
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 4:

Representations of
Geometry

Stanford CS248A, Winter 2026

Increasing the complexity of our model of the world
Materials, lighting, …

(in the future)
Geometry representations

(today)
Transformations

(last time)

Stanford CS248A, Winter 2026

Examples of geometry

Photo of original Utah teapot
(now sitting in Computer History

Museum in Mountain View)

Martin Newell’s early teapot renderings
(Martin created teapot model in 1975 using Bezier curves)

Stanford CS248A, Winter 2026

Examples of geometry

Cornell Box: Originally created in 1984
(This image was rendered in 1985 by Cohen and Greenberg)

Stanford CS248A, Winter 2026

Examples of geometry

The Stanford Bunny
(Mesh created by reconstruction from laser scans)

Photograph of scanned statue
(Statue purchased by Greg Turk at
a store on University Ave in 1994)

Stanford CS248A, Winter 2026

Examples of geometry
Laser scan of Michelangelo’s David
(Stanford’s Digital Michelangelo project, 1999)

Stanford CS248A, Winter 2026

Examples of geometry

Photo credit:Natasha Moustache/TAS23

Stanford CS248A, Winter 2026

Examples of geometry

Stanford CS248A, Winter 2026

Examples of geometry

Stanford CS248A, Winter 2026

Examples of geometry

Stanford CS248A, Winter 2026

Examples of geometry

Curly hair in Pixar’s “Brave” (2012)

Stanford CS248A, Winter 2026

Examples of geometry

Stanford CS248A, Winter 2026

Measurements of surfaces

Stanford CS248A, Winter 2026

Surface tangent

Stanford CS248A, Winter 2026

Surface normal (N) is orthogonal to all tangents

Stanford CS248A, Winter 2026

A common visualization of normals
Encode normal direction as RGB color as difference from gray

Image credit: https://www.3dgep.com/forward-plus/

R = 0.5 + 0.5 N.x
G = 0.5 + 0.5 N.y
B = 0.5 + 0.5 N.z

Notice: scale and bias normal values so we can represent
negative components of normal as valid colors

Stanford CS248A, Winter 2026

Curvature is change in normal

Stanford CS248A, Winter 2026

Radius of curvature

curvature

Stanford CS248A, Winter 2026

What are ways to encode geometry on a computer?

Stanford CS248A, Winter 2026

Many ways to digitally encode geometry
EXPLICIT
- point cloud
- volume
- polygon mesh
- subdivision surface…
- ...
IMPLICIT
- algebraic surface
- distance field
- occupancy field
- L-systems
Each choice best suited to a different tasks or types of geometry

Stanford CS248A, Winter 2026

“Implicit” representations of an object
Points on surface aren’t encoded directly, but satisfy a given relationship
A plane is the set of points that satisfy NTx = c
Unit sphere centered at origin is set of point that satisfy x2+y2+z2=1
More generally, f(x,y,z) = 0

X
N

x0The plane is all points x,
where x - x0 is orthogonal
to N.

x� x0

<latexit sha1_base64="KsQRu2ETP2bQ0WQYJ5LJO+xLUns=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSWRii6LblxWsA9oQ5hMJ+3QyYOZiVhCcOOvuHGhiFu/wp1/46QNoq0HBs6ccy/33uPFnEllWV/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtd5X77jgrJovBWjWPqBHgQMp8RrLTkmvu9AKuh56f3GTpBPx/XylyzYlWtCdA8sQtSgQIN1/zs9SOSBDRUhGMpu7YVKyfFQjHCaVbuJZLGmIzwgHY1DXFApZNOTsjQkVb6yI+EfqFCE/V3R4oDKceBpyvzHeWsl4v/ed1E+RdOysI4UTQk00F+wpGKUJ4H6jNBieJjTTARTO+KyBALTJROraxDsGdPniet06pdq57d1Cr1yyKOEhzAIRyDDedQh2toQBMIPMATvMCr8Wg8G2/G+7R0wSh69uAPjI9v8FOXJQ==</latexit>

N · (x� x0) = 0

NT(x� x0) = 0

NTx = NTx0

NTx = c

<latexit sha1_base64="lPYkwo1mDgQ7CDH0Ce6GnsvO7LQ=">AAACunicnVFJSwMxFM6MW61b1aOXYFHqwTIjSj0oFL14kgptFTrTkkkzNTSzkLwRyzA/Um/+G9PFWlsP4oPAl29JXl68WHAFlvVhmEvLK6trufX8xubW9k5hd6+pokRS1qCRiOSTRxQTPGQN4CDYUywZCTzBHr3+7VB/fGFS8SiswyBmbkB6Ifc5JaCpTuHNCQg8e356n2GHdiPApS/mNcOneLrpWNkJPr7GFnac/HeoPYIySOvZv4MzOe2bWtozij7kj3HaKRStsjUqvAjsCSiiSdU6hXenG9EkYCFQQZRq2VYMbkokcCpYlncSxWJC+6THWhqGJGDKTUejz/CRZrrYj6ReIeARO5tISaDUIPC0c9immteG5G9aKwH/0k15GCfAQjq+yE8EhggP/xF3uWQUxEADQiXXvWL6TCShoH87r4dgzz95ETTPyvZ5+eLhvFi9mYwjhw7QISohG1VQFd2hGmogalQM1/CNnnlleiY3+2OraUwy++hHmfAJjbbXvw==</latexit>

Signed distance to plane:

Stanford CS248A, Winter 2026

But first, let’s play a game:

I’m thinking of an implicit surface f(x,y,z)=0

Find any point on it.

Stanford CS248A, Winter 2026

Give up?

y

xz

(1.5, 0, 0)

My function was f(x,y,z) = x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).

Stanford CS248A, Winter 2026

Let’s play another game.

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1

I want to see if a point is inside it.

Stanford CS248A, Winter 2026

Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16 = 7/8

7/8 < 1

YES.

How about the point (3/4, 1/2, 1/4)?

(3/4, 1/2, 1/4)

Stanford CS248A, Winter 2026

“Explicit” representations of geometry
All points are given directly (given a parameter representing a point on a surface…
function provides a 3D point on the surface)
E.g., points on sphere are

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)

Stanford CS248A, Winter 2026

Explicit representation of a ray
Parameterized by distance from origin

Distance along ray
(some students think “time”)

point along ray

ray origin unit direction

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

<latexit sha1_base64="sd/x+SMYPnbP2/eIUBz1qJLufqU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8lkMm1oJhmSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybknSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT29zvPlGlmRQPZppQP8YjwSJGsLHS4yDGZhxEWTgbVmtu3Z0DrRKvIDUo0BpWvwahJGlMhSEca9333MT4GVaGEU5nlUGqaYLJBI9o31KBY6r9bJ54hs6sEqJIKvuEQXP190aGY62ncWAn84R62cvF/7x+aqJrP2MiSQ0VZPFRlHJkJMrPRyFTlBg+tQQTxWxWRMZYYWJsSRVbgrd88irpXNS9Rr1xf1lr3hR1lOEETuEcPLiCJtxBC9pAQMAzvMKbo50X5935WIyWnGLnGP7A+fwB4meREw==</latexit>

d

Stanford CS248A, Winter 2026

“Explicit” representation of a triangle

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x = f(�, �) = a+ �(b� a) + �(c� a)

Triangle is parameterized by and , where
<latexit sha1_base64="70lLMPLx7Mn8duaeTWcRM/zSQaw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJ74cc6aBac+vuAuQv8QpSgwKtQfWzP0xYFnOFTFJjep6bYpBTjYJJPqv0M8NTyiZ0xHuWKhpzE+SLY2fkzCpDEiXalkKyUH9O5DQ2ZhqHtjOmODar3lz8z+tlGF0HuVBphlyx5aIokwQTMv+cDIXmDOXUEsq0sLcSNqaaMrT5VGwI3urLf0n7ou416o37y1rzpoijDCdwCufgwRU04Q5a4AMDAU/wAq+Ocp6dN+d92Vpyiplj+AXn4xvHaI6v</latexit>

ω
<latexit sha1_base64="Za2AY9kWNCLQyiW+4sCAc9Auqck=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0rqoBrVq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPin2PIA==</latexit>ω

(To get point on triangle, move from vertex units in the
direction and gamma units in the direction.)

x = f(�, �) = a+ �(b� a) + �(c� a)
<latexit sha1_base64="6oGv5b6RC6/0b37dNywLvvb29XE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2pdxJM21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO1PbjO//cSU5pF8MNOY9UMcSR5wisZKj70QzdgPUpwNyhW36s5BVomXkwrkaAzKX71hRJOQSUMFat313Nj0U1SGU8FmpV6iWYx0giPWtVRiyHQ/nSeekTOrDEkQKfukIXP190aKodbT0LeTWUK97GXif143McF1P+UyTgyTdPFRkAhiIpKdT4ZcMWrE1BKkitushI5RITW2pJItwVs+eZW0LqperVq7v6zUb/I6inACp3AOHlxBHe6gAU2gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A3diREA==</latexit>a

<latexit sha1_base64="70lLMPLx7Mn8duaeTWcRM/zSQaw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJ74cc6aBac+vuAuQv8QpSgwKtQfWzP0xYFnOFTFJjep6bYpBTjYJJPqv0M8NTyiZ0xHuWKhpzE+SLY2fkzCpDEiXalkKyUH9O5DQ2ZhqHtjOmODar3lz8z+tlGF0HuVBphlyx5aIokwQTMv+cDIXmDOXUEsq0sLcSNqaaMrT5VGwI3urLf0n7ou416o37y1rzpoijDCdwCufgwRU04Q5a4AMDAU/wAq+Ocp6dN+d92Vpyiplj+AXn4xvHaI6v</latexit>

ω
<latexit sha1_base64="Za2AY9kWNCLQyiW+4sCAc9Auqck=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0rqoBrVq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPin2PIA==</latexit>ωx = f(�, �) = a+ �(b� a) + �(c� a)

<latexit sha1_base64="BTNIXIp9+CgbN9eQKRo7559fyZE=">AAAB+3icbVBNSwMxEM36WevXWo9egkUQhLIrUj14KHrxWMF+QHcps2m2DU2yS5IVS+lf8eJBEa/+EW/+G9N2D9r6YODx3gwz86KUM20879tZWV1b39gsbBW3d3b39t2DUlMnmSK0QRKeqHYEmnImacMww2k7VRRExGkrGt5O/dYjVZol8sGMUhoK6EsWMwLGSl23FETUAD7DQR+EAHyN/a5b9ireDHiZ+Dkpoxz1rvsV9BKSCSoN4aB1x/dSE45BGUY4nRSDTNMUyBD6tGOpBEF1OJ7dPsEnVunhOFG2pMEz9ffEGITWIxHZTgFmoBe9qfif18lMfBWOmUwzQyWZL4ozjk2Cp0HgHlOUGD6yBIhi9lZMBqCAGBtX0YbgL768TJrnFb9aqd5flGs3eRwFdISO0Sny0SWqoTtURw1E0BN6Rq/ozZk4L8678zFvXXHymUP0B87nD49dktk=</latexit>

ω + ε < 1

Barycentric parameterization of triangle in terms of:
(Will be useful parameterization in future texture mapping lecture.)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

<latexit sha1_base64="WrlpzRvfW6tYCS9UBDqmfZxXm3M=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEF1ISkeqy6MZlBfuAJpSb6aQdOpOEmYlQQsFfceNCEbd+hzv/xkmbhbYeuNzDOfcyd06QcKa043xbpZXVtfWN8mZla3tnd8/eP2irOJWEtkjMY9kNQFHOItrSTHPaTSQFEXDaCca3ud95pFKxOHrQk4T6AoYRCxkBbaS+feQBT0Zwjr2A6rwNQQjo21Wn5syAl4lbkCoq0OzbX94gJqmgkSYclOq5TqL9DKRmhNNpxUsVTYCMYUh7hkYgqPKz2flTfGqUAQ5jaSrSeKb+3shAKDURgZkUoEdq0cvF/7xeqsNrP2NRkmoakflDYcqxjnGeBR4wSYnmE0OASGZuxWQEEog2iVVMCO7il5dJ+6Lm1mv1+8tq46aIo4yO0Qk6Qy66Qg10h5qohQjK0DN6RW/Wk/VivVsf89GSVewcoj+wPn8A8DiU2Q==</latexit>

ω,ε, ϑ

Given triangle vertices
<latexit sha1_base64="4zwnDazjMuYLekZGraWBOkVO4v4=">AAACC3icbZDLSsNAFIZPvNZ6i7p0M7QILqQkItVl0Y3LCvYCbSiT6aQdOpmEmYlQQvdufBU3LhRx6wu4822ctBFq6w8DH/85hznn92POlHacb2tldW19Y7OwVdze2d3btw8OmypKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryRzdZvfVApWKRuNfjmHohHggWMIK1sXp2qRtiPfSDFE/O0C/7c0wmPbvsVJyp0DK4OZQhV71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXYTRWNMRnhAOwYFDqny0uktE3RinD4KImme0Gjqzk+kOFRqHPqmM9tQLdYy879aJ9HBlZcyESeaCjL7KEg40hHKgkF9JinRfGwAE8nMrogMscREm/iKJgR38eRlaJ5X3GqlendRrl3ncRTgGEpwCi5cQg1uoQ4NIPAIz/AKb9aT9WK9Wx+z1hUrnzmCP7I+fwAW7psa</latexit>

a,b, c

Stanford CS248A, Winter 2026

Barycentric coordinates (as a ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS248A, Winter 2026

Another way to think about ray-triangle intersection
p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0) transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane.
It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t:
⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0

Stanford CS248A, Winter 2026

But first, let’s play another game:

I’ll give you an explicit surface.

You give me some points on it.

Stanford CS248A, Winter 2026

Sampling an explicit surface

y

xz

My surface is f(u, v) = (1.5, u, v).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values (u,v)!

Stanford CS248A, Winter 2026

Let’s play another game.

I have a new surface f(u,v).

I want to see if a point is inside it.

Stanford CS248A, Winter 2026

Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = (2+cos(u))cos(v), 2+cos(u))sin(v), sin(u))

...NO!

(1, √3, 5/4)

How about the point (1,√3,5/4)?

Stanford CS248A, Winter 2026

CONCLUSION:
Some representations work better than others—

depending on the task!

Stanford CS248A, Winter 2026

Different representations will be better suited to
different types of geometry.

Let’s take a look at some common representations
used in computer graphics.

Stanford CS248A, Winter 2026

Many implicit representations in graphics
algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals
...

Surface is zero set of a polynomial in x, y, z (“algebraic variety”)
Examples:

What about more complicated shapes?

Hard to come up with polynomials for complex shapes!
Stanford CS248A, Winter 2026

Algebraic surfaces (implicit)

Stanford CS248A, Winter 2026

Example task: intersection of ray with implicit
Key idea: find point on ray that satisfies properties of the implicit
surface definition

Example from lecture 1: ray-plane intersection
Suppose we have a plane NTx = c
Replace the point x in the implicit equation with the ray equation
parameterized by t:

Now solve for t:

t is the distance to the plane from the ray origin!

And the “hit point” on the plane is:

Stanford CS248A, Winter 2026

Ray- (unit) sphere intersection
What points on the ray satisfy the implicit equation for the unit sphere?

Recall the quadratic formula:

Why two solutions?

o
d

|d|2 = 1Note: since d is a unit vector

Stanford CS248A, Winter 2026

Constructive solid geometry (CSG) (implicit)
Build more complicated shapes using boolean operations
Basic operations on volumes: UNION

INTERSECTION

DIFFERENCE

Then build more
complex expressions:

Stanford CS248A, Winter 2026

Signed distance functions (SDF)

-1

+1
f(x,y)

0

f = 0

A great reference:
https://iquilezles.org/articles/distfunctions

Stanford CS248A, Winter 2026

SFD compositions

A great reference:
https://iquilezles.org/articles/distfunctions

Stanford CS248A, Winter 2026

Scene of pure distance functions (not easy!)

Image Credit: Inigo Quilez, https://www.shadertoy.com/view/ld3Gz2

Stanford CS248A, Winter 2026

Scene of pure distance functions (not easy!)

Image Credit: Inigo Quilez, https://www.shadertoy.com/view/WsSBzh

Stanford CS248A, Winter 2026

Example task: intersect ray with scene containing SDFs
Current point = ray origin
While (distance D from current point to closest point on surface is not 0) // while not at surface
 Current point = move D units along the ray from current point

Credit: https://www.shadertoy.com/view/lslXD8

Stanford CS248A, Winter 2026

Distance function represented as dense samples
Implicit surfaces have some nice features (e.g., merging/splitting), but hard to describe complex
shapes in closed form
Alternative: store a grid of values approximating a continuous function (samples of the function)

-.45

-.25

-.15

.10

.20

-.35

-.20

-.10

.05

.25

-.30

-.10

.10

.25

.55

-.25

-.10

.15

.35

.60

-.55

-.30

-.20

-.05

.15

Surface is determined by where the interpolated value equals zero

Stanford CS248A, Winter 2026

Example: sampled distance functions in medical data (CT, MRI, etc.)

Stanford CS248A, Winter 2026

Another example: tabulated distance functions in physical simulation
Encode distance to air-liquid boundary

See http://physbam.stanford.edu

Stanford CS248A, Winter 2026

Need for sparse storage representations
Drawback: storage for surface is now O(n3)
Can reduce storage cost using sparse data structures that store only a narrow band of distances around
surface (don’t waste storage for empty space)
But sparse structures can be difficult to implement efficiently on modern parallel computers

In this figure:
red = clearly within water
blue = clearly outside water

green = regions where we store level set values to encode surface

Stanford CS248A, Winter 2026

Occupancy field

Credit: Voxel Ville NFT (voxelville.io)

Consider storage requirements:
40963 cells, consider 1 bit/cell → ~ 8 GB

Typical challenge:
limited resolution

Store a bit per cell in a dense 3D grid that indicates whether the cell center is inside the surface
(3D array of inside/outside samples)

Stanford CS248A, Winter 2026

Example task: ray tracing occupancy grid
Since we have no information about distance along ray to
surface, we just have to “step” slowly until we find the surface
Often called “ray marching” instead of ray tracing

dt

return hotpoint and distance to surface
for i = 0 to MAX_STEPS:
 cur_t = (i * dt)
 p = ray.o + ray.d * cur_t

 // interpolation of samples
 occupancy = sample_occupancy(p)

 if (occupancy > 0)
 return (p, cur_t)

Stanford CS248A, Winter 2026

Comparing three representations for ray-surface intersections
Ray-triangle:
- Can solve for distance from ray origin along ray to closest point on triangle

Ray-distance function
- Can determine closest distance from point to surface (in any direction), but not in the direction

along the desired ray
- So we must take variable sized “jumps” along the ray

Ray-occupancy grid
- Don’t know anything about the distance to the surface, so must march along in tiny steps *

* We’ll talk about how adaptive data structures can accelerate this in a future lecture

Stanford CS248A, Winter 2026

Neural representations for compressing implicit
representations of complex geometries

Implicit forms boil down to having a function f(x,y,z)
f(x,y,z) = c is the surface point (often we use c=0)
Neural networks are function approximations…
So just train a neural_network(x,y,z) using an existing function f(x,y,z) as training data! (e.g., convert
SDF representations we’re talked about to a NN using supervised learning!

Stanford CS248A, Winter 2026

Simple solution:
- Train a DNN to evaluate f(x,y,z)
- e.g., use conventional dense grid representation to create training data pairs
- Good: massive compression (surface represented by weights of DNN, not a bunch of 3D

occupancy grid or SDF samples)
- Bad: high evaluation cost (must evaluate large DNN to determining distance from surface,

instead of interpolate samples or evaluate a polynomial!

In practice: most modern approaches are “hybrid” approaches (ask me for
more details)
- Use neural code to represent local surface structure
- Store neural “code” at cells of traditional uniform grid, or sparse grid

- e.g., code[x,y,z]
- Train a “tiny” DNN to produce f(x,y,z) = DNN(x,y,z, code[x,y,z])
- Idea: DNN only has to translate code into a function value = much cheaper to evaluate

Neural representations for compressing implicit
representations of complex geometries

Stanford CS248A, Winter 2026

Implicit representations - pros and cons
Pros:
- Description can be very compact (e.g., a polynomial, a neural network!)
- Easy to determine if a point is in our shape (just plug it in!)
- Other queries may also be easy (e.g., distance to surface)
- For simple shapes, can provide an exact description/no sampling error
- Easy to handle changes in topology (e.g., fluid)

Cons:
- Expensive to find all points in the shape (e.g., for drawing)
- Traditionally it has difficult to model complex shapes, but efficient sparse data structures

(for sampled representations) or learned “neural" representations change this

Stanford CS248A, Winter 2026

Also many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
point clouds
3D gaussians

(Will see some of these a bit later.)

Stanford CS248A, Winter 2026

Polygon mesh (explicit)
Store vertices and polygons (most often triangles or quads)
Perhaps most common representation in graphics

Stanford CS248A, Winter 2026

Triangle mesh (explicit)
Store vertices as triples of coordinates (x,y,z)
Store triangles as triples of indices (i,j,k)
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

TRIANGLES

Recall from earlier in the lecture: use linear interpolation to define points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c

Stanford CS248A, Winter 2026

Topological validity: orientation consistency

AB

C

D

AB

C

D

OK bad

Non-orientable
(e.g., Moebius strip)

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Image credit: Wikipedia

Stanford CS248A, Winter 2026

Point cloud (explicit)
List of points (x,y,z)
Often augmented with per-point normals
Hard to interpolate undersampled regions
Easier to acquire (laser scanner)
Often challenging to do processing/simulation, etc
… on this representation

Stanford CS248A, Winter 2026

Acquiring a point cloud via laser scanning

Image Credit: 3Dling

Stanford CS248A, Winter 2026

Another point acquisition example: Microsoft XBox 360 Kinect

Illuminant
(Infrared Laser + diffuser)

RGB Sensor
640x480

Monochrome Infrared
Sensor

Image credit: iFixIt

Stanford CS248A, Winter 2026

Structured light

z

zref

d

f

Reference plane

Known light
source

b

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is inefficient!
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image)

x

Stanford CS248A, Winter 2026

Infrared image of Kinect illuminant output

Credit: www.futurepicture.org

Stanford CS248A, Winter 2026
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

Instead of a point, represent surface as an oriented Gaussian ellipsoid around a point
Each 3D Gaussian is:
- Center point
- Extents of ellipse in X,Y,Z direction (in ellipse’s object space)
- Rotation into world space
Immensely popular representative for photoreal scenes in recent years
Common questions: given a scene, how many Gaussians to use? (Many small Gaussians? Fewer large Gaussians?)

Stanford CS248A, Winter 2026

Oriented 3D Gaussians

[Zwicker 2001]

Gaussian density kernel

Stanford CS248A, Winter 2026

Visualization of 3D ellipsoid centers

Image credit: WorldLabs

Stanford CS248A, Winter 2026

Visualization of oriented 3D ellipsoids

Image credit: WorldLabs

Stanford CS248A, Winter 2026

Rendered result
(oriented ellipsoids treated as densities given by Gaussian kernel)

Image credit: WorldLabs

Stanford CS248A, Winter 2026

Rendered video

Image credit: WorldLabs

Stanford CS248A, Winter 2026

Visualization of oriented 3D Gaussians

Visualization of 3D GaussiansRendered Result
[Credit: Kerbl 2023]

Stanford CS248A, Winter 2026

Rendering of scene represented as 3D gaussians

[Credit: Kerbl 2023]

Stanford CS248A, Winter 2026

Some questions for the class
If you tell me a task, and then we can access the
utility of different representations
- Describe the characteristics of the scene that

needs to be represented
- Describe what operation you want to perform

on the scene geometry:
- Rendering/visualization?
- Animation?
- Editing?
- Reducing detail?
- Finding the closest scene surface to a

given point?
- Estimating the surface normal?
- Recovering parameters to fit a photo?

For example:
Consider representing this scene with ten’s of thousands of gaussians
vs. two spheres and a few triangles

Stanford CS248A, Winter 2026

Some questions for the class
Does it make sense to represent this curved surface with a voxel grid?
How many voxels would you need?

If you tell me a task, and then we can access the
utility of different representations
- Describe the characteristics of the scene that

needs to be represented
- Describe what operation you want to perform

on the scene geometry:
- Rendering/visualization?
- Animation?
- Editing?
- Reducing detail?
- Finding the closest scene surface to a

given point?
- Estimating the surface normal?
- Recovering parameters to fit a photo?

Stanford CS248A, Winter 2026

Some questions for the class
But what about accurately representing these scenes with triangles?If you tell me a task, and then we can access the

utility of different representations
- Describe the characteristics of the scene that

needs to be represented
- Describe what operation you want to perform

on the scene geometry:
- Rendering/visualization?
- Animation?
- Editing?
- Reducing detail?
- Finding the closest scene surface to a

given point?
- Estimating the surface normal?
- Recovering parameters to fit a photo?

Stanford CS248A, Winter 2026

Moving from linear interpolation to higher order
interpolation of surface points

(First… back to triangles)

Stanford CS248A, Winter 2026

Points in a triangle = linear interpolation of vertices
Recall from earlier in the lecture: use linear

interpolation to define points inside triangles:

f(u,v) = a + u(b-a) + v(c-a)
u

v f(u,v)

a b

c

Specifically barycentric interpolation as a
form of 2D interpolation

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Stanford CS248A, Winter 2026

Linear interpolation of samples (in 1D)

f(t) = (1� t)f0 + tf1

x0 x1

t =
x� x0

x1 � x0

x

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

Stanford CS248A, Winter 2026

Can think of linear interpolation as linear combination of
two functions

f(t) = (1� t)f0 + tf1

f0

f1

x0 x1x

(1� t)

t

f(t) = (1� t)f0 + tf1

Weights are given by the two values (f0 and f1) being interpolated

Stanford CS248A, Winter 2026

Note: this is the idea of representing a function in a new basis, again!

f0

x0 x1

f1

f(t) = f0

<latexit sha1_base64="Iq0qZESomoSHdE8uz8BeXp1VXjs=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexKRC9C0IvHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeAo4X5E+0qEglG00mNYwjNyTcKu2y0U3bI7A1kmXkaKkKHWLXx1ejFLI66QSWpM23MT9MdUo2CST/Kd1PCEsiHt87alikbc+OPZxRNyapUeCWNtSyGZqb8nxjQyZhQFtjOiODCL3lT8z2unGF75Y6GSFLli80VhKgnGZPo+6QnNGcqRJZRpYW8lbEA1ZWhDytsQvMWXl0njvOxVyhf3lWL1JosjB8dwAiXw4BKqcAc1qAMDBc/wCm+OcV6cd+dj3rriZDNH8AfO5w+Bk4+D</latexit>

+f1

<latexit sha1_base64="bg8yLqW8U6L15nvFBicezevYStg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiFT0WvXisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NYW9/Y3Cpul3Z29/YPyodHTZ1kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWju5nfekKleSIfzTjFIKYDySPOqLGSf0GintcrV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKmpdVr1a9eqhV6rd5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/r2aN9Q==</latexit>

B1
0(t)

<latexit sha1_base64="UWrEkM6IZ8AVhAhHuTUwUxcGZS0=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8u43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH1ujvc=</latexit>

B1
1(t)

<latexit sha1_base64="l9zR3P63Mbi01oRWMpaAxLBrIwk=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHBC9k1GD0SvHjERB4JrGR2mIUJsw9nek3Ihp/w4kFjvPo73vwbB9iDgpV0UqnqTneXF0uh0ba/rdza+sbmVn67sLO7t39QPDxq6ShRjDdZJCPV8ajmUoS8iQIl78SK08CTvO2Nb2Z++4krLaLwHicxdwM6DIUvGEUjdeoPTt8p43m/WLIr9hxklTgZKUGGRr/41RtELAl4iExSrbuOHaObUoWCST4t9BLNY8rGdMi7hoY04NpN5/dOyZlRBsSPlKkQyVz9PZHSQOtJ4JnOgOJIL3sz8T+vm6B/7aYijBPkIVss8hNJMCKz58lAKM5QTgyhTAlzK2EjqihDE1HBhOAsv7xKWhcVp1q5vKuWavUsjjycwCmUwYErqMEtNKAJDCQ8wyu8WY/Wi/VufSxac1Y2cwx/YH3+AH71jvg=</latexit>

My function f is represented as a superposition
(weighted sum) of a set of basis functions

-415 x +

=

-30 x +

-61 x +

…
 4 x +

-22 x +

 1 x +

 2 x

…

=

0.1 x

0.75 x

0.5 x

+

+

Stanford CS248A, Winter 2026

Problem with piecewise linear interpolation: derivatives are
not continuous

x0 x1 x2

f(x0) = f0

<latexit sha1_base64="UhIGPkmg/8gobxWQxugzvC5H830=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hS4Z+gaRYEblMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCwzJAq</latexit>

f(x1) = f1

<latexit sha1_base64="mYTU5scTj66Tom92ihXB+5YjtX0=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVil6EohePFewHtMuSTbNtaDZZkqxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOR7dTv/1IlWZSPJhxQv0YDwSLGMHGSr2o8hR4Z+gaRYEXlMpu1Z0BLRMvJ2XI0QhKX72+JGlMhSEca9313MT4GVaGEU4nxV6qaYLJCA9o11KBY6r9bHbzBJ1apY8iqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zuqmJrvyMiSQ1VJD5oijlyEg0DQD1maLE8LElmChmb0VkiBUmxsZUtCF4iy8vk9Z51atVL+5r5fpNHkcBjuEEKuDBJdThDhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCz25As</latexit>

f(x2) = f2

<latexit sha1_base64="u4RR/dNIFlVICPnIzGk4gPNe5PI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahXkpSKnoRil48VrAf0Iaw2W7apZtN2N2IJfRvePGgiFf/jDf/jds0B219MPB4b4aZeX7MmdK2/W0V1tY3NreK26Wd3b39g/LhUUdFiSS0TSIeyZ6PFeVM0LZmmtNeLCkOfU67/uR27ncfqVQsEg96GlM3xCPBAkawNtIgqD559XN0jQKv7pUrds3OgFaJk5MK5Gh55a/BMCJJSIUmHCvVd+xYuymWmhFOZ6VBomiMyQSPaN9QgUOq3DS7eYbOjDJEQSRNCY0y9fdEikOlpqFvOkOsx2rZm4v/ef1EB1duykScaCrIYlGQcKQjNA8ADZmkRPOpIZhIZm5FZIwlJtrEVDIhOMsvr5JOveY0ahf3jUrzJo+jCCdwClVw4BKacActaAOBGJ7hFd6sxHqx3q2PRWvBymeO4Q+szx+26pAu</latexit>

Stanford CS248A, Winter 2026

Smooth interpolation?
continuous
first derivative

f0

x0 x1

f1
f2

x2

Stanford CS248A, Winter 2026

Bernstein basis
Why limit ourselves to just linear interpolation?
More flexibility by using higher-order polynomials
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree 0≤x≤1

1
2

1

1
2

1

Stanford CS248A, Winter 2026

Bézier curves (explicit)
A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment!
For n=3, get “cubic Bézier”:
Important features:
1. interpolates endpoints
2. tangent to end segments
3. contained in convex hull (nice for rasterization)

Stanford CS248A, Winter 2026

Piecewise Bézier curves (explicit)
More interesting shapes: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier

Stanford CS248A, Winter 2026

Vector fonts

Baskerville font - represented as cubic Bézier splines

credit: Randall Branding

The Quick Brown
Fox Jumps Over
The Lazy Dog
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789

Stanford CS248A, Winter 2026

Bézier curves — tangent continuity
To get “seamless” curves, want points and tangents to line up:

Ok, but how?
Each curve is cubic: au3 + bu2 + cu + d
Q: How many constraints vs. degrees of freedom?
Q: Could you do this with quadratic Bézier? Linear Bézier?

Stanford CS248A, Winter 2026

Tensor product
Can use a pair of curves to get a surface
Value at any point (u,v) given by product of a curve f(u) and a curve g(v) (sometimes called
the “tensor product”):

u

v

Stanford CS248A, Winter 2026

Bézier patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1

Stanford CS248A, Winter 2026

Bézier surface
Just as we connected Bézier curves, can connect Bézier patches to get a surface:

Very easy to draw: just dice each patch into regular (u,v) grid!

Stanford CS248A, Winter 2026

Subdivision
Alternative starting point for curves/surfaces: subdivision
Start with control curve
Insert new vertex at each edge midpoint
Update vertex positions according to fixed rule
For careful choice of averaging rule, yields smooth curve
- Some subdivision schemes correspond to well-known spline schemes!

Slide cribbed from Don Fussell.

Stanford CS248A, Winter 2026

Subdivision surfaces (explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rules:
- Catmull-Clark (for quad meshes)
- Loop (for triangle meshes)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise

Stanford CS248A, Winter 2026

Loop subdivision results
Common subdivision rule for triangle meshes
“C2” smoothness away from “irregular” vertices, C1 everywhere else
Approximating, not interpolating

Credit: Simon Fuhrman

Stanford CS248A, Winter 2026

Subdivision in action (Pixar’s “Geri’s Game”)

Stanford CS248A, Winter 2026

Acknowledgements
Thanks to Keenan Crane and Ren Ng for slide materials

