Lecture 3:

Coordinate Spaces and Transformations

Computer Graphics: Rendering, Geometry, and Image Manipulation Stanford CS248A, Winter 2025

Review: Summarizing what we learned last time

Sampling: taking measurements of a signal

Sampling: taking measurements of a signal

Reconstruction: approximating continuous signal from the discrete set of measurements

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called "aliases"

 $\sin(2\pi/32)x$

frequency 1/32; 32 pixels per cycle

$$\sin(2\pi/16)x$$

frequency 1/16; 16 pixels per cycle

Jaggies!

Visualizing the frequency content of images

Spatial domain

Frequency domain

Retain low frequencies only (smooth gradients)

Spatial domain

Frequency domain

(after low-pass filter)

All frequencies above cutoff have 0 magnitude

Retain high frequencies only (edges)

Spatial domain (strongest edges)

Frequency domain

(after high-pass filter)

All frequencies below threshold have 0

magnitude

An image as a sum of its frequency components

Our anti-aliasing technique

Sampling a triangle (1 sample/pixel)

					•
					•
					•
					•

Results of sampling (1 sample/pixel)

Displaying the results of sampling (square pixels on a display)

Sampling a triangle (9 samples/pixel)

Results of sampling (9 samples/pixel)

Blurring ("filtering) the densely sampled result (remove high frequencies)

Resample blurred signal at pixel centers (one sample per pixel)

Displaying the results of sampling (square pixels on a display)

Example: anti-aliased results

Transformations

A cube, centered at the origin, with faces of size 2 x 2

Consider drawing a cube person

Transformations in character rigging

Basic idea: f transforms x to f(x)

What can we do with *linear* transformations?

What does linear mean?

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

$$f(a\mathbf{x}) = af(\mathbf{x})$$

- Cheap to compute
- **■** Composition of linear transformations is linear
 - Leads to uniform representation of many types of transformations

Linear transformation

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$
$$f(a\mathbf{u}) = af(\mathbf{u})$$

In other words: if it doesn't matter whether we add the vectors and then apply the map, or apply the map and then add the vectors (and likewise for scaling):

Linear transforms/maps—visualized

Example:

Key idea: linear maps take lines to lines

Scale

Is scale a linear transform?

Yes!

Rotation

 $R_{ heta}$ = rotate counter-clockwise by heta

Rotation as circular motion

 $R_{ heta}$ = rotate counter-clockwise by heta

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: $|R_{ heta}(\mathbf{x})| = |\mathbf{x}|$

Is rotation linear?

Translation

$$T_{\mathbf{b}}$$
 — "translate by b"

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

Is translation linear?

No. Translation is affine.

Reflection

Shear (in x direction)

Compose basic transformations to construct more complicated ones

 $f(\mathbf{x}) = T_{3,1}(S_{0.5}(\mathbf{x}))$ $f(\mathbf{x_3}) \qquad f(\mathbf{x_2})$ $f(\mathbf{x_0}) \qquad f(\mathbf{x_1})$

 $f(\mathbf{x}) = S_{0.5}(T_{3,1}(\mathbf{x}))$ $f(\mathbf{x_3}) \qquad f(\mathbf{x_2})$ $f(\mathbf{x_1})$

Note: order of composition matters

Top-right: scale, then translate

Bottom-right: translate, then scale

How would you perform these transformations?

Common task: rotate about a point x

Summary of basic transformations

Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale

Rotation

Reflection

Shear

Not linear:

Translation

Affine:

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Translation

Rotation

Reflection

"Rigid body" transformations are distance-preserving motions that also preserve *orientation* (i.e., does not include reflection)

Representing Transformations in Coordinates

Review: representing points in a coordinate space

It's the same point: *x*But *x* is represented via different coordinates in difference coordinate spaces!

Consider coordinate space defined by orthogonal vectors e_1 and e_2

$$\mathbf{x} = 2\mathbf{e}_1 + 2\mathbf{e}_2$$

$$\mathbf{x} = \begin{bmatrix} 2 & 2 \end{bmatrix}$$

 ${f x}=egin{bmatrix} 0.5 & 1\end{bmatrix}$ in coordinate space defined by ${f e}_1$ and ${f e}_2$, with origin at (1.5, 1)

$${f x}=egin{bmatrix} \sqrt{8} & 0 \end{bmatrix}$$
 in coordinate space defined by ${f e}_3$ and ${f e}_4$, with origin at (0, 0)

Another way to think about transformations: change of coordinates

Interpretation of transformations so far in this lecture: *transformations modify (move) points*

Point ${\bf x}$ moved to new position $f({\bf x})$ so it has new coordinates in same coordinate space.

Alternative interpretation:

Transformations induce of change of coordinate frame: Representation of $\mathbf x$ changes since point is now expressed in new coordinates

Review: 2D matrix multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} =$$

$$x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix} =$$

$$\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- Matrix multiplication is linear combination of columns
- Encodes a linear map!

Linear maps via matrices

Example: suppose I have a linear map

$$f(\mathbf{u}) = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2$$

Encoding as a matrix: "a" vectors become matrix columns:

$$A := \begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix}$$

Matrix-vector multiply computes same output as original map:

$$\begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} a_{1,x}u_1 + a_{2,x}u_2 \\ a_{1,y}u_1 + a_{2,y}u_2 \\ a_{1,z}u_1 + a_{2,x}u_2 \end{bmatrix} = u_1\mathbf{a}_1 + u_2\mathbf{a}_2$$

Linear transformations in 2D can be represented as 2x2 matrices

Consider non-uniform scale:
$$\mathbf{S_s} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix}$$

Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by θ ?

Reminder: rotation moves points along circular trajectories.

(Recall that $\cos heta$ and $\sin heta$ are the coordinates of a point on the unit circle.)

Answer:

$$R_{\theta}(1,0) = (\cos(\theta), \sin(\theta))$$

$$R_{\theta}(0,1) = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))$$

Which means the matrix must look like:

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotation matrix (2D): another way...

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

Shear

How do we compose linear transformations?

Compose linear transformations via matrix multiplication.

This example: uniform scale, followed by rotation

$$f(\mathbf{x}) = R_{\pi/4} \mathbf{S}_{[1.5, 1.5]} \mathbf{x} = \mathbf{M} \mathbf{x}$$

Where:
$$\mathbf{M} = R_{\pi/4} \mathbf{S}_{[1.5,1.5]}$$

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication!

How do we deal with translation? (Not linear)

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

Recall: translation is not a linear transform

- → Output coefficients are not a linear combination of input coefficients
- → Translation operation cannot be represented by a 2x2 matrix

$$\mathbf{x}_{\mathbf{out}x} = \mathbf{x}_x + \mathbf{b}_x$$

$$\mathbf{x_{out}}_y = \mathbf{x}_y + \mathbf{b}_y$$

2D homogeneous coordinates (2D-H)

Idea: represent 2D points with THREE values ("homogeneous coordinates")

So the point (x,y) is represented as the 3-vector: $\begin{bmatrix} x & y & 1 \end{bmatrix}^T$

And transformations are represented a 3x3 matrices that transform these vectors.

Recover final 2D coordinates by dividing by "extra" (third) coordinate

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

(More on this later...)

Example: scale and rotation in 2D-H coords

For transformations that are already linear, not much changes:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Notice that the last row/column doesn't do anything interesting. E.g., for scaling:

$$\mathbf{S_s} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{bmatrix}$$

Now we divide by the 3rd coordinate to get our final 2D coordinates (not too exciting!)

$$\begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{S}_x x/1 \\ \mathbf{S}_y y/1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_x x \\ \mathbf{S}_y y \end{bmatrix}$$

(Will get more interesting when we talk about *perspective*...)

Translation in 2D homogeneous coordinates

Translation expressed as 3x3 matrix multiplication:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T_bx} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_x \\ \mathbf{x}_y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_x + \mathbf{b}_x \\ \mathbf{x}_y + \mathbf{b}_y \\ 1 \end{bmatrix} \qquad \text{(remember: just a linear combination of columns!)}$$

Cool: homogeneous coordinates let us encode translations as *linear* transformations!

Homogeneous coordinates: some intuition

Translation is a shear in x and y in 2D-H space

$$\mathbf{T_bx} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w\mathbf{x}_x \\ w\mathbf{x}_y \\ w \end{bmatrix} = \begin{bmatrix} w\mathbf{x}_x + w\mathbf{b}_x \\ w\mathbf{x}_y + w\mathbf{b}_y \\ w \end{bmatrix}$$

Translation = shear in homogeneous space

For simplicity, consider 1D-H:

Translate by
$$t=2$$
: $\mathbf{T}=\begin{bmatrix}1&t\\0&1\end{bmatrix}=\begin{bmatrix}1&2\\0&1\end{bmatrix}$

Recall: this is a shear in homogeneous x.

1D translation is affine in 1D (x + t), but it is linear in 1D-H

Homogeneous coordinates: points vs. vectors

2D-H points with w=0 represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

Note: translation does not modify directions:

$$\mathbf{T_bv} = \begin{bmatrix} 1 & 0 & \mathbf{b}_x \\ 0 & 1 & \mathbf{b}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ 0 \end{bmatrix}$$

Visualizing 2D transformations in 2D-H

Original shape in 2D can be viewed as many copies, uniformly scaled by w.

2D scale → scale x and y; preserve w (Question: what happens to 2D shape if you scale x, y, and w uniformly?)

2D rotation → rotate around w

Moving to 3D (and 3D-H)

Represent 3D transformations as 3x3 matrices and 3D-H transformations as 4x4 matrices

Scale:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & \mathbf{S}_z \end{bmatrix} \quad \mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 & 0 \\ 0 & \mathbf{S}_y & 0 & 0 \\ 0 & 0 & \mathbf{S}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear (in x, based on y,z position):

$$\mathbf{H}_{x,\mathbf{d}} = egin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = egin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translate:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{b}_x \\ 0 & 1 & 0 & \mathbf{b}_y \\ 0 & 0 & 1 & \mathbf{b}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Commutativity of rotations—2D

■ In 2D, order of rotations doesn't matter:

Same result! ("2D rotations commute")

Commutativity of rotations—3D

- What about in 3D?
- IN-CLASS ACTIVITY:
- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!

Rotations in 3D

Rotation about x axis:

$$\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

Rotation about y axis:

$$\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Rotation about z axis:

$$\mathbf{R}_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

View looking down -x axis:

View looking down -y axis:

Representing rotations in 3D—euler angles

- How do we express rotations in 3D?
- One idea: we know how to do 2D rotations
- Why not simply apply rotations around the three axes? (X,Y,Z)
- Scheme is called Euler angles
- PROBLEM: "Gimbal Lock"

Alternative representations of 3D rotations

Axis-angle rotations

Quaternions (not today)

Let's make that cube person...

Skeleton - hierarchical representation

```
torso
  head
  right arm
     upper arm
      lower arm
       hand
  left arm
     upper arm
      lower arm
       hand
  right leg
     upper leg
      lower leg
       foot
  left leg
     upper leg
      lower leg
       foot
```


Hierarchical representation

- Grouped representation (tree)
 - Each group contains subgroups and/or shapes
 - Each group is associated with a transform relative to parent group
 - Transform on leaf-node shape is concatenation of all transforms on path from root node to leaf
 - Changing a group's transform affects all descendent parts
 - Allows high level editing by changing only one node
 - E.g. raising left arm requires changing only one transform for that group

Skeleton - hierarchical representation

• • • •

```
translate(0, 10); // person centered at (0,10)
  drawTorso();
                         pushmatrix(); // push a copy of transform onto stack
                            translate(0, 5); // right-multiply onto current transform
                            rotate(headRotation); // right-multiply onto current transform
                            drawHead();
                         popmatrix(); // pop current transform off stack
                         pushmatrix();
                            translate(-2, 3);
                            rotate(rightShoulderRotation);
                            drawUpperArm();
                            pushmatrix(); ----
                               translate(0, -3);
                               rotate(elbowRotation);
                               drawLowerArm();
                                                                     right
                               pushmatrix();
                                                                                  right
                                                                     lower
                                 translate(0, -3);
                                                        right
                                 rotate(wristRotation);
                                                                      arm
                                                                                  arm
                                                         hand
                                 drawHand();
                                                                     group
                                                                                 group
                               popmatrix(); -----
                            popmatrix();
                         popmatrix(); -
```

Skeleton - hierarchical representation

```
translate(0, 10);
   drawTorso();
                         pushmatrix(); // push a copy of transform onto stack
                            translate(0, 5); // right-multiply onto current transform
                            rotate(headRotation); // right-multiply onto current transform
                            drawHead();
                         popmatrix(); // pop current transform off stack
                         pushmatrix();
                            translate(-2, 3);
                            rotate(rightShoulderRotation);
                            drawUpperArm();
                            pushmatrix();
                               translate(0, -3);
                               rotate(elbowRotation);
                               drawLowerArm();
                                                                      right
                               pushmatrix();
                                                                                  right
                                                                      lower
                                 translate(0, -3);
                                                         right
                                 rotate(wristRotation);
                                                                      arm
                                                                                   arm
                                                         hand
                                 drawHand();
                                                                     group
                                                                                 group
                               popmatrix(); -----
                            popmatrix();
                         popmatrix(); -
                         • • • •
```


Example: simple camera transform

Consider object positioned in world at (10, 2, 0)

Consider camera at (4, 2, 0), looking down x axis

What transform places in the object in a coordinate space where the camera is at the origin and the camera is looking directly down the -z axis?

- Translating object vertex positions by (-4, -2, 0) yields position relative to camera
- Rotation about y by $\pi/2$ gives position of object in new coordinate system where camera's view direction is aligned with the -z axis *

^{*} The convenience of such a coordinate system will become clear when we talk about projection!

Camera looking in a different direction

Consider camera at origin looking in direction ${f w}$

What transform places in the object in a coordinate space where the camera is at the origin and the camera is looking directly down the -z axis?

Form orthonormal basis around w: (see u and v) Consider orthogonal matrix: \mathbf{R}

$$\mathbf{R} = egin{bmatrix} \mathbf{u}_x & \mathbf{v}_x & -\mathbf{w}_x \ \mathbf{u}_y & \mathbf{v}_y & -\mathbf{w}_y \ \mathbf{u}_z & \mathbf{v}_z & -\mathbf{w}_z \end{bmatrix}$$

 ${\bf R}$ maps x-axis to ${\bf u}$, y-axis to ${\bf v}$, z axis to ${\bf w}$

$$\mathbf{R}^{-1} = \mathbf{R}^T = egin{bmatrix} \mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_z \ \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z \ -\mathbf{w}_x & -\mathbf{w}_y & -\mathbf{w}_z \end{bmatrix}$$

Why is that the inverse?

$$\mathbf{R}^{T}\mathbf{u} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{u} & -\mathbf{w} \cdot \mathbf{u} \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$$

$$\mathbf{R}^{T}\mathbf{v} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{v} & \mathbf{v} \cdot \mathbf{v} & -\mathbf{w} \cdot \mathbf{v} \end{bmatrix}^{T} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$$

$$\mathbf{R}^{T}\mathbf{w} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{w} & -\mathbf{w} \cdot \mathbf{w} \end{bmatrix}^{T} = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}^{T}$$

Self-check exercise (for home)

- Given a camera position *P*
- \blacksquare And a camera orientation given by orthonormal basis u,v,w (camera looking in w)
- What is a transformation matrix that places the scene in a coordinate space where...
 - The camera is at the origin
 - The camera is looking down -z.

Early painting: incorrect perspective

Carolingian painting from the 8-9th century

Perspective in art

Giotto 1290

Evolution toward correct perspective

Ambrogio Lorenzetti Annunciation, 1344

First known perspective painting by Fillipo Brunelleshi

Brunelleschi, elevation of Santo Spirito, 1434-83, Florence

Masaccio – The Tribute Money c.1426-27 Fresco, The Brancacci Chapel, Florence

Perspective in art

Delivery of the Keys (Sistine Chapel), Perugino, 1482

Later... rejection of proper perspective projection

Correct perspective in computer graphics

Rejection of perspective in computer graphics

Basic perspective projection

Camera

(0,0)

Desired perspective projected result (2D point):

$$\mathbf{p}_{\mathrm{2D}} = \begin{bmatrix} \mathbf{x}_x/\mathbf{x}_z & \mathbf{x}_y/\mathbf{x}_z \end{bmatrix}^T$$

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Input: point in 3D-H

After applying **P**: point in 3D-H

After homogeneous divide:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & 1 \end{bmatrix}$$
 $\mathbf{P}\mathbf{x} = \begin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & \mathbf{x}_z \end{bmatrix}^T$
 $\begin{bmatrix} \mathbf{x}_x/\mathbf{x}_z & \mathbf{x}_y/\mathbf{x}_z & 1 \end{bmatrix}^T$

(throw out third component to get 2D)

Assumption:

Pinhole camera at (0,0) looking down z

Perspective vs. orthographic projection

■ Most basic version of perspective projection matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix} \quad \longmapsto \quad \begin{cases} x/z \\ y/z \end{cases} \quad \text{in distance}$$

Most basic version of orthographic projection matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \longmapsto \begin{matrix} x \\ y \\ z \\ 1 \end{matrix}$$
 objects stay the same size

A good exercise: Transforming points into screen-relative coordinates

Screen transformation *

Convert points in normalized coordinate space to screen pixel coordinates

Example: all points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen space

(-1,-1) in normalized space maps to (0,H) in screen space

Screen (W x H output image) coordinate space:

^{*} This slide adopts convention that top-left of screen is (0,0) to match SVG convention in Assignment 1. Many 3D graphics systems like OpenGL place (0,0) in bottom-left. In this case what would the transform be?

Screen transformation

Example: all points within (-1,1) to (1,1) region are on screen (1,1) in normalized space maps to (W,0) in screen space (-1,-1) in normalized space maps to (0,H) in screen space

Transformations: from objects in 3D to their 2D screen positions

Transformations summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation
- Or as a change of coordinate system
 - e.g., screen and view transforms
- Construct complex transformations as compositions of basic transforms
- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., translation, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation and efficient composition

