
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 1:

Course Introduction:
Welcome to Computer Graphics!

Stanford CS248A, Winter 2026

Hi!
Lvmin

Josephine
the (Graphics) Cat

Kayvon Fatahalian

Fangjun

Tejan

Stanford CS248A, Winter 2026

Discussion:
Why do you want to study computer graphics?

Stanford CS248A, Winter 2026

Movies

Avatar: Fire and Ash (2025)

Computer games
This image is rendered in real-time on a modern GPU

Stanford CS248A, Winter 2026

Supercomputing for games

Specialized processors for performing graphics computations.

~ 82 TFLOPs fp32 *
* Doesn’t include additional 190 TFLOPS of
ray tracing compute and 165 TFLOPS of fp15
DNN compute

NVIDIA Founder’s Edition RTX 4090 GPU

Stanford CS248A, Winter 2026

Virtual reality experiences

Stanford CS248A, Winter 2026

Augmented reality experiences

Apple Vision Pro
~11.4M visible pixels per panel

(28 Mpixel display)

Stanford CS248A, Winter 2026

Meike Hakkart
http://maquenda.deviantart.com/art/Lion-done-in-illustrator-327715059

Digital illustration

Stanford CS248A, Winter 2026

Computer aided design

For mechanical, architectural, electronic, optical, …

SolidWorks SketchUp

Stanford CS248A, Winter 2026

Product design and visualization

Ikea - 75% of catalog is rendered imagery (several years ago… likely a lot more now)

Stanford CS248A, Winter 2026

Architectural design

Bilbao Guggenheim, Frank Gehry

Stanford CS248A, Winter 2026

3D fabrication

Stanford CS248A, Winter 2026

Modern graphical user interfaces

2D drawing and animation are ubiquitous in computing.
Typography, icons, images, transitions, transparency, …

(all rendered at high frame rate for rich experience)

Stanford CS248A, Winter 2026

Computational cameras
Panoramic stitching

David Iliff

High dynamic range (HDR) photographyPortrait mode
(simulate effects of large aperture lens that is not
possible to fit in a smartphone form factor)

Magic Eraser Feature
(Edit image by detecting objects and removing them)

Stanford CS248A, Winter 2026

Turning sequences of photographs into 3D worlds

Kerbl et al. 2023

Stanford CS348K, Spring 2025

On every vehicle: representing 3D scenes for robotics/navigation

https://bayareatelegraph.com/2024/08/21/what-its-really-like-to-ride-in-a-waymo-self-driving-car/
Credit: Smith Collection/Gado

Stanford CS248A, Winter 2026

Graphics/simulation used for training ML models

NV Drive Sim:
autonomous driving simulator

AI Habitat:
simulator for training AI agents

Stanford CS248A, Winter 2026

“A bento box with rice,
edamame, ginger,
and sushi.
Top down view,
white background.
Sushi in right bin of bento box.
Edamame in top left.”

Transformative generative AI capabilities

Stanford CS248A, Winter 2026

Emerging generative AI for creating textured 3D meshes
“Vintage copper rotary telephone with intricate detailing.” “A Victorian mansion made of stone bricks with ornate trim, bay

windows, and a wraparound porch.”

[Structured 3D Latents for Scalable and Versatile 3D Generation, Xiang et al. 2024]

Stanford CS248A, Winter 2026

Foundations of computer graphics
All these applications demand sophisticated theory and systems

Science and mathematics
- Physics of light, color, optics
- Math of curves, surfaces, geometry, perspective, …
- Sampling
- Machine learning and optimization

Systems
- Parallel, heterogeneous processing
- Graphics-specific programming systems
- Input/output devices

Art and psychology
- Perception: color, stereo, motion, image quality, …
- Art and design: composition, form, lighting, ...

Stanford CS248A, Winter 2026

Let’s talk about representing shapes

Stanford CS248A, Winter 2026

How about something very simple…
How do we represent a line?

Your first question should be:
Well Kayvon… what operations do you want to do with lines?
(In other words… what’s the task?)

Stanford CS248A, Winter 2026

Here are a few spatial reasoning tasks involving lines
Enumerate points that are on the line L:
- Given x coordinate of a point p on the line L has value x0, what is the y coordinate of p
- Give a list of points p’ along the line L that are separated by distance D

Is a given point p=(x,y) on the line L?

How far is a point p from the line L?

What side of the line L is point p on?

Render a line L in an image

Stanford CS248A, Winter 2026

Given points P0 and P1,
give a representation for the line connecting the two points.

P0=(x0, y0)

P1=(x1, y1)

Stanford CS248A, Winter 2026

Point-slope form of a line

P0=(x0, y0)

P1=(x1, y1)

y � y0 = m(x� x0)

m =
y1 � y0
x1 � x0

Convenient representation for the following task:
- Given points P0 and P1, give equation for the line connecting the two points.

Stanford CS248A, Winter 2026

Slope-intercept form of a line

P0=(x0, y0)

P1=(x1, y1)

y � y0 = m(x� x0)

m =
y1 � y0
x1 � x0

<latexit sha1_base64="deecfwJxGcImvVHmFLnmcrrtq2w=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSIIQtkVqV6EohePFewHtkvJptk2NMkuSVZclv4LLx4U8eq/8ea/MW33oK0PBh7vzTAzL4g508Z1v52l5ZXVtfXCRnFza3tnt7S339RRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1M/NYjVZpF8t6kMfUFHkgWMoKNlR5SdIXEEzpFQa9UdivuFGiReDkpQ456r/TV7UckEVQawrHWHc+NjZ9hZRjhdFzsJprGmIzwgHYslVhQ7WfTi8fo2Cp9FEbKljRoqv6eyLDQOhWB7RTYDPW8NxH/8zqJCS/9jMk4MVSS2aIw4chEaPI+6jNFieGpJZgoZm9FZIgVJsaGVLQhePMvL5LmWcWrVqp35+XadR5HAQ7hCE7AgwuowS3UoQEEJDzDK7w52nlx3p2PWeuSk88cwB84nz+TpY+R</latexit>

y = mx+ b

<latexit sha1_base64="1FxpyLi54XhTbSh4hXG7JWb+BY0=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURqV6EohePFewHtDFstpt26WYTdjdqCP0fXjwo4tX/4s1/47bNQVsfDDzem2Fmnh9zprRtf1uFpeWV1bXiemljc2t7p7y711JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P7qe+O0HKhWLxJ1OY+qGeCBYwAjWRrr30SVKPRudoPDJs71yxa7aU6BF4uSkAjkaXvmr149IElKhCcdKdR071m6GpWaE03GplygaYzLCA9o1VOCQKjebXj1GR0bpoyCSpoRGU/X3RIZDpdLQN50h1kM1703E/7xuooMLN2MiTjQVZLYoSDjSEZpEgPpMUqJ5aggmkplbERliiYk2QZVMCM78y4ukdVp1atXa7VmlfpXHUYQDOIRjcOAc6nADDWgCAQnP8Apv1qP1Yr1bH7PWgpXP7MMfWJ8/5z2Q2Q==</latexit>

b = y0 →mx0

(0,0)
x

y

Convenient representation for:
- Where does the line cross the Y axis? (At y=b!)
- Given point P’ on the line located x’ on the x axis, what’s y-coordinate of P’?

(0,b)

x’

b

Given point-slope form (below), how do you
convert to slope-intercept form?

P’=(x’,y’)

Stanford CS248A, Winter 2026

New task:
Enumerate points spaced by distance d on L starting at P0

and moving toward P1?

P0=(x0, y0)

P1=(x1, y1)

Stanford CS248A, Winter 2026

Parametric form of line
point that is distance t along line L from P0.

unit direction
<latexit sha1_base64="Pt8NDjXyO23vgUi3GFwK9YWheFg=">AAACOHicfVDLSsNAFJ34rPUVdelmsAhuLIlIdSMU3bizgn1AE8JkMmmHTh7MTISS5rPc+BnuxI0LRdz6BU7aiNqKBwbOnHMv997jxowKaRiP2tz8wuLScmmlvLq2vrGpb223RJRwTJo4YhHvuEgQRkPSlFQy0ok5QYHLSNsdXOR++5ZwQaPwRg5jYgeoF1KfYiSV5OhXVoBk3/VTL4Nn0PI5wumX1HDMDB7C76+RZenoH3eUQUevGFVjDDhLzIJUQIGGoz9YXoSTgIQSMyRE1zRiaaeIS4oZycpWIkiM8AD1SFfREAVE2On48AzuK8WDfsTVCyUcqz87UhQIMQxcVZmvKaa9XPzL6ybSP7VTGsaJJCGeDPITBmUE8xShRznBkg0VQZhTtSvEfaTCkyrrsgrBnD55lrSOqmatWrs+rtTPizhKYBfsgQNgghNQB5egAZoAgzvwBF7Aq3avPWtv2vukdE4renbAL2gfn5k/rOM=</latexit>

d =
P1 →P0

|P1 →P0|

<latexit sha1_base64="qVRc0AcZRV9s3OY/HwD9ds3hly4=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoKGVGpLoRim5cuKhgH9CWkkkzbWjmQXJHKMP8hBt/xY0LRdwK7vwbM+0oWj0QODnnXu69xwkFV2BZH0Zubn5hcSm/XFhZXVvfMDe3GiqIJGV1GohAthyimOA+qwMHwVqhZMRzBGs6o4vUb94yqXjg38A4ZF2PDHzuckpASz3zsOMRGDpufJWUYB+f4a9/rWcl+ADDt9BPcM8sWmVrAvyX2Bkpogy1nvne6Qc08pgPVBCl2rYVQjcmEjgVLCl0IsVCQkdkwNqa+sRjqhtPrkrwnlb62A2kfj7gifqzIyaeUmPP0ZXpimrWS8X/vHYE7mk35n4YAfPpdJAbCQwBTiPCfS4ZBTHWhFDJ9a6YDokkFHSQBR2CPXvyX9I4KtuVcuX6uFg9z+LIox20i0rIRieoii5RDdURRXfoAT2hZ+PeeDRejNdpac7IerbRLxhvn1T3nbA=</latexit>

L(t) = P0 + td

Simple algorithm to enumerate points on line
separated by 0.1 unit in space:

let dt = 0.1
for (i =0 to N)

evaluate L(i * dt)

P0=(x0, y0)

P1=(x1, y1)

Convenient representation for the following task:
- Enumerating points on the line given a distance from P0

This what’s called an “explicit representation” of the line:
Given a parameter (t) identifying a location on the line, the

equation provides the point in space.

Note, the vector representation holds for lines in any
dimensional space (2D, 3D, etc.)

Stanford CS248A, Winter 2026

New task:
Is a given point P=(x,y) on the line L defined by points P0 and P1?

If it’s not, what side is it on?

P0=(x0, y0)

P1=(x1, y1)

P=(x, y)

Stanford CS248A, Winter 2026

Implicit form of a line
Implicit line equation

- L(x,y) = Ax + By + C
- On the line: L(x,y) = 0

- “Negative side” of line: L(x,y) < 0

- “Positive” side of line: L(x,y) > 0

> 0

< 0

= 0

Convenient representation for the following task:
- Determining if a given point P is on the line, or what side of the line the point is on.

Stanford CS248A, Winter 2026

Line equation derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector

Stanford CS248A, Winter 2026

Line equation derivation

(x,y)

Perp(x, y) = (y,�x)General Perpendicular
Vector in 2D

(y,-x)

Stanford CS248A, Winter 2026

Line equation derivation

Line Normal Vector

N

TP0

P1

N = Perp(T) = (y1 � y0,�(x1 � x0))

Stanford CS248A, Winter 2026

Line equation derivation

N

P0

P1

Now consider a point P=(x,y).
Which side of the line is it on?

P = (x, y)
V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Stanford CS248A, Winter 2026

Line equation tests

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N > 0

Stanford CS248A, Winter 2026

Line equation tests

N

P0

P1
P = (x, y)

L(x, y) = V ·N = 0

V

Stanford CS248A, Winter 2026

Line equation tests

N

P0

P1

P = (x, y)

V

L(x, y) = V ·N < 0

Stanford CS248A, Winter 2026

Line equation derivation

N

P0

P1

P = (x, y)
V

L(x, y) = V ·N = �(y � y0)(x1 � x0) + (x� x0)(y1 � y0)

= (y1 � y0)x� (x1 � x0)y + y0(x1 � x0)� x0(y1 � y0)

= Ax+By + C

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)N = Perp(T) = (y1 � y0,�(x1 � x0))

T

Stanford CS248A, Winter 2026

New task:
Draw a 2D line onto an image

P0=(x0, y0)

P1=(x1, y1)

Stanford CS248A, Winter 2026

But wait…
How do we represent the image we want to draw on screen?

Stanford CS248A, Winter 2026

Frame buffer: memory for a raster display

image = “2D array of colors”

Stanford CS248A, Winter 2026

Output for a raster display
Common abstraction of a raster display:
- Image represented as a 2D grid of “pixels” (picture elements) **
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel “as a little square” next class. But let’s go with it for now. ;-)

Stanford CS248A, Winter 2026

Josephine the graphics cat

Stanford CS248A, Winter 2026

Josephine the graphics cat

Stanford CS248A, Winter 2026

4K TV display
UHD TV resolution: (“4K”)
3840 x 2160 pixels (8.3 megapixels)

HDTV resolution:
1920 x 1080 (2.1 megapixels)

Photo credit: Mike Mozart (via Flickr)

Stanford CS248A, Winter 2026

iPhone 12 display
2532 x 1170 pixels
(2.9 megapixels)

About 460 pixels per inch

Stanford CS248A, Winter 2026

A raster display converts an image (a color value at each pixel)
into emitted light

Display pixel on my laptop
(close up photo)

Stanford CS248A, Winter 2026

Close up photo of pixels on a modern display

Stanford CS248A, Winter 2026

Stanford CS248A, Winter 2026

Aside: other sub pixel layouts
So what is a pixel, anyway?
(More on this in the next lecture)

Stanford CS248A, Winter 2026

What pixels should we color in to depict a line?
“Rasterization”: process of converting a continuous object (a line, a

polygon, etc.) to a discrete representation on a “raster” grid (pixel grid)

Stanford CS248A, Winter 2026

What pixels should we color in to depict a line?
Light up all pixels intersected by the line?

Stanford CS248A, Winter 2026

What pixels should we color in to depict a line?
Diamond rule (used by modern GPUs):

light up pixel if line passes through associated diamond

Stanford CS248A, Winter 2026

What pixels should we color in to depict a line?
Is there a right answer?

(consider a drawing a “line” with thickness)

Stanford CS248A, Winter 2026

How do we find the pixels satisfying a chosen
rasterization rule?

Could check every single pixel in the image to see if it meets the condition...

- O(n2) pixels in image vs. at most O(n) “lit up” pixels

- Must be able to do better! (e.g., algorithm that does work proportional to number
of pixels painted when drawing the line)

Stanford CS248A, Winter 2026

Incremental line rasterization
Let’s say a line is represented with integer endpoints: (x0,y0), (x1,y1)
Slope of line: m = (y1-y0) / (x1-x0)
Consider an easy special case:
- x0 < x1, y0 < y1 (line points toward upper-right)
- 0 < m < 1 (more change in x than y)

y = y0;
for(x=x0; x<=x1; u++)
{
 y += m;
 draw(x, round(y))
}

Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

u1 u2

v1

v2

Assume integer coordinates
are at pixel centers

(x0, y0)

(x1, y1)

Stanford CS248A, Winter 2026

“Rasterized image” representation of a line
What is it a convenient representation for?
Is it a convenient representation for some of our prior tasks?

Stanford CS248A, Winter 2026

Recap: what have we done so far

We’ve explored a number of different spatial reason tasks involving lines
- Enumeration of points on line, testing whether a point was on a line, drawing a line

We’ve seen how the task dictates which representations are “good”

Stanford CS248A, Winter 2026

Let’s move up in complexity:
What about drawing triangles?

Stanford CS248A, Winter 2026

Why triangles?
Triangles are a key primitive for creating more complex shapes and surfaces

Stanford CS248A, Winter 2026

Why triangles?
Most basic polygon
- Can break up other polygons into triangles
- Allows programs to optimize one implementation

Triangles have unique properties
- Guaranteed to be planar
- Well-defined interior
- Well-defined method for interpolating values at

vertices over triangle (a topic of a future lecture)

Stanford CS248A, Winter 2026

Input:
2D position of triangle vertices: P0, P1, P2

Drawing a 2D triangle ("triangle rasterization”)

Output:
Set of pixels “covered” by the triangle

(Converting a 2D representation of a triangle into an image)

P0

P1

P2

Stanford CS248A, Winter 2026

What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4

Stanford CS248A, Winter 2026

Idea: let’s call a pixel “inside” the triangle if the pixel center is inside
the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center

Stanford CS248A, Winter 2026

Triangle = intersection of three half planes

P0

P1

P2

Stanford CS248A, Winter 2026

Point-in-triangle test: via three point-edge tests
Set up implicit line equation for each edge, evaluate whether point P is “inside” all three edges

P0

P1

P2

L0(x, y) < 0

“inside”

“outside”

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Implicit form for edge i

Triangle vertex i

Stanford CS248A, Winter 2026

Point-in-triangle test: via three point-edge tests

P0

P1

P2

L1(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Set up implicit line equation for each edge, evaluate whether point P is “inside” all three edges

Implicit form for edge i

Triangle vertex i

Stanford CS248A, Winter 2026

Point-in-triangle test: via three point-edge tests

P0

P1

P2

L2(x, y) < 0

Pi = (Xi, Yi)

Ai = dYi = Yi+1 - Yi

Bi = -dXi = Xi - Xi+1

Ci = Yi (Xi+1 - Xi) - Xi (Yi+1 - Yi)

Li (x, y) = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Set up implicit line equation for each edge, evaluate whether point P is “inside” all three edges

Implicit form for edge i

Triangle vertex i

Stanford CS248A, Winter 2026

Point-in-triangle test

P0

P1

P2
Sample point s = (x, y) is inside the triangle if it is
inside all three edges. **

inside(x, y) =
L0 (x, y) < 0 &&
L1 (x, y) < 0 &&
L2 (x, y) < 0

** Note: actual implementation of inside(x,y) involves ≤ checks
based on the triangle coverage edge rules

Sample points inside triangle are highlighted red.

Stanford CS248A, Winter 2026

So here’s our triangle…
(Overlaid over a pixel grid)

Stanford CS248A, Winter 2026

This is the result of rasterizing the triangle using our method

Anything that you are unsatisfied with?

Stanford CS248A, Winter 2026

One more task…

Given only an image of a triangle…
Estimate the positions of the three vertices

(a topic for later in the course)

P0
P1
P2

Stanford CS248A, Winter 2026

Let’s think about rendering a
3D object

We need to simulate what an object looks like,
when viewed using a camera at a given position

Stanford CS248A, Winter 2026

Perspective projection
Objects look smaller as they get further away (“perspective”)
Why does this happen?
Consider simple (“pinhole”) model of a camera:

2D image

3D object

camera

Stanford CS248A, Winter 2026

Projecting objects in a 3D scene onto a 2D image
Where does a point in the scene appear in the image?
Objects look smaller as they get further away (“perspective”)
Why does this happen?
Consider simple (“pinhole”) model of a camera:

2D image

3D object

camera

Stanford CS248A, Winter 2026

For those that didn’t do this in grade school

http://janneinosaka.blogspot.com/2010/03/pinhole-time.html

Pin hole Place photosensitive paper here

Stanford CS248A, Winter 2026

Perspective projection: side view
Where exactly does a 3D point p = (x,y,z) on the tree end up on the image?
Let’s call the 2D image point q=(u,v)

p=(x,y,z)

q=(u,v) 3D object

im
ag

e

Stanford CS248A, Winter 2026

Perspective projection: side view
Where exactly does a 3D point p = (x,y,z) on the tree end up on the image?
Let’s call the 2D image point q=(u,v)
Notice two similar triangles:

p=(x,y,z)

q=(u,v)

1
z

y

v 3D object

im
ag

e

Assume camera has unit size, coordinates relative to pinhole c
Then v/1 = y/z… v = y/z
Likewise, horizontal offset u= x/z

c

Stanford CS248A, Winter 2025

Drawing a 3D triangle: rasterization perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Simple pseudocode:
tri_proj = project_triangle(tri)
 for each image pixel p:
 if (p is inside tri_proj)
 color pixel p the color of tri_proj

Think: “What pixels does the projected triangle cover?”

Stanford CS248A, Winter 2025

Drawing a 3D triangle: ray casting perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Think: “Is the triangle visible along the ray from a pixel through the pinhole?”
Aka. Does a ray originating at the pixel center and leaving the camera “hit” the triangle?

Simple pseudocode:
for each image pixel p:
 let r = ray from p leaving camera
 if (r hits tri)
 color pixel p the color of tri

Stanford CS248A, Winter 2026

We know how to compute whether a point is inside a 2D triangle
But what about whether a ray hits a 3D triangle?

It turns out we already have everything we need!

Stanford CS248A, Winter 2026

Recall parametric form of a 2D line
point that is distance t along line L from P0.

unit direction
<latexit sha1_base64="Pt8NDjXyO23vgUi3GFwK9YWheFg=">AAACOHicfVDLSsNAFJ34rPUVdelmsAhuLIlIdSMU3bizgn1AE8JkMmmHTh7MTISS5rPc+BnuxI0LRdz6BU7aiNqKBwbOnHMv997jxowKaRiP2tz8wuLScmmlvLq2vrGpb223RJRwTJo4YhHvuEgQRkPSlFQy0ok5QYHLSNsdXOR++5ZwQaPwRg5jYgeoF1KfYiSV5OhXVoBk3/VTL4Nn0PI5wumX1HDMDB7C76+RZenoH3eUQUevGFVjDDhLzIJUQIGGoz9YXoSTgIQSMyRE1zRiaaeIS4oZycpWIkiM8AD1SFfREAVE2On48AzuK8WDfsTVCyUcqz87UhQIMQxcVZmvKaa9XPzL6ybSP7VTGsaJJCGeDPITBmUE8xShRznBkg0VQZhTtSvEfaTCkyrrsgrBnD55lrSOqmatWrs+rtTPizhKYBfsgQNgghNQB5egAZoAgzvwBF7Aq3avPWtv2vukdE4renbAL2gfn5k/rOM=</latexit>

d =
P1 →P0

|P1 →P0|

<latexit sha1_base64="qVRc0AcZRV9s3OY/HwD9ds3hly4=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoKGVGpLoRim5cuKhgH9CWkkkzbWjmQXJHKMP8hBt/xY0LRdwK7vwbM+0oWj0QODnnXu69xwkFV2BZH0Zubn5hcSm/XFhZXVvfMDe3GiqIJGV1GohAthyimOA+qwMHwVqhZMRzBGs6o4vUb94yqXjg38A4ZF2PDHzuckpASz3zsOMRGDpufJWUYB+f4a9/rWcl+ADDt9BPcM8sWmVrAvyX2Bkpogy1nvne6Qc08pgPVBCl2rYVQjcmEjgVLCl0IsVCQkdkwNqa+sRjqhtPrkrwnlb62A2kfj7gifqzIyaeUmPP0ZXpimrWS8X/vHYE7mk35n4YAfPpdJAbCQwBTiPCfS4ZBTHWhFDJ9a6YDokkFHSQBR2CPXvyX9I4KtuVcuX6uFg9z+LIox20i0rIRieoii5RDdURRXfoAT2hZ+PeeDRejNdpac7IerbRLxhvn1T3nbA=</latexit>

L(t) = P0 + td

P0=(x0, y0)

P1=(x1, y1)

Stanford CS248A, Winter 2026

Recall parametric form of a 2D line in N-D space
point that is distance t along line L from P0.

unit direction
<latexit sha1_base64="Pt8NDjXyO23vgUi3GFwK9YWheFg=">AAACOHicfVDLSsNAFJ34rPUVdelmsAhuLIlIdSMU3bizgn1AE8JkMmmHTh7MTISS5rPc+BnuxI0LRdz6BU7aiNqKBwbOnHMv997jxowKaRiP2tz8wuLScmmlvLq2vrGpb223RJRwTJo4YhHvuEgQRkPSlFQy0ok5QYHLSNsdXOR++5ZwQaPwRg5jYgeoF1KfYiSV5OhXVoBk3/VTL4Nn0PI5wumX1HDMDB7C76+RZenoH3eUQUevGFVjDDhLzIJUQIGGoz9YXoSTgIQSMyRE1zRiaaeIS4oZycpWIkiM8AD1SFfREAVE2On48AzuK8WDfsTVCyUcqz87UhQIMQxcVZmvKaa9XPzL6ybSP7VTGsaJJCGeDPITBmUE8xShRznBkg0VQZhTtSvEfaTCkyrrsgrBnD55lrSOqmatWrs+rtTPizhKYBfsgQNgghNQB5egAZoAgzvwBF7Aq3avPWtv2vukdE4renbAL2gfn5k/rOM=</latexit>

d =
P1 →P0

|P1 →P0|

<latexit sha1_base64="qVRc0AcZRV9s3OY/HwD9ds3hly4=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoKGVGpLoRim5cuKhgH9CWkkkzbWjmQXJHKMP8hBt/xY0LRdwK7vwbM+0oWj0QODnnXu69xwkFV2BZH0Zubn5hcSm/XFhZXVvfMDe3GiqIJGV1GohAthyimOA+qwMHwVqhZMRzBGs6o4vUb94yqXjg38A4ZF2PDHzuckpASz3zsOMRGDpufJWUYB+f4a9/rWcl+ADDt9BPcM8sWmVrAvyX2Bkpogy1nvne6Qc08pgPVBCl2rYVQjcmEjgVLCl0IsVCQkdkwNqa+sRjqhtPrkrwnlb62A2kfj7gifqzIyaeUmPP0ZXpimrWS8X/vHYE7mk35n4YAfPpdJAbCQwBTiPCfS4ZBTHWhFDJ9a6YDokkFHSQBR2CPXvyX9I4KtuVcuX6uFg9z+LIox20i0rIRieoii5RDdURRXfoAT2hZ+PeeDRejNdpac7IerbRLxhvn1T3nbA=</latexit>

L(t) = P0 + td

P0=(x0, y0)

P1=(x1, y1)

Stanford CS248A, Winter 2026

3D ray equation (parametric)

Distance along ray
(some students think “time”)

point along ray

ray origin unit direction

How do we determine if a ray intersects a triangle?
What about where a ray intersects the plane
containing the triangle?

Stanford CS248A, Winter 2026

Intersecting a ray with a 3D plane
Parametric form of a ray:
So for the ray to intersect the plane, there must be some value of t for which r(t) is on the
plane.

We’ve seen how to determine if a point is on a line…
What about point on plane?

Stanford CS248A, Winter 2025

Matrix form of a 2D line (and a 3D plane)
Line is defined by:

- Its normal: N
- A point x0 on the line

X
N

x0
The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

x� x0

<latexit sha1_base64="KsQRu2ETP2bQ0WQYJ5LJO+xLUns=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBjSWRii6LblxWsA9oQ5hMJ+3QyYOZiVhCcOOvuHGhiFu/wp1/46QNoq0HBs6ccy/33uPFnEllWV/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtd5X77jgrJovBWjWPqBHgQMp8RrLTkmvu9AKuh56f3GTpBPx/XylyzYlWtCdA8sQtSgQIN1/zs9SOSBDRUhGMpu7YVKyfFQjHCaVbuJZLGmIzwgHY1DXFApZNOTsjQkVb6yI+EfqFCE/V3R4oDKceBpyvzHeWsl4v/ed1E+RdOysI4UTQk00F+wpGKUJ4H6jNBieJjTTARTO+KyBALTJROraxDsGdPniet06pdq57d1Cr1yyKOEhzAIRyDDedQh2toQBMIPMATvMCr8Wg8G2/G+7R0wSh69uAPjI9v8FOXJQ==</latexit>

N · (x� x0) = 0

NT(x� x0) = 0

NTx = NTx0

NTx = c

<latexit sha1_base64="lPYkwo1mDgQ7CDH0Ce6GnsvO7LQ=">AAACunicnVFJSwMxFM6MW61b1aOXYFHqwTIjSj0oFL14kgptFTrTkkkzNTSzkLwRyzA/Um/+G9PFWlsP4oPAl29JXl68WHAFlvVhmEvLK6trufX8xubW9k5hd6+pokRS1qCRiOSTRxQTPGQN4CDYUywZCTzBHr3+7VB/fGFS8SiswyBmbkB6Ifc5JaCpTuHNCQg8e356n2GHdiPApS/mNcOneLrpWNkJPr7GFnac/HeoPYIySOvZv4MzOe2bWtozij7kj3HaKRStsjUqvAjsCSiiSdU6hXenG9EkYCFQQZRq2VYMbkokcCpYlncSxWJC+6THWhqGJGDKTUejz/CRZrrYj6ReIeARO5tISaDUIPC0c9immteG5G9aKwH/0k15GCfAQjq+yE8EhggP/xF3uWQUxEADQiXXvWL6TCShoH87r4dgzz95ETTPyvZ5+eLhvFi9mYwjhw7QISohG1VQFd2hGmogalQM1/CNnnlleiY3+2OraUwy++hHmfAJjbbXvw==</latexit>

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 on this slide are 2-vectors)

In the plane case… N, x, x0 are 3-vectors

Signed distance to line:

x0

Stanford CS248A, Winter 2025

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - offset
How do we find intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:

Stanford CS248A, Winter 2025

Ray-triangle intersection
Step 1: find point of intersection (x) of ray with plane

P0

P1

P2 N

o

d

x

Stanford CS248A, Winter 2025

Ray-triangle intersection
Step 1: find point of intersection (x) of ray with plane
containing triangle
Step 2: determine if x is inside the triangle
- For each edge of the triangle compute a plane equation

for the plane containing the edge and perpendicular to
the plane of the triangle

- Determine if x is “inside” that plane

P0

P1

P2 N

x

d

o

Stanford CS248A, Winter 2026

Recap: what have we done so far
We’ve thought about the task of rendering a picture from a 3D scene as:
- Rasterization: perspective project THEN check 2D triangle’s cover of pixel centers
- Ray casting: see what 3D triangle is “hit” by a ray originating at a pixel center and

leaving the camera

In both cases we’ll get the same picture…
- Which suffers from “jaggies” if the image is low resolution

We’ve shown that the matrix form of point-on-line queries generalized to point-on-plane
in 3D, and we can build a 3D point in triangle test for this

Stanford CS248A, Winter 2026

But to render more realistic pictures
(or animations) we need a much richer model of the world.

e.g, complex surfaces, materials, lights

Stanford CS248A, Winter 2026

Complex 3D surfaces and 2D shapes

Platonic noid

[Kaldor 2008]

[Utah Teapot]

patches may overlap a color sample so depth samples from differ-
ent patches always compare with the latter patch in render order
“winning”.

Prior to rendering any set of patches, a depth clear to zero is neces-
sary to reset the depth buffer. This could be done with a “cover” op-
eration that simply zeros the depth buffer (without modifying other
buffers) or with a scissored depth buffer clear.

Once the render order issues are resolved, color shading is a matter
of bicubic interpolation [Sun et al. 2007] in the TES.

This is a lot of complexity to match the PDF specification’s patch
rendering order. Certainly if the hardware’s tessellation generator
simply guaranteed an order consistent with the PDF specification,
even at the cost of some less optimal hardware efficiency, rendering
PDF gradient meshes would be much more straightforward.

Another option is detecting via CPU preprocessing of the patch
mesh whether or not actual mesh overlaps are present [Randria-
narivony and Brunnett 2004]. When not present, gradient mesh
rendering could be much more straightforward and efficient. In
practice, we know overlaps are rare in real gradient mesh content.

Coarse Level-of-detail Control Graphics hardware tessellation
has a limited maximum level-of-detail for tessellation. When the
level-of-detail is clamped to a hardware limit for tessellation, tes-
sellation artifacts may arise. We monitor the relative size of tes-
sellated patches such that their maximum level-of-detail does not
grossly exceed the scale of two or three pixels in window space.
If this happens, patches need to be subdivided manually to ensure
the patch mesh avoids objectionable tessellation artifacts. Care is
necessary to maintain a water-tight subdivided patch mesh. This is
done by ensuring exactly matching level-of-detail computations on
mutual edges of adjacent patches.

8 Comparing GPU versus CPU Rendering

Our contributions for GPU-acceleration are best understood in con-
trast with Illustrator’s pre-existing CPU rendering approach. All
but a cursory description of Illustrator’s CPU rendering approach is
beyond the scope of this paper. Illustrator’s CPU rendering closely
follows the PDF standard [Adobe Systems 2008]. AGM’s CPU
renderer relies on a robust, expertly-tuned, but reasonably conven-
tional active edge list algorithm [Foley et al. 1990] for rasterizing
arbitrary paths including Bézier segments [Turner 2007]. Table 1
lists the differences between the CPU and GPU approaches in orga-
nizing the framebuffer storage for rendering. Table 2 lists the ways
rendering is different between the CPU and GPU approaches.

9 Performance

We benchmarked our GPU-accelerated rendering mode against
AGM’s CPU-based renderer on six Illustrator documents pictured
in Figure 10. We selected these scenes for their availability, artistic
content, and complexity. Table 3 quantitatively summarizes each
scene’s complexity. We consider these scenes representative of the
kind of complex artwork we wish to encourage by making its au-
thoring more interactive.

9.1 Benchmarking RGB Artwork

Table 4 presents our benchmarking results for RGB color model
rendering. Our benchmarking method executes a script that zooms
and pans over the content to mimic the kind of fast view changes an

(a) WF BambooScene.ai

(b) archerfish.ai (c) Blue Mirror.ai

(d) whale2.ai

(e) Tropical Reef.ai

(f) bigBlend2.ai

Figure 10: Challenging Illustrator artwork for benchmarking.

146:10 • V. Batra et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 146, Publication Date: August 2015

[Source: Batra 2015]

Stanford CS248A, Winter 2026

Modeling
material properties

[Jakob 2014]

[Wann Jensen 2001]

[Zhao 2013]

Stanford CS248A, Winter 2026

Realistic lighting environments
Wall-E, (Pixar 2008)

Stanford CS248A, Winter 2026

Animation: modeling motion

https://www.youtube.com/watch?v=6G3O60o5U7w

Luxo Jr. (Pixar 1986)

Stanford CS248A, Winter 2026

Course Logistics and Expectations

Stanford CS248A, Winter 2026

About this course
A broad overview of major topics and techniques fundamental to generating and editing
2D/3D scenes, images, and interactive worlds

This year: major changes from previous versions of the course
- Increased focus on representations suitable for visual AI and learning/optimization
- Increased focus on ray tracing as an image generation algorithm
- Discussions of relationship between human-engineered representations/algorithms and

learned representations (e.g., NeRF’s, neural rendering, and “world models”)
- All new programming assignments

This is a learn-by-implementing course
- Focus on implementing fundamental data structures and algorithms
- We expect that you can understand/write/debug code in Python and in C-like languages

(We’ll be using a new GPU programming language called Slang)

Stanford CS248A, Winter 2026

Assignments / grading
(56%) Programming assignments (including a self selected project)
- Done in teams of up to two students (yes, you can work alone if you wish)

(12%) 4 practice exercises (participation only)
- Think of these as possible exam problems
- Done in teams of three. We assign the teams randomly each assignment

(4%) Post-lecture quizzes (participation only)
- Done individually
- Must be submitted by 11:59pm the day following the lecture

(10%) Oral exam
- With the course staff (during week 6)

(18%) Written Exam
- Evening exam (during week 8)

Stanford CS248A, Winter 2026

FAQ
How are CS248A and CS248B related?
- They are explicitly designed to be independent starter courses for the visual computing

track. There is no assumption you’ve taken CS248A before CS248B or vice versa.
- The biggest point of content overlap is the lecture on transforms

Are lectures recorded?
- Yes, since this is an GCOE class

Can I audit the class?
- Yes, email a CA and they’ll add you to Canvas

Stanford CS248A, Winter 2026

FAQ
Is there a final?
- No… the final exam slot is used for our project showcase. Please plan to attend.

Do I need a partner for programming assignments?
- No, each year there are students that choose to do all the programming assignments alone
- Need a partner: we will find one for you, via our partner search form

- What are the prereqs for CS248A?
- You should have the math background: linear algebra (at least MATH 51) and 3D calculus
- You should have the coding background: Python and C-like languages (probably at least CS107)
- CS148 is not a pre-req for CS248A

Stanford CS248A, Winter 2026

Next time, we’ll talk about drawing with more rigor
- What’s up with these “jagged” lines and triangle edges?
- Why does increasing the resolution of the image improve quality?
- What can we do to improve image quality without more pixels?

See you next time!

Slide acknowledgements:
Thanks to Keenan Crane and Ren Ng

