solid angle to integral over area of light source.

cos 6 cos 6’

E(x) :/ Li(x,w) cosfdw :/ L dA’
H?2 /

x — 2|2

Reparameterization: now integrate over light
source area, instead of solid angle

Integral reparameterization:

S0’
do = —27 A" 7,
= =
X

Radiance leaving light from x”in direction w’ = radiance arriving at surface at x from w.
(assuming that w is pointing at the light)

Li(x,w) = Ly(2',w") = L
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Review: the reflection equation

&S

L (p7 WO) — fr (p7 Wi —7 wo) Li(p7 Cdi) COs 91 dw;
02 | I |
BRDF lllumination
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More About Materials
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What is this material?

Stanford (5248A, Winter 2025



Glossy material (BRDF)

Aluminum

[Mitsuba renderer, Wenzel Jakob, 2010] Stanford C5248A, Winter 2025



What is this material?
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Perfect specular reflection

b

[Zatonyi Sandor] ,
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Calculating direction of specular reflection

Top-down view
(looking straight down on surface)

HZHOZOZ

Wo +w; =2cosfn =2(w; -0)n
Wy — — Wy —|— 2(&)@ . ﬁ)ﬁ
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Consider view of hemisphere from this point

Image credit Matt Pha



Hemispherical incident radiance

At any point on any surface in the scene,
there’s an incident radiance field that gives
the directional distribution of incoming
illumination at the point

Image credit Matt Pharr Stanford (S248A, Winter 2025



Diffuse reflection

Exitant radiance is the same in all directions

Incident radiance Exitant radiance

Image credit Matt Pharr Stanford (S248A, Winter 2025



ldeal specular reflection

Incident radiance Exitant radiance

Image credit Matt Pharr Stanford (S248A, Winter 2025



How might you render a specular surface

Compute direction from surface point p to camera = w,

Given normal at p, compute reflection direction w;

Light reflected in direction w, is light arriving from direction w;
How do you measure light arriving from w;?

Oneidea... =
look up amount in environment map! =
(more on this later) ;

Pixel (x,y) stores radiance L from direction (¢, 0)
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Plastic

Incident radiance Exitant radiance

Image credit Matt Pharr Stanford (S248A, Winter 2025



Incident radiance Exitant radiance

Image credit Matt Pharr Stanford (S248A, Winter 2025



Some basic reflection functions

m Ideal specular
Perfect mirror

m |deal diffuse

Uniform reflection in all directions

m Glossy specular
Majority of light distributed in reflection direction

m Retro-reflective
Reflects light back toward source

Diagrams illustrate how incoming light energy from a
given direction is reflected in various directions.
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Isotropic/ anisotropic materials (BRDFs)

Key: directionality of underlying surface

Isotropic

Anisotropic
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Anisotropic BRDFs

Reflection depends on azimuthal angle ¢
fr(eia ¢27 ‘97’7 ¢’P) # f’l“(eiv 67"7 ¢7° — ¢z)

Results from oriented microstructure of
surface, e.g., brushed metal
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Anisotropic BRDF: Nylon

[Westin et al. 1992]
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Anisotropic BRDF: Velvet

A K gt
A3 "1%‘ -.}',‘T ;\1 u e ,,",: ‘ |
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g! y ‘.‘:»F s M |

[Westin et al. 1992]
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Anisotropic BRDF: Velvet

‘ N 'a\\‘\\\.\

[https://www.youtube.com/watch?v=2hjoW8TYTd4] Stanford (5248A, Winter 2025




What is this material?
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|ldeal reflective / refractive
material (BxDF *) l

Air <-> glass interface

Air <-> water interf ' i
ater interface (with absorption)

* X stands in for reflectance “r’, scattering “s’, or transmission “t’, etc.
[Mitsuba renderer, Wenzel Jakob, 2010]
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Transmission

In addition to reflecting off surface, light may be
transmitted through the surface.

Light refracts when it enters a new medium.
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Snell’s Law

Transmitted angle depends on index of refraction of medium incident ray is in and index of
refraction of medium light is entering.

5 Medium n*
W; 11
Vacuum 1.0
Air (sea level) 1.00029
0. Water (20°C)  1.333
Q. A t Glass 1.5-1.6
S . S ¢ Diamond 2.42
/ * index of refraction is wavelength dependent
0 (these are averages)
5

n; sin 0; = n; sin 0,
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Fresnel reflection

For many real materials, reflectance
increases w/ viewing angle

o o o o
o N o

Reflectance
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[Lafortune et al. 1997]
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Subsurface scattering

m Visual characteristics of many surfaces caused by
light entering at different points than it exits

- Violates a fundamental assumption of the BRDF
- Need to generalize scattering model (BSSRDF)

[Jensen et al 200
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[Donner et al 2008]

* BSSRDF = bidirectional subsurface scatting reflectance distribution function Stanford (S248A, Winter 2025
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Parameters to Disney BRDF

‘ ‘ ‘) ‘) ‘J f‘) _/‘.q (D (. ) () (R )
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Pattern generation vs. BRDF

In practice, it is convenient to separate computation of spatially varying BRDF parameters (like albedo, shininess, etc.) from
the reflectance function itself

albedo

Example 1: albedo value at surface point is given by
expression combining multiple textures

Example 2:
Different textures defining different [REERIRENENEEINENNNE Y |
spatially varying BRDF input parameters | e I

reflectivity
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Unity’s shader graph

| bgraphs/TextureI \

008

graphs/TextureDissolve Save

Properties Add

Albedo BgPlayer_D 5 | Remove
Normal BPlayer_NRM D | Remove
Emission Player_E > | Remove

Metallic PIayer_M O Remove

T Dissolve Amount I oo

Aoeoa T Outpun Y4

Ewmer)  Ouo 34 Dissolve Texture Fanoise_08 5 | Remove

.
& NomadT) Output 24
B
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¥ S PONTextureSarpio (M ate :
Dissolve Split Widtt

PR Manter
Sample Taxture 20
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e UV
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O Sampler(S5)
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®

Multipty
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® B
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Numerical Integration
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So far in this lecture, we've seen examples of needing to
compute integrals

Example: computing incident irradiance at x due to a single area light source.

/
E(x) :/ L cosf dw :/ g o8 dcost
H2 /

x — x’|?

dA’

Stanford (5248A, Winter 2025



Review: fundamental theorem of calculus

/ f(2)de = F(b) — Fla)
’ d
f(z) =

@F(Qf)




Definite integral as “area under curve”

/a ' fla)da
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Simple case: constant function

/abC'da::(b—a)C

Stanford (5248A, Winter 2025



Stanford (5248A, Winter 2025



Piecewise affine function

Sum of integrals of individual affine components

[ @ = 33 @i =2 (@) + i)
f(x)
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Piecewise affine function

If N-1 segments are of equal length: . = b a

n—1

b n—1
/ f(z)dr = g Z(f(l‘z) f(Tiy1)

f(z) = (Z fl:) + 5 (Flwo) + f(évn)))

1=1
presses s ;
Weighted combination :__ A E
" — . € :
of measurements. : Z% if () :
1=
Lo = @ L1 L2 L3 ry = b
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Arbitrary function f(x)?

f(z)
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Trapezoidal rule

Approximate integral of f(x) by assuming function is piecewise linear
b— a

n—1

For equal length segments: 1~ =

b n—1
[ fayde = (Z i) + 5 (Flwo) + f(xn)))

f(z)
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Trapezoidal rule

Consider cost and accuracy of estimateas n — oo (or h — 0)
Work: O(n)
Error can be shown to be: O(1*) = O( :

f(z)

) (for f(x) with continuous second derivative)
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Integration in 2D

Consider integrating f(z, y) using the trapezoidal rule
(apply rule twice: when integrating inxand in y)

Errors add, so error still: O(hz) Must perform much more work in 2D to get same error bound on integral!

But work is now: O(n?) InK-D, let N = n*
(n x n set of measurements) Error goes as: O ( Ni/k)
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Monte Carlo integration
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Monte Carlo numerical integration

m  Estimate value of integral using random sampling of function
- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

B Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are impossible to integrate directly

B Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O(nl/ 2)
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Monte Carlo algorithms

m Advantages
- Easy to implement
- Easy to think about (but be careful of subtleties)
- Robust when used with complex integrands (lights, BRDFs) and domains (shapes)
- Efficient for high-dimensional integrals
- Efficient when only need solution at a few points

m Disadvantages

- Noisy
- Slow (many samples needed for convergence)
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Review: random variables

X random variable. Represents a distribution of potential values

X ~ p(z) probability density function (PDF). Describes relative
probability of a random process choosing value x

Uniform PDF: all values over a domain are equally likely

) o o
e.g., for an unbiased die (o . 5
X takesonvalues1,2,3,4,5,6 . ‘o‘ ¥y 4
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) W,
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Discrete probability distributions

n discrete values =z;

With probability p;

Requirements of a PDF:

pi = U
T
2 pi=
1=1
. e : 1
Six-sided die example: p; = .

Think: D; is the probability that a random measurement of _X will yield the value x;
X takes on the value x; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P; = ) p,
1=1

where:
0< P, <1
P, =1

Stanford (S248A, Winter 2025



Sampling from discrete probability distributions

How do we generate samples of a discrete
random variable (with a known PDF?)

To randomly select an event, select z; if

P11 <& P

T

Uniform random variable € [0, 1)
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Continuous probability distributions
PDF p(z) Uniform distribution: p(x) = ¢

(for random variable _X defined on [0,1] domain)
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Sampling continuous random variables using the
inversion method

Cumulative probability distribution function
P(x) =Pr(X < x)

Construction of samples:
Solve for x = P~ (¢)

Must know the formula for:
1. The integral of p(x)
2. The inverse function P! (z)
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Example: applying the inversion method

Relative density of probability

Given: of random variable taking on 4 |
value x over [0,2. domaing 3 /
fl)=2" =x€l0,2 //
| e
| el
Compute PDF from f(x): e —
2
1 = / c f(z)dx
) |
= c(F(2) — F(0)) F(x) = §$3
1
— =29
3
8¢ 3 3 o Probability density function
— g C = é’ p(ZE) _ gaj (integrates to 1)
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Example: applying the inversion method

Given: /
i /
f(ZIZ‘) — ZCQ Tr & [O, 2] ////
3 | ~
P =g e s agrasn
Compute CDF:
P(x) :/ p(z)dx
0 P
73 //
B g ATy T vy ) e -
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Example: applying the inversion method

Given:
flz)=2" x€l0,2]
3
p(z) = éﬂfz
3
X
Plx) = —
(@) =
Sample from p(z) !
06 //
3 //
¢ = P(z) = — )
3 3
r— /8¢ BT s e
X
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How do we uniformly sample the unit circle?
(Choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m ¢ =uniformrandom angle between 0 and 277
m 7 = uniform random radius between 0 and 1

m Returnpoint: (7 cos 6, rsin 0)

This algorithm does not produce the desired uniform sampling of the area of a circle.
Why?
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Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

\\K jdr

0 =2n& =& p(r,0)drdf ~ rdrdf
p(r,0) ~r

@k
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Uniform area sampling of a circle

WRONG RIGHT
Not Equi-areal Equi-areal
0 = 27T§1 0 — 27T€1
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Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1 r

p(r,0)drdf = —rdrdf — p(r,0) = —

.

p(r, ) =1p(r)p(9) 70 independent / }rdrdé’
p(0) = 5 / %\

| dr
P(0) = -0 § = 276, K j
p(r) = 2r \\ /

=

-
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Shirley’s mapping

A

r =&
- /\\X\\ &2
AT T
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Uniform sampling via rejection sampling

® Generate random point within unit circle

° ¢ do {

X = uniform(-1,1);

P y = uniform(-1,1);

® } while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square
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/

Rejection sampling to generate 2D directions

Goal: generate random directions in 2D with
uniform probability

X
Y

X
X

dir = x/r;

Y:dir = y/r;

This algorithm is not correct! What is wrong?

What's a better algorithm?

uniform(-1,1);
uniform(-1,1);

sqrt (x*x+y*y) ;
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Now back to Monte Carlo integration...

(Remember the whole point was to approximate the value of integrals numerically on a computer)

Lo (p7 wo) — fr (p, Wi — wo) Li(p7 wi) COs ‘9i dw;
02

/
FE(x) :/ Li(x,w) cosfdw :/ LCOSHCOSO dA’
H?2 /

x — x’|?
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Monte Carlo integration

m Definite integral /b fle)da

The integral we seek to estimate

m Random variables
X; ~ p(x) X ; is the value of a random sample drawn from the

distribution p(x)

Y; = f(X3) Y, is also a random variable because its a function of X,

m Expectation of a random variable
b
EIYi) = (X)) = | f(a)ple) da

m Monte Carlo estimator of the integral

b
N Monte Carlo estimate of / f(z)dx
[ b— a v .
N N E_l (

Assuming samples X ; drawn from uniform pdf.
| will provide estimator for arbitrary PDFs later.
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Basic unbiased Monte Carlo estimator

N
b—a
E[Fy] =E | — ;Y

Unbiased estimator:

N N
: : b— a b— a
Expc.ected value of'estlmator IS =— } : BlY;] = - E : Blf(X;)]
the integral we wish to evaluate. i=1 i=1

2 [ r@)pwds
Assume uniform

N b
— Z / f (CE ) dx probability density for now
Qa

=1 X; ~ Ula,b)

Properties of expectation:

1
N
) _ b 1
D , . :/ f(z)de p(z) = +—
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Direct lighting estimate

Estimate incident irradiance by uniformly-sampling hemisphere of directions with respect to solid angle

E(x) = /H2 Li(z,w)cosfdw
Lf,;(x,w)

4

We want to estimate this integral
(total incident irradiance at surface point x)

Monte Carlo estimator:

1 We sample directions (aka rays) uniformly from
X i " p(LU) — — < the hemisphere of directions
T (a ray direction is a random variable)
Y = f(Xi)
Y. = L.Axr.w:) cosB: I For each ray we compute the incident
! 7’( ’ 7’) ¢ irradiance on surface at x.
N
F 27 Y. & Weaverage allthese samples, and scale
N - . . : ’
Then the expected value of the — NS ythesic o) e domainwe are

sampling from.

result is the value of the integral. (The hemisphere has 21 steradians)
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle

E(x) :/ Li(x,w)cosfdw
H?2

Given surface point x A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; /
Compute incoming radiance arriving L; at x from direction: (v,
Compute incidentirradiance duetoray: dF;, — L;cos 0,

2 . :
Accumulate NﬂdEi into estimator



Uniform hemisphere sampling

Generate random direction on hemisphere (all directions equally likely)

1

plw) = 5

Direction computed from uniformly distributed point on 2D plane:

(1,62) = (/1 — € cos(2ma), /1 — €2 sin(2mEs), &1)

1.0

08 o

L 1) ° () o ¢
o °® °
o ° ¢
o °
: ® ¢ ° e ©
06 ® o
) | o () Y ) o
I ® °
I L (]
04 ¢ o ©
e o ° ° o
L . ‘ .
o o
o ©® ®

0.2* o ()

Exercise to students: derive from the inversion method
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Example scene with an “area light”

Light source

Occluder
(blocks light)
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Direct lighting estimate: uniform hemisphere sampling

Light source

Occluder
(blocks light)

L
V3

3

3

ey

16 samples to estimate incoming irradiance
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Direct lighting: uniform hemisphere sampling

Incident lighting estimator uses random directions
when computing incident lighting for different points.
Some of those directions hit the light (and contribute
illumination, some do not)

(The estimator is a random variable!)

16 samples to estimate incoming irradiance
(Uniformly sampled from hemisphere)
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Variance

m Definition

VY] = E[(Y — E[Y])"]
= EB[Y?] — E[Y]

m Variance decreases linearly with number of samples

VI 20| = VI = N VY] = VY

Properties of variance:

- N ] N
VY Y| =) VY
=1 | 1=1

ViaY] = a* V[Y]
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Comparing different techniques

m Variance in an estimator manifests as noise in rendered images

m Estimator efficiency measure:
1

Variance x Cost

Efficiency o<

m [f one integration technique has twice the variance as another, then it takes twice as
many samples to achieve the same variance

m [f one technique has twice the cost of another technique with the same variance, then it
takes twice as much time to achieve the same variance
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Direct lighting estimate: uniform hemisphere sampling

Light source

Occluder
(blocks light)

1000’s of samples
(Uniformly sampled from hemisphere)
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Direct lighting: only sample center of light

Light source

Occluder
(blocks light)

1light sample, always sample center of light
(Notice “hard shadow”... what you'd expect from a point light source, not an area light source)

Q. Why is there no “noise”?
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Summary: Monte Carlo integration

m Monte Carlo estimator

- Estimate integral of function by evaluating function at N random sample points in its domain
- For the special case of uniform sampling a N-dimensional domain

/_\_A _
Let D be the size of the ) N
integration domain E[FN] = b | = Z f(Xz) — / f(-??) dx
_N i=1 _ {2

m The estimator is computed by a ray tracer!

m Useful in rendering due to need to estimate high dimensional integrals

- Faster convergence in estimating high dimensional integrals than non-randomized methods
- Butitisstill slow...

- Suffers from noise due to variance in estimate (need many samples to produce good quality images)

m Coming soon: importance sampling = picking good samples to reduce variance
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