Lecture 5:

Accelerating Geometric
Queries

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford (5248A, Winter 2026



We bag today’s lecture by finishing up our discussion of
representations of geometry from last time



You have learned how to intersect a ray
with individual primitives

d

d
// Ray-plane

Ray-sphere

0

P1

Po
Ray-triangle
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Applying what you learned

Consider interesting a ray with a cylinder with radius R and length L!

(centered at the origin)

I'll give you: the implicit form of a circle in 2D

$2 1 y2 __ RZ
From last class you know:

Explicit form for a ray:

r(t) =o+td

Implicit form for a plane:

Nix = ¢

Q. What if the cylinder is centered at (Xo,Y0,20) instead of the origin?
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Another example: ray-axis-aligned-box intersection

What is ray’s closest/farthest intersection with axis-aligned box?

Yo

Figure shows intersections
with x=x¢ and x=x1 planes.

Find intersection of ray with all planes of box:
N'(o+1td) =c

Math simplifies greatly since plane is axis aligned
(consider x=xo plane in 2D):

NT=[1 0]
C — X
Lo — Ox
—
dx

Performance note: it is possible to precompute terms
that only depend on the ray, so computing t is cheap
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S0 how do we find the closest hit for a 3D box?

1. How do you know there s a hit at all?
2. What is the t value for that hit?

tmax E

Figure shows intersections with x=x, and x=x1 planes.
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Ray-axis-aligned-box intersection

Compute intersections with all planes, take intersection of tyin/tmax intervals

tmaxE

Y1 Y1 tmax
d d
O 0O O
tmin
NN L T
;Xo ;Xl Note: tmin <o ;XO ;Xl ;Xo §X1
Intersections with x planes Intersections with y planes Final intersection result

How do we know if the ray hits the box?
If there’s a t-range where the ray is within the X planes, Y planes, AND Z planes, then we are in the box (ray hits it)

Stanford (S248A, Winter 2026



Ray intersection with triangle mesh

Given a scene defined by a set of N primitives and a ray r, find the closest point of

intersection of r with the scene

“Find the first primitive the ray hits”

b closest = NULL
t closest = inf

for each primitive p 1n scene:
t = p.1intersect(r)

if t >= 0 &&
t _closest
b closest

t

< t _closest:
t

P

Complexity? O(N)

Can we do better?

(Assume p.intersect(r) returns value of t corresponding to the point of

intersection with ray r)

Stanford (5248A, Winter 2026



One simple idea

m “Early out” — Skip ray-primitive test if it's computationally easy to determine that ray
does not intersect primitives

m E.g., Aray cannotintersect a primitive if it doesn’t intersect the bbox containing it!

Note: early out does not change asymptotic
complexity of ray-scene intersection. But it
reduces cost by a constant if ray is far from
most triangles.
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Ray-scene intersection with early out

Given a scene defined by a set of N primitives and a ray r, find the closest point of

intersection of r with the scene

b closest = NULL
t closest = inf

for each primitive p 1n scene:

1f (!p.bbox.1intersect(r))

continue:

t = p.1intersect(r)

if t >= 0 &&
t _closest
b closest

t

< t _closest:
t

P

Still O (V) complexity.

(Assume p.intersect(r) returns value of t corresponding to the

point of intersection with ray r)
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Disney Moana scene
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Disney Moana scene

-

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)



Disney Moana scene
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Data structures for reducing O(N) complexity
of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is any intersection with scene triangles
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A simpler problem

m Imagine | have a set of integers
m Given an integer, say k=18, find the element in the set that is closest to k:

10 123 2 100 6 25 64 11 200 30 950 111 20 BDO

What's the cost of finding k in terms of the size N of the set?
Can we do better?

Suppose we first sort the integers:

1 2 6 8 10 EO 25 30 64 80 100 111 123 200 950

How much does it now cost to find k (including sorting)?

Cost for just ONE query: O(n log n) worse than before! :-(
Amortized cost over many queries: O(log n) much better!
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Can we also reorganize scene primitives to enable fast
ray-scene intersection queries?
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Simple case (rays miss bounding box of scene)

O

q Ray misses bounding box of all primitives in scene

preprocessing: O(n)
ray-box test: 0(1)
amortized cost*: 0(1)

/\ /\ /\ /\ Cost (misses box):

AA AA

% . _ . .
amortized over many ray-scene intersection tests Stanford C5248A, Winter 2026



Another simple case (at least it seems like it should be)

A
AA

Cost (hits box):
preprocessing: 0(n)
ray-box test: 0(1)
triangle tests: O(n)
amortized cost*: O(n)

/\ /\ Still no better than naive
algorithm (must test all

Zﬁﬁl ......................................... triangles):

*amortized over many ray-scene intersection tests ,
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Q: How can we do better?

A: Apply this strategy hierarchically




Bounding volume hierarchy (BVH)




Bounding volume hierarchy (BVH)

m BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)
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Bounding volume hierarchy (BVH)




Bounding volume hierarchy (BVH)

m Leaf nodes:
- Contain small list of primitives
m Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford (S248A, Winter 2026



]
|
| e
/ )
|
\ s
J ¥ [
\ -
|
| »
| 7
B ¥
—— Y
s —— —
- | .
—
——
S— w
’
’
¥
-4
L
1 | 1 . - -
} | “a
-~ o -
1 -
i ' =
| | 13
- - —
PR
SR —
}-=
g
> <SRNV «
|
i
$
*
1
> - - I
* . - —
\
| [4
f - ,
t R
T T
|
) | .
\
3 >
| et
!
.- ¥
\ - -
B | —~ - r
N £ A - .
- . S — ~*
. . ~ 1 ~
4 | o —
$ . e
e
|
) ~
i
— _—
- — —
————
I
— - -
| —
— 8 O
Q— .
\
\ -
i —
!
* 5
\ -~

\
Ll
4
%
.
1

A was

333

R
——




Bounding volume hierarchy (BVH)

Two different BVH organizations of
the same scene containing 22
primitives.

N\ Is one BVH better than the other?

123 678 12,13,14, 18,19,20, 123
45 9,011 15,1617 21,22 S

6,78, 12,13,14, 18,19,20,
4,5 9,10,11 15,716,217 21,22
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Ray-scene intersection using a BVH

struct BVHNode {
bool leaf; // true if node is a leaf D> node
BBox bbox; // min/max coords of enclosed primitives
BVHNode* childl; // “left” child (could be NULL)
BVHNode* child2; // “right” child (could be NULL)
Primitive* primList; // for leaves, stores primitives

}; child2

N
child1
struct HitInfo ({ N /415;7' Zé&

Primitive* prim; // which primitive did the ray hit?
float t; // at what t value along ray?
}i

void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {
HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
i1f (hit.t > closest.t) <4——_____________________________________ . ) .
return; // don’t update the hit record Can this occur if ray hits the box?
if (node->leaf) { (assume hit.tis INF if ray misses box)
for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

find_closest_hit(ray, node->childl, closest);
find_closest_hit(ray, node->child2, closest);

}}
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Improvement: “front-to-back” traversal

New invariant compared to last slide:
assume find_closest_hit() is only called for nodes where ray intersects bhox.

void find closest hit (Ray* ray, BVHNode* node, HitInfo* closest) {

child2
if (node->leaf) {

for (each primitive p in node->primList) { Z>CMM1 ‘/5]2231 Zﬁ&
hit = intersect(ray, p); t§> .

if (hit.prim != NULL && t < closest.t) {
closest.prim = p;
closest.t = ¢t;

}

}
} else {

HitInfo hitl
HitInfo hit2

intersect(ray, node->childl->bbox);
intersect (ray, node->child2->bbox);

NVHNode* first = (hitl.t <= hit2.t) ? childl : child2;
NVHNode* second = (hitl.t <= hit2.t) ? child2 : childl;

find closest hit(ray, first, closest);
if (second child’s t is closer than closest.t)

find_closest_hit(ray, second, closest); Traverse to closest child node first.
\ Why?

“Front to back” traversal.

Why might we still need to traverse to second child if

there was a hit with geometry in the first child? |
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Aside: another type of query: any hit

Sometimes it is useful to know if the ray hits ANY primitive in the scene at all
(don't care about distance to first hit)

bool find any hit(Ray* ray, BVHNode* node) {

if (!intersect(ray, node->bbox))
return false;

if (node->leaf) {
for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim)
return true;
} else {
return ( find any hit(ray, node->childl) ||
find _any hit(ray, node->child2));

There’s an interesting question of which child to enter first.
How might you make a good decision?
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Why “any hit” queries?

Shadow computations!

(g o

Stanford (5248A, Winter 2026



For a given set of primitives,

there are many possible BVHs
(~2N ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?
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How would you partition these triangles into two groups?

“V’ g Av ':A




What about these?




Intuition about a “good” partition?
e

h v 'AA
4

[ v 'AA

Better partition
Intuition: want small bounding boxes that minimize overlap between
children, avoid bboxes with significant empty space
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What are we really trying to do?

A good partitioning minimizes the expected cost of finding the closest intersection of a ray
with the scene primitives in the node.

If a node is a leaf node (no partitioning):

N
. Where Cisect(7) is the cost of ray-primitive
C = C ?
221 et () intersection for primitive i in the node.
—

— NCigoct (Common to assume all primitives have the same cost)
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Cost of making a partition

The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Otrav T pACA - pBCB

(4,4 is the cost of traversing an interior node (e.g., load data + bbox intersection check)

C A and C 1 are the costs of intersection with the resultant child subtrees
PA and PB are the probability a ray intersects the bbox of the child nodes A and B

Primitive count is common approximation for child node costs:

O — Ctrav —|— pANACisect ‘|‘ pBNB Cisect

Remaining question: how do we get the probabilities pa, ps?
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Estimating probabilities

For convex object A inside convex object B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas S, and Sg of these objects.

P(hitA|hit B) = E—A
B

Leads to surface area heuristic (SAH):

C = C(trav | :gf] NACisect | gff NB Cisect

Assumptions of the SAH (which may not hold in practice!):
— Rays are randomly distributed
— Rays are not occluded
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Implementing partitions

m Constrain search for good partitions to axis-aligned spatial partitions
- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes. .. O(# objects)
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Efficiently implementing partitioning

Efficient modern approximation: split spatial extent of primitives into B buckets (B is
typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
initialize bucket counts to 0, per-bucket bboxes to empty
For each primitive p 1n node:
b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH

Use lowest cost partition found (or make node a leaf)
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Troublesome cases

All primitives with same centroid (all All primitives with same bhox (ray
primitives end up in same partition) often ends up visiting both partitions)

In general, different strategies may work better for different types of
geometry / different distributions of primitives...
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Question

m Imagine you have a valid BVH
m Now I move one of the triangles in the scene to a new location

m Howdol“refit”the BVYH soitis a valid BVH?

Imagine | moved a triangle

in this red leaf node.
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Primitive-partitioning acceleration structures vs.
space-partitioning structures

m Primitive partitioning (e.g, bounding volume A
hierarchy): partitions primitives into disjoint sets
(but sets of primitives may overlap in space)
m Space-partitioning (e.g. grid, K-D tree) partitions A >
space into disjoint regions (primitives may be %Dy 4 v A
contained in multiple regions of space) S
2\

So far I've only showed you a primitive partitioning structure
(a BVH), let’s look at two space partitioning structures.
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K-D tree

m Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits (not a partitioning of a set of objects)

DD v A -
N
<A

JAN
{2
Vo

A

A
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K-D tree

m Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

DD v A SR
<4
< A

JAN
{2
Vo

A

A
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K-D tree

m Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

Stanford (5248A, Winter 2026



K-D tree

m Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal can proceed in strict front-to-back order
- So unlike BVH, can terminate search after first hit is found
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Challenge: objects overlap multiple tree nodes

Want node traversal to proceed in front-to-back order so traversal can terminate search after first hit found

- Triangle 1 overlaps multiple nodes.
4 A “ f Ray hits triangle 1 when in highlighted leaf cell.
D But intersection with triangle 2 is closer!
(Haven't traversed to that node yet)

Solution: require primitive intersection point to be within spatial
volume current leaf node.

(Drawback: primitives may be intersected multiple times by same ray)
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Uniform grid
(a very simple space partitioning hierarchy)



Uniform grid (also space partitioning)

B Partition space into equal sized volumes (volume-elements or
“voxels”)

D>D‘ /\ B Each grid cell contains primitives that overlap the voxel.
| b ) 7 | /Y | — Cheap to construct acceleration structure

u ®m Walk ray through volume in order
BN T A y TronS

\ : ' — Efficient implementation possible (think: 3D line
‘.' rasterization)
- Aa . — . j\ — Only consider intersection with primitives in voxels the
D v ray intersects
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What should the grid resolution be?

Too few grids cell: degenerates to Too many grid cells: incur significant cost
brute-force approach traversing through cells with empty space
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Grid size heuristic

Choose number of cells ~ total number of primitives
(yields constant prims per cell for any scene size — assuming uniform distribution of primitives)

Intersection cost: () ( \S/N)

(assuming 3D grid)

(Q: Which grows faster, cube root of N or log(N)?
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A case where uniform grids can be efficient:
uniform distribution of primitives in scene ield of grass

Terrain / height fields:

[Image credit: Misuba Renderer]

\\’\ 3 L e\ X 'h-\ 1 N ; N o
[Image credit: www:kevinboulanger.net/grass.htmi] § - N2

Slide credit: Pat Hanrahan Stanford 24A, Winter 2026




Problem with uniform grids:
cannot adapt to distribution of geometry in scene

(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

A

“Teapot in a stadium problem”

Scene has large spatial extent.

- - : Contains a high-resolution object that has small spatial
Q extent (ends up in one grid cell)
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When uniform grids do not work !
non-uniform distribution of geom
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Quad-tree / octree

Like uniform grid: easy to build
(don’t have to choose partition planes)

Has greater ability to adapt to location of scene geometry
than a uniform grid.

But lower intersection performance than a hierarchical
structure like a BVH or K-D tree

(the structure only has limited ability to adapt to
distribution of scene geometry)

Quad-tree: nodes have 4 children
(partitions 2D space, like the example to the right)

Octree: nodes have 8 children (partitions 3D space)

Stanford (5248A, Winter 2026



Simple two-level sparse quad tree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space) V |
0

5

Note: in this example, no storage is
required for “subtrees” 1 and 2.
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Quad-tree/ octree storage of occupancy field

Consider storing occupancy samples in the tree structure, not triangles

I

Empty Full

CIEm

Empty
Empty

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes

Interior nodes with no children — same “value” for all children in subtree

Value stored at nodes could be binary occupancy, density, etc.
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Ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to
determine where the “empty space”is

N
’
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Summary of spatial acceleration structures:
Choose the right structure for the job!

B Primitive vs. spatial partitioning:
- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position
- Spatial partitioning: partition space into non-overlapping regions
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times

m Adaptive structures (BVH, K-D tree)
- More costly to construct (must be able to amortize cost over many geometric queries)
- Better intersection performance under non-uniform distribution of primitives

m Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

m  Many, many combinations thereof...
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Extra material: (if time)
Understanding BVH Performance



Moana scene

Recall




Moana costs

Num ray-triangle tests
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Another example
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Another example: diagonal geometry (not axis aligned)

Number of nodes visited Num ray-triangle tests
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Axis-alignment and performance

Wall and its Rotated wall and its
bounding box bounding box
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Original scene

Rendering time: 27m 38s
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Same scene (Butnow rotated in world space, so walls are less axis aligned)
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Rendering time: Th 55m 45s
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Axis-alignment and performance

Rotated wall and its
bounding box

Work-around: refine
bounding boxes

Note: this introduces back the
idea of partitioning space!
(Recall octree, KD-tree)
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Immense interest in real time ray tracing

E \

Image credit: Unreal Engine 4 Stanford (52484, Winter 2026



Ray tracing dynamic scenes

m Scenes have millions of triangles, many objects are in motion

m For real time applications, can allow a few ms / frame for BVH build
- e.g. @10M tris, 60fps, need to build BVH at 600M tris / second

= Hierarchy construction efficiency really matters!
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Imitive

A BVH itself is an intersectable pr
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Two-level acceleration structures

2-level hierarchy

“Top-level” acceleration structure /\

(Rebuilt every frame as objects

move in a scene) / \ /\

“Bottom-level” acceleration () |3
structures are primitives in
top-level BVH

(Built once when scene is loaded)
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At scene loac

Build one BVH for each object ey
Each fram

Build top-level BVH of BVH's based on current object positions.

)
|

(Scene may contain millions of triangles, but only hundreds of objects, so it’s possible to rebuild the top level BVH at high frame rate)

4

Image credit: Brennan Sh#clgl :
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