Lecture 3:

Coordinate Spaces and
Transformations

Computer Graphics: Rendering, Geometry, and Image Manipulation
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Review:
Summarizing what we learned last time
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Sampling: taking measurements of a signal
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Sampling: taking measurements of a signal
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Reconstruction: approximating continuous signal from
the discrete set of measurements
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Sampling a signal too sparsely can result in aliasing

AT
ukibearifi

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a
low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”
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lasing

Sampling a signal too sparsely can result in al

o 0 6 6o 0O 0o 0 o0 0 o 6 0 0 0 0 0 0 0 0 0 0 0 0 €06 0 0 0 0 0 ©0 © © © O

g ©0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 © 0 0 0 0 0 0 0 0 O

o 0 c o0 o0 o0 0 0 0 0 0 ©0 0 0 0 0 0 © O©0 oO©0 ©0 0 © O O O

0 ©0 0 0 0 0 0 0 0 0 0 0 0 0 0 © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O

c o0 o0 o0 o0 o0 60 0 ©0 o0 o0 o6 0 o0 0 ©0 o0 o0 o0 o0 0 O

2 .0 0 0 0 0 0 0 0 0 0 0 o©0 o0 o0 0 0 ©0 0 ©0 0 0 0©0 0 o0 0 ©0 o0 o0 0 0 0 0 O

c o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 © o6 o0 o0 o0 o0 O O O O

 oO0 O O O O O

= every 16 pixels

ing

sampl

o
o 0 0 0 0 0 0 0 0 0 606 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 ©0 ©0 O O
2 0 0 ©0 ©0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0 ©0 0 ©0 0 0 0 O O O O
0 - 0 - 0 0 0 0 0 (0 6 60 060 0 0 0 60 0 0 0 0 0 0 0 0 0 0 O0 O O

0 0 0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 O O

©Q 0 0 0 © 0 0 0 0 © © 0 0 0 0 0 © 0 0 0 0 0 O 0 ©0 O 0 O © ©0 O ©o o o

©O © © 0 0 0 0 O © o © 0 0 0 ©0 © © © O 0 ©0 O ©O O ©0 O O O © © © ©o o o

32 pixels per cycle

©O © 0 © 0 0 0 © o ©o 0O 0 O ©O © © © 0O O O O © © ©0 O O O O O O © ©o0 0O O

O © 0O 0o 0o 0 0o o o o © 0 0 O ©O © ©0 0 0 O O © 0 O O O O O O © © d

= every 16 pixels

ing

sampli

o
[+]
[}

©O © © 0 0 0 © o o o 6 0o 0 0 o © 0o © 0 0 0 0 0 0 0 0 0 0 o0 o ©

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOT

sin(27/16)

sin(27/32)

16 pixels per cycle

°

frequency 1/16

°
|

frequency 1/32

Stanford (5248A, Winter 2025



Sampling a signal too sparsely can result in aliasing
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Sampling a signal too sparsely can result in aliasing

Jaggies!
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What does high frequency detail in an image “look like”?



Visualizing the frequency content of images

Spatial domain Frequency domain
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Retain low frequencies only (smooth gradients)

Spatial domain Frequency domain

(after low-pass filter)
All frequencies above cutoff have 0 magnitude
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Retain high frequencies only (edges)

Spatial domain Frequency domain

(strongest edges) (after high-pass filter)
All frequencies below threshold have 0
magnitude Stanford (S248A, Winter 2025



An image as a sum of its frequency components
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Our anti-aliasing technique

-

\

Original signal Dense sampling of signal

R tructed signal with high f ncies reduced
(with high frequency edge) (supersampling) econstructed signal with high frequenci u

(Blurring via averaging over pixel, etc)

Coarsely sampled signal Reconstruction on display
(to store inimage, or send to display)
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Sampling a triangle (1 sample/pixel)
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Results of sampling (1 sample/pixel)
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Displaying the results of sampling (square pixels on a display)
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Sampling a triangle (9 samples/pixel)

XYY
e® e %o
000 000 000 XY
%9 09%0 0 % o %
0% 0 0%0 0% 0 0% o
000 000 000 000 000 000 000 000
090 090 090 0%0 0%°0 0% 0% 0%
020 0%°¢0 0%¢(0%°¢ 0% ¢ 0%¢ 0%¢ 0% ¢
©00 000 000000000 000 000 000




Results of sampling (9 samples/pixel)
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Blurring (“filtering) the densely sampled result (remove high frequencies)
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Resample blurred signal at pixel centers (one sample per pixel)

® ® ® ® ®
o0

® ® ® o _Jo,
o 00

oo 09%e

® ® o % ¢%p

o0 099 0%

® ® oooo %% 0%
® 000 000 00O

o0 090 0% 0%

O 00, 49, %, %
® 000 000 000 OO

00 099 0% 0% 0 9%
0%9 0%¢ ¢0%¢ ¢%% ¢%e
000 000 000 000 0O
0©%0 099 0% 0% 0%

0 00, %y %y %

000 000 00

Stanford (5248A, Winter 2025



Displaying the results of sampling (square pixels on a display)
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Example: anti-aliased results

" il ,
e =
|
" }

)I////ff}-
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Transformations
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A cube, centered at the origin, with faces of size 2 x 2

-1,1,1) (1,1,1)

('1111'1) (1111'1)

(11'111)

(-1,-1,-1) 1,-1,-1)
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Consider drawing a cube person



Transformations in character rigging

= = o
Channels Object
TrollO1_L

« ST

Translate X -1.282
Translate Y 037
Transiate Z 6,533
Rotate X 0
RotateY O
Rotate Z 0
Toe Roll O
0
Front Foot Roll O
Front Foot Twast 0
Back Foot Roll O
IK_FK Switch 0
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Basicidea: f transforms x to f(x)




What can we do with /inear transformations?

B What does linear mean?

fx+y)=f(x)+ f(y)
flax) = af(x)

m Cheap to compute
m Composition of linear transformations is linear
- Leads to uniform representation of many types of transformations
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Linear transformation

Flu+v) = f(u) + f(v)
f(au) = af (u)

add first

m Inother words: if it doesn't matter whether ' ) +i
we add the vectors and then apply the S 2
map, or apply the map and then add the E. :
vectors (and likewise for scaling): A =

() +£(y)

F(x), fly) —2enaqd_ Ty
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Linear transforms/maps—visualized

m Example:

Key idea: linear maps take lines to lines
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Uniform scale:

Sq(X) = ax

Non-uniform scale??
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Is scale a linear transform?
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Rotation

Ry =rotate counter-clockwise by ¢
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Rotation as circular motion

R =rotate counter-clockwise by ¢

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: ‘RQ (X) \ — \X\
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Is rotation linear?

Yes!
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Translation

[y, — “translate by b”
Th(x) =x+Db
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Is translation linear?

......... v®
To(x) e
. .....
b o e ve
X X+ yo Tp(x +y)
......... v®
.................. Ty (y)
............... v

No. Translation is affine.
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Reflection

Re, (x2) Re,xs)  f2€, =reflection about y

Rey(x1) Rey(xo)

Re.. =reflection about x

Re, (Xo) Re, (Xl)

Re, (XS) Re, (Xz)
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Shear (in x direction)
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Compose basic transformations to construct more
complicated ones

Note: order of composition matters

Top-right: scale, then translate
Bottom-right: translate, then scale
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How would you perform these transformations?

Usually more than one way o do it!
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Common task: rotate about a point x

X
o

ol

Step 1: translate by - x

X X
o o

Step 2: rotate Step 3: translate by x
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Summary of basic transformations

Linear:
fx+y)=fx)+ f(y)
flax) = af(x)

Scale
Rotation
Reflection
Shear

Not linear:
Translation

Affine;

Composition of linear transform + translation
(all examples on previous two slides)

f(x)=g(x)+b
Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)
f(x)—fy)l=Ix—y
Translation

Rotation
Reflection

“Rigid body” transformations are distance-preserving motions
that also preserve orientation (i.e., does not include reflection)
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Representing Transformations in Coordinates

Stanford (5248A, Winter 2025



Review: representing points in a coordinate space

It's the same point: x
But x is represented via different coordinates
in difference coordinate spaces!

® X

€2
eN\ : €3
—
€1

Consider coordinate space defined by orthogonal vectors ¢, and ¢,
X = 2e1 + 2e9

x =12 2]

x = [0.5 1| incoordinate space defined by €1 and €2, with origin at (1.5, 1)
x = [v/8 0] incoordinate space defined by €3 and e, with origin at (0, 0)
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Another way to think about transformations: change of coordinates

Interpretation of transformations so far in this
lecture: transformations modify (move) points

Point x moved to new position f (%) so it has new
coordinates in same coordinate space.

of

Alternative interpretation:

Transformations induce of change of coordinate frame:
Representation of X changes since point is now expressed in
new coordinates

Stanford (5248A, Winter 2025



Review: 2D matrix multiplication

ally,

[aaz+by]

m Matrix multiplication is linear combination of columns
m Encodes a linear map!



Linear maps via matrices

m Example: suppose | have a linear map

m Encoding as a matrix:

f(u) =uja; +urapy | .

Hn
d

vectors become matrix columns:

A :

- (ull 1/[2)
,'1

A1 x 02 x
611,]/ azly
1, U2z

m Matrix-vector multiply computes same output as original map:

01 x
al,y
1z

U1 xU1 T adp xU?
aq,yU1 T adz,yuU2
U1 U1 T dp xU?

— U714dq -+ Uoran
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Linear transformations in 2D can be represented as 2x2 matrices

Consider non-uniform scale: s, —

_Sx 0 )
0 sy
SSX3 SSX2

Scaling amounts in each direction:

s=10.5 2]

Matrix representing scale transform:

0.5 0
- O 2_

Sg =

T

SSXO SSX1
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Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by (?

Reminder: rotation moves points along circular trajectories.

(Recall that cos 6 and sin 6 are the coordinates of a point on the unit circle.)

(0,1)

(1,0)

Answer:

Rp(1,0) = (cos(6),sin(h))

Ry(0,1) = (cos(0 + 7/2),sin(0 + 7/2))

Which means the matrix must look like:

Ry

cos(f -

sin(f -

— sIn

(
(

-7/2)

) -
0)

-7/2)
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Rotation matrix (2D): another way...

Ry

cos) —sind

sinf) cos@
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Shear

Shearinx:

st —

X3 X2
X0 X1

Arbitrary shear: Sheariny:

1 s 1 0
HSt__t I ! HyS:_s L
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How do we compose linear transformations?

Compose linear transformations via matrix multiplication.
This example: uniform scale, followed by rotation

f(x) = Rw/4S[1.5,1.5]X = Mx Where: V] — Rw/4S[1.5,1.5]

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication!
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How do we deal with translation? (Not linear)

Th(x) =x+Db

Recall: translation is not a linear transform
— Qutput coefficients are not a linear combination of input coefficients
— Translation operation cannot be represented by a 2x2 matrix

Xouty = Xz + Dy

Translation math Stanford CS248A, Winter 2025



2D homogeneous coordinates (2D-H)

|dea: represent 2D points with THREE values (“homogeneous coordinates”)

So the point (., y) isrepresented as the 3-vector: [z 1}T

And transformations are represented a 3x3 matrices that transform these vectors.

Recover final 2D coordinates by dividing by “extra” (third) coordinate

S 4 T /W

y/w
(More on this later...)
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Example: scale and rotation in 2D-H coords

m For transformations that are already linear, not much changes:

Ss

Notice that the last row/column doesn’t do anything interesting. E.g., for scaling:

S.x
S,y

Now we divide by the 3rd coordinate to get our final 2D coordinates (not too exciting!)

S, 0
0 S,
0 0

Ss

S.x

S,y
1

0
0
1_

—

Ry =

1

S.x/1

cos 0
sin 6

0

Syy/1 _

—sinfd 0
cosfd 0
0 1

S.x
Syy

(Will get more interesting when we talk about perspective...)
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Translation in 2D homogeneous coordinates

Translation expressed as 3x3 matrix multiplication:

1 0 b,
T, = |0 1 b,
00 1
1 0 b,| [x, X.+ b,
Tyx= |0 1 by Xy | =[xy + by (remember: just a linear combination of columns!)
0 0 1 1 1

Cool: homogeneous coordinates let us encode translations as linear transformations!
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Homogeneous coordinates: some intuition

Many points in 2D-H correspond to same pointin 2D
X and wX correspond to the same 2D point
(divide by 10 to convert 2D-H back to 2D)

Translation is a shear in x and y in 2D-H space

1 0 b,]| [wx, WX, + wb, |
Tpx= |0 1 by| |wx,| = |wx, + wb,
0 0 1] w I W
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Translation = shear in homogeneous space

Translate by t=2: T =

butitis linearin 1D-H

For simplicity, consider 1D-H:

1
_O 1_

1D translation is affine in 1D (x + t),

1
0

Recall: this is a shear in homogeneous x.

.
1_

Stanford (5248A, Winter 2025



Homogeneous coordinates: points vs. vectors

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
’0
*

’0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

2D-H points with w =0 represent 2D vectors
Y (think: directions are points at infinity)

Unlike 2D, points and directions are
distinguishable by their representation in 2D-H

V:[VaU v, 0O

X Note: translation does not modify directions:

b,| [v, V. |
TbV — b

o O =
O = O

Y Vyl| = | Vy

1110 0
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Visualizing 2D transformations in 2D-H

Original shape in 2D can be viewed as
many copies, uniformly scaled by w.

2D scale = scale x and y; preserve w
(Question: what happens to 2D shape

2D translate = shearin 2D-H
if you scale x, y, and w uniformly?) (LINEAR!)

Stanford (5248A, Winter 2025



Moving to 3D (and 3D-H)

Represent 3D transformations as 3x3 matrices and 3D-H transformations as 4x4 matrices

Scale:

0 p
8

o O

Shear (in x, based on y,z position):
1 d,

1

H, 4= |0
0
Translate:
B

0

Th = |,
0

3D

0
Sy
0

Q.

Yy

O =

d.

3D-H

0

1
0
0

0

0
1
0

o O

0
1_

o T T
N 8

ek

H:U,d

0p
8

oSO O

0

0
0

3D-H
0 0
S, 0
0 S,
0 0

1
0
0

Q.
N

S = O

_— O O O

= O O O
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Commutativity of rotations—2D

m In 2D, order of rotations doesn’t matter:

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

Same result! (“2D rotations commute”)
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Commutativity of rotations—3D

m Whataboutin3D?

m IN-CLASS ACTIVITY:
- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if
we're not careful about the order in which
we apply rotations!

Stanford (5248A, Winter 2025



Rotations

in3D

Rotation about x axis:

1

R.op= |0 cosf)l —sinb
0 sinf cosb |

Y

0 0

Rotation about y axis:

R, ¢ = 0

- cosf 0 sinf]

—sinf 0 cos6O

I 0

Rotation about z axis:

cos 0
R.yp= |sinf
0

—sinfd 0
cosf 0O
0 1

X coordinate is unchanged by
rotation about x

z coordinate is unchanged by

rotation about z

X

View looking down -x axis:

y

View looking down -y axis:
X
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Representing rotations in 3D—euler angles

m How do we express rotations in 3D?

m Oneidea: we know how to do 2D rotations

m Why not simply apply rotations around the three axes? (X,Y,Z)

m Scheme s called Euler angles U

m PROBLEM: “Gimbal Lock” A ,

Stanford (5248A, Winter 2025



Alternative representations of 3D rotations

m Axis-angle rotations

m Quaternions (not today)
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Let’s make that cube person...



Skeleton - hierarchical representation

torso
head
right arm
upper arm
lower arm

hand .
U
left arm 25
=B
upper arm =
lower arm E_
hand =8
: S
right leg =

upper leg Q

lower leg right
foot
left leg
upper leg
lower leg
foot
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Hierarchical representation

m Grouped representation (tree)
- Each group contains subgroups and/or shapes
- Each group is associated with a transform relative to parent group

- Transform on leaf-node shape is concatenation of all transforms on path from root
node to leaf

- Changing a group’s transform affects all descendent parts
- Allows high level editing by changing only one node
- E.g. raising left arm requires changing only one transform for that group
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Skeleton - hierarchical representation

translate(0, 10); // person centered at (0,10)

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform

rotate(headRotation); // right-multiply onto current transform
popmatrix(); // pop current transform off stack
pushmatrix(); ----------------------------------------
translate(-2, 3);

rotate(rightShoulderRotation);

pushmatrix(); ------------------------
translate(0, -3);
rotate(elbowRotation);

pushmatrix(); --------- rig ht
translate(0, -3); . lower I"Ig ht
rotate(wristRotation); I"‘\I 9 h(.jt arm arm
dan
popmatrix(); --------- group group
popmatrix(); ------------------------
popmatrix(); --------------

Stanford (5248A, Winter 2025



Skeleton - hierarchical representation

translate(0, 10);

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform

popmatrix(); // pop current transform off stack

pushmatrix(); -------------------m
translate(-2, 3);

= rotate(rightShoulderRotation); “

pushmatrix(); ---------------—--—--—--
translate(O, -3);
rotate(elbowRotation);

pushmatrix(); --------- rig ht
translate(0, -3); . IOWGI" I"Ig ht
rotate(wristRotation); I':\I 9 h(.jt arm arm
an
popmatrix(); --------- group | group
popmatrix(); ------------------------
popmatrix(); ------------- oo
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Transforming points into camera-relative coordinates

Stanford (5248A, Winter 2025



Example: simple camera transform

Consider object positioned in world at (10, 2, 0)

Consider camera at (4, 2, 0), looking down x axis

y
2 EEY

<

What transform places in the object in a coordinate space where the camera is at the
origin and the camera is looking directly down the -z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera
® Rotation about y by 77 /2 gives position of object in new coordinate system
where camera’s view direction is aligned with the -z axis *

* The convenience of such a coordinate system will become clear when we talk about projection!
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Camera looking in a different direction

Consider camera at origin looking in direction W
What transform places in the object in a coordinate space where the camera is at the origin and the camera is looking directly down the -z axis?

Z How do we invert?
. U, u, u, |
Form orthonormal basis around w: (see u and v) R-1_RT _
Consider orthogonal matrix: R - — | Ve Yy vz
Wz Wy T Wz
U; Vgy —Wg Why is that the inverse?
R = Uy Vy —Wy RTu::u-u V-u —W-H:T::l 0 O:T
Uz Vz TWz, RTV::H-V V-V —W-V:T::O 1 O:T

T

- T
R maps x-axis to u, y-axis to v, z axis to -w R'w=[uw v.w —w-w| =[0 0 —1]

Stanford (5248A, Winter 2025



Self-check exercise (for home)

m Given a camera position P

m And a camera orientation given by orthonormal basis u,v,w (camera looking in w)

m What is a transformation matrix that places the scene in a coordinate space where...
- The camera s at the origin
- The camera s looking down -z.

Stanford (5248A, Winter 2025
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Early painting: incorrect perspectlve

Carolmglan painting from the 8-9th century Stanford CS248A, Winter 2025
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oward correct perspective

R First known perspective painting
anuncation, 1364 by Fillipo Brunelleshi

] “ A8 - 5 '; ‘:
RS . See

R e e o hel®

Brunelleschi, elevation of Santo Spirito, Masaccio — The Tribute Money ¢.1426-27

1434-83, Florence Fresco, The Brancacci Chapel, Florence
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Perspective in art
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elivery of the Keys (Sistine Chapel), Perugino, 1482
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Later... rejection of proper perspect
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Correct perspective in computer graphics
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In computer graphics
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Rejection of perspect
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Basic perspective projection

Desired perspective projected result (2D point):
T
P2D — [Xa:/Xz Xy/Xz]

R . X
£ 1 0 0 0
C 0 0 1 O
‘ Xz 0 0 0
Pinhole ] ]
Camera
0.0 Input: pointin 3D-H X = |Xg Xy Xz 1}
: 1T
After applying P: point in 3D-H Px = |x, Xy, X, X,
T
After homogeneous divide: Xy /X, Xy/x, 1

(throw out third component to get 2D)

Assumption:

Pinhole camera at (0,0) looking down z Stanford (5248, Winter 2025



Perspective vs. orthographic projection

m Most basic version of perspective projection matrix:

0 0 0T « ) ol.)jec.ts shrink
01 0 0 y | |y | in distance

0 0 1 O z | | z | 4

O 0 1 O 1| w z I 1 ]

m Most basic version of orthographic projection matrix:

1 0 0 07[ «x x objects stay the
0100y | _|YV| — same size

O 0 1 O Z Z

0 00 1][1 1 1
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A good exercise:
Transforming points into screen-relative coordinates
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Screen transformation *

Convert points in normalized coordinate space to screen pixel coordinates
Example: all points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen space

(-1,-1) in normalized space maps to (0,H) in screen space

Normalized coordinate space: Screen (W x H output image) coordinate space:
(0,0) W

H (W,H)

*This slide adopts convention that top-left of screen is (0,0) to match SVG convention in Assignment 1.
Many 3D graphics systems like OpenGL place (0,0) in bottom-left. In this case what would the transform be? Stanford (S248A Winter 2025



Screen transformation

Example: all points within (-1,1) to (1,1) region are on screen
(1,1) in normalized space maps to (W,0) in screen space
(-1,-1) in normalized space maps to (0,H) in screen space

(1 1'1) (olo) (210)

"N @

Reflect(X)
“about X"

Translate(1,1)

(0,2) (2,2)

(0,0) (W,0)

oK

Scale(W/2, H/2)

WH
(O,H) ( 4 ) Stanford (S248A, Winter 2025



Transformations: from objects in 3D to their 2D screen positions

(Also called “normalized

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDlNAT(Ei]) device coordinates”)
‘S’ view projection i
transform transform ==
\_J/%—‘Fh
(-1,-1,-1)
original description vertex positions now expressed relative to everything visible to the
of objects camera; camera is sitting at origin looking camera is mapped to unit cube
down -z direction for easy triangle “dlipping”

(Canonical frame of reference allows for
use of canonical projection matrix)

[WINDOW COORDINATES]

(w, h)
screen

transform

primitives are now 2D

and can be drawn via ‘
rasterization %

(0,0)

objects now in
2D screen coordinates Stanford CS248A, Winter 2025



Transformations summary

m Transformations can be interpreted as operations that move points in space
- e.g., for modeling, animation

m Orasachange of coordinate system
- e.g., screen and view transforms

m  Construct complex transformations as compositions of basic transforms

m  Homogeneous coordinate representation allows for expression of non-linear transforms (e.qg., translation,
perspective projection) as matrix operations (linear transforms) in higher-dimensional space

- Matrix representation affords simple implementation and efficient composition
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