Lecture 4:

Representations of
Geometry

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026

Increasing the complexity of our model of the world

Transformations Geometry representations Materials, lighting, ...
(last time) (today) (in the future)

Stanford (S248A, Winter 2026

Examples of geometry

Photo of original Utah teapot
(now sitting in Computer History
Museum in Mountain View)

Martin Newell’s early teapot renderings
(Martin created teapot model in 1975 using Bezier curves)

Stanford (5248A, Winter 2026

Examples of geometry

T
-

iy i —
— —

Cornell Box: Originally created in 1984
(This image was rendered in 1985 by Cohen and Greenberg) Stanford C5248A, Winter 2026

Examples of geometry

Photograph of scanned statue
(Statue purchased by Greg Turk at
a store on University Ave in 1994)

The Stanford Bunny
(Mesh created by reconstruction from laser scans)

Stanford (5248A, Winter 2026

Examples of geometry

Laser scan of Michelangelo’s David
(Stanford’s Digital Michelangelo project, 1999)

Stanford (S248A, Winter 2026

Examples of geometry

Photo credit:Natasha Moustache/TAS23

(#}

Examples of geometry

Stanford (5248A, Winter 2026

o
A S W
‘.‘,‘. oo L
- s o
’

- » »
> »
- >

—— v -

-. -.'
v AP N

v W PR
- >
3 S 1
i M e
—— T . dateg =

w4 ‘
I T v
. e A e

g Wiy

;-_f' -

-)
TR TR A

QSI(

Measurements of surfaces

Stanford (5248A, Winter 2026

Surface tangent

Stanford (S248A, Winter 2026

Surface normal (N) is orthogonal to all tangents

N-df(X)=0 VX

A common visualization of normals

Encode normal direction as RGB color as difference from gray

R=0.5+0.5N.x

6=05+05Ny «——
B=0.5+0.5N.z

Notice: scale and bias normal values so we can represent
negative components of normal as valid colors

T P

Nermnel Bulitar

Image credit: https://www.3dgep.com/forward-plus/ Stanford (S248A, Winter 2026

Curvature is change in normal

N

\ e

Stanford (5248A, Winter 2026

Radius of curvature

curvature

Stanford (S248A, Winter 2026

What are ways to encode geometry on a computer?

Stanford (5248A, Winter 2026

Many ways to digitally encode geometry

m EXPLICIT
- point cloud
- volume

- polygon mesh

- subdivision surface...
oo

L8

) e e
IMPLICIT ec?g%

Py
- algebraic surface ®
- distance field

- occupancy field

- L-systems
m Each choice best suited to a different tasks or types of geometry

Stanford (S248A, Winter 2026

“Implicit” representations of an object

m Points on surface aren’t encoded directly, but satisfy a given relationship
m Aplaneis the set of points that satisfy NTx = ¢
m Unit sphere centered at origin is set of point that satisfy x2+y2+2z2=1
m More generally, f(x,y,z) =0

N-(x—x%xg)=0

N'(x —x9) =0

N'x = N'1xq
X N'x =c

Signed distance to plane: “X_XO N

N - (x — Xg)
332—|—y2—|—22:].

The plane s all points x,
where X - X is orthogonal

to N.

Stanford (S248A, Winter 2026

But first, let’s play a game:

I’'m thinking of an implicit surface f(x,y,z)=0

Find any point on it.

Give up?

My function was f(x,y,z) =x - 1.5 (a plane):

Implicit surfaces make some tasks hard (like sampling).

Stanford (S248A, Winter 2026

Let’s play another game.
| have a new surface f(x,y,z) = x2 + y2 + z2- 1

| want to see if a point is inside it.

Stanford (5248A, Winter 2026

Check if this point is inside the unit sphere
How about the point(3/4,1/2,1/4)?

9/16 +4/16 +1/16 = 7/8
7/8 <1
YES.

Implicit surfaces make other tasks easy (like inside/outside tests).

Stanford (S248A, Winter 2026

“Explicit” representations of geometry

m All points are given directly (given a parameter representing a point on a surface...
function provides a 3D point on the surface)
m E.g., points on sphereare (cos(u)sin(v),sin(u)sin(v), cos(v)),
for0<u<2mand 0<ov <
m Moregenerally: f:R* — R’; (u,v) — (z,y, 2)

(v

4

(Might have a bunch of these maps, e.g., one per triangle!)

Stanford (5248A, Winter 2026

Explicit representation of a ray

m Parameterized by distance from origin

ray origin unit direction

__r(t)=o0+1d 7
point along ray \
Distance along ray
(some students think “time”) d

Stanford (5248A, Winter 2026

“Explicit” representation of a triangle

Given triangle vertices a, b,

x = f(8,7) =a+ B(b—a)+y(c—a)
Triangle is parameterized by 5 and 7Y ,where 5 + v < 1

(To get point on triangle, move from vertex & (3 unitsinthe (b — a)
direction and 7Y gamma unitsin the (c — a) direction.)

c—a | , . Barycentric parameterization of triangle in terms of: (v, 5 , Y
(Will be useful parameterization in future texture mapping lecture.)

x =a+f(b—a)+y(c—a)
=(1—-068—~v)a+ b+ ~c
= aa + b + vc

a+p+vy=1

Stanford (5248A, Winter 2026

Barycentric coordinates (as a ratio of areas)

C Barycentric coords are signed areas:

a=As/A
B8 =Ap/A
v =Ac/A

Why must coordinates sum to one?
Why must coordinates be hetween 0 and 1?

Useful: Heron’s formula:

Area of triangle formed 1
Ao = ~(b— _
by points: a, b, x “ 79 (a) x (x—a

Stanford (5248A, Winter 2026

Another way to think about ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:
Po + U(Pl — Po) =+ U(pz — po) — o+ td

Solve foru, v, t: o
U

P1—Po P2—PpPo —d| |v| =0—po
_— 1 |t
o M N
M ™~ transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be orthogonal to plane.
It’s a point in 2D triangle test now! ,

O P2 M (0 — po)

Stanford (5248A, Winter 2026

But first, let’s play another game:
I'll give you an explicit surface.

You give me some points on it.

Stanford (5248A, Winter 2026

Sampling an explicit surface

My surfaceisf(u,v)=(1.5,u,v).
Just plug in any values (u,v)! y

Explicit surfaces make some tasks easy (like sampling).

Stanford (5248A, Winter 2026

Let’s play another game.
| have a new surface f(u,v).

| want to see if a point is inside it.

Stanford (5248A, Winter 2026

Check if this point is inside the torus

My surface is f(u,v) = (2+cos(u))cos(v), 2+cos(u))sin(v), sin(u))
How about the point (1,v/3,5/4)? y

..NO!

Explicit surfaces make other tasks hard (like inside/outside tests).

Stanford (S248A, Winter 2026

CONCLUSION:
Some representations work better than others—
depending on the task!

Different representations will be better suited to
different types of geometry.

Let’s take a look at some common representations
used in computer graphics.

Many implicit representations in graphics

algebraic surfaces

constructive solid geometry
level set methods

blobby surfaces

fractals

Stanford (S248A, Winter 2026

Algebraic surfaces (implicit)

m Surfaceis zero set of a polynomial in x, y, z (“algebraic variety”)
m Examples:

Stanford (S248A, Winter 2026

Example task: intersection of ray with implicit

m Keyidea: find point on ray that satisfies properties of the implicit
surface definition

m Example from lecture 1: ray-plane intersection

m Suppose we have a plane N'x = ¢
m Replace the point x in the implicit equation with the ray equation

parameterized by t:
N'(o+td) =c
= Now solve fort: - NTo And the “hit point” on the plane is:
=
N'd ¢c— N'o
r(t) = oA d

m tisthe distance to the plane from the ray origin!

N'd

Stanford (5248A, Winter 2026

Ray- (unit) sphere intersection

What points on the ray satisfy the implicit equation for the unit sphere?

F(x) =[x — 1

= f(r(t)) = o +td|? — 1

d|*t* +2(o-d)t+ o] —1=0

=

a

b C

Note: |[d|* =1 since d is a unit vector

—0-d-=

-0 d)? —[o + 1

Recall the quadratic formula:

- —b:: \/b2—4ac
N 2a

e

v

Why two solutions?

Stanford (5248A, Winter 2026

Constructive solid geometry (CSG) (implicit)

m Build more complicated shapes using boolean operations

m Basicoperations onvolumes: yyion
DIFFERENCE
. INTERSECTION

ANDB

m Then build more

complex expressions: @
~

AUDB

(XNY)\(UuUVUW)

©

/ "\ / v\
$o0s %
X Y U v
<
V W Stanford (S248A, Winter 2026

Signed distance functions (SDF

Sphere - exact

https://www.shadertoy.com/view/Xds3zN

float sdSphere(vec3 p, float s)

{
return length(p)-s;

}

Round Box - exact

float sdRoundBox(vec3 p, vec3 b, float r)

{
vec3 q = abs(p) - b + r;

return length(max(q,0.0)) + min(max(q.x,max(q.y,q9.2)),0.0) - r;
}

Death Star - exact

https://www.shadertoy.com/view/7IVXRt

float sdDeathStar(vec3 p2, float ra, float rb, float d)
{

float a = (ra*ra - rb*rb + d*d)/(2.0%*d);

float b sqrt (max(ra*ra-a*a,0.0));

vec2 p = vec2(p2.x, length(p2.vz));

if(p.x*b-p.y*a > d*max(b-p.y,0.0))
return length(p-vec2(a,b));

else

return max((length(p e A great reference:
—(length(p-vec2(d,0.0))-rb)); https://iquilezles.org/articles/distfunctions

Stanford (5248A, Winter 2026

SED compositions

float opUnion(float dl, float d2)

{
return min(dl,d2);
}
float opSubtraction(float dl, float d2)
{
return max(-dl,d2);
}
float opIntersection(float dl, float d2)
{
return max(dl,d2);
}
float opXor(float dl1, float d2)
{

return max(min(dl,d2),-max(dl,d2));

float opRepetition(in vec3 p, in vec3 s, in sdf3d primitive)

{

vec3 q = p - s*round(p/s);

return primitive(q);

A great reference:
https://iquilezles.org/articles/distfunctions

o

float opSmoothUnion(float dl, float d2, float k)

{
k *= 4.0;
float h = max(k-abs(d1-42),0.0);
return min(dl, d42) - h*h*0.25/k;
}

float opSmoothSubtraction(float dl, float d2, float k)

{
return -opSmoothUnion(dl,-d2,k);

// k *= 4.0;
// float h = max(k-abs(-d1-d42),0.0);
// return max(-dl, d2) + h*h*0.25/k;

float opSmoothIntersection(float dl, float d2, float k)

{
return -opSmoothUnion(-dl,-d2,k);

// k *= 4.0;
// float h = max(k-abs(dl1-d2),0.0);
// return max(dl, d2) + h*h*0.25/k;

Stanford (5248A, Winter 2026

Scene of pure distance functions

T

Image Credit: Inigo Quilez, https://www.shadertoy.com/view/ld3Gz2

<))/

Stanford (5248A, Winter 2026

e

Y

TR o s g 4 15 .m/YIEWMS SR S o)’ | ford CSZ48A,Winter2026
."l' “'.'."’ .' v . A A sk |‘:...5f“° 2 D A) YR V4 “M X L ALy e \ '

[

Example task: intersect ray with scene containing SDFs

Current point = ray origin
While (distance D from current point to closest point on surface is not 0) // while not at surface
Current point = move D units along the ray from current point

/ N
| N N
N ey , | ' \
\ ezt No)
\/\ \// / ?

Credit: https://www.shadertoy.com/view/IsIXD8 Stanford (S248A, Winter 2026

Distance function represented as dense samples

m Implicit surfaces have some nice features (e.g., merging/splitting), but hard to describe complex

shapes in closed form

m Alternative: store a grid of values approximating a continuous function (samples of the function)

-.35

-45

-35

-30

-.25

-30

-.25

-.20

-.10

-.10

-.20

-15

-.05

-.10

.25

35

.15

.20

.25

.55

.60

f(x) =0

m Surface is determined by where the interpolated value equals zero

Stanford (5248A, Winter 2026

Example: sampled distance functions in medical data (CT, MRI, etc.)

Stanford (5248A, Winter 2026

Another example: tabulated distance functions in physical simulation

Encode distance to air-liquid boundary

See http://physham.stanford.edu

Stanford (S248A, Winter 2026

Need for sparse storage representations

m Drawback: storage for surface is now 0(n3)

m (Canreduce storage cost using sparse data structures that store only a narrow band of distances around
surface (don't waste storage for empty space)

m But sparse structures can be difficult to implement efficiently on modern parallel computers

i 1
= s
- i
: e
l- E It..l B =
= £ S S
= 1 —
5 : =
- - :
-=- - = — = : Ii
- S mwm L
e .
- q =
In this figure: :
red = clearly within water green = regions Where we store level set values to encode surface

blue = clearly outside water Stanford (5248A, Winter 2026

Occupancy field

Store a bit per cell in a dense 3D grid that indicates whether the cell center is inside the surface
(3D array of inside/outside samples)

Consider storage requirements:
40963 cells, consider 1 bit/cell > ~ 8 GB

Typical challenge: :

limited resolution |,
ted resolutio Credit: Voxel Ville NFT (voxelville.io)

Example task: ray tracing occupancy grid

m Since we have no information about distance along ray to
surface, we just have to “step” slowly until we find the surface
m Often called “ray marching” instead of ray tracing

return hotpoint and distance to surface
for i = 0 to MAX_STEPS:

cur_t = (1 *x dt)

p = ray.o + ray.d *x cur_t

O O e e ©o
[

O O O e e o

// 1interpolation of samples
occupancy = sample_occupancy(p)

)

: dt
1f (occupancy > 0) *v//A

return (p, cur_t)

O O O O

O O O O @G O O O e o o
O O O O O{30 e o o o o
O O O O O Q e e O e o
O O O O O C

O O O O O O‘ ® e O o
O O O e e o o0 o O O
O O O e e e o &6 o O O
O e e e o o o

O e e e o o o o'._ 6 o o
O e e e o o o o

O e e e o o o o o,-.0 o

Stanford (5248A, Winter 2026

Comparing three representations for ray-surface intersections

m Ray-triangle:
- (Can solve for distance from ray origin along ray to closest point on triangle

m Ray-distance function ‘u

- (Can determine closest distance from point to surface (in any direction), but not in the direction
along the desired ray

- S0 we must take variable sized “jumps” along the ray

m Ray-occupancy grid
- Don’t know anything about the distance to the surface, so must march along in tiny steps *

........

O © @ O e o eo()®

O OyY”" 0 0 e e e
070 0 O O e e @

“We'll talk about how adaptive data structures can accelerate this in a future lecture Stanford CS248A Winter 2026

Neural representations for compressing implicit
representations of complex geometries

Implicit forms boil down to having a function f(x,y,z)
f(x,y,z) = cis the surface point (often we use ¢=0)

Neural networks are function approximations...

So just traina neural_network(x,y, z) using an existing function f(x,y,z) as training data! (e.g., convert
SDF representations we're talked about to a NN using supervised learning!

Stanford (5248A, Winter 2026

Neural representations for compressing implicit
representations of complex geometries

m Simple solution:

- Train a DNN to evaluate f(x,y,z)
- e.g., use conventional dense grid representation to create training data pairs

- Good: massive compression (surface represented by weights of DNN, not a bunch of 3D
occupancy grid or SDF samples)

- Bad: high evaluation cost (must evaluate large DNN to determining distance from surface,
instead of interpolate samples or evaluate a polynomial!

m In practice: most modern approaches are “hybrid” approaches (ask me for
more details)

- Use neural code to represent local surface structure

- Store neural “code” at cells of traditional uniform grid, or sparse grid
- e.g., code(x,y,z]

- Train a“tiny” DNN to produce f(x,y,z) = DNN(x,y,z, code[x,y,z])

- Idea: DNN only has to translate code into a function value = much cheaper to evaluate 903.63 KB
Stanford (5248A, Winter 2026

Implicit representations - pros and cons

m Pros:
- Description can be very compact (e.g., a polynomial, a neural network!)
- Easy to determine if a point s in our shape (just plug it in!)
- Other queries may also be easy (e.g., distance to surface)
- For simple shapes, can provide an exact description/no sampling error
- Easy to handle changes in topology (e.g., fluid)

m Cons:
- Expensive to find all points in the shape (e.g., for drawing)

- Traditionally it has difficult to model complex shapes, but efficient sparse data structures
(for sampled representations) or learned “neural” representations change this

Stanford (5248A, Winter 2026

Also many explicit representationsin ¢

triangle meshes

raphics

polygon meshes
subdivision surfaces
point clouds

3D gaussians

Stanford (S248A, Winter 2026

Polygon mesh (explicit)

m Store vertices and polygons (most often triangles or quads)
m Perhaps most common representation in graphics

Stanford (S248A, Winter 2026

Triangle mesh (explicit) ;

m Store vertices as triples of coordinates (x,y,z)
m Store triangles as triples of indices (i,},k)

m E.g., tetrahedron: VERTICES TRIANGLES \
X YV 2 i j k o
O: -1 -1 -1 0O 2 1 0
1: 1 -1 1 0O 3 2
2: 1 1 -1 3 0 1
3: -1 1 1 3 1 2
1

m Recall from earlier in the lecture: use linear interpolation to define points inside triangles:

' f(UIV) /\

f(u,v) =a + u(b-a) + v(c-a)

u Stanford (5248A, Winter 2026

Topological validity: orientation consistency

Both facing front Inconsistent orientations
C C

Non-orientable
(e.q., Moebius strip)

Image credit: Wikipedia

Stanford (5248A, Winter 2026

Point cloud (explicit)
List of points (x,y,z)

Often augmented with per-point normals
Hard to interpolate undersampled regions
Easier to acquire (laser scanner)

Often challenging to do processing/simulation, etc
... on this representation

Stanford (5248A, Winter 2026

Stanford (S248A, Winter 2026

ing

, S
N SN e)
o o
y

=
=
S
J
A
S
U
Ve
19
9
>
=
=
=
J
e
=

ing a po

Iri

Acqu

Another point acquisition example: Microsoft XBox 360 Kinect

Image credit: iFixIt

Hlluminant RGB Sensor Monochrome Infrared
(Infrared Laser + diffuser) 640x480 Sensor

Stanford (5248A, Winter 2026

Structured light

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

- Reference plane
Gref bf
| x+d
<
b /R
Known light f
source /.
Single spot illuminant is inefficient! x d

(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) Stanford (S248A Winter 2026

Infrared image of Kinect illuminant output

K ’ - » J
“ - » - » . s s A . 3 + ’ ; *
« .y - 3

«
s

Credit: www.futurepicture.org

Stanford (5248A, Winter 2026

Stanford (5248A, Winter 2026

www.futurepicture.org

Cred

e
—
i
—
-
e
| e—
¢~
=
=
=
e
WJ
D
=
—
o
-
D
(¢~
E
&
D
S
4"
S
| -
=

Oriented 3D Gaussians

- -
. b - \
e A \
4 et : 1.0
’ - by . N .
- ‘ N\
A) o™\
. o S

- 0.8

- 0.6

0.4

0.2

0.0

small neighborhood
i/ around Q Gaussian density kernel

m Instead of a point, represent surface as an oriented Gaussian ellipsoid around a point
m Each 3D Gaussian is:
- (Center point
- Extents of ellipse in X,Y,Z direction (in ellipse’s object space)
- Rotation into world space
m Immensely popular representative for photoreal scenes in recent years
m Common questions: given a scene, how many Gaussians to use? (Many small Gaussians? Fewer large Gaussians?)

[Zwicker 2001] Stanford (S248A, Winter 2026

Visualization of 3D ellipsoid centers

&\
- Ve) 4?.-“’

e - ~
r . £ W7 ¥ L)

- w2 - T \-/. " 4
- - - \ . + /3
. ¢ >
N o4 ks ot
’ . Y 2 32
: =

4 ¥

. -~
- 3 \
-
¥ Tty .
day J Y
= o e W -~
Y - . - > . - =
o "
—Sa = B
- - ey 3y Ay - - - -
A~ » . S T e . ~ Vo= - -
> - ol 3 =
> A A -l'"_*.,_~ .
- - = PR i
. - Ve v Aev A
(o8
AN~ ¥
.]
~ @
- -
™ ow e s . 3
g v = -y -
o r -é S et R -
~REE o - ~ - e T
L - - _'.‘)/- o - T - o - -
& - - . 'Y . en 4 3
el o -
o - LRl = b A .- * .
S =< g " .F . ?
3 s ’ g A N, et e em "
- SR g P e LRIl N e »
~ P 2 .
» ‘ .
"

Image credit: WorldLabs

Visualization of oriented 3D ellipsoids

L

Image credit: WorldLabs

Rendered result -

(oriented ellipsoids treated as densities given by Gaussian kernel)

Image credit: WorldLabs

Rendered video

Image credit: WorldLabs

5

-
|

Vistali

Rendered Result Visualization of 3D Gaussians
[Credit: Kerbl 2023]

Rendering of scene represented as 3D gaussians

Menu Views Capture » 3D Gaussians » Camera Poinkt view

T =4

-

>VMetrics V _ / " | . .'l/ | : . T - .
101,08 (9.89ms) FPS = Nahve OpenGL : | . " ' ' e x S-I-ump

[Credit: Kerbl 2023] Stanford €S248A, Winter 2026

Some questions for the class

If you tell me a task, and then we can access the

utility of different representations

Describe the characteristics of the scene that

needs to be represented

Describe what operation you want to perform

on the scene geometry:

Rendering/visualization?
Animation?

Editing?

Reducing detail?

Finding the closest scene surfacetoa
given point?

Estimating the surface normal?
Recovering parameters to fit a photo?

For example:
Consider representing this scene with ten’s of thousands of gaussians
vs. two spheres and a few triangles

Stanford (S248A, Winter 2026

Some questions for the class

If you tell me a task, and then we can access the

utility of different representations

Describe the characteristics of the scene that

needs to be represented

Describe what operation you want to perform

on the scene geometry:

Rendering/visualization?
Animation?

Editing?

Reducing detail?

Finding the closest scene surfacetoa
given point?

Estimating the surface normal?
Recovering parameters to fit a photo?

Does it make sense to represent this curved surface with a voxel grid?

How many voxels would you need?

Stanford (S248A, Winter 2026

Some questions for the class

If you tell me a task, and then we can access the
utility of different representations

Describe the characteristics of the scene that
needs to be represented

Describe what operation you want to perform
on the scene geometry:

Rendering/visualization?
Animation?

Editing?

Reducing detail?

Finding the closest scene surfacetoa
given point?

Estimating the surface normal?
Recovering parameters to fit a photo?

But what about accurately representing these scenes with triangles?

- 2 U “ e
- ol e e, LS :,,":‘.'

Stanford (S248A, Winter 2026

Moving from linear interpolation to higher order
interpolation of surface points

(First... back to triangles)

Points in a triangle = linear interpolation of vertices

Recall from earlier in the lecture: use linear Specifically barycentric interpolation as a
interpolation to define points inside triangles: form of 2D interpolation

' f/(U,V) > /\
b

C

f(u,v) =a + u(b-a) + v(c-a)

B=Ap/A
v=Ac/A

Stanford (5248A, Winter 2026

Linear interpolation of samples (in 1D)

flz1) = f1
f(xo) = fo
L0 L X1
ft) =0 —=1t)fo+th
L — X

Stanford (5248A, Winter 2026

Can think of linear interpolation as linear combination of
two functions

Weights are given by the two values (fo and f1) being interpolated

f1
fo

f@) =0 —=t)fo+ th

Stanford (5248A, Winter 2026

Note: this is the idea of representing a function in a new basis, again!

My function fis represented as a superposition
(weighted sum) of a set of basis functions

J1 /
Jo

Stanford (5248A, Winter 2026

Problem with piecewise linear interpolation: derivatives are
not continuous

Stanford (5248A, Winter 2026

Smooth interpolation?

continuous

/ first derivative
f1

Stanford (5248A, Winter 2026

Bernstein basis

m Why limit ourselves to just linear interpolation?
m More flexibility by using higher-order polynomials
m Instead of usual basis (1, x, X2, X3, ...), use Bernstein basis:

|—

N
|

i n
.~ N choose k

(Z) 2 (1 —)k

B;

N |—= -

Stanford (5248A, Winter 2026

Bezier curves (explicit)

A Bezier curve is a curve expressed in the Bernstein basis:

(s) =Y Bu(s)pic

control points

P1

m Forn=1,just geta line segment!

m Forn=3, get “cubic Bezier”:

m Important features: 0
1. interpolates endpoints
2. tangent to end segments

3. contained in convex hull (nice for rasterization)

P2

P3

Stanford (5248A, Winter 2026

Piecewise Bezier curves (explicit)

m More interesting shapes: piece together many Bezier curves
m Widely-used technique (lllustrator, fonts, SVG, etc.)

[P
P
| E\ A
; —
__- _,,/.
m Formally, piecewise Bézier curve:
piecewise Bezier
\ U — Uy
v(u) == : Ui < U< Ujg1
/! Uij+1 — Uq

single Bézier

Stanford (5248A, Winter 2026

Vector fonts

Fox Jumps Over
T'he Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdetghijklmnopqgrstuvwxyz 01234567389

Baskerville font - represented as cubic Bézier splines

Stanford (5248A, Winter 2026

Bezier curves — tangent continuity

m Toget“seamless” curves, want points and tangents to line up:

P2 O
P NO O (\J
e (-
p P

Ok, but how?
Each curve is cubic: au3 + bu2 + cu+d
Q: How many constraints vs. degrees of freedom?

Q: Could you do this with quadratic Bézier? Linear Bezier?

Stanford (5248A, Winter 2026

Tensor product

m (Can use a pair of curves to get a surface

m Value at any point (u,v) given by product of a curve f(u) and a curve g(v) (sometimes called
the “tensor product”):

Stanford (5248A, Winter 2026

Bezier patches

m Bezier patch is sum of (tensor) products of Bernstein bases

Pij

3 3
ZZBZ] U, 0)Ppij
1=0 7=0

Stanford (S248A, Winter 2026

Bézier surface

m Just as we connected Bézier curves, can connect Bézier patches to get a surface:

m Very easy to draw: just dice each patch into reqular (u,v) grid!

Stanford (S248A, Winter 2026

Subdivision

Alternative starting point for curves/surfaces: subdivision
Start with control curve

Insert new vertex at each edge midpoint

Update vertex positions according to fixed rule

For careful choice of averaging rule, yields smooth curve

- Some subdivision schemes correspond to well-known spline schemes!

l | l

Slide cribbed from Don Fussell. Stanford CS248A, Winter 2026

Subdivision surfaces (explicit)

m Start with coarse polygon mesh (“control cage”)
m Subdivide each element
m Update vertices via local averaging
m Many possible rules:
- Catmull-Clark (for quad meshes)
- Loop (for triangle meshes)
m Common issues: W

- interpolating or approximating?

- continuity at vertices?
m Easier than splines for modeling; harder to evaluate pointwise

Stanford (5248A, Winter 2026

Loop subdivision results

Common subdivision rule for triangle meshes
“C2” smoothness away from “irreqular” vertices, (1 everywhere else
Approximating, not interpolating

Credit: Simon Fuhrman Stanford (S248A, Winter 2026

Subdivision in action (Pixar’s “Geri’s Game”)

P ‘ }
R : ‘

Stanford (S248A, Winter 2026

Acknowledgements

m Thanks to Keenan Crane and Ren Ng for slide materials

Stanford (5248A, Winter 2026

