
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 5:

Accelerating Geometric
Queries

Stanford CS248A, Winter 2026

We bag today’s lecture by finishing up our discussion of
representations of geometry from last time

Stanford CS248A, Winter 2026

You have learned how to intersect a ray
with individual primitives

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d

o
d

Ray-sphere

Ray-triangle

Ray-plane

Stanford CS248A, Winter 2026

Applying what you learned
Consider interesting a ray with a cylinder with radius R and length L!
(centered at the origin)

Intersecting Cylinders

Problem 3. (15 points):
You are writing a ray-tracer that is specialized for rendering realistic hair. The renderer models each
strand of hair as a chain of cylinders.

A. (8 pts) As a first step in this problem, we’d like to you derive an algorithm for ray-cylinder inter-
section. Assume the cylinder has radius R and length L, and is oriented along the Z-axis as drawn
below. Like we did for various primitives in class, consider how to break down this problem into
simpler intersection problems for which the solution is known. We are providing:

• The implicit equation for a circle in 2D (what is the radius of this circle): x2 + y2 = c

• The implicit form of a plane NTx = c

• The quadratic formula (the solution to ax2+ bx+ c = 0). If you use it, you do not need to solve
it directly, just write your equation for a solution.

x =
�b±

p
b2 � 4ac

2a

R

L/2
y

x

z

Solution: Ray-infinite cylinder intersection is much like ray-sphere intersection. Simply take the X and Y
values of the ray r(t) = o + td and plug into the circle equation x2 + y2 = R2. However the intersection
point much be checked to determine if falls between the Z values of ±L

2 . You must also perform ray-plane
intersection for the top and bottom of the cylinder (done by plugging in the ray to NT r = ±L

2 , where
NT = [0, 0, 1]T), and check to see if the ray-plane intersection falls within in a circle of radius R. Taking the
smallest positive t value gives the closest hit point.

Page 9

x2 + y2 = R2

I’ll give you: the implicit form of a circle in 2D

From last class you know:

Explicit form for a ray:

Implicit form for a plane:
NTx = c Q. What if the cylinder is centered at (xo,yo,zo) instead of the origin?

Stanford CS248A, Winter 2026

Another example: ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1
NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all planes of box:

Math simplifies greatly since plane is axis aligned
(consider x=x0 plane in 2D):

Figure shows intersections
with x=x0 and x=x1 planes.

Performance note: it is possible to precompute terms
that only depend on the ray, so computing t is cheap
a =

1

dx
b = �ox

dx

So…

Stanford CS248A, Winter 2026

So how do we find the closest hit for a 3D box?
1. How do you know there is a hit at all?
2. What is the t value for that hit?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax
Figure shows intersections with x=x0 and x=x1 planes.

Stanford CS248A, Winter 2026

Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know if the ray hits the box?
If there’s a t-range where the ray is within the X planes, Y planes, AND Z planes, then we are in the box (ray hits it)

Stanford CS248A, Winter 2026

Ray intersection with triangle mesh
Given a scene defined by a set of N primitives and a ray r, find the closest point of
intersection of r with the scene

p_closest = NULL
t_closest = inf
for each primitive p in scene:
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

“Find the first primitive the ray hits”

O(N)Complexity?

Can we do better?
(Assume p.intersect(r) returns value of t corresponding to the point of
intersection with ray r)

Stanford CS248A, Winter 2026

One simple idea
“Early out” — Skip ray-primitive test if it’s computationally easy to determine that ray
does not intersect primitives

E.g., A ray cannot intersect a primitive if it doesn’t intersect the bbox containing it!

o,d
o,d

Note: early out does not change asymptotic
complexity of ray-scene intersection. But it
reduces cost by a constant if ray is far from
most triangles.

Still complexity.

Stanford CS248A, Winter 2026

Ray-scene intersection with early out
Given a scene defined by a set of N primitives and a ray r, find the closest point of
intersection of r with the scene
p_closest = NULL
t_closest = inf
for each primitive p in scene:
 if (!p.bbox.intersect(r))
 continue;
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

(Assume p.intersect(r) returns value of t corresponding to the
point of intersection with ray r)

O(N)

Stanford CS248A, Winter 2026

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2026

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2026

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2026

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS248A, Winter 2026

Data structures for reducing O(N) complexity
of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is any intersection with scene triangles

Stanford CS248A, Winter 2026

1 2 6 8 10 11 20 25 30 64 80 100 111 123 200 950

A simpler problem
Imagine I have a set of integers
Given an integer, say k=18, find the element in the set that is closest to k:

10 123 2 100 6 25 64 11 200 30 950 111 20 8 1 80

Suppose we first sort the integers:

How much does it now cost to find k (including sorting)?

What’s the cost of finding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost over many queries: O(log n)

worse than before! :-(
much better!

Stanford CS248A, Winter 2026

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Can we also reorganize scene primitives to enable fast
ray-scene intersection queries?

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Stanford CS248A, Winter 2026

Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box):
preprocessing: O(n)
ray-box test: O(1)
amortized cost*: O(1)

*amortized over many ray-scene intersection tests

Stanford CS248A, Winter 2026

Another simple case (at least it seems like it should be)
o,d

o,d

Cost (hits box):
preprocessing: O(n)
ray-box test: O(1)
triangle tests: O(n)
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than naïve
algorithm (must test all

triangles)!

Stanford CS248A, Winter 2026

Q: How can we do better?

A: Apply this strategy hierarchically

Stanford CS248A, Winter 2026

Bounding volume hierarchy (BVH)

Root

Stanford CS248A, Winter 2026

Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)

Stanford CS248A, Winter 2026

Bounding volume hierarchy (BVH)

Stanford CS248A, Winter 2026

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes:
- Contain small list of primitives
Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS248A, Winter 2026

Demo!

Stanford CS248A, Winter 2026

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Two different BVH organizations of
the same scene containing 22
primitives.

Is one BVH better than the other?

Stanford CS248A, Winter 2026

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // true if node is a leaf
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.t > closest.t)
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

Can this occur if ray hits the box?
(assume hit.t is INF if ray misses box)

node

child1
child2

Stanford CS248A, Winter 2026

Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 HitInfo hit1 = intersect(ray, node->child1->bbox);
 HitInfo hit2 = intersect(ray, node->child2->bbox);

 NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
 NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

 find_closest_hit(ray, first, closest);
 if (second child’s t is closer than closest.t)
 find_closest_hit(ray, second, closest);
 }
}

“Front to back” traversal.
Traverse to closest child node first.
Why?

node

child1

child2

New invariant compared to last slide:
assume find_closest_hit() is only called for nodes where ray intersects bbox.

Why might we still need to traverse to second child if
there was a hit with geometry in the first child?

Stanford CS248A, Winter 2026

Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the scene at all
(don’t care about distance to first hit)
bool find_any_hit(Ray* ray, BVHNode* node) {

 if (!intersect(ray, node->bbox))
 return false;

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim)
 return true;
 } else {

 return (find_any_hit(ray, node->child1) ||
 find_any_hit(ray, node->child2));
 }
}

There’s an interesting question of which child to enter first.
How might you make a good decision?

Stanford CS248A, Winter 2026

Why “any hit” queries?

P

L1

L2

Shadow computations!

Stanford CS248A, Winter 2026

For a given set of primitives,
there are many possible BVHs

(~2N ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?

Stanford CS248A, Winter 2026

How would you partition these triangles into two groups?

Stanford CS248A, Winter 2026

What about these?

Stanford CS248A, Winter 2026

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes that minimize overlap between

children, avoid bboxes with significant empty space

Stanford CS248A, Winter 2026

What are we really trying to do?
A good partitioning minimizes the expected cost of finding the closest intersection of a ray
with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

Stanford CS248A, Winter 2026

Cost of making a partition
The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?

Stanford CS248A, Winter 2026

Estimating probabilities
For convex object A inside convex object B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

Stanford CS248A, Winter 2026

Implementing partitions
Constrain search for good partitions to axis-aligned spatial partitions
- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes… O(# objects)

Stanford CS248A, Winter 2026

Efficiently implementing partitioning
Efficient modern approximation: split spatial extent of primitives into B buckets (B is
typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize bucket counts to 0, per-bucket bboxes to empty
 For each primitive p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B-1 possible partitioning planes evaluate SAH
Use lowest cost partition found (or make node a leaf)

Stanford CS248A, Winter 2026

Troublesome cases

All primitives with same centroid (all
primitives end up in same partition)

All primitives with same bbox (ray
often ends up visiting both partitions)

In general, different strategies may work better for different types of
geometry / different distributions of primitives…

Stanford CS248A, Winter 2026

Question
Imagine you have a valid BVH
Now I move one of the triangles in the scene to a new location
How do I “refit” the BVH so it is a valid BVH?

Imagine I moved a triangle
in this red leaf node.

Stanford CS248A, Winter 2026

Primitive-partitioning acceleration structures vs.
space-partitioning structures

Primitive partitioning (e.g, bounding volume
hierarchy): partitions primitives into disjoint sets
(but sets of primitives may overlap in space)

Space-partitioning (e.g. grid, K-D tree) partitions
space into disjoint regions (primitives may be
contained in multiple regions of space)

So far I’ve only showed you a primitive partitioning structure
(a BVH), let’s look at two space partitioning structures.

Stanford CS248A, Winter 2026

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits (not a partitioning of a set of objects)

A

A

Stanford CS248A, Winter 2026

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

B

A

A

B C

C

Stanford CS248A, Winter 2026

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits

B

A

A

B C

C

D

E

D E

Stanford CS248A, Winter 2026

K-D tree
Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal can proceed in strict front-to-back order
- So unlike BVH, can terminate search after first hit is found

B

A

A

B C

C

D

E F

D E

F

Stanford CS248A, Winter 2026

Challenge: objects overlap multiple tree nodes
Want node traversal to proceed in front-to-back order so traversal can terminate search after first hit found

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes.

Ray hits triangle 1 when in highlighted leaf cell.

But intersection with triangle 2 is closer!
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection point to be within spatial
volume current leaf node.

(Drawback: primitives may be intersected multiple times by same ray)

Stanford CS248A, Winter 2026

Uniform grid
(a very simple space partitioning hierarchy)

Stanford CS248A, Winter 2026

Uniform grid (also space partitioning)
▪ Partition space into equal sized volumes (volume-elements or

“voxels”)

▪ Each grid cell contains primitives that overlap the voxel.
- Cheap to construct acceleration structure

▪ Walk ray through volume in order
- Efficient implementation possible (think: 3D line

rasterization)
- Only consider intersection with primitives in voxels the

ray intersects

Stanford CS248A, Winter 2026

What should the grid resolution be?

Too few grids cell: degenerates to
brute-force approach

Too many grid cells: incur significant cost
traversing through cells with empty space

Stanford CS248A, Winter 2026

Grid size heuristic
Choose number of cells ~ total number of primitives
(yields constant prims per cell for any scene size — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost:

(Q: Which grows faster, cube root of N or log(N)?

(assuming 3D grid)

Stanford CS248A, Winter 2026

A case where uniform grids can be efficient:
uniform distribution of primitives in scene

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Field of grass

Slide credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]

Stanford CS248A, Winter 2026

Problem with uniform grids:
cannot adapt to distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

“Teapot in a stadium problem”

Scene has large spatial extent.
Contains a high-resolution object that has small spatial
extent (ends up in one grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Stanford CS248A, Winter 2026Jun Yan, Tracy Renderer

When uniform grids do not work well:
non-uniform distribution of geometric detail

Stanford CS248A, Winter 2026

When uniform grids do not work well:
non-uniform distribution of geometric detail

[Image credit: Pixar]

Stanford CS248A, Winter 2026

Quad-tree / octree

Quad-tree: nodes have 4 children
(partitions 2D space, like the example to the right)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build
(don’t have to choose partition planes)

Has greater ability to adapt to location of scene geometry
than a uniform grid.

But lower intersection performance than a hierarchical
structure like a BVH or K-D tree
(the structure only has limited ability to adapt to
distribution of scene geometry)

Stanford CS248A, Winter 2026

Simple two-level sparse quad tree
Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

0 1

2 3

0 1 2 3

Note: in this example, no storage is
required for “subtrees” 1 and 2.

Stanford CS248A, Winter 2026

Quad-tree / octree storage of occupancy field
Consider storing occupancy samples in the tree structure, not triangles

Full
Fu

ll

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes
Interior nodes with no children → same “value” for all children in subtree
Value stored at nodes could be binary occupancy, density, etc.

Empty

Em
pt

y

Em
pt

y

Stanford CS248A, Winter 2026

Ray marching a sparse voxel grid
Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to
determine where the “empty space” is

Stanford CS248A, Winter 2026

Summary of spatial acceleration structures:
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning:

- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position

- Spatial partitioning: partition space into non-overlapping regions
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times

Adaptive structures (BVH, K-D tree)
- More costly to construct (must be able to amortize cost over many geometric queries)
- Better intersection performance under non-uniform distribution of primitives

Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

Many, many combinations thereof…

Stanford CS248A, Winter 2026

Extra material: (if time)
Understanding BVH Performance

Stanford CS248A, Winter 2026

Recall: Moana scene

Stanford CS248A, Winter 2026

Moana costs

Number of nodes visited

Num ray-triangle tests

Stanford CS248A, Winter 2026

Another example

Stanford CS248A, Winter 2026

Number of BVH Nodes Visited

24

77

Stanford CS248A, Winter 2026

4

4

65

Number of Ray-Triangle Tests (when using BVH)

Stanford CS248A, Winter 2026

Another example: diagonal geometry (not axis aligned)

Number of nodes visited Num ray-triangle tests

??

Stanford CS248A, Winter 2026

Axis-alignment and performance

Wall and its
bounding box

Rotated wall and its
bounding box

Stanford CS248A, Winter 2026

Original scene

Rendering time: 27m 38s

Stanford CS248A, Winter 2026

Same scene

Rendering time: 1h 55m 45s

(But now rotated in world space, so walls are less axis aligned)

Stanford CS248A, Winter 2026

Axis-alignment and performance

Rotated wall and its
bounding box

Work-around: refine
bounding boxes

Note: this introduces back the
idea of partitioning space!

(Recall octree, KD-tree)

Stanford CS248A, Winter 2026

Immense interest in real time ray tracing

Image credit: Unreal Engine 4

Stanford CS248A, Winter 2026

Ray tracing dynamic scenes
Scenes have millions of triangles, many objects are in motion

For real time applications, can allow a few ms / frame for BVH build
- e.g. @10M tris, 60fps, need to build BVH at 600M tris / second

➡ Hierarchy construction efficiency really matters!

Stanford CS248A, Winter 2026

A BVH itself is an intersectable primitive!
It has a bounding box
It supports ray-primitive intersection
So it can be used as a primitive in another BVH

Stanford CS248A, Winter 2026

Two-level acceleration structures
2-level hierarchy

“Top-level” acceleration structure
(Rebuilt every frame as objects
move in a scene)

“Bottom-level” acceleration
structures are primitives in
top-level BVH

(Built once when scene is loaded)

Stanford CS248A, Winter 2026

Hierarchical BVH build

At scene load…
Build one BVH for each object

Each frame…
Build top-level BVH of BVH’s based on current object positions.

(Scene may contain millions of triangles, but only hundreds of objects, so it’s possible to rebuild the top level BVH at high frame rate)

Image credit: Brennan Shacklett

Stanford CS248A, Winter 2026

Acknowledgements
Thanks to Keenan Crane, Ren Ng, and Matt Pharr for presentation resources

