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Increasing the complexity of our model of the world
Materials, lighting, … 

(in the future)
Geometry representations 

(today)
Transformations 

(last time)
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Examples of geometry

Photo of original Utah teapot 
(now sitting in Computer History 

Museum in Mountain View)

Martin Newell’s early teapot renderings 
(Martin created teapot model in 1975 using Bezier curves)
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Examples of geometry

Cornell Box: Originally created in 1984 
(This image was rendered in 1985 by Cohen and Greenberg)
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Examples of geometry

The Stanford Bunny 
(Mesh created by reconstruction from laser scans)

Photograph of scanned statue 
(Statue purchased by Greg Turk at 
a store on University Ave in 1994)
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Examples of geometry
Laser scan of Michelangelo’s David 
(Stanford’s Digital Michelangelo project, 1999)
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Examples of geometry

Photo credit:Natasha Moustache/TAS23
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Examples of geometry



Stanford CS248A, Winter 2026

Examples of geometry
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Examples of geometry
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Examples of geometry

Curly hair in Pixar’s “Brave” (2012)
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Examples of geometry
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Measurements of surfaces
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Surface tangent
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Surface normal (N) is orthogonal to all tangents
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A common visualization of normals
Encode normal direction as RGB color as difference from gray 

Image credit: https://www.3dgep.com/forward-plus/

R = 0.5 + 0.5 N.x  
G = 0.5 + 0.5 N.y 
B = 0.5 + 0.5 N.z 

Notice: scale and bias normal values so we can represent 
negative components of normal as valid colors
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Curvature is change in normal
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Radius of curvature

curvature
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What are ways to encode geometry on a computer?
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- volume 
- polygon mesh 
- subdivision surface… 
- ... 
IMPLICIT 
- algebraic surface 
- distance field 
- occupancy field  
- L-systems 
Each choice best suited to a different tasks or types of geometry
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“Implicit” representations of an object
Points on surface aren’t encoded directly, but satisfy a given relationship 
A plane is the set of points that satisfy NTx = c 
Unit sphere centered at origin is set of point that satisfy x2+y2+z2=1    
More generally, f(x,y,z) = 0

X
N

x0The plane is all points x, 
where x - x0 is orthogonal 
to N.

x� x0

<latexit sha1_base64="KsQRu2ETP2bQ0WQYJ5LJO+xLUns=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSWRii6LblxWsA9oQ5hMJ+3QyYOZiVhCcOOvuHGhiFu/wp1/46QNoq0HBs6ccy/33uPFnEllWV/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtd5X77jgrJovBWjWPqBHgQMp8RrLTkmvu9AKuh56f3GTpBPx/XylyzYlWtCdA8sQtSgQIN1/zs9SOSBDRUhGMpu7YVKyfFQjHCaVbuJZLGmIzwgHY1DXFApZNOTsjQkVb6yI+EfqFCE/V3R4oDKceBpyvzHeWsl4v/ed1E+RdOysI4UTQk00F+wpGKUJ4H6jNBieJjTTARTO+KyBALTJROraxDsGdPniet06pdq57d1Cr1yyKOEhzAIRyDDedQh2toQBMIPMATvMCr8Wg8G2/G+7R0wSh69uAPjI9v8FOXJQ==</latexit>

N · (x� x0) = 0

NT(x� x0) = 0

NTx = NTx0

NTx = c

<latexit sha1_base64="lPYkwo1mDgQ7CDH0Ce6GnsvO7LQ="></latexit>

Signed distance to plane:
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But first, let’s play a game: 

I’m thinking of an implicit surface f(x,y,z)=0  

Find any point on it.
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Give up?

y

xz

( 1.5, 0, 0 )

My function was f(x,y,z) = x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).
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Let’s play another game. 

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1 

I want to see if a point is inside it.
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Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16  =  7/8

7/8 < 1

YES.

How about the point ( 3/4, 1/2, 1/4 )?

( 3/4, 1/2, 1/4 )
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“Explicit” representations of geometry
All points are given directly (given a parameter representing a point on a surface… 
function provides a 3D point on the surface) 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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Explicit representation of a ray
Parameterized by distance from origin

Distance along ray 
(some students think “time”)

point along ray

ray origin unit direction

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

<latexit sha1_base64="sd/x+SMYPnbP2/eIUBz1qJLufqU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8lkMm1oJhmSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT29zvPlGlmRQPZppQP8YjwSJGsLHS4yDGZhxEWTgbVmtu3Z0DrRKvIDUo0BpWvwahJGlMhSEca9333MT4GVaGEU5nlUGqaYLJBI9o31KBY6r9bJ54hs6sEqJIKvuEQXP190aGY62ncWAn84R62cvF/7x+aqJrP2MiSQ0VZPFRlHJkJMrPRyFTlBg+tQQTxWxWRMZYYWJsSRVbgrd88irpXNS9Rr1xf1lr3hR1lOEETuEcPLiCJtxBC9pAQMAzvMKbo50X5935WIyWnGLnGP7A+fwB4meREw==</latexit>

d
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“Explicit” representation of a triangle
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⇥
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x2D =
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xx/�xz xy/�xz
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aspect⇥ tan(✓/2)
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2

x

x = f(�, �) = a+ �(b� a) + �(c� a)

Triangle is parameterized by         and         , where 
<latexit sha1_base64="70lLMPLx7Mn8duaeTWcRM/zSQaw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJ74cc6aBac+vuAuQv8QpSgwKtQfWzP0xYFnOFTFJjep6bYpBTjYJJPqv0M8NTyiZ0xHuWKhpzE+SLY2fkzCpDEiXalkKyUH9O5DQ2ZhqHtjOmODar3lz8z+tlGF0HuVBphlyx5aIokwQTMv+cDIXmDOXUEsq0sLcSNqaaMrT5VGwI3urLf0n7ou416o37y1rzpoijDCdwCufgwRU04Q5a4AMDAU/wAq+Ocp6dN+d92Vpyiplj+AXn4xvHaI6v</latexit>

ω
<latexit sha1_base64="Za2AY9kWNCLQyiW+4sCAc9Auqck=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0rqoBrVq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPin2PIA==</latexit>ω

(To get point on triangle, move from vertex               units in the                        
direction and         gamma units in the                      direction.)

x = f(�, �) = a+ �(b� a) + �(c� a)
<latexit sha1_base64="6oGv5b6RC6/0b37dNywLvvb29XE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2pdxJM21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO1PbjO//cSU5pF8MNOY9UMcSR5wisZKj70QzdgPUpwNyhW36s5BVomXkwrkaAzKX71hRJOQSUMFat313Nj0U1SGU8FmpV6iWYx0giPWtVRiyHQ/nSeekTOrDEkQKfukIXP190aKodbT0LeTWUK97GXif143McF1P+UyTgyTdPFRkAhiIpKdT4ZcMWrE1BKkitushI5RITW2pJItwVs+eZW0LqperVq7v6zUb/I6inACp3AOHlxBHe6gAU2gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A3diREA==</latexit>a

<latexit sha1_base64="70lLMPLx7Mn8duaeTWcRM/zSQaw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJ74cc6aBac+vuAuQv8QpSgwKtQfWzP0xYFnOFTFJjep6bYpBTjYJJPqv0M8NTyiZ0xHuWKhpzE+SLY2fkzCpDEiXalkKyUH9O5DQ2ZhqHtjOmODar3lz8z+tlGF0HuVBphlyx5aIokwQTMv+cDIXmDOXUEsq0sLcSNqaaMrT5VGwI3urLf0n7ou416o37y1rzpoijDCdwCufgwRU04Q5a4AMDAU/wAq+Ocp6dN+d92Vpyiplj+AXn4xvHaI6v</latexit>

ω
<latexit sha1_base64="Za2AY9kWNCLQyiW+4sCAc9Auqck=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0rqoBrVq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPin2PIA==</latexit>ωx = f(�, �) = a+ �(b� a) + �(c� a)

<latexit sha1_base64="BTNIXIp9+CgbN9eQKRo7559fyZE=">AAAB+3icbVBNSwMxEM36WevXWo9egkUQhLIrUj14KHrxWMF+QHcps2m2DU2yS5IVS+lf8eJBEa/+EW/+G9N2D9r6YODx3gwz86KUM20879tZWV1b39gsbBW3d3b39t2DUlMnmSK0QRKeqHYEmnImacMww2k7VRRExGkrGt5O/dYjVZol8sGMUhoK6EsWMwLGSl23FETUAD7DQR+EAHyN/a5b9ireDHiZ+Dkpoxz1rvsV9BKSCSoN4aB1x/dSE45BGUY4nRSDTNMUyBD6tGOpBEF1OJ7dPsEnVunhOFG2pMEz9ffEGITWIxHZTgFmoBe9qfif18lMfBWOmUwzQyWZL4ozjk2Cp0HgHlOUGD6yBIhi9lZMBqCAGBtX0YbgL768TJrnFb9aqd5flGs3eRwFdISO0Sny0SWqoTtURw1E0BN6Rq/ozZk4L8678zFvXXHymUP0B87nD49dktk=</latexit>

ω + ε < 1

Barycentric parameterization of triangle in terms of: 
(Will be useful parameterization in future texture mapping lecture.)  

x2D =
⇥
xx/�xz xy/�xz

⇤T
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x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c
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x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c
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b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2
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x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

<latexit sha1_base64="WrlpzRvfW6tYCS9UBDqmfZxXm3M=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEF1ISkeqy6MZlBfuAJpSb6aQdOpOEmYlQQsFfceNCEbd+hzv/xkmbhbYeuNzDOfcyd06QcKa043xbpZXVtfWN8mZla3tnd8/eP2irOJWEtkjMY9kNQFHOItrSTHPaTSQFEXDaCca3ud95pFKxOHrQk4T6AoYRCxkBbaS+feQBT0Zwjr2A6rwNQQjo21Wn5syAl4lbkCoq0OzbX94gJqmgkSYclOq5TqL9DKRmhNNpxUsVTYCMYUh7hkYgqPKz2flTfGqUAQ5jaSrSeKb+3shAKDURgZkUoEdq0cvF/7xeqsNrP2NRkmoakflDYcqxjnGeBR4wSYnmE0OASGZuxWQEEog2iVVMCO7il5dJ+6Lm1mv1+8tq46aIo4yO0Qk6Qy66Qg10h5qohQjK0DN6RW/Wk/VivVsf89GSVewcoj+wPn8A8DiU2Q==</latexit>

ω,ε, ϑ

Given triangle vertices 
<latexit sha1_base64="4zwnDazjMuYLekZGraWBOkVO4v4=">AAACC3icbZDLSsNAFIZPvNZ6i7p0M7QILqQkItVl0Y3LCvYCbSiT6aQdOpmEmYlQQvdufBU3LhRx6wu4822ctBFq6w8DH/85hznn92POlHacb2tldW19Y7OwVdze2d3btw8OmypKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzdZvfVApWKRuNfjmHohHggWMIK1sXp2qRtiPfSDFE/O0C/7c0wmPbvsVJyp0DK4OZQhV71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXYTRWNMRnhAOwYFDqny0uktE3RinD4KImme0Gjqzk+kOFRqHPqmM9tQLdYy879aJ9HBlZcyESeaCjL7KEg40hHKgkF9JinRfGwAE8nMrogMscREm/iKJgR38eRlaJ5X3GqlendRrl3ncRTgGEpwCi5cQg1uoQ4NIPAIz/AKb9aT9WK9Wx+z1hUrnzmCP7I+fwAW7psa</latexit>

a,b, c
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Barycentric coordinates (as a ratio of areas)
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⇥
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Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed 

by points: a, b, x 
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Another way to think about ray-triangle intersection
p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0)                    transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane. 
It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t:
⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0
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But first, let’s play another game: 

I’ll give you an explicit surface. 

You give me some points on it.
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Sampling an explicit surface

y

xz

My surface is f( u, v ) = ( 1.5, u, v ).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values (u,v)!
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Let’s play another game. 

I have a new surface f(u,v). 

I want to see if a point is inside it.
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Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = ( 2+cos(u))cos(v), 2+cos(u))sin(v), sin(u) )

...NO!

( 1, √3, 5/4 )

How about the point (1,√3,5/4)?
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CONCLUSION: 
Some representations work better than others—

depending on the task!
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Different representations will be better suited to 
different types of geometry. 

Let’s take a look at some common representations 
used in computer graphics.
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...



Surface is zero set of a polynomial in x, y, z (“algebraic variety”) 
Examples: 

What about more complicated shapes? 

Hard to come up with polynomials for complex shapes!
Stanford CS248A, Winter 2026

Algebraic surfaces (implicit)
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Example task: intersection of ray with implicit 
Key idea: find point on ray that satisfies properties of the implicit 
surface definition 

Example from lecture 1: ray-plane intersection 
Suppose we have a plane NTx = c 
Replace the point x in the implicit equation with the ray equation 
parameterized by t: 

Now solve for t: 

t is the distance to the plane from the ray origin!

And the “hit point” on the plane is:
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Ray- (unit) sphere intersection
What points on the ray satisfy the implicit equation for the unit sphere?

Recall the quadratic formula:

Why two solutions?

o
d

|d|2 = 1Note: since d is a unit vector
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Constructive solid geometry (CSG) (implicit)
Build more complicated shapes using boolean operations 
Basic operations on volumes: UNION

INTERSECTION

DIFFERENCE

Then build more 
complex expressions:
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Signed distance functions (SDF)

-1

+1
f(x,y)

0

f = 0

A great reference: 
https://iquilezles.org/articles/distfunctions
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SFD compositions

A great reference: 
https://iquilezles.org/articles/distfunctions
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Scene of pure distance functions (not easy!)

Image Credit: Inigo Quilez, https://www.shadertoy.com/view/ld3Gz2
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Scene of pure distance functions (not easy!)

Image Credit: Inigo Quilez, https://www.shadertoy.com/view/WsSBzh
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Example task: intersect ray with scene containing SDFs
Current point = ray origin 
While (distance D from current point to closest point on surface is not 0)   // while not at surface     
    Current point = move D units along the ray from current point 

Credit: https://www.shadertoy.com/view/lslXD8
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Distance function represented as dense samples
Implicit surfaces have some nice features (e.g., merging/splitting), but hard to describe complex 
shapes in closed form 
Alternative: store a grid of values approximating a continuous function (samples of the function)

-.45

-.25

-.15

.10

.20

-.35

-.20

-.10

.05

.25

-.30

-.10

.10

.25

.55

-.25

-.10

.15

.35

.60

-.55

-.30

-.20

-.05

.15

Surface is determined by where the interpolated value equals zero
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Example: sampled distance functions in medical data (CT, MRI, etc.)
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Another example: tabulated distance functions in physical simulation
Encode distance to air-liquid boundary

See http://physbam.stanford.edu
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Need for sparse storage representations
Drawback: storage for surface is now O(n3) 
Can reduce storage cost using sparse data structures that store only a narrow band of distances around 
surface (don’t waste storage for empty space) 
But sparse structures can be difficult to implement efficiently on modern parallel computers

In this figure: 
red = clearly within water 
blue = clearly outside water

green = regions where we store level set values to encode surface
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Occupancy field

Credit: Voxel Ville NFT (voxelville.io) 

Consider storage requirements: 
40963 cells, consider 1 bit/cell →  ~ 8 GB

Typical challenge: 
limited resolution

Store a bit per cell in a dense 3D grid that indicates whether the cell center is inside the surface 
(3D array of inside/outside samples)



Stanford CS248A, Winter 2026

Example task: ray tracing occupancy grid
Since we have no information about distance along ray to 
surface, we just have to “step” slowly until we find the surface 
Often called “ray marching” instead of ray tracing

dt

# return hotpoint and distance to surface 
for i = 0 to MAX_STEPS: 
   cur_t = (i * dt)  
   p = ray.o + ray.d * cur_t 

   // interpolation of samples 
   occupancy = sample_occupancy(p) 

   if (occupancy > 0) 
      return (p, cur_t)  
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Comparing three representations for ray-surface intersections
Ray-triangle: 
- Can solve for distance from ray origin along ray to closest point on triangle 

Ray-distance function 
- Can determine closest distance from point to surface (in any direction), but not in the direction 

along the desired ray 
- So we must take variable sized “jumps” along the ray 

Ray-occupancy grid 
- Don’t know anything about the distance to the surface, so must march along in tiny steps *

* We’ll talk about how adaptive data structures can accelerate this in a future lecture
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Neural representations for compressing implicit 
representations of complex geometries 

Implicit forms boil down to having a function f(x,y,z) 
f(x,y,z) = c is the surface point (often we use c=0) 
Neural networks are function approximations… 
So just train a neural_network(x,y,z) using an existing function f(x,y,z) as training data! (e.g., convert 
SDF representations we’re talked about to a NN using supervised learning!
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Simple solution: 
- Train a DNN to evaluate f(x,y,z) 
- e.g., use conventional dense grid representation to create training data pairs 
- Good: massive compression (surface represented by weights of DNN, not a bunch of 3D 

occupancy grid or SDF samples) 
- Bad: high evaluation cost (must evaluate large DNN to determining distance from surface, 

instead of interpolate samples or evaluate a polynomial!

In practice: most modern approaches are “hybrid” approaches (ask me for 
more details) 
- Use neural code to represent local surface structure 
- Store neural “code” at cells of traditional uniform grid, or sparse grid 

- e.g., code[x,y,z] 
- Train a “tiny” DNN to produce f(x,y,z) = DNN(x,y,z, code[x,y,z]) 
- Idea: DNN only has to translate code into a function value = much cheaper to evaluate

Neural representations for compressing implicit 
representations of complex geometries 
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Implicit representations - pros and cons
Pros: 
- Description can be very compact (e.g., a polynomial, a neural network!) 
- Easy to determine if a point is in our shape (just plug it in!) 
- Other queries may also be easy (e.g., distance to surface) 
- For simple shapes, can provide an exact description/no sampling error 
- Easy to handle changes in topology (e.g., fluid) 

Cons: 
- Expensive to find all points in the shape (e.g., for drawing) 
- Traditionally it has difficult to model complex shapes, but efficient sparse data structures 

(for sampled representations) or learned “neural" representations change this
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Also many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
point clouds 
3D gaussians

(Will see some of these a bit later.)
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Polygon mesh (explicit)
Store vertices and polygons (most often triangles or quads) 
Perhaps most common representation in graphics
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Triangle mesh (explicit)
Store vertices as triples of coordinates (x,y,z) 
Store triangles as triples of indices (i,j,k) 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Recall from earlier in the lecture: use linear interpolation to define points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c
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Topological validity: orientation consistency

AB

C

D

AB

C

D

OK bad

Non-orientable 
(e.g., Moebius strip)

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Image credit: Wikipedia
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Point cloud (explicit)
List of points (x,y,z) 
Often augmented with per-point normals 
Hard to interpolate undersampled regions 
Easier to acquire (laser scanner) 
Often challenging to do processing/simulation, etc 
… on this representation
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Acquiring a point cloud via laser scanning

Image Credit: 3Dling
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Another point acquisition example: Microsoft XBox 360 Kinect

Illuminant 
(Infrared Laser + diffuser)

RGB Sensor 
640x480

Monochrome Infrared 
Sensor 

Image credit: iFixIt
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Structured light

z

zref

d

f

Reference plane

Known light 
source

b

System: one light source emitting known beam + one camera measuring scene appearance  
If the scene is at reference plane, image that will be recorded by camera is known 
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is inefficient! 
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) 

x
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Infrared image of Kinect illuminant output

Credit: www.futurepicture.org
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output



Instead of a point, represent surface as an oriented Gaussian ellipsoid around a point 
Each 3D Gaussian is: 
- Center point 
- Extents of ellipse in X,Y,Z direction (in ellipse’s object space) 
- Rotation into world space 
Immensely popular representative for photoreal scenes in recent years 
Common questions: given a scene, how many Gaussians to use? (Many small Gaussians? Fewer large Gaussians?)
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Oriented 3D Gaussians

[Zwicker 2001]

Gaussian density kernel
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Visualization of 3D ellipsoid centers

Image credit: WorldLabs
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Visualization of oriented 3D ellipsoids

Image credit: WorldLabs
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Rendered result 
(oriented ellipsoids treated as densities given by Gaussian kernel)

Image credit: WorldLabs
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Rendered video

Image credit: WorldLabs
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Visualization of oriented 3D Gaussians

Visualization of 3D GaussiansRendered Result
[Credit: Kerbl 2023]
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Rendering of scene represented as 3D gaussians

[Credit: Kerbl 2023]
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Some questions for the class
If you tell me a task, and then we can access the 
utility of different representations 
- Describe the characteristics of the scene that 

needs to be represented 
- Describe what operation you want to perform 

on the scene geometry: 
- Rendering/visualization? 
- Animation? 
- Editing? 
- Reducing detail? 
- Finding the closest scene surface to a 

given point? 
- Estimating the surface normal? 
- Recovering parameters to fit a photo? 

For example: 
Consider representing this scene with ten’s of thousands of gaussians 
vs. two spheres and a few triangles
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Some questions for the class
Does it make sense to represent this curved surface with a voxel grid? 
How many voxels would you need?

If you tell me a task, and then we can access the 
utility of different representations 
- Describe the characteristics of the scene that 

needs to be represented 
- Describe what operation you want to perform 

on the scene geometry: 
- Rendering/visualization? 
- Animation? 
- Editing? 
- Reducing detail? 
- Finding the closest scene surface to a 

given point? 
- Estimating the surface normal? 
- Recovering parameters to fit a photo? 
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Some questions for the class
But what about accurately representing these scenes with triangles?If you tell me a task, and then we can access the 

utility of different representations 
- Describe the characteristics of the scene that 

needs to be represented 
- Describe what operation you want to perform 

on the scene geometry: 
- Rendering/visualization? 
- Animation? 
- Editing? 
- Reducing detail? 
- Finding the closest scene surface to a 

given point? 
- Estimating the surface normal? 
- Recovering parameters to fit a photo? 
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Moving from linear interpolation to higher order 
interpolation of surface points 

(First… back to triangles)
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Points in a triangle = linear interpolation of vertices
Recall from earlier in the lecture: use linear 

interpolation to define points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c

Specifically barycentric interpolation as a 
form of 2D interpolation
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Linear interpolation of samples (in 1D)

f(t) = (1� t)f0 + tf1

x0 x1

t =
x� x0

x1 � x0

x

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>
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Can think of linear interpolation as linear combination of 
two functions

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1x

(1� t)

t

f(t) = (1� t)f0 + tf1

Weights are given by the two values (f0 and f1) being interpolated
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Note: this is the idea of representing a function in a new basis, again!

f0

x0 x1

f1

f(t) = f0

<latexit sha1_base64="Iq0qZESomoSHdE8uz8BeXp1VXjs=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexKRC9C0IvHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeAo4X5E+0qEglG00mNYwjNyTcKu2y0U3bI7A1kmXkaKkKHWLXx1ejFLI66QSWpM23MT9MdUo2CST/Kd1PCEsiHt87alikbc+OPZxRNyapUeCWNtSyGZqb8nxjQyZhQFtjOiODCL3lT8z2unGF75Y6GSFLli80VhKgnGZPo+6QnNGcqRJZRpYW8lbEA1ZWhDytsQvMWXl0njvOxVyhf3lWL1JosjB8dwAiXw4BKqcAc1qAMDBc/wCm+OcV6cd+dj3rriZDNH8AfO5w+Bk4+D</latexit>

+f1

<latexit sha1_base64="bg8yLqW8U6L15nvFBicezevYStg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiFT0WvXisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NYW9/Y3Cpul3Z29/YPyodHTZ1kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWju5nfekKleSIfzTjFIKYDySPOqLGSf0GintcrV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKmpdVr1a9eqhV6rd5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/r2aN9Q==</latexit>

B1
0(t)

<latexit sha1_base64="UWrEkM6IZ8AVhAhHuTUwUxcGZS0=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8u43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH1ujvc=</latexit>

B1
1(t)

<latexit sha1_base64="l9zR3P63Mbi01oRWMpaAxLBrIwk=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8p43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH71jvg=</latexit>

My function f is represented as a superposition 
(weighted sum) of a set of basis functions

-415 x     +

=

-30  x     +

-61  x     +

…
 4   x     +

-22  x     +

 1   x     +

 2   x    

…

=

0.1  x

0.75  x

0.5  x

+

+



Stanford CS248A, Winter 2026

Problem with piecewise linear interpolation: derivatives are 
not continuous

x0 x1 x2

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

f(x2) = f2

<latexit sha1_base64="u4RR/dNIFlVICPnIzGk4gPNe5PI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkpSKnoRil48VrAf0Iaw2W7apZtN2N2IJfRvePGgiFf/jDf/jds0B219MPB4b4aZeX7MmdK2/W0V1tY3NreK26Wd3b39g/LhUUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uR27ncfqVQsEg96GlM3xCPBAkawNtIgqD559XN0jQKv7pUrds3OgFaJk5MK5Gh55a/BMCJJSIUmHCvVd+xYuymWmhFOZ6VBomiMyQSPaN9QgUOq3DS7eYbOjDJEQSRNCY0y9fdEikOlpqFvOkOsx2rZm4v/ef1EB1duykScaCrIYlGQcKQjNA8ADZmkRPOpIZhIZm5FZIwlJtrEVDIhOMsvr5JOveY0ahf3jUrzJo+jCCdwClVw4BKacActaAOBGJ7hFd6sxHqx3q2PRWvBymeO4Q+szx+26pAu</latexit>
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Smooth interpolation?
continuous 
first derivative

f0

x0 x1

f1
f2

x2
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Bernstein basis
Why limit ourselves to just linear interpolation? 
More flexibility by using higher-order polynomials 
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree 0≤x≤1

1
2

1

1
2

1
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Bézier curves (explicit)
A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment! 
For n=3, get “cubic Bézier”: 
Important features: 
1. interpolates endpoints 
2. tangent to end segments 
3. contained in convex hull (nice for rasterization)
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Piecewise Bézier curves (explicit)
More interesting shapes: piece together many Bézier curves 
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier
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Vector fonts

Baskerville font - represented as cubic Bézier splines

credit: Randall Branding

The Quick Brown 
Fox Jumps Over 
The Lazy Dog 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789
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Bézier curves — tangent continuity
To get “seamless” curves, want points and tangents to line up:

Ok, but how? 
Each curve is cubic: au3 + bu2 + cu + d 
Q: How many constraints vs. degrees of freedom? 
Q: Could you do this with quadratic Bézier?  Linear Bézier?
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Tensor product
Can use a pair of curves to get a surface 
Value at any point (u,v) given by product of a curve f(u) and a curve g(v) (sometimes called 
the “tensor product”):

u

v
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Bézier patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1
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Bézier surface
Just as we connected Bézier curves, can connect Bézier patches to get a surface:

Very easy to draw: just dice each patch into regular (u,v) grid!
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Subdivision
Alternative starting point for curves/surfaces: subdivision 
Start with control curve 
Insert new vertex at each edge midpoint 
Update vertex positions according to fixed rule 
For careful choice of averaging rule, yields smooth curve 
- Some subdivision schemes correspond to well-known spline schemes!

Slide cribbed from Don Fussell.



Stanford CS248A, Winter 2026

Subdivision surfaces (explicit)
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rules: 
- Catmull-Clark (for quad meshes) 
- Loop (for triangle meshes) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise
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Loop subdivision results
Common subdivision rule for triangle meshes 
“C2” smoothness away from “irregular” vertices, C1 everywhere else  
Approximating, not interpolating 

Credit: Simon Fuhrman



Stanford CS248A, Winter 2026

Subdivision in action (Pixar’s “Geri’s Game”)
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