Lecture 16:

Recovering Scene Representations
with Differentiable Rendering

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2025



A longstanding challenge in computer graphics...

m Acquiring high-quality 3D content for rendering
m Imagine | wanted to make a high-quality 3D model and associated texture maps depicting Josephine the graphics cat...
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An interesting task

m Given a collection of photographs (from known camera viewpoints)
m Compute a 3D reconstruction of the scene (surface locations + color at each point on surface) that you could
use for rendering the scene from novel viewpoints
l r f[
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Estimating mesh geometry is tricky

Reconstructed Mesh

Credit: Mildenhall 2019 Stanford (S248A, Winter 2025



Renewed interest in volume rendering (circa 2018)

Let’s just drop this triangle-based representation entirely, it's much simpler (and more versatile when
it’s unclear what the geometry is anyway) to emit a volumetric representation

A “reasonable” volume representing the scene is the one that, when volume
rendered from the viewpoint of the photograph, produces a picture that looks
like the photograph.

Credit: Lombardi 2019 Stanford (S248A, Winter 2025



Last time: rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

And continuous volume with density and directional radiance. r(t)

o (p> <4— Volume density and color at all points in space.

c(p,w)

Step through the volume to compute radiance along the ray.

Attenuation of radiance along r between r(s) and Color, opacity of the volume at the current point

“camera” due to out scattering or absorbion (More precisely: radiance along r at point r(s) due to in-scattering or emission)

P
C(r) = /t>(tt, where T'(t) = exp (— /t: a(r(s))ds)
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Recovering a volume that yields acquired images

Given a set of images of a subject with known camera positions...
Ly t
C(r) = / T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— / a(r(s))ds)
L tn

Idea: find volume parameters (opacity and color at each (i,j, k)

To make C(r) match the corresponding pixel in the photos. r(s)
. e
For many rays.... trace through volume... see if the result matches the photo... use A
error to update volume’s opacity/color values
Compute radiance along Compare to
ray through volume actual image _
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Mini intro to gradient-based optimization
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Imagine we have a function f(z)

m How can we find the minimum of the function?

f(z)
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Descent methods
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Gradient descent (1D)

m Basicidea: follow the gradient “downhill” until it’s zero

' ((0)) fim ()

{— 00

m Do we always end up at a (global) minimum?

m How do we compute gradient descent in practice?
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Gradient descent algorithm (1D)

m “Walk downhill”
m Onesimple way: forward Euler:
Tpt1 = T — Tf (2p)

/ X

new estimate step size

m Q: How do we pick the step size?

m [f we're not careful, we'll go zipping all : . , :
over the place; won't make any progress. p i ;

L2 To L3 Iq

m Basicidea: use “step control” to determine step size based on
value of function and its derivatives

m For now we will do something simple: make t small!
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Gradient descent algorithm (n-D)

m Q: How do we write gradient descent equation in general? _ .
df  df df
d e _d_xo dx; " dxny-_1 |

“x(t) =~V f{(1)

m Q: What's the corresponding discrete update?

Xpa1 = X — TV f(Xk)

m Basicchallenge in nD:
- solution can “oscillate”
- takes many, many small steps

- very slow to converge >
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Back to our problem of recovering a volume
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Recovering a volume that yields acquired images

Given a set of images of a subject with known camera positions...
What is the function we are trying to minimize?

f(0,r) = ||C(r) — Li(z,y)3

Where r is the ray corresponding to the center point of pixel (x,y) for a given image j, and ((r) is the color (radiance) of
the scene observed along the ray given by marching r through the volume. (I'm using theta to denote color and opacity
parameters of the volume)

C(r) = /t 7 PO (e(0)e(x(t), )t , where T(t) = exp (— /t t a(r(s))ds)

n

NS o Notice that the rendering result C'(r) depends on the

volume’s color and opacity parameters.
&« /H\

LE
3l ’ ! .':,
~ ’
R v el
LI ;
5l y
’ y
ot S0 3
o il iy
s :‘4:
2: sy
. ‘
\lg’

So we want to minimize f subject to those parameters.
Luckily f is easily differentiable! (It's a sum of exponentials!)
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Recovering a volume that yields acquired images

For many rays.... trace through volume... see if the result matches the photo...
use error “loss” to update volume opacity/color values using gradient descent

>

Ray Distance

Compute radiance along Compare to
ray through volume actual image
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Problem: reqular 3D grid representation of a volume has
high storage cost

m Dense3D grid
- V[i,j,k]=rgba
- 40963 cells ~ 128 GB

m Note, this representation treats surface
as diffuse, since: c(p,w) = ¢(p)

m  Would need ofi,j,k] and c[i,j, k,phi,theta]
to represent directional distribution of
color

Credit: Voxel Ville NFT (voxelville.io)




Recurring theme in this course:
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity field that corresponds
to renderings from various known viewpoints.

o(p)
c(p,w)

And that recovery process is optimization via gradient descent.
Technically... modern stochastic gradient descent (SGD).
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Learning (compressed) representations

Rather than store an entire dense volume, let’s just learn an approximation to the
continuous function that matches observations from different viewpoints?

Let’s represent that approximation using a deep neural network.

o(p)
c(p,w)

0] ___ﬁ
-
128-d

vector
(x,y,2) (0,9)

(p,(ﬂ) — Fg(p,w) —
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Learning neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views
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Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)

Stanford (5248A, Winter 2025



Great visual results!
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What just happened?

m Continuous coordinate-based representation vs reqular grid: DNN is optimized so its weights to produce
high-resolution output where needed to match input image data

m Extremely compact representation: trades-off storage for expensive rendering
- Good: a few MBs = effectively very high-resolution dense grid

- Bad: must evaluate DNN every step during ray marching L
- And the DNNis a ”big” MLP (8-Iayer X 256) 44— MLP must do real work to associate

weights with 5D locations

- Bad: must step densely (because we don't know where the surface is... we can only query the DNN
for opacity)

m Compact representation: DNN can interpolate views despite complexity of volume density and radiance
function

- Only prior is the separation into positional O and directional rgb
- Training time: hours to a day to optimize a good NeRF
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Is NeRF a“good” representation?

m Ask yourself: what was the task?
- Optimization (to recover DNN weights) and then rendering high-quality images

- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-
based representations would be very complex!

m Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes
possible (parameters fit on single GPU)

- Amount compression possible while retaining high fidelity was generally surprising to many

- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter
capacity as needed to maintain high quality

m NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a
differentiable volume renderer to recover a model of a scene.
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Improving rendering performance

m But from a performance perspective, NeRF was not so good of a representation.

m So let’s use our graphics knowledge to move to representations that offer different points in the
compression-compute trade-off space

m Mainideas:

- Most of a scene is empty space, let’s avoid stepping densely through empty space when
unnecessary (aka. It’s costly to evaluate the DNN during ray marching to find density = 0)

- Shrink the size of the DNN
- Avoid evaluating the DNN altogether when you can
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Recall: quad-tree / octree data structures

I

Empty Full

CHEm

Empty
Empty

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes

Interior nodes with no children — same “value” for all children in subtree

Value stored at nodes could be: binary occupancy, or value like: o, (x, 1y, 2) or O (a:‘, Y, Z)
Stanford C5248A, Winter 2025



Recall: ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy
to determine where the “empty space”is

N
’
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Let’s just run NeRF optimization for a bit like before...

Without sparsity loss With sparsity loss

S

m Optimization will push some opacity values to 0
m DNN tells us where the empty space is!

GHE
i
L o

mae e S

Use the initial MLP to densely sample volume
(Identify the empty space, use it to build a simple octre

Note:
This implementation uses 2-level octreee

Credit: Yu 2021 Stanford (S248A, Winter 2025



What just happened?

m We performed initial training... a la original NeRF

m Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to
replace the “big” DNN. Can use little DNNs at the leaves.

m That structure speeds up rendering (a lot), and it also speeds up “fine tuning” training, since the initial
“big” DNN need not be trained to convergence

297

28+

v 27-
=
A, 26 -
a9 NeRF
24 - NeRF-SH
- PlenOctree
Credit: Yu 2021
0 10 20 30 40 50 60

Training Time (hours)

m Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP
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Another idea: use spherical harmonic representation of radiance

m Useful basis for representing functions that varying
smoothly w.r.t direction.

m Analogy: cosine basis on the sphere

®
vee

oK , m Represent C(P,w) compactly by
forindbsethunth g fncfho o oo projecting into basis of SH.
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NSer

Light probe locations in a game

Here: spherical harmonic probes sampled on a uniform grid
(game compactly stores a few SH coefficients at each point to represent indirect illumination)
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Finally...back to where we began

Plenoxels [CVPR 22] ©
m Start with a dense 3D grid of SH coefficients, optimize those o
coefficients at low resolution
m  Now move to a sparse higher resolution representation (octree) =
: . o : : n &
m Directly optimize for opacities and SH coefficients using 2
Z

differentiable volume rendering

m No neural networks. Just optimizing the octree representation of
“baked spherical harmoniclight” lighting

m Takeaway: often-used computer graphics representations are
efficient representations to learn/optimize on

- Plenoxel

207 —— NeRF

0 10 20 30 40 50 60
Training Time (minutes)
025



Neural codes... better than a DNN at the leaves

m Rather than store a “per-leaf” DNN or per leaf SH coefficients, store a “code” z per leaf node J

m Ray march through the octree like normal

- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample
point, or evaluating SH coeffients to get radiance... retrieve the neural code z;

- Use a DNN to “decode” the code into a radiance or opacity

III

m Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color, it
doesn’t have to represent all spatial occupancy information
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Hashing: a parallel friendly approach to storing and retrieving sparse voxels

m Voxel hashingis a fast GPU data structure for supporting sparse voxel representations
- “Give me data for voxel containing (x,y,z)"
- Compactin space and “GPU friendly” for fast parallel lookup and update
m TL;DR — use hashing instead of trees
m Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

H(z,y,2) = (x-p1 Dy p2® z-p3) modn

T—

world -. / \

TR T T T e
N D budke
v voxel

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13] Stanford CS248A, Winter 2025




Advanced topic: NVIDIA's instant neural graphics primitives (NGP)

m Combines two ideas: Given position P:
) Hierarchy of regu| ar grids Compute indices of cell containing P on a bunch of different resolution grids (L grids)
At each grid resolution, turn indices into a hash code.
- Irreqgular hash data structures Use hash code to get F components of neural code Z
Concatenate all the codes to get Z (neural code of length L x F)
L=2 §=13 * 2t T, - R Send Z through an MLP to decode final value
o
T Z o
2 0 2 o O‘\ Y
7 B
1/Ny 0 1) = : boF
3 6 2 E
3 1
‘é r
. 6
1 7 4 = J
What is cool:

1. Implementation elegance: no two-step process to find empty space, build structure, then proceed optimizing on another data structure
2. Sparse hash structure is fast. .. ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.
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Summarizing it all: the “template”

m Train a DNN to gain understanding of 3D occupancy (where the surface is)
o(p)

- Little to no geometric priors (so need full bag of DNN optimization tricks, etc) , ) » F(p.w) » ¢(p, w)

m Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
- Now the “topology” of the irregular data structure is fixed

- Representation of surface/appearance/etcis stored at the nodes of this structure (spherical harmonics,
neural code, etc.)

- Most of the heavy lifting is now performed by the data structure

4p
P # lookup(p) +
>
: e : " p
m Continue optimization on the fixed, sparse representation Traditional data structure ¢ (W)
P
- Leverages differential volume rendering on sparse structure
SH), (w)

- What we're now learning is how to represent/compress the local details
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ut there are many scene representations
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3D volume (voxels)
=
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Sparse voxels

DNN (MLP)

Oriented 3D Gaussians

Point cloud (list of points) Stanford (5248, Winter 2025



Implicit representations like volumes and DNNs make it hard to know where the
“empty space is” (hard to enumerate points on the surface)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Explicit representations are much better at the task of enumerating points on the
surface (or equivalently, identifying where the empty space is)

Let’s consider one explicit representation that can accurately represent the contents of real world scenes...
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D

Gaussians is differentiable!
(The color at a pixel due to a Gaussian blob is just an

exponential)

Stanford (5248A, Winter 2025



Optimization to recover parameters of 3D Gaussians, not voxel
parameters, DNN weights, or neural codes

Compute radiance along Compare to
ray through scene actual image
m Earlierin lecture: optimization /\
I Ray:2 1 oy 1 / :
produces color and opacity at each % <o I N —g.t.
voxel, or DNN parameters, etc.. . 2

2

m Now:same idea, but optimization / -g.t.
chooses color, position, and radius of

the Gaussians

Ao
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; UM 3
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D < ’ i
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o 4 Ray 2 | |

>

2

/=

Ray Distance

- Now: also need to decide on the
number of Gaussians (a bit tricker)

Key idea: differentiable Gaussian splatting rendering to compute dC/d(color)d(radius)d(location)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]
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Summary

m Volumes (continuous color/opacity fields) ane 3D Gaussian points are representations of
geometry and materials that lend themselves to simple differential rendering algorithms

m Modern high-performance optimization techniques are amazingly effective at recovering the
parameters of these representations.

m Together, these two observations have led to rapid progress in reconstructing scenes from
(potentially sparse) set of photos

m Some of these solutions employ interesting combinations of neural structures (learned DNN
weights, or neural “codes”) and “traditional” graphics representations like spatial
accelerations structures or compact bases for radiance.

- Takeaway for graphics students in 2025: need to be a master of both domains!
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What about triangles and textures?

m What are the parameters of a mesh? (Vertex positions,
number of vertices, connectivity, etc.)

m Computing the gradient of a rendering subject to these
parameters is challenging.

- Consider simple case of fixed vertex count and fixed
topology: change in rendering output at a single
sample point is discontinuous at object silhouettes as
a function of vertex position changes (might see
object A, then see object B if object A moves!)

- Butintegral of radiance over a pixel (post resolve
output) is not discontinuous. .. (fraction of pixel
covered)

Stanford (5248A, Winter 2025



Example uses of differential rasterizers/ray tracers
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Example uses of differential rasterizers/ray tracers

m Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the
best low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

Example alpha
texture for a leaf

Initial guess (6.5k tris) Optimized parameters Our (6.5k tris) Reference (1.7M tris)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification] Stanford CS248A, Winter 2025



Example uses of differential rasterizers/ray tracers

m Recall how we talked about “caustics” that occur when refraction causes light to focus

- Use differential path tracer to optimize vertex positions so surface refracts light to make given
image on a receiving plane.

Steps of optimization
Starting result (Adjust vertex positions of glass plane)
(flat plane)

o L O ®

Final result

Optimized geometry  Projected caustic

!

5

Directional area light

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer] Stanford (S248A, Winter 2025



Summary

m Renderers are “world simulators” that can use a variety of representations to model
surfaces, materials, light, etc.

m Making those simulators differentiable opens up the possibility to invoke the amazing
effectiveness of large-scale optimization to recover “good representations” by minimizing

loss from a reference

m Depending on (1) task at hand (high-quality rendering, parameter recovery, scene
editing, etc.) and (2) the properties of the scene you are trying to work with (complex
foliage, smooth curves, fine scale hair/fur, flat walls) and (3) your storage/performance

needs, different representations will be preferred.
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Summary

m Thanks to Ben Mildenall, Ren Ng for discussions related to these slides
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