
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Lecture 4:

Texture Mapping

Computer Graphics: Rendering,
Geometry, and Image Manipulation
Stanford CS248A, Winter 2025

Stanford CS248A, Winter 2025

Many uses of texture mapping
De!ne variation in surface re"ectance

Pattern on ball
Wood grain on "oor

Stanford CS248A, Winter 2025

Describe surface material properties

Multiple layers of texture maps for color, logos, scratches, etc.

Stanford CS248A, Winter 2025

Layered material

Stanford CS248A, Winter 2025

Normal and displacement mapping

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface

(note smooth silhouette/shadow reveals that
surface geometry is not actually bumpy!)

Dice up surface geometry into tiny triangles &
o#set vertex positions according to texture values

 (note bumpy silhouette and shadow boundary)

normal mapping displacement mapping

Stanford CS248A, Winter 2025
Grace Cathedral environment map Environment map used in a rendering

Represent precomputed lighting and shadows

Stanford CS248A, Winter 2025

Perspective and texture
PREVIOUSLY:
- transformation (how to manipulate primitives in space)
- rasterization (how to turn primitives into colored pixels)

TODAY:
- see where these two ideas come crashing together!
- talk about how to map texture onto a primitive to get

more detail
- …and how perspective transformations create

challenges for texture mapping!

Why is it hard to render
an image like this?

Stanford CS248A, Winter 2025

Recall the function coverage(x,y) from lecture 2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x

In lecture 2 we discussed how to sample
coverage given the 2D position of the
triangle’s vertices.

x

Stanford CS248A, Winter 2025

Consider sampling a di#erent signal: color(x,y)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [1,0,0]

x

What is the triangle’s color at the point , given its colors at points ?

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

a,b, c

<latexit sha1_base64="uSK9dcMcINmvwNmEkbb61K74DoE=">AAACC3icbZDLSsNAFIZPvNZ6i7p0M7QILqQkUtFl0Y3LCvYCbSiT6aQdOpmEmYlQQvdufBU3LhRx6wu4822ctBFq6w8DH/85hznn92POlHacb2tldW19Y7OwVdze2d3btw8OmypKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzdZvfVApWKRuNfjmHohHggWMIK1sXp2qRtiPfSDFE/O0C/7c0wmPbvsVJyp0DK4OZQhV71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXYTRWNMRnhAOwYFDqny0uktE3RinD4KImme0Gjqzk+kOFRqHPqmM9tQLdYy879aJ9HBlZcyESeaCjL7KEg40hHKgkF9JinRfGwAE8nMrogMscREm/iKJgR38eRlaJ5X3Grl4q5arl3ncRTgGEpwCi5cQg1uoQ4NIPAIz/AKb9aT9WK9Wx+z1hUrnzmCP7I+fwAV9JsX</latexit>

Stanford CS248A, Winter 2025

Review: interpolation in 1D

x1x0 x2 x3 x4

f (x)

frecon(x) = linear interpolation between values of two closest samples to x

f(x2) f(x3)

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

Between: x2 and x3:

where:

Stanford CS248A, Winter 2025

Consider similar behavior on triangle

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

black [0,0,0]

blue [0,0,1]

black [0,0,0]

x

Color depends on distance from

Color =

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

distance from to
distance from to

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

How can we interpolate in 2D between three values?

(1� t)
⇥
0 0 0

⇤
+ t

⇥
0 0 1

⇤

Color value at is linear combination of
color value at three triangle vertices.

Stanford CS248A, Winter 2025

Linear interpolation of quantities over triangle

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

 form a non-orthogonal
basis for points in triangle (origin at)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

and

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

What is the triangle’s color at the point , given its color at points ?

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

a,b, c

<latexit sha1_base64="uSK9dcMcINmvwNmEkbb61K74DoE=">AAACC3icbZDLSsNAFIZPvNZ6i7p0M7QILqQkUtFl0Y3LCvYCbSiT6aQdOpmEmYlQQvdufBU3LhRx6wu4822ctBFq6w8DH/85hznn92POlHacb2tldW19Y7OwVdze2d3btw8OmypKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzdZvfVApWKRuNfjmHohHggWMIK1sXp2qRtiPfSDFE/O0C/7c0wmPbvsVJyp0DK4OZQhV71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXYTRWNMRnhAOwYFDqny0uktE3RinD4KImme0Gjqzk+kOFRqHPqmM9tQLdYy879aJ9HBlZcyESeaCjL7KEg40hHKgkF9JinRfGwAE8nMrogMscREm/iKJgR38eRlaJ5X3Grl4q5arl3ncRTgGEpwCi5cQg1uoQ4NIPAIz/AKb9aT9WK9Wx+z1hUrnzmCP7I+fwAV9JsX</latexit>

green [0,1,0]

blue [0,0,1]

red [1,0,0]

Stanford CS248A, Winter 2025

Another way: barycentric coordinates as ratio of areas

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [1,0,0]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Also ratio of signed areas:

Why must coordinates be between 0 and 1?

Stanford CS248A, Winter 2025

Yet another way: barycentric coordinates as scaled distances

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [1,0,0]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

proportional to distance from to edge

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

Eac(x, y) = Ax+By + C

kEac(bx,by) = 1

kEac(xx,xy) = �

2

(Similarly for other two barycentric coordinates)

Compute distance of from line
Divide by distance of from line (“height” of triangle)

Stanford CS248A, Winter 2025

A = (x0, y0, z0, r0, g0, b0, u0, v0)

B = (x1, y1, z1, r1, g1, b1, u1, v1)

C = (x2, y2, z2, r2, g2, b2, u2, v2)

x

You can can linearly interpolate any values (de!ned at vertices)
over the triangle this way
Here, I’m interpolating position (x,y,z), color (r,g,b), and extra values (u,v)

Vertex is green, so (r2,g2,b2) = (0,1,0)

Vertex is red, so (r1,g1,b1) = (1,0,0)

Vertex is black, so (r0,g0,b0) = (0,0,0)

Stanford CS248A, Winter 2025

Not so fast… perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices.
But due to perspective projection, barycentric interpolation of values on a triangle with vertices of di#erent depths in
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with attribute value (A0 + A1) / 2 is
not halfway between the 2D screen points proj(P0) and proj(P1).

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) + proj(P1)) / 2 is not (A0 + A1) / 2.

Pmid

Stanford CS248A, Winter 2025

Perspective correct interpolation

2D screen-space
interpolation

3D world-space
interpolation

This is a plane (two triangles), tilted down and rendered under perspective.

Stanford CS248A, Winter 2025

Perspective correct interpolation on a projected triangle
(in 2D)

Problem:
- Given some value fi at each of a 3D triangle’s vertices, that is linearly interpolated

across the triangle in 3D
- And the 2D screen coordinates Pi=(xi,yi) of each of a triangles vertices after projection
- As well as the homogenous coordinate wi for each vertex

Sample the value of f(x,y) for the projected triangle at a given 2D screen space location
(x,y)

Attribute’s value at 3D point on triangle is given by:

Stanford CS248A, Winter 2025

Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume a triangle attribute varies linearly across the triangle (in 3D)

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to
move to 2D-H

point P in 3D-HSimple perspective
projection matrix *

projection of P
in 2D-H

So … is a$ne function of 2D screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective projection
matrix only changes the coe$cient in front of x2d and y2d .
(property that f/w is a$ne still holds)

perspective projection
of P in 3D-H

Stanford CS248A, Winter 2025

Direct evaluation of surface attributes from 2D-H vertices
For any surface attribute (with value de!ned at triangle vertices as:)

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per triangle “setup” computation prior to sampling, just like you computed edge equations for
evaluating coverage.

value of attribute at vertex a

projected 2D position of
vertex a

w coordinate of vertex a after
perspective projection transform

x

Stanford CS248A, Winter 2025

E$cient perspective-correct interpolation
Setup:

Given fa, fb, fc and wa, wb, wc … compute A, B, C for f/w(x,y) = Ax + By + C
Also compute equation for 1/w(x,y)

To evaluate surface attribute f(x,y) at every covered sample (x,y):

Evaluate 1/w (x,y) (from precomputed equation for value 1/w)
Reciprocate 1/w (x,y) to get w(x,y)
For each triangle attribute:

 Evaluate f/w (x,y) (from precomputed equation for value f/w)
 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute f that varies linearly across triangle:
e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation”

Stanford CS248A, Winter 2025

Texture coordinates

texture(u,v) is a function
de!ned on the [0,1]2 domain
(represented by 2048x2048 image)

“Texture coordinates” de!ne a mapping from surface coordinates (e.g., points on triangle) to points in the domain of a
texture image

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with
surface parameterization provided as per-

vertex texture coordinates (u,v)

Final rendered result (entire cube shown).

Location of triangle after projection onto
screen shown in red.

Location of highlighted triangle
in texture space shown in red.

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute
(Not discussing methods for generating surface texture parameterizations)

Surface (one face of cube)
Texture function

(represented by an image)
Rendered image of texture

mapped onto surface

Stanford CS248A, Winter 2025

Many di#erent mappings of surface position to texture space

Example: mercator projection onto sphere
https://blender.stackexchange.com/questions/3315/how-to-get-perfect-uv-sphere-mercator-projection

Stanford CS248A, Winter 2025

Texture “atlas”

https://www.creativebloq.com/3d/how-create-killer-3d-robot-21410645

Stanford CS248A, Winter 2025

Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle

(black)

Stanford CS248A, Winter 2025

Texture coordinate values provided at triangle vertices
(Just like 3D positions are provided at vertices)

u

v

(x1, y1, z1, u1=0.4, v1=0.7)

(x2, y2, z2, u2=0.2, v2=0.15)

(0,0)

(1,1)

Visualization of location of triangle vertices
in texture space

Visualization of texture coordinate value on mesh
(texture coordinate = color)

Mesh inputs: for each triangle
- Per-vertex positions in 3D [x,y,z]
- Per-vertex texture coordinates in 2D texture space [u,v]

Stanford CS248A, Winter 2025

Texture mapping adds detail
Sample texture map at speci!ed location in texture coordinate space to

determine the surface’s color at the corresponding point on surface.

u

v

Stanford CS248A, Winter 2025

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

Each triangle “copies” a piece of the image back to the surface.

Stanford CS248A, Winter 2025

Texture sampling 101
Basic algorithm for mapping texture to surface:

- For each color sample location (X,Y)

- Interpolate U and V coordinates across triangle to get value at (X,Y)

- Sample (evaluate) texture at location given by (U,V)

- Set color of surface point to sampled texture value

Stanford CS248A, Winter 2025

Texture coordinate visualization
De!nes mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow

(0,0)

(1,1)

Texture map

Stanford CS248A, Winter 2025

Rendered result

(0,0)

(1,1)

Texture map

Stanford CS248A, Winter 2025

Visualization of texture coordinates

Notice texture coordinates repeat over surface.

Stanford CS248A, Winter 2025

Example textured scene

Stanford CS248A, Winter 2025

Example textures used in previous scene

Stanford CS248A, Winter 2025

Texture mapping: basic algorithm
Basic algorithm for mapping texture image onto a surface:

- For each color sample location (X,Y) in the image

- Interpolate U and V texture coordinates across triangle to get texture coordinate value at (X,Y)

- Sample texture map at location (U,V)

- Set output image sample color to sampled texture value

Stanford CS248A, Winter 2025

Demo (by Katie Detkar) https://katie.su.domains/webgl/index.html

Stanford CS248A, Winter 2025

Thought experiment
Imagine rendering a texture-mapped quadrilateral onto a 1000x1000 pixel output image

1000 pixels

1000 pixels Let’s also say the texture image
is 1000x1000 as well.

These red dots are your rasterizer’s
screen sample points.

Stanford CS248A, Winter 2025

Sampling rate on screen vs in texture: object zoomed out

Red dots = samples on screen
White dots = texture map samples in texture space Texture space (u,v)

The entire 1000x1000 texture is rendered
into a small region of the screen.

Texture is “mini!ed” on screen

Stanford CS248A, Winter 2025

Zooming in…

Red dots = samples on screen
White dots = texture map samples in texture space

Texture space (u,v)Gray square = area of a screen pixel

Stanford CS248A, Winter 2025

Zooming in…

Texture space (u,v)

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel

Stanford CS248A, Winter 2025

Zoomed in

Texture space (u,v)

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel

Texture is “magni!ed” on screen
Only a small region of texture is visible on screen

Stanford CS248A, Winter 2025

Sampling rate on screen vs in texture: object rotation

Red dots = samples on screen
White dots = texture map samples in texture space

Texture space (u,v)Gray square = area of a screen pixel

Stanford CS248A, Winter 2025

Equally spaced samples on screen != equally spaced samples in texture space

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space
(texture function is sampled at these locations)

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1 2
3

4
5

Stanford CS248A, Winter 2025

Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford CS248A, Winter 2025

Screen pixel footprint in texture space

upsampling
magnification

downsampling
minification

Upsampling
(Magni!cation)

Downsampling
(Mini!cation)

Camera zoomed in
close to object

Camera far away
from object

Stanford CS248A, Winter 2025

Screen pixel area vs texel area
At optimal viewing size:
- 1:1 mapping between pixel sampling rate and

texel sampling rate
- Dependent on screen and texture resolution!

When pixel area is larger than texel area (texture mini!cation)
- Think: zoom far out from object
- One pixel sample per multiple texel samples

When pixel area is smaller than texel area (texture magni!cation)
- Think: zoom in on an object
- Multiple pixel samples per texel sample

Stanford CS248A, Winter 2025

Texture magni!cation

Texture space (u,v)

What is the color of the texture
at these red dots?

Stanford CS248A, Winter 2025

Review: piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

Stanford CS248A, Winter 2025

Picture of Josephine (the graphics cat)

Stanford CS248A, Winter 2025

Texture magni!cation (nearest)

Stanford CS248A, Winter 2025

Texture magni!cation (nearest)

Stanford CS248A, Winter 2025

Texture magni!cation (nearest)

Stanford CS248A, Winter 2025

Texture magni!cation (nearest)

Stanford CS248A, Winter 2025

Texture magni!cation
Generally don’t want this situation — it means we have insu$cient texture resolution
Magni!cation involves interpolation of values in texture map (below: three di#erent interpolation
kernel functions)

Nearest sample Bilinear Bicubic

Stanford CS248A, Winter 2025

Review: piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

Stanford CS248A, Winter 2025

Texture magni!cation (bilinear)

Stanford CS248A, Winter 2025

Texture magni!cation (bilinear)

Stanford CS248A, Winter 2025

Texture magni!cation (bilinear)

Stanford CS248A, Winter 2025

Texture magni!cation (bilinear)

Stanford CS248A, Winter 2025

Bilinear interpolation

Want to sample texture value f(x,y)
at red point

Black points indicate texture
sample locations

Stanford CS248A, Winter 2025

Bilinear interpolation

u00

u01 u11

u10

Take 4 nearest sample
locations, with texture
values as labeled.

Stanford CS248A, Winter 2025

Bilinear interpolation

u00

u01 u11

u10

t

s

And fractional o#sets,
(s,t) as shown

Stanford CS248A, Winter 2025

Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Stanford CS248A, Winter 2025

Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)
u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Stanford CS248A, Winter 2025

Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps
u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

Stanford CS248A, Winter 2025

Texture mini!cation

Texture space (u,v)

Stanford CS248A, Winter 2025

By now I hope you’ve realized:

Applying textures is a form of sampling!
t(u,v)

Stanford CS248A, Winter 2025

Mini!cation of Josephine
Imagine the texture map is 9x9

When a texture is minimized, the texture map is sampled sparsely!
White dots = samples existing in texture map

And is applied to a quad that
spans a 3x3 pixel region of screen.

Red dots = samples needed to render

Stanford CS248A, Winter 2025

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
1D example

2D examples:
Moiré patterns, jaggies

Stanford CS248A, Winter 2025

Aliasing due to undersampling texture

Anti-aliased texture samplingOne texture sample per pixel
(aliasing!)

Stanford CS248A, Winter 2025

Aliasing due to undersampling (zoom)

Anti-aliased texture samplingOne texture sample per pixel
(aliasing!)

Stanford CS248A, Winter 2025

Another example

Jaggies

Moire

Anti-aliased result Rendered image: 256x256 pixels

Stanford CS248A, Winter 2025

Texture mini!cation - hard case
Challenge:
- Many texels contribute to color of an output image pixel

(sampling only one of them could yield aliasing)
- Shape of pixel footprint can be complex

upsampling
magnification

downsampling
minification

Shaded region = pixel area
Red lines = screen pixel boundaries

Red dots = texture space sample
points for adjacent pixels

Stanford CS248A, Winter 2025

Texture mini!cation - hard case
Challenge:
- Many texels contribute to color of an output image pixel

(sampling only one of them could yield aliasing)
- Shape of pixel footprint can be complex

One solution that you already know: supersampling
- Averaging many texture samples per pixel can approximate

result of convolving texture map with pixel-area sized !lter
- Problem?

upsampling
magnification

downsampling
minification

Shaded region = pixel area
Red lines = screen pixel boundaries

Red dots = texture space sample
points for adjacent pixels

Alternative solution: remove high frequency
from texture to reduce aliasing!

Stanford CS248A, Winter 2025

Pre-!ltering texture map reduces aliasing

Pre-!ltered texture map
(high frequencies removed)

One texture sample per pixel
(aliasing!)

Stanford CS248A, Winter 2025

Pre-!ltering texture map reduces aliasing

No pre-!ltering of texture data
(resulting image exhibits aliasing)

Pre-!ltered texture map
(high frequencies removed)

Stanford CS248A, Winter 2025

But how much should we pre-!lter?
Amount of pre-!ltering depends on how far away the
object is:
- minor mini!cation: image pixel extreme

magni!cation: image pixel spans large region of
texture

Idea:
- Low-pass !lter and downsample texture !le, and store

successively lower resolutions
- For each sample, use the texture !le whose resolution

approximates the screen sampling rate
upsampling
magnification

downsampling
minification

Shader region = pixel area
Red lines = screen pixel boundaries

Red dots = texture space sample
points for adjacent pixels

Stanford CS248A, Winter 2025

But how much should we pre-!lter?

upsampling
magnification

downsampling
minification

Amount of pre-!ltering necessary depends on how
far away the object is

Idea: pre-compute and store di#erent versions of the
texture with di#erent amounts of pre!ltering

- Low-pass !lter and downsample texture !le, and
store successively lower resolutions

- When sampling texture, use the texture !le
whose pre!ltering amount matches the desired
sampling rate

Stanford CS248A, Winter 2025

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

Each mipmap level is downsampled (low-pass !ltered) version of the previous

Stanford CS248A, Winter 2025

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

What is the storage overhead of a mipmap?

Stanford CS248A, Winter 2025

Computing mipmap level

Screen space Texture space

Compute di#erences between texture coordinate values of neighboring screen samples

u

v

Stanford CS248A, Winter 2025

Computing mipmap level
Compute di#erences between texture coordinate values of neighboring screen samples

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2 L

u

v
L

du/dx
dv/dx

Stanford CS248A, Winter 2025

Bilinear resampling at level 0

Aliasing

OK

Stanford CS248A, Winter 2025

Bilinear resampling at level 2

Stanford CS248A, Winter 2025

Bilinear resampling at level 4

OK

Blurring

Stanford CS248A, Winter 2025

Visualization of mipmap level
(bilinear !ltering only: d clamped to nearest level)

Stanford CS248A, Winter 2025

“Tri-linear” !ltering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling:
four texel reads
3 lerps (3 mul + 6 add)

Figure credit: Akeley and Hanrahan

Linearly interpolate the bilinear interpolation results from two adjacent
levels of the mip map.
(smoothly transition between di#erent levels of pre!ltering)

Trilinear resampling:
eight texel reads
7 lerps (7 mul + 14 add)

(u,v)

(u,v)

Stanford CS248A, Winter 2025

Visualization of mipmap level
(trilinear !ltering: visualization of continuous d)

Stanford CS248A, Winter 2025

Bilinear vs trilinear !ltering cost
Bilinear resampling:
- 4 texel reads
- 3 lerps (3 mul + 6 add)

Trilinear resampling:
- 8 texel reads
- 7 lerps (7 mul + 14 add)

Stanford CS248A, Winter 2025

Example: mipmap limitations

Point samplingSupersampling: 512 texture samples per pixel
(desired answer)

Stanford CS248A, Winter 2025

Example: mipmap limitations

Point samplingMipmap trilinear sampling

Overblurs
Why?

Stanford CS248A, Winter 2025

Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford CS248A, Winter 2025

Pixel area may not map to isotropic region in texture space

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25
L

Trilinear (Isotropic)
Filtering

Anisotropic Filtering

Overblurring in
u direction

Proper !ltering requires anisotropic !lter footprint

Texture space: viewed from
camera with perspective

(Modern anisotropic texture !ltering
solutions combine multiple mip map samples
to approximate integral of texture value over
arbitrary texture space regions)

Stanford CS248A, Winter 2025

Anisotropic !ltering

Elliptical weighted average (EWA) !ltering
(uses multiple lookups into mip-map to approximate !lter region)

Stanford CS248A, Winter 2025

Summary: texture !ltering using the mip map
Small storage overhead (33%)
- Mipmap is 4/3 the size of original texture image

For each isotropically-!ltered sampling operation
- Constant !ltering cost (independent of mip map level)

- Constant number of texels accessed (independent of mip map level)

Combat aliasing with pre!ltering, rather than supersampling
- Recall: we used supersampling to address aliasing problem when sampling coverage

Bilinear/trilinear !ltering is isotropic and thus will “overblur” to avoid aliasing
- Anisotropic texture !ltering provides higher image quality at higher compute and memory bandwidth cost (in practice:

multiple mip map samples)

Stanford CS248A, Winter 2025

A full texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy di#erentials from screen-adjacent samples.

3. Compute mip map level d

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]

5. Compute required texels in window of !lter

6. Load required texels from memory (need eight texels for trilinear)

7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel
lookup! It involves a signi!cant amount of math.

For this reason, modern GPUs have dedicated !xed-function hardware
support for performing texture sampling operations.

Stanford CS248A, Winter 2025

Summary: texture mapping
Texturing: used to add visual detail to surfaces that is not captured in geometry

Texture coordinates: de!ne mapping between points on triangle’s surface (object coordinate space) to
points in texture coordinate space

Texture mapping is a sampling operation and is prone to aliasing
- Solution: precompute and store multiple multiple resampled versions of the texture image (each

with di#erent amounts of low-pass !ltering to remove increasing amounts of high frequency detail)
- During rendering: dynamically select how much low-pass !ltering is required based on distance

between neighboring screen samples in texture space
- Goal is to retain as much high-frequency content (detail) in the texture as possible, while

avoiding aliasing

Stanford CS248A, Winter 2025

Acknowledgements
Thanks to Ren Ng, Pat Hanrahan, and Keenan Crane for slide materials

