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Many uses of texture mapping
De!ne variation in surface re"ectance 

Pattern on ball
Wood grain on "oor
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Describe surface material properties

Multiple layers of texture maps for color, logos, scratches, etc.
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Layered material 
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Normal and displacement mapping

Use texture value to perturb surface normal to 
“fake” appearance of a bumpy surface 

(note smooth silhouette/shadow reveals that 
surface geometry is not actually bumpy!)

Dice up surface geometry into tiny triangles & 
o#set vertex positions according to texture values 

 (note bumpy silhouette and shadow boundary)

normal mapping displacement mapping
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Grace Cathedral environment map Environment map used in a rendering

Represent precomputed lighting and shadows



Stanford CS248A, Winter 2025

Perspective and texture
PREVIOUSLY: 
- transformation (how to manipulate primitives in space) 
- rasterization (how to turn primitives into colored pixels) 

TODAY: 
- see where these two ideas come crashing together! 
- talk about how to map texture onto a primitive to get 

more detail 
- …and how perspective transformations create 

challenges for texture mapping!

Why is it hard to render 
an image like this?
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Recall the function coverage(x,y) from lecture 2
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x

In lecture 2 we discussed how to sample 
coverage given the 2D position of the 
triangle’s vertices.

x
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Consider sampling a di#erent signal: color(x,y)
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green [0,1,0]

blue [0,0,1]

red [1,0,0]

x

What is the triangle’s color at the point       , given its colors at points                   ? 

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2
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ux vx wx

uy vy wy

uz vz wz
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5

R�1 = RT =
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4
ux uy uz

vx vy vz

wx wy wz
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5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
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⇥
0 0 1
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Homogeneous:

x =
⇥
xx xy 1
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wx =
⇥
wxx wxy w
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Projection:

x

x2D =
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xx/xz xy/xz
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x =
⇥
xx xy xz 1

⇤
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2
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1 0 0 0
0 1 0 0
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Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz
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x2D =
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xx/xz xy/xz

⇤T

a,b, c
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Review: interpolation in 1D

x1x0 x2 x3 x4

f (x)

frecon(x) = linear interpolation between values of two closest samples to x

f(x2) f(x3)

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

Between: x2 and x3:

where:
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Consider similar behavior on triangle
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black [0,0,0]

blue [0,0,1]

black [0,0,0]

x

Color depends on distance from

Color = 
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� = c3

� = c4

x = (1� t)
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0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

distance from       to  
distance from       to  

Lecture 3 Math

Rotations arbitrary:
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How can we interpolate in 2D between three values?

(1� t)
⇥
0 0 0

⇤
+ t

⇥
0 0 1

⇤



Color value at       is linear combination of 
color value at three triangle vertices.
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Linear interpolation of quantities over triangle
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x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1
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                                               form a non-orthogonal 
basis for points in triangle (origin at      )
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What is the triangle’s color at the point       , given its color at points                   ? 
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Rotations arbitrary:
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Px =
⇥
xx xy xz xz
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<latexit sha1_base64="uSK9dcMcINmvwNmEkbb61K74DoE=">AAACC3icbZDLSsNAFIZPvNZ6i7p0M7QILqQkUtFl0Y3LCvYCbSiT6aQdOpmEmYlQQvdufBU3LhRx6wu4822ctBFq6w8DH/85hznn92POlHacb2tldW19Y7OwVdze2d3btw8OmypKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzdZvfVApWKRuNfjmHohHggWMIK1sXp2qRtiPfSDFE/O0C/7c0wmPbvsVJyp0DK4OZQhV71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXYTRWNMRnhAOwYFDqny0uktE3RinD4KImme0Gjqzk+kOFRqHPqmM9tQLdYy879aJ9HBlZcyESeaCjL7KEg40hHKgkF9JinRfGwAE8nMrogMscREm/iKJgR38eRlaJ5X3Grl4q5arl3ncRTgGEpwCi5cQg1uoQ4NIPAIz/AKb9aT9WK9Wx+z1hUrnzmCP7I+fwAV9JsX</latexit>

green [0,1,0]

blue [0,0,1]

red [1,0,0]
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Another way: barycentric coordinates as ratio of areas

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)
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aspect

P =

2
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f
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0 0 zfar+znear
znear�zfar
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3
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Triangles:

a� b� c
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⇥
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aspect⇥ tan(✓/2)
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Triangles:
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green [0,1,0]

blue [0,0,1]

red [1,0,0]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)
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tan(✓/2)
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Triangles:

a� b� c

b� a� c� a
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x2D =
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xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)
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Triangles:

a� b� c

b� a� c� a
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x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect
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2

6664
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znear�zfar

2⇥zfar⇥znear
znear�zfar
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Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Also ratio of signed areas:

Why must coordinates be between 0 and 1?
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Yet another way: barycentric coordinates as scaled distances

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)
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x2D =
⇥
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aspect⇥ tan(✓/2)

f = cot(✓/2)
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Triangles:
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x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)
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Triangles:

a� b� c
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green [0,1,0]

blue [0,0,1]

red [1,0,0]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)
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Triangles:

a� b� c

b� a� c� a
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x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect
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Triangles:

a� b� c

b� a� c� a

2

x

proportional to distance from       to edge                     

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

Eac(x, y) = Ax+By + C

kEac(bx,by) = 1

kEac(xx,xy) = �

2

(Similarly for other two barycentric coordinates)

Compute distance of        from line 
Divide by distance of        from line                       (“height” of triangle)
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A = (x0, y0, z0, r0, g0, b0, u0, v0)

B = (x1, y1, z1, r1, g1, b1, u1, v1)

C = (x2, y2, z2, r2, g2, b2, u2, v2)

x

You can can linearly interpolate any values (de!ned at vertices) 
over the triangle this way
Here, I’m interpolating position (x,y,z), color (r,g,b), and extra values (u,v)

Vertex is green, so (r2,g2,b2) = (0,1,0)

Vertex is red, so (r1,g1,b1) = (1,0,0)

Vertex is black, so (r0,g0,b0) = (0,0,0)
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Not so fast… perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices. 
But due to perspective projection, barycentric interpolation of values on a triangle with vertices of di#erent depths in 
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with attribute value (A0 + A1) / 2 is 
not halfway between the 2D screen points proj(P0) and proj(P1). 

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) +  proj(P1)) / 2 is not (A0 + A1) / 2. 

Pmid
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Perspective correct interpolation

2D screen-space 
interpolation

3D world-space 
interpolation

This is a plane (two triangles), tilted down and rendered under perspective.
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Perspective correct interpolation on a projected triangle 
(in 2D)

Problem: 
- Given some value fi at each of a 3D triangle’s vertices, that is linearly interpolated 

across the triangle in 3D  
- And the 2D screen coordinates Pi=(xi,yi) of each of a triangles vertices after projection  
- As well as the homogenous coordinate wi for each vertex 

Sample the value of f(x,y) for the projected triangle at a given 2D screen space location 
(x,y)



Attribute’s value at 3D point on triangle                                        is given by:
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Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume a triangle attribute varies linearly across the triangle (in 3D)

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to 
move to 2D-H

point P in 3D-HSimple perspective 
projection matrix * 

projection of P 
in 2D-H

So …           is a$ne function of 2D screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective projection 
matrix only changes the coe$cient in front of x2d and y2d . 
(property that f/w is a$ne still holds)

perspective projection 
of P in 3D-H
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Direct evaluation of surface attributes from 2D-H vertices
For any surface attribute (with value de!ned at triangle vertices as:                     )

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per triangle “setup” computation prior to sampling, just like you computed edge equations for 
evaluating coverage.

value of attribute at vertex a

projected 2D position of 
vertex a 

w coordinate of vertex a after 
perspective projection transform

x
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E$cient perspective-correct interpolation
Setup: 

Given fa, fb, fc and wa, wb, wc … compute A, B, C  for f/w(x,y) = Ax + By + C 
Also compute equation for 1/w(x,y)  

To evaluate surface attribute f(x,y) at every covered sample (x,y): 

Evaluate 1/w (x,y)                                                       (from precomputed equation for value 1/w) 
Reciprocate 1/w (x,y) to get w(x,y) 
For each triangle attribute: 

 Evaluate f/w (x,y)                                              (from precomputed equation for value  f/w) 
 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute  f  that varies linearly across triangle:  
e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation”
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Texture coordinates

texture(u,v) is a function 
de!ned on the [0,1]2 domain 
(represented by 2048x2048 image)

“Texture coordinates” de!ne a mapping from surface coordinates (e.g., points on triangle) to points in the domain of a 
texture image

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with 
surface parameterization provided as per-

vertex texture coordinates (u,v)

Final rendered result (entire cube shown). 

Location of triangle after projection onto 
screen shown in red. 

Location of highlighted triangle 
in texture space shown in red.

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute 
(Not discussing methods for generating surface texture parameterizations)

Surface (one face of cube)
Texture function 

(represented by an image)
Rendered image of texture 

mapped onto surface 
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Many di#erent mappings of surface position to texture space

Example: mercator projection onto sphere
https://blender.stackexchange.com/questions/3315/how-to-get-perfect-uv-sphere-mercator-projection
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Texture “atlas”

https://www.creativebloq.com/3d/how-create-killer-3d-robot-21410645
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Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle

(black)
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Texture coordinate values provided at triangle vertices 
(Just like 3D positions are provided at vertices)

u

v

(x1, y1, z1, u1=0.4, v1=0.7)

(x2, y2, z2, u2=0.2, v2=0.15)

(0,0)

(1,1)

Visualization of location of triangle vertices 
in texture space

Visualization of texture coordinate value on mesh 
(texture coordinate = color)

Mesh inputs: for each triangle 
- Per-vertex positions in 3D [x,y,z] 
- Per-vertex texture coordinates in 2D texture space [u,v]
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Texture mapping adds detail
Sample texture map at speci!ed location in texture coordinate space to 

determine the surface’s color at the corresponding point on surface.

u

v
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Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

Each triangle “copies” a piece of the image back to the surface.
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Texture sampling 101
Basic algorithm for mapping texture to surface: 

- For each color sample location (X,Y) 

- Interpolate U and V coordinates across triangle to get value at (X,Y) 

- Sample (evaluate) texture at location given by (U,V) 

- Set color of surface point to sampled texture value
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Texture coordinate visualization 
De!nes mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v  
So uv=(0,0) is black, uv=(1,1) is yellow

(0,0)

(1,1)

Texture map
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Rendered result

(0,0)

(1,1)

Texture map
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Visualization of texture coordinates

Notice texture coordinates repeat over surface.
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Example textured scene
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Example textures used in previous scene
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Texture mapping: basic algorithm
Basic algorithm for mapping texture image onto a surface: 

- For each color sample location (X,Y) in the image 

- Interpolate U and V texture coordinates across triangle to get texture coordinate value at (X,Y) 

- Sample texture map at location (U,V) 

- Set output image sample color to sampled texture value
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Demo (by Katie Detkar) https://katie.su.domains/webgl/index.html
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Thought experiment
Imagine rendering a texture-mapped quadrilateral onto a 1000x1000 pixel output image

1000 pixels

1000 pixels Let’s also say the texture image 
is 1000x1000 as well.

These red dots are your rasterizer’s 
screen sample points.
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Sampling rate on screen vs in texture: object zoomed out

Red dots = samples on screen
White dots = texture map samples in texture space Texture space (u,v)

The entire 1000x1000 texture is rendered 
into a small region of the screen.

Texture is “mini!ed” on screen
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Zooming in…

Red dots = samples on screen
White dots = texture map samples in texture space

Texture space (u,v)Gray square = area of a screen pixel
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Zooming in…

Texture space (u,v)

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel
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Zoomed in

Texture space (u,v)

Red dots = samples on screen
White dots = texture map samples in texture space
Gray square = area of a screen pixel

Texture is “magni!ed” on screen
Only a small region of texture is visible on screen
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Sampling rate on screen vs in texture: object rotation

Red dots = samples on screen
White dots = texture map samples in texture space

Texture space (u,v)Gray square = area of a screen pixel
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Equally spaced samples on screen != equally spaced samples in texture space

Sample positions are uniformly distributed in screen space 
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space 
(texture function is sampled at these locations) 

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1 2
3

4
5
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Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic
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Screen pixel footprint in texture space 

upsampling
magnification

downsampling
minification

Upsampling 
(Magni!cation)

Downsampling 
(Mini!cation)

Camera zoomed in 
close to object

Camera far away 
from object
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Screen pixel area vs texel area 
At optimal viewing size: 
- 1:1 mapping between pixel sampling rate and  

texel sampling rate 
- Dependent on screen and texture resolution! 

When pixel area is larger than texel area (texture mini!cation) 
- Think: zoom far out from object 
- One pixel sample per multiple texel samples 

When pixel area is smaller than texel area (texture magni!cation) 
- Think: zoom in on an object 
- Multiple pixel samples per texel sample
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Texture magni!cation

Texture space (u,v)

What is the color of the texture 
at these red dots?
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Review: piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x
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Picture of Josephine (the graphics cat)
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Texture magni!cation (nearest)
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Texture magni!cation (nearest)
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Texture magni!cation (nearest)



Stanford CS248A, Winter 2025

Texture magni!cation (nearest)
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Texture magni!cation
Generally don’t want this situation — it means we have insu$cient texture resolution  
Magni!cation involves interpolation of values in texture map (below: three di#erent interpolation 
kernel functions)

Nearest sample Bilinear Bicubic
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Review: piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x
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Texture magni!cation (bilinear)
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Texture magni!cation (bilinear)
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Texture magni!cation (bilinear)
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Texture magni!cation (bilinear)
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Bilinear interpolation

Want to sample texture value f(x,y) 
at red point  
 
Black points indicate texture 
sample locations
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Bilinear interpolation

u00

u01 u11

u10

Take 4 nearest sample 
locations, with texture 
values as labeled.
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Bilinear interpolation

u00

u01 u11

u10

t

s

And fractional o#sets, 
(s,t) as shown
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Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)
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Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)
u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1
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Bilinear interpolation

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps
u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)
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Texture mini!cation

Texture space (u,v)
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By now I hope you’ve realized: 

Applying textures is a form of sampling! 
t(u,v)
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Mini!cation of Josephine
Imagine the texture map is 9x9

When a texture is minimized, the texture map is sampled sparsely!
White dots = samples existing in texture map

And is applied to a quad that 
spans a 3x3 pixel region of screen.

Red dots = samples needed to render



Stanford CS248A, Winter 2025

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
1D example

2D examples: 
Moiré patterns, jaggies
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Aliasing due to undersampling texture

Anti-aliased texture samplingOne texture sample per pixel 
(aliasing!)
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Aliasing due to undersampling (zoom)

Anti-aliased texture samplingOne texture sample per pixel 
(aliasing!)
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Another example

Jaggies

Moire

Anti-aliased result Rendered image: 256x256 pixels
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Texture mini!cation - hard case
Challenge: 
- Many texels contribute to color of an output image pixel 

(sampling only one of them could yield aliasing) 
- Shape of pixel footprint can be complex

upsampling
magnification

downsampling
minification

Shaded region = pixel area 
Red lines = screen pixel boundaries 

Red dots = texture space sample 
points for adjacent pixels
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Texture mini!cation - hard case
Challenge: 
- Many texels contribute to color of an output image pixel 

(sampling only one of them could yield aliasing) 
- Shape of pixel footprint can be complex 

One solution that you already know: supersampling 
- Averaging many texture samples per pixel can approximate 

result of convolving texture map with pixel-area sized !lter 
- Problem?

upsampling
magnification

downsampling
minification

Shaded region = pixel area 
Red lines = screen pixel boundaries 

Red dots = texture space sample 
points for adjacent pixels

Alternative solution: remove high frequency 
from texture to reduce aliasing!
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Pre-!ltering texture map reduces aliasing

Pre-!ltered texture map 
(high frequencies removed)

One texture sample per pixel 
(aliasing!)
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Pre-!ltering texture map reduces aliasing

No pre-!ltering of texture data 
(resulting image exhibits aliasing)

Pre-!ltered texture map 
(high frequencies removed)
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But how much should we pre-!lter?
Amount of pre-!ltering depends on how far away the 
object is: 
- minor mini!cation: image pixel extreme 

magni!cation: image pixel spans large region of 
texture 

Idea:  
- Low-pass !lter and downsample texture !le, and store 

successively lower resolutions 
- For each sample, use the texture !le whose resolution 

approximates the screen sampling rate
upsampling
magnification

downsampling
minification

Shader region = pixel area 
Red lines = screen pixel boundaries 

Red dots = texture space sample 
points for adjacent pixels
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But how much should we pre-!lter?

upsampling
magnification

downsampling
minification

Amount of pre-!ltering necessary depends on how 
far away the object is 

Idea: pre-compute and store di#erent versions of the 
texture with di#erent amounts of pre!ltering  

- Low-pass !lter and downsample texture !le, and 
store successively lower resolutions 

- When sampling texture, use the texture !le 
whose pre!ltering amount matches the desired 
sampling rate
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Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

Each mipmap level is downsampled (low-pass !ltered) version of the previous
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Mipmap (L. Williams 83)

Williams’ original proposed 
mip-map layout “Mip hierarchy” 

level = d

u

v

Slide credit: Akeley and Hanrahan

What is the storage overhead of a mipmap?
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Computing mipmap level

Screen space Texture space

Compute di#erences between texture coordinate values of neighboring screen samples

u

v
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Computing mipmap level
Compute di#erences between texture coordinate values of neighboring screen samples

du/dx = u10-u00 
du/dy = u01-u00 

dv/dx = v10-v00 
dv/dy = v01-v00 

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2 L 

u

v
L

du/dx
dv/dx
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Bilinear resampling at level 0

Aliasing

OK
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Bilinear resampling at level 2
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Bilinear resampling at level 4

OK

Blurring
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Visualization of mipmap level 
(bilinear !ltering only: d clamped to nearest level)
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“Tri-linear” !ltering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling: 
four texel reads 
3 lerps  (3 mul + 6 add)

Figure credit: Akeley and Hanrahan

Linearly interpolate the bilinear interpolation results from two adjacent 
levels of the mip map. 
(smoothly transition between di#erent levels of pre!ltering)

Trilinear resampling: 
eight texel reads 
7 lerps (7 mul + 14 add)

(u,v)

(u,v)
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Visualization of mipmap level 
(trilinear !ltering: visualization of continuous d)
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Bilinear vs trilinear !ltering cost
Bilinear resampling: 
- 4 texel reads 
- 3 lerps  (3 mul + 6 add) 

Trilinear resampling: 
- 8 texel reads 
- 7 lerps (7 mul + 14 add)
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Example: mipmap limitations

Point samplingSupersampling: 512 texture samples per pixel 
(desired answer)
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Example: mipmap limitations

Point samplingMipmap trilinear sampling 

Overblurs  
Why?
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Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic
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Pixel area may not map to isotropic region in texture space

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25
L

Trilinear (Isotropic) 
Filtering

Anisotropic Filtering

Overblurring in 
u direction

Proper !ltering requires anisotropic !lter footprint

Texture space: viewed from 
camera with perspective

(Modern anisotropic texture !ltering 
solutions combine multiple mip map samples 
to approximate integral of texture value over 
arbitrary texture space regions)
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Anisotropic !ltering

Elliptical weighted average (EWA) !ltering 
(uses multiple lookups into mip-map to approximate !lter region) 
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Summary: texture !ltering using the mip map
Small storage overhead (33%) 
- Mipmap is 4/3 the size of original texture image 

For each isotropically-!ltered sampling operation 
- Constant !ltering cost (independent of mip map level) 

- Constant number of texels accessed (independent of mip map level) 

Combat aliasing with pre!ltering, rather than supersampling 
- Recall: we used supersampling to address aliasing problem when sampling coverage 

Bilinear/trilinear !ltering is isotropic and thus will “overblur” to avoid aliasing  
- Anisotropic texture !ltering provides higher image quality at higher compute and memory bandwidth cost (in practice: 

multiple mip map samples)
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A full texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 

2. Compute du/dx, du/dy, dv/dx, dv/dy di#erentials from screen-adjacent samples. 

3. Compute mip map level d 

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H] 

5. Compute required texels in window of !lter 

6. Load required texels from memory (need eight texels for trilinear) 

7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel 
lookup!  It involves a signi!cant amount of math. 

For this reason, modern GPUs have dedicated !xed-function hardware 
support for performing texture sampling operations.
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Summary: texture mapping
Texturing: used to add visual detail to surfaces that is not captured in geometry 

Texture coordinates: de!ne mapping between points on triangle’s surface (object coordinate space) to 
points in texture coordinate space 

Texture mapping is a sampling operation and is prone to aliasing 
- Solution: precompute and store multiple multiple resampled versions of the texture image (each 

with di#erent amounts of low-pass !ltering to remove increasing amounts of high frequency detail) 
- During rendering: dynamically select how much low-pass !ltering is required based on distance 

between neighboring screen samples in texture space 
- Goal is to retain as much high-frequency content (detail) in the texture as possible, while 

avoiding aliasing
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