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Lecture 16:

Recovering Scene Representations 
with Di!erentiable Rendering
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A longstanding challenge in computer graphics…
Acquiring high-quality 3D content for rendering 
Imagine I wanted to make a high-quality 3D model and associated texture maps depicting Josephine the graphics cat…
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Google Street View
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An interesting task
Given a collection of photographs (from known camera viewpoints) 
Compute a 3D reconstruction of the scene (surface locations + color at each point on surface) that you could 
use for rendering the scene from novel viewpoints

Credit: Mildenhall 2019
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Estimating mesh geometry is tricky

Credit: Mildenhall 2019
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Renewed interest in volume rendering (circa 2018)
Let’s just drop this triangle-based representation entirely, it’s much simpler (and more versatile when 
it’s unclear what the geometry is anyway) to emit a volumetric representation

Credit: Lombardi 2019

A “reasonable” volume representing the scene is the one that, when volume 
rendered from the viewpoint of the photograph, produces a picture that looks 
like the photograph.
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Last time: rendering volumes

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density and color at all points in space.
c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

And continuous volume with density and directional radiance.

Step through the volume to compute radiance along the ray.

r(t)

Color, opacity of the volume at the current point 
(More precisely: radiance along r at point r(s) due to in-scattering or emission) 

Attenuation of radiance along r between r(s) and 
“camera” due to out scattering or absorbion 



r(s)
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Recovering a volume that yields acquired images

Compute radiance along 
ray through volume

Compare to 
actual image

Idea: "nd volume parameters (opacity and color at each (i,j,k) 
To make C(r) match the corresponding pixel in the photos. 

For many rays…. trace through volume… see if the result matches the photo… use 
error to update volume’s opacity/color values

Given a set of images of a subject with known camera positions…
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Mini intro to gradient-based optimization
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Imagine we have a function
How can we "nd the minimum of the function?

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>
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Descent methods
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Gradient descent (1D)
Basic idea: follow the gradient “downhill” until it’s zero

Do we always end up at a (global) minimum? 
How do we compute gradient descent in practice?

d

dt
x(t) = �f 0(x(t))

<latexit sha1_base64="eLmkq8XucFztpRtMeC+2scEfDyE=">AAACF3icbZC7SgNBFIZnvcZ4i1raDAYxKVx2JaKNELSxjGAukIQwO5lNhsxemDkrhmXfwsZXsbFQxFY738bZZIuY+MPAx3/OYc75nVBwBZb1Yywtr6yurec28ptb2zu7hb39hgoiSVmdBiKQLYcoJrjP6sBBsFYoGfEcwZrO6CatNx+YVDzw72Ecsq5HBj53OSWgrV7B7LiS0LjjERhKL+4nyQxD8liCMr7Cp+5JKcVyr1C0TGsivAh2BkWUqdYrfHf6AY085gMVRKm2bYXQjYkETgVL8p1IsZDQERmwtkafeEx148ldCT7WTh+7gdTPBzxxZydi4ik19hzdme6s5mup+V+tHYF72Y25H0bAfDr9yI0EhgCnIeE+l4yCGGsgVHK9K6ZDooMCHWVeh2DPn7wIjTPTrpjnd5Vi9TqLI4cO0REqIRtdoCq6RTVURxQ9oRf0ht6NZ+PV+DA+p61LRjZzgP7I+PoFavyfXw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f 0(x(0))

<latexit sha1_base64="cXPRKBPN2FYmQPLnlE52x32FrW0=">AAAB73icbVBNSwMxEJ31s9avqkcvwSK2l7IrFT0WvXisYD+gXUo2zbahSXZNsmJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDP1W49UaRbJezOOqS/wQLKQEWys1A7PSk8lt1zuFYpuxZ0BLRMvI0XIUO8Vvrr9iCSCSkM41rrjubHxU6wMI5xO8t1E0xiTER7QjqUSC6r9dHbvBJ1apY/CSNmSBs3U3xMpFlqPRWA7BTZDvehNxf+8TmLCKz9lMk4MlWS+KEw4MhGaPo/6TFFi+NgSTBSztyIyxAoTYyPK2xC8xZeXSfO84lUrF3fVYu06iyMHx3ACJfDgEmpwC3VoAAEOz/AKb86D8+K8Ox/z1hUnmzmCP3A+fwAGzI6p</latexit>
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Gradient descent algorithm (1D)
“Walk downhill” 
One simple way: forward Euler:

Q: How do we pick the step size?

If we’re not careful, we’ll go zipping all 
over the place; won’t make any progress.

Basic idea: use “step control” to determine step size based on 
value of function and its derivatives 
For now we will do something simple: make τ small!

step sizenew estimate

xk+1 = xk � ⌧f 0(xk)

<latexit sha1_base64="luDgn6zkoj9FgHSWY4zjhtrcQok=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBaxIpZEKroRim5cVrAPaEOYTCftkMkkzEykJXTjxl9x40IRt/6DO//GaZuFth64cOace5l7jxczKpVlfRu5hcWl5ZX8amFtfWNzy9zeacgoEZjUccQi0fKQJIxyUldUMdKKBUGhx0jTC27GfvOBCEkjfq+GMXFC1OPUpxgpLbnm/sBNgxN7BK/gwA3gKewolED/qKRfx65ZtMrWBHCe2Bkpggw11/zqdCOchIQrzJCUbduKlZMioShmZFToJJLECAeoR9qachQS6aSTK0bwUCtd6EdCF1dwov6eSFEo5TD0dGeIVF/OemPxP6+dKP/SSSmPE0U4nn7kJwyqCI4jgV0qCFZsqAnCgupdIe4jgbDSwRV0CPbsyfOkcVa2K+Xzu0qxep3FkQd74ACUgA0uQBXcghqoAwwewTN4BW/Gk/FivBsf09ackc3sgj8wPn8AKyCWcw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>
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Gradient descent algorithm (n-D)
Q: How do we write gradient descent equation in general?

Q: What’s the corresponding discrete update?

Basic challenge in nD: 
- solution can “oscillate” 
- takes many, many small steps 
- very slow to converge

d

dt
x(t) = �rf(x(t))

<latexit sha1_base64="2wqao5rV71OLW2Ov8wcQO0x319s=">AAACMHicbZDNSsNAFIUn/lv/qi7dDBahXVgSqehGEF3osoK1hSaUyXTSDk4mYeZGLCGP5MZH0Y2CIm59CidtF7b1wsDHOfcy9x4/FlyDbb9bc/MLi0vLK6uFtfWNza3i9s6djhJFWYNGIlItn2gmuGQN4CBYK1aMhL5gTf/+MvebD0xpHslbGMTMC0lP8oBTAkbqFK/cQBGauiGBvgrTbpb9YciG7AfpY1aGCj7Dh9iVxBcEB+UJq9IpluyqPSw8C84YSmhc9U7xxe1GNAmZBCqI1m3HjsFLiQJOBcsKbqJZTOg96bG2QUlCpr10eHCGD4zSxUGkzJOAh+rfiZSEWg9C33TmW+ppLxf/89oJBKdeymWcAJN09FGQCAwRztPDXa4YBTEwQKjiZldM+8QkCCbjggnBmT55Fu6Oqk6tenxTK51fjONYQXtoH5WRg07QObpGddRAFD2hV/SBPq1n6836sr5HrXPWeGYXTZT18wt6FapY</latexit>

xk+1 = xk � ⌧rf(xk)

<latexit sha1_base64="jjNyHXaJSWMTDFVG1MN6HGsgtBo=">AAACJnicbVDLSgNBEJyNrxhfqx69DAYhIoZdieglEPTiMYJ5QDaE3slsMmR2dpmZFcOSr/Hir3jxEBHx5qc4eRxitKChqOqmu8uPOVPacb6szMrq2vpGdjO3tb2zu2fvH9RVlEhCayTikWz6oChngtY005w2Y0kh9Dlt+IPbid94pFKxSDzoYUzbIfQECxgBbaSOXfZC0H0/SJ9GnXRw5o5wGS9IA3yOPQ0J9gT4HHBQWDRPO3beKTpT4L/EnZM8mqPascdeNyJJSIUmHJRquU6s2ylIzQino5yXKBoDGUCPtgwVEFLVTqdvjvCJUbo4iKQpofFUXZxIIVRqGPqmc3KkWvYm4n9eK9HBdTtlIk40FWS2KEg41hGeZIa7TFKi+dAQIJKZWzHpgwSiTbI5E4K7/PJfUr8ouqXi5X0pX7mZx5FFR+gYFZCLrlAF3aEqqiGCntErGqN368V6sz6sz1lrxprPHKJfsL5/ANUupWI=</latexit>

h
df
dx0

df
dx1

... df
dxN�1

iT

<latexit sha1_base64="PejEmPusecfufM4h/kGCPvfxgt4="></latexit>
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Back to our problem of recovering a volume
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Recovering a volume that yields acquired images

Where r is the ray corresponding to the center point of pixel (x,y) for a given image j, and C(r) is the color (radiance) of 
the scene observed along the ray given by marching r through the volume. (I’m using theta to denote color and opacity 
parameters of the volume)

Given a set of images of a subject with known camera positions… 
What is the function we are trying to minimize?

Notice that the rendering result                    depends on the 
volume’s color and opacity parameters.   

So we want to minimize f subject to those parameters. 
Luckily f is easily di!erentiable! (It’s a sum of exponentials!) 

C(r)

<latexit sha1_base64="q6IkrTKGUaSu9XOpFHs8IcqiOw0=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotQNyWRii6L3bisYB/QhjKZTtqhk0mcmRRK6He4caGIWz/GnX/jJM1CWw8MHM65l3vmeBFnStv2t1XY2Nza3inulvb2Dw6PyscnHRXGktA2CXkoex5WlDNB25ppTnuRpDjwOO1602bqd2dUKhaKRz2PqBvgsWA+I1gbyW1WBwHWE89P5OJyWK7YNTsDWidOTiqQozUsfw1GIYkDKjThWKm+Y0faTbDUjHC6KA1iRSNMpnhM+4YKHFDlJlnoBbowygj5oTRPaJSpvzcSHCg1DzwzmUZUq14q/uf1Y+3fugkTUaypIMtDfsyRDlHaABoxSYnmc0MwkcxkRWSCJSba9FQyJTirX14nnauaU69dP9Qrjbu8jiKcwTlUwYEbaMA9tKANBJ7gGV7hzZpZL9a79bEcLVj5zin8gfX5A08dkdA=</latexit>

f(✓, r) = kC(r)� Ij(x, y)k22

<latexit sha1_base64="T7KpluAS7arAIPbRI65zkELVgNY="></latexit>
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Recovering a volume that yields acquired images

Compute radiance along 
ray through volume

Compare to 
actual image

For many rays…. trace through volume… see if the result matches the photo… 
use error “loss” to update volume opacity/color values using gradient descent
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Problem: regular 3D grid representation of a volume has 
high storage cost

Dense 3D grid 
- V[i,j,k] = rgba 
- 40963 cells ~ 128 GB 

Note, this representation treats surface 
as di!use, since: 

Would need σ[i,j,k] and c[i,j,k,phi,theta] 
to represent directional distribution of 
color

Credit: Voxel Ville NFT (voxelville.io) 

c(p,!) = c(p)

<latexit sha1_base64="iPFxnucawQI81Uo6+5/oph5A5qw=">AAACDnicbVDLSgMxFM3UV62vUZdugqXQgpQZqehGKLpxWcE+oFNKJs20oUlmSDJCGfoFbvwVNy4UcevanX9jpp1FbT1w4XDOvdx7jx8xqrTj/Fi5tfWNza38dmFnd2//wD48aqkwlpg0cchC2fGRIowK0tRUM9KJJEHcZ6Ttj29Tv/1IpKKheNCTiPQ4GgoaUIy0kfp2CZc9jvRI8iSankEv5GSIKvAaLuqVvl10qs4McJW4GSmCDI2+/e0NQhxzIjRmSKmu60S6lyCpKWZkWvBiRSKEx2hIuoYKxInqJbN3prBklAEMQmlKaDhTFycSxJWacN90pieqZS8V//O6sQ6uegkVUayJwPNFQcygDmGaDRxQSbBmE0MQltTcCvEISYS1SbBgQnCXX14lrfOqW6te3NeK9Zssjjw4AaegDFxwCergDjRAE2DwBF7AG3i3nq1X68P6nLfmrGzmGPyB9fULzj+bVQ==</latexit>
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Recurring theme in this course: 
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity "eld that corresponds 
to renderings from various known viewpoints. 

And that recovery process is optimization via gradient descent. 
Technically… modern stochastic gradient descent (SGD).

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>
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Learning (compressed) representations
Rather than store an entire dense volume, let’s just learn an approximation to the 
continuous function that matches observations from di!erent viewpoints? 

Let’s represent that approximation using a deep neural network.

�(p)
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Learning neural radiance "elds (NeRF)

Key idea: di!erentiable volume renderer to compute dC/d(color)d(opacity)
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Great visual results!

Credit: Mildenhall 2023
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What just happened?
Continuous coordinate-based representation vs regular grid:  DNN is optimized so its weights to produce 
high-resolution output where needed to match input image data 

Extremely compact representation: trades-o! storage for expensive rendering 
- Good: a few MBs = e!ectively very high-resolution dense grid 
- Bad: must evaluate DNN every step during ray marching 

- And the DNN is a “big” MLP (8-layer x 256) 
- Bad: must step densely (because we don’t know where the surface is… we can only query the DNN 

for opacity) 

Compact representation: DNN can interpolate views despite complexity of volume density and radiance 
function 
- Only prior is the separation into positional       and directional rgb 
- Training time: hours to a day to optimize a good NeRF

�
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MLP must do real work to associate 
weights with 5D locations 



Stanford CS248A, Winter 2025

Is NeRF a “good” representation?
Ask yourself: what was the task? 
- Optimization (to recover DNN weights) and then rendering high-quality images 
- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-

based representations would be very complex! 

Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes 
possible (parameters "t on single GPU) 
- Amount compression possible while retaining high "delity was generally surprising to many 
- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter 

capacity as needed to maintain high quality 

NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a 
di!erentiable volume renderer to recover a model of a scene.   
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Improving rendering performance
But from a performance perspective, NeRF was not so good of a representation. 
So let’s use our graphics knowledge to move to representations that o!er di!erent points in the 
compression-compute trade-o! space 

Main ideas: 
- Most of a scene is empty space, let’s avoid stepping densely through empty space when 

unnecessary (aka. It’s costly to evaluate the DNN during ray marching to "nd density = 0) 
- Shrink the size of the DNN 
- Avoid evaluating the DNN altogether when you can
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Recall: quad-tree / octree data structures

Full
Fu

ll

E!ective resolution in this example is 8x8:  but structure only must store 20 leaf nodes 
Interior nodes with no children → same “value” for all children in subtree  
Value stored at nodes could be: binary occupancy, or value like:                                  or    �a(x, y, z)
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�s(x, y, z)
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Recall: ray marching a sparse voxel grid
Ray can now “skip” through empty space 

Ray marching is much more e%cient when it’s easy 
to determine where the “empty space” is  
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Let’s just run NeRF optimization for a bit like before…

Use the initial MLP to densely sample volume 
(Identify the empty space, use it to build a simple octree)

Note: 
This implementation uses 2-level octreee

Optimization will push some opacity values to 0 
DNN tells us where the empty space is! 

Then convert dense opacity grid to an octree representation that’s more e%cient to render from… 
With the octree structure *"xed*, we can continue to optimize a color/density representation at leaves

Credit: Yu 2021
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What just happened?
We performed initial training… a la original NeRF 
Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to 
replace the “big” DNN.  Can use little DNNs at the leaves.  
That structure speeds up rendering (a lot), and it also speeds up “"ne tuning” training, since the initial 
“big” DNN need not be trained to convergence

Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP

Credit: Yu 2021
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Another idea: use spherical harmonic representation of radiance
Useful basis for representing functions that varying 
smoothly w.r.t direction. 
Analogy: cosine basis on the sphere

Represent                           compactly by 
projecting into basis of SH. 

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Ym
l (!) = Ym

l (✓,�)

<latexit sha1_base64="VHAc7TBcDQOxOotPHcY7mXUAD3E=">AAACJnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdUfQiBL14VDA+yMYwO+kkQ2Z2l5leISz7NV78FS8eFBFvfoqTmIMmKWgoqrrp7gpiKQy67peTm5tfWFzKLxdWVtfWN4qbWzcmSjSHOo9kpO8CZkCKEOooUMJdrIGpQMJt0D8f+rePoI2IwmscxNBUrBuKjuAMrdQqnvqKYU+r9D57SFXWSmVW9iMFXVahp3SWiT1Atk/9uCcqrWLJrboj0GnijUmJjHHZKr757YgnCkLkkhnT8NwYmynTKLiErOAnBmLG+6wLDUtDpsA009GbGd2zSpt2Im0rRDpS/06kTBkzUIHtHN5tJr2hOMtrJNg5aaYijBOEkP8u6iSSYkSHmdG20MBRDixhXAt7K+U9phlHm2zBhuBNvjxNbg6q3mH16OqwVDsbx5EnO2SXlIlHjkmNXJBLUiecPJEX8kbenWfn1flwPn9bc854Zpv8g/P9A5aMpmw=</latexit>



Stanford CS248A, Winter 2025

Light probe locations in a game
Here: spherical harmonic probes sampled on a uniform grid 
(game compactly stores a few SH coe%cients at each point to represent indirect illumination)
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Finally…back to where we began
Start with a dense 3D grid of SH coe%cients, optimize those 
coe%cients at low resolution 
Now move to a sparse higher resolution representation (octree) 
Directly optimize for opacities and SH coe%cients using 
di!erentiable volume rendering 
No neural networks. Just optimizing the octree representation of 
“baked spherical harmonic light” lighting 

Takeaway: often-used computer graphics representations are 
e%cient representations to learn/optimize on

Plenoxels [CVPR 22]
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Neural codes… better than a DNN at the leaves
Rather than store a “per-leaf” DNN or per leaf SH coe%cients, store a “code” zi per leaf node i 

Ray march through the octree like normal 
- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample 

point, or evaluating SH coe%ents to get radiance… retrieve the neural code zi  
- Use a DNN to “decode” the code into a radiance or opacity  

Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color, it 
doesn’t have to represent all spatial occupancy information
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Hashing: a parallel friendly approach to storing and retrieving sparse voxels
Voxel hashing is a fast GPU data structure for supporting sparse voxel representations 
- “Give me data for voxel containing (x,y,z)” 
- Compact in space and “GPU friendly” for fast parallel lookup and update 
TL;DR — use hashing instead of trees 
Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13]
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Advanced topic: NVIDIA’s instant neural graphics primitives (NGP)
Combines two ideas: 

- Hierarchy of regular grids 

- Irregular hash data structures

Given position P: 
Compute indices of cell containing P on a bunch of di!erent resolution grids (L grids) 
At each grid resolution, turn indices into a hash code. 
Use hash code to get F components of neural code Z 
Concatenate all the codes to get Z (neural code of length L x F) 
Send Z through an MLP to decode "nal value 

What is cool:   
1. Implementation elegance: no two-step process to "nd empty space, build structure, then proceed optimizing on another data structure 
2. Sparse hash structure is fast… ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.
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Summarizing it all: the “template”
Train a DNN to gain understanding of 3D occupancy (where the surface is) 
- Little to no geometric priors (so need full bag of DNN optimization tricks, etc) 

Then move to a traditional sparse encoding of occupancy (sparse volumetric structure) 
- Now the “topology” of the irregular data structure is "xed 
- Representation of surface/appearance/etc is stored at the nodes of this structure (spherical harmonics, 

neural code, etc.) 
- Most of the heavy lifting is now performed by the data structure 

Continue optimization on the "xed, sparse representation 
- Leverages di!erential volume rendering on sparse structure 
- What we’re now learning is how to represent/compress the local details

�(p)
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<latexit sha1_base64="2G6XhtR4Vh2aLa7X8LyvcQv3K/8=">AAACAnicbVBNS8NAEN34WetX1JN4CRahXkoiFT0WvXisYD+gCWWz3bRLN9mwOxFLCF78K148KOLVX+HNf+OmzUFbHww83pthZp4fc6bAtr+NpeWV1bX10kZ5c2t7Z9fc228rkUhCW0RwIbs+VpSziLaAAafdWFIc+px2/PF17nfuqVRMRHcwiakX4mHEAkYwaKlvHrpAHyDlQoyTOKu6IYaRDNM4O+2bFbtmT2EtEqcgFVSg2Te/3IEgSUgjIBwr1XPsGLwUS2CE06zsJorGmIzxkPY0jXBIlZdOX8isE60MrEBIXRFYU/X3RIpDpSahrzvzE9W8l4v/eb0EgksvZVGcAI3IbFGQcAuEledhDZikBPhEE0wk07daZIQlJqBTK+sQnPmXF0n7rObUa+e39UrjqoijhI7QMaoiB12gBrpBTdRCBD2iZ/SK3own48V4Nz5mrUtGMXOA/sD4/AFFupf+</latexit>

Traditional data structure
�p

<latexit sha1_base64="5PXrrFqCsUyzQ90Oq1tftau/xUg=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVih6LXjxWsB/QLiWbZtvQJBuTrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61TJJqQpsk4YnuRNhQziRtWmY57ShNsYg4bUfj25nffqLasEQ+2ImiocBDyWJGsHVSp2fYUOC+6pcrftWfA62SICcVyNHol796g4SkgkpLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuoxIKaMJvfO0VnThmgONGupEVz9fdEhoUxExG5ToHtyCx7M/E/r5va+DrMmFSppZIsFsUpRzZBs+fRgGlKLJ84golm7lZERlhjYl1EJRdCsPzyKmldVINa9fK+Vqnf5HEU4QRO4RwCuII63EEDmkCAwzO8wpv36L14797HorXg5TPH8Afe5w8n6JAO</latexit>

cp(!)

<latexit sha1_base64="mBuowOC0mcNilZgs7/7mrudg6/k=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxC3ZQZqeiy6MZlBfuAzjBk0kwbmmSGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uWenDBhVGnH+bZKK6tr6xvlzcrW9s7unr1/0FFxKjFp45jFshciRRgVpK2pZqSXSIJ4yEg3HN/kfveBSEVjca8nCfE5GgoaUYy0kQL7yONIjyTPcJBMa17MyRCdBXbVqTszwGXiFqQKCrQC+8sbxDjlRGjMkFJ910m0nyGpKWZkWvFSRRKEx2hI+oYKxInys1n6KTw1ygBGsTRPaDhTf29kiCs14aGZzLOqRS8X//P6qY6u/IyKJNVE4PmhKGVQxzCvAg6oJFiziSEIS2qyQjxCEmFtCquYEtzFLy+TznndbdQv7hrV5nVRRxkcgxNQAy64BE1wC1qgDTB4BM/gFbxZT9aL9W59zEdLVrFzCP7A+vwBfhSVQA==</latexit>

SHp(!)

<latexit sha1_base64="XJJ7JE8U09Z9alG8DegGegCSqH0=">AAAB/HicbVDLSgNBEJyNrxhfqzl6WQxCvIRdiegx6CXHiOYB2RBmJ51kyOyDmV5xWeKvePGgiFc/xJt/4yTZgyYWNBRV3XR3eZHgCm3728itrW9sbuW3Czu7e/sH5uFRS4WxZNBkoQhlx6MKBA+giRwFdCIJ1PcEtL3JzcxvP4BUPAzuMYmg59NRwIecUdRS3yy6CI+Y3tWn/ajshj6M6FnfLNkVew5rlTgZKZEMjb755Q5CFvsQIBNUqa5jR9hLqUTOBEwLbqwgomxCR9DVNKA+qF46P35qnWplYA1DqStAa67+nkipr1Tie7rTpzhWy95M/M/rxji86qU8iGKEgC0WDWNhYWjNkrAGXAJDkWhCmeT6VouNqaQMdV4FHYKz/PIqaZ1XnGrl4rZaql1nceTJMTkhZeKQS1IjddIgTcJIQp7JK3kznowX4934WLTmjGymSP7A+PwBe9+Uqg==</latexit>
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But there are many scene representations

3D triangle mesh + texture map

3D volume (voxels)

Point cloud (list of points)

Oriented 3D Gaussians

Sparse voxels

DNN (MLP)
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Implicit representations like volumes and DNNs make it hard to know where the 
“empty space is” (hard to enumerate points on the surface)

Explicit representations are much better at the task of enumerating points on the 
surface (or equivalently, identifying where the empty space is)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Let’s consider one explicit representation that can accurately represent the contents of real world scenes… 
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D 
Gaussians is di!erentiable! 
(The color at a pixel due to a Gaussian blob is just an 
exponential)
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Optimization to recover parameters of 3D Gaussians, not voxel 
parameters, DNN weights, or neural codes

Compute radiance along 
ray through scene

Compare to 
actual image

Earlier in lecture: optimization 
produces color and opacity at each 
voxel, or DNN parameters, etc.. 

Now: same idea, but optimization 
chooses color, position, and radius of 
the Gaussians 
- Now: also need to decide on the 

number of Gaussians (a bit tricker)

Key idea: di!erentiable Gaussian splatting rendering to compute dC/d(color)d(radius)d(location)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]
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Summary
Volumes (continuous color/opacity "elds) ane 3D Gaussian points are representations of 
geometry and materials that lend themselves to simple di!erential rendering algorithms  

Modern high-performance optimization techniques are amazingly e!ective at recovering the 
parameters of these representations. 

Together, these two observations have led to rapid progress in reconstructing scenes from 
(potentially sparse) set of photos 

Some of these solutions employ interesting combinations of neural structures (learned DNN 
weights, or neural “codes”) and “traditional” graphics representations like spatial 
accelerations structures or compact bases for radiance.  
- Takeaway for graphics students in 2025: need to be a master of both domains!
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What about triangles and textures?
What are the parameters of a mesh? (Vertex positions, 
number of vertices, connectivity,  etc.) 
Computing the gradient of a rendering subject to these 
parameters is challenging. 
- Consider simple case of "xed vertex count and "xed 

topology: change in rendering output at a single 
sample point is discontinuous at object silhouettes as 
a function of vertex position changes (might see 
object A, then see object B if object A moves!) 

- But integral of radiance over a pixel (post resolve 
output) is not discontinuous… (fraction of pixel 
covered)  
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Example uses of di!erential rasterizers/ray tracers
Optimize parameters of SVG "le 
to get a certain look

Optimize “bold” parameter of SVG text to match 
image to right… 

Optimize curve control points to match images of numbers.

[Li et al. 2020 Di!erentiable Vector Graphics Rasterization for Editing and Learning]
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Example uses of di!erential rasterizers/ray tracers
Optimize vertex positions (at "xed vertex count) and also texture map pixels (alpha matte) to make the 
best low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simpli"cation]

Example alpha 
texture for a leaf
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Example uses of di!erential rasterizers/ray tracers
Recall how we talked about “caustics” that occur when refraction causes light to focus  
- Use di!erential path tracer to optimize vertex positions so surface refracts light to make given 

image on a receiving plane.

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer]

Starting result 
(&at plane) Final result

Steps of optimization 
(Adjust vertex positions of glass plane)
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Summary
Renderers are “world simulators” that can use a variety of representations to model 
surfaces, materials, light, etc. 

Making those simulators di!erentiable opens up the possibility to invoke the amazing 
e!ectiveness of large-scale optimization to recover “good representations” by minimizing 
loss from a reference 

Depending on (1) task at hand (high-quality rendering, parameter recovery, scene 
editing, etc.) and (2) the properties of the scene you are trying to work with (complex 
foliage, smooth curves, "ne scale hair/fur, &at walls) and (3) your storage/performance 
needs, di!erent representations will be preferred. 
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Summary
Thanks to Ben Mildenall, Ren Ng for discussions related to these slides


