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Lecture 5:

Accelerating Geometric 
Queries
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We bag today’s lecture by finishing up our discussion of 
representations of geometry from last time
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You have learned how to intersect a ray 
with individual primitives
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Applying what you learned
Consider interesting a ray with a cylinder with radius R and length L!  
(centered at the origin)

Intersecting Cylinders

Problem 3. (15 points):
You are writing a ray-tracer that is specialized for rendering realistic hair. The renderer models each
strand of hair as a chain of cylinders.

A. (8 pts) As a first step in this problem, we’d like to you derive an algorithm for ray-cylinder inter-
section. Assume the cylinder has radius R and length L, and is oriented along the Z-axis as drawn
below. Like we did for various primitives in class, consider how to break down this problem into
simpler intersection problems for which the solution is known. We are providing:

• The implicit equation for a circle in 2D (what is the radius of this circle): x2 + y2 = c

• The implicit form of a plane NTx = c

• The quadratic formula (the solution to ax2+ bx+ c = 0). If you use it, you do not need to solve
it directly, just write your equation for a solution.

x =
�b±

p
b2 � 4ac

2a

R

L/2
y

x

z

Solution: Ray-infinite cylinder intersection is much like ray-sphere intersection. Simply take the X and Y
values of the ray r(t) = o + td and plug into the circle equation x2 + y2 = R2. However the intersection
point much be checked to determine if falls between the Z values of ±L

2 . You must also perform ray-plane
intersection for the top and bottom of the cylinder (done by plugging in the ray to NT r = ±L

2 , where
NT = [0, 0, 1]T ), and check to see if the ray-plane intersection falls within in a circle of radius R. Taking the
smallest positive t value gives the closest hit point.
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x2 + y2 = R2

I’ll give you: the implicit form of a circle in 2D

From last class you know:

Explicit form for a ray:

Implicit form for a plane:
NTx = c Q. What if the cylinder is centered at (xo,yo,zo) instead of the origin?
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Another example: ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1
NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all planes of box:

Math simplifies greatly since plane is axis aligned 
(consider x=x0 plane in 2D):

Figure shows intersections 
with x=x0 and x=x1 planes. 

Performance note: it is possible to precompute terms 
that only depend on the ray, so computing t is cheap
a =

1

dx
b = �ox

dx

So…
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So how do we find the closest hit for a 3D box?
1. How do you know there is a hit at all? 
2. What is the t value for that hit?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax
Figure shows intersections with x=x0 and x=x1 planes. 
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Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note:  tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know if the ray hits the box?
If there’s a t-range where the ray is within the X planes, Y planes, AND Z planes, then we are in the box (ray hits it)
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Ray intersection with triangle mesh
Given a scene defined by a set of N primitives and a ray r, find the closest point of 
intersection of r with the scene

p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

“Find the first primitive the ray hits”

O(N)Complexity?

Can we do better?
(Assume p.intersect(r) returns value of t corresponding to the point of 
intersection with ray r)
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One simple idea
“Early out”  — Skip ray-primitive test if it’s computationally easy to determine that ray 
does not intersect primitives 

E.g., A ray cannot intersect a primitive if it doesn’t intersect the bbox containing it!

o,d
o,d

Note: early out does not change asymptotic 
complexity of ray-scene intersection. But it 
reduces cost by a constant if ray is far from 
most triangles.



Still                      complexity.
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Ray-scene intersection with early out
Given a scene defined by a set of N primitives and a ray r, find the closest point of 
intersection of r with the scene
p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   if (!p.bbox.intersect(r)) 
     continue; 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

(Assume p.intersect(r) returns value of t corresponding to the 
point of intersection with ray r)

O(N)
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Disney Moana scene

Released for rendering research purposes in 2018. 
15 billion primitives in scene (more than 90M unique geometric primitives)
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Disney Moana scene

Released for rendering research purposes in 2018. 
15 billion primitives in scene (more than 90M unique geometric primitives)
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Disney Moana scene

Released for rendering research purposes in 2018. 
15 billion primitives in scene (more than 90M unique geometric primitives)
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Data structures for reducing O(N) complexity 
of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is any intersection with scene triangles 
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1    2    6    8    10    11    20    25    30    64    80    100    111    123    200    950

A simpler problem
Imagine I have a set of integers 
Given an integer, say k=18, find the element in the set that is closest to k:

10    123    2    100    6    25    64    11    200   30   950  111    20     8     1   80

Suppose we first sort the integers:

How much does it now cost to find k (including sorting)?

What’s the cost of finding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost over many queries: O(log n)

worse than before! :-(
much better!
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 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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Assignment 2, Part II is out!

Can we also reorganize scene primitives to enable fast 
ray-scene intersection queries?

 CMU 15-462/662, Fall 2015
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 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!



Stanford CS248A, Winter 2026

Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box): 
preprocessing: O(n) 
ray-box test: O(1) 
amortized cost*: O(1)

*amortized over many ray-scene intersection tests
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Another simple case (at least it seems like it should be) 
o,d

o,d

Cost (hits box): 
preprocessing: O(n) 
ray-box test: O(1) 
triangle tests: O(n) 
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than naïve 
algorithm (must test all 

triangles)!
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Q: How can we do better?

A: Apply this strategy hierarchically
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Bounding volume hierarchy (BVH)

Root
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Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets 
- Note: the sets can overlap in space (see example below) 
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Bounding volume hierarchy (BVH)
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C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes: 
- Contain small list of primitives 
Interior nodes: 
- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree
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Demo!
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Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15, 16,17

18,19,20, 
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15,16,17

18,19,20, 
21,22

Two different BVH organizations of 
the same scene containing 22 
primitives.  

Is one BVH better than the other?
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Ray-scene intersection using a BVH
struct BVHNode {
   bool leaf;  // true if node is a leaf
   BBox bbox;  // min/max coords of enclosed primitives
   BVHNode* child1; // “left” child (could be NULL)
   BVHNode* child2; // “right” child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
   Primitive* prim;  // which primitive did the ray hit?
   float t;          // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox);  // test ray against node’s bounding box
   if (hit.t > closest.t)
      return; // don’t update the hit record

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      find_closest_hit(ray, node->child1, closest);
      find_closest_hit(ray, node->child2, closest);
   }}

Can this occur if ray hits the box? 
(assume hit.t is INF if ray misses box)

node

child1
child2
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Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      HitInfo hit1 = intersect(ray, node->child1->bbox);
      HitInfo hit2 = intersect(ray, node->child2->bbox);

      NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
      NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

      find_closest_hit(ray, first, closest);
      if (second child’s t is closer than closest.t)
         find_closest_hit(ray, second, closest);
    }
}

“Front to back” traversal. 
Traverse to closest child node first. 
Why? 

node

child1

child2

New invariant compared to last slide: 
assume find_closest_hit() is only called for nodes where ray intersects bbox.

Why might we still need to traverse to second child if 
there was a hit with geometry in the first child?
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Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the scene at all 
(don’t care about distance to first hit)
bool find_any_hit(Ray* ray, BVHNode* node) {

   if (!intersect(ray, node->bbox))
      return false;

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim)
            return true;
   } else {

 return ( find_any_hit(ray, node->child1) ||
              find_any_hit(ray, node->child2));
   }
}

There’s an interesting question of which child to enter first. 
How might you make a good decision? 
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Why “any hit” queries?

P

L1

L2

Shadow computations!
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For a given set of primitives, 
there are many possible BVHs 

(~2N ways to partition N primitives into two groups) 

Q: How do we build a high-quality BVH?
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How would you partition these triangles into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes that minimize overlap between 

children, avoid bboxes with significant empty space
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What are we really trying to do?
A good partitioning minimizes the expected cost of finding the closest intersection of a ray 
with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition
The expected cost of ray-node intersection, given that the node’s 
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?
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Estimating probabilities
For convex object A inside convex object B, the probability that a random ray that hits B also 
hits A is given by the ratio of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
Constrain search for good partitions to axis-aligned spatial partitions 
- Choose an axis; choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- SAH changes only when split plane moves past triangle boundary 
- Have to consider large number of possible split planes… O(# objects)
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Efficiently implementing partitioning
Efficient modern approximation: split spatial extent of primitives into B buckets (B is 
typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z: 
   initialize bucket counts to 0, per-bucket bboxes to empty 
   For each primitive p in node: 
      b = compute_bucket(p.centroid) 
      b.bbox.union(p.bbox); 
      b.prim_count++; 
   For each of the B-1 possible partitioning planes evaluate SAH 
Use lowest cost partition found (or make node a leaf)
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Troublesome cases

All primitives with same centroid (all 
primitives end up in same partition)

All primitives with same bbox (ray 
often ends up visiting both partitions) 

In general, different strategies may work better for different types of 
geometry / different distributions of primitives…
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Question
Imagine you have a valid BVH 
Now I move one of the triangles in the scene to a new location 
How do I “refit” the BVH so it is a valid BVH?

Imagine I moved a triangle 
in this red leaf node.
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Primitive-partitioning acceleration structures vs.  
space-partitioning structures

Primitive partitioning (e.g, bounding volume 
hierarchy): partitions primitives into disjoint sets 
(but sets of primitives may overlap in space) 

Space-partitioning (e.g. grid, K-D tree) partitions 
space into disjoint regions (primitives may be 
contained in multiple regions of space) 

So far I’ve only showed you a primitive partitioning structure 
(a BVH), let’s look at two space partitioning structures.
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K-D tree
Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits (not a partitioning of a set of objects)

A

A
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K-D tree
Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits

B

A

A

B C

C
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K-D tree
Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits

B

A

A

B C

C

D

E

D E
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K-D tree
Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits 
- Node traversal can proceed in strict front-to-back order 
- So unlike BVH, can terminate search after first hit is found

B

A

A

B C

C

D

E F

D E

F
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Challenge: objects overlap multiple tree nodes
Want node traversal to proceed in front-to-back order so traversal can terminate search after first hit found 

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes. 

Ray hits triangle 1 when in highlighted leaf cell. 

But intersection with triangle 2 is closer! 
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection point to be within spatial 
volume current leaf node. 

(Drawback: primitives may be intersected multiple times by same ray)
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Uniform grid 
(a very simple space partitioning hierarchy)
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Uniform grid (also space partitioning)
▪ Partition space into equal sized volumes (volume-elements or 

“voxels”) 

▪ Each grid cell contains primitives that overlap the voxel. 
- Cheap to construct acceleration structure 

▪ Walk ray through volume in order 
- Efficient implementation possible (think: 3D line 

rasterization) 
- Only consider intersection with primitives in voxels the 

ray intersects
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What should the grid resolution be?

Too few grids cell: degenerates to 
brute-force approach

Too many grid cells: incur significant cost 
traversing through cells with empty space
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Grid size heuristic
Choose number of cells ~ total number of primitives
(yields constant prims per cell for any scene size — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost: 

(Q: Which grows faster, cube root of N or log(N)?

(assuming 3D grid) 
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A case where uniform grids can be efficient: 
uniform distribution of primitives in scene

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Field of grass

Slide credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]
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Problem with uniform grids: 
cannot adapt to distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

“Teapot in a stadium problem”

Scene has large spatial extent. 
Contains a high-resolution object that has small spatial 
extent (ends up in one grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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When uniform grids do not work well: 
non-uniform distribution of geometric detail
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When uniform grids do not work well: 
non-uniform distribution of geometric detail

[Image credit: Pixar]
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Quad-tree / octree

Quad-tree: nodes have 4 children 
(partitions 2D space, like the example to the right) 

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build 
(don’t have to choose partition planes) 

Has greater ability to adapt to location of scene geometry 
than a uniform grid. 

But lower intersection performance than a hierarchical 
structure like a BVH or K-D tree 
(the structure only has limited ability to adapt to 
distribution of scene geometry) 
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Simple two-level sparse quad tree
Quad-tree: nodes have 4 children (partitions 2D space) 

Octree: nodes have 8 children (partitions 3D space)

0 1

2 3

0 1 2 3

Note: in this example, no storage is 
required for “subtrees” 1 and 2. 
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Quad-tree / octree storage of occupancy field
Consider storing occupancy samples in the tree structure, not triangles

Full
Fu

ll

Effective resolution in this example is 8x8:  but structure only must store 20 leaf nodes 
Interior nodes with no children → same “value” for all children in subtree  
Value stored at nodes could be binary occupancy, density, etc.                               

Empty

Em
pt

y

Em
pt

y
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Ray marching a sparse voxel grid
Ray can now “skip” through empty space 

Ray marching is much more efficient when it’s easy to 
determine where the “empty space” is  
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Summary of spatial acceleration structures: 
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning: 

- Primitive partitioning: partition sets of objects 
- Bounded number of BVH nodes, simpler to update if primitives in scene change position 

- Spatial partitioning: partition space into non-overlapping regions 
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times   

Adaptive structures (BVH, K-D tree) 
- More costly to construct  (must be able to amortize cost over many geometric queries) 
- Better intersection performance under non-uniform distribution of primitives 

Non-adaptive accelerations structures (uniform grids) 
- Simple, cheap to construct 
- Good intersection performance if scene primitives are uniformly distributed 

Many, many combinations thereof…
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Extra material: (if time) 
Understanding BVH Performance
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Recall: Moana scene
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Moana costs

Number of nodes visited

Num ray-triangle tests
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Another example
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Number of BVH Nodes Visited

24

77
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4

4

65

Number of Ray-Triangle Tests (when using BVH)
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Another example: diagonal geometry (not axis aligned)

Number of nodes visited Num ray-triangle tests

??



Stanford CS248A, Winter 2026

Axis-alignment and performance

Wall and its 
bounding box

Rotated wall and its 
bounding box
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Original scene

Rendering time: 27m 38s



Stanford CS248A, Winter 2026

Same scene

Rendering time: 1h 55m 45s

(But now rotated in world space, so walls are less axis aligned)
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Axis-alignment and performance

Rotated wall and its 
bounding box

Work-around: refine 
bounding boxes

Note: this introduces back the 
idea of partitioning space! 

(Recall octree, KD-tree)
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Immense interest in real time ray tracing

Image credit: Unreal Engine 4
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Ray tracing dynamic scenes
Scenes have millions of triangles, many objects are in motion 

For real time applications, can allow a few ms / frame for BVH build 
- e.g. @10M tris, 60fps, need to build BVH at 600M tris / second 

➡ Hierarchy construction efficiency really matters!
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A BVH itself is an intersectable primitive!
It has a bounding box 
It supports ray-primitive intersection 
So it can be used as a primitive in another BVH
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Two-level acceleration structures
2-level hierarchy

“Top-level” acceleration structure 
(Rebuilt every frame as objects 
move in a scene)

“Bottom-level” acceleration 
structures are primitives in 
top-level BVH

(Built once when scene is loaded)
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Hierarchical BVH build

At scene load… 
Build one BVH for each object 

Each frame… 
Build top-level BVH of BVH’s based on current object positions. 

(Scene may contain millions of triangles, but only hundreds of objects, so it’s possible to rebuild the top level BVH at high frame rate)

Image credit: Brennan Shacklett
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