Lecture 11:

Monte Carlo Evaluation of
the Reflection Equation

Interactive Computer Graphics
Stanford C5248A, Winter 2026



Review: irradiance at point X from uniform area source

Assume area light emits radiance L from all directions from all points on surface.

cos 6 cos 6’

E(x) = /H2 Li(z,w) cosfdw = //L P dA’ A’ x\
.3

——— —

Integrate over solid angle Reparameterization: now integrate over light “« ] l
source area, instead of solid angle 6 / %
o w =z —2a
Integral reparameterization: 0
/
cos 0 £
/ # p— —
R e d A ,. W X Xz
x — 2’ =5
X

Radiance leaving light from xin direction w’is the same as radiance arriving at x from w:
Li(x,w)=L,(z',0w) =L
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Review:
Q. How do we estimate the value of these integrals?
(A. Monte Carlo integration)




Review: Monte Carlo integration
m Definite integral /
f

What we seek to estimate

m Random variables

X; is the value of a random sample drawn from e p( )

the distribution p(x) Y _ f( )

Y isalso a random variable.

m Expectation of f E[Y;] = E[f(X;)] :/ f(z)p(r)de

m MCestimator: (assuming samples X ; are drawn from
uniform random sampling of domain) *

’ h— a —
Monte Carlo estimate of / f (:1:) dx isgivenby [ N = E Y;
a N«

* We'll relax this assumption shortly. ,
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Basic Monte Carlo estimator

X; ~ U(a,b) <— Uniform distribution over domain [a,b]
1
b—a

Note: Even though my notation suggests this is integration over 1D domain [a,b], this holds for
Uniform sampling over any integration domain, such as the 2D hemisphere of solid angles on the previous slide. Stanford (52487, Winter 2026

p(r) =



Why this works. ..

N
E[Fy] =E Y,
Unbiased estimator: N =
Expected value of N N
estimator is the integral b ;fa Z ElY;] = b ;fa Z Elf(X;)
we wish to evaluate. i=1 i=1
b—a e [P
=S [ r@)pla)d
i=1"¢ . .
N . Uniform density, so:
1 1
:NZ/ fx)de p(a?‘):b_a
Properties of expectation: i=1 "¢
b
L ‘ ‘ = [ f(x)dx

Note: Even though my notation suggests this is integration over 1D domain [a,b],

this proof holds for any integration domain, such as the 2D hemisphere of directions on the previous slide.
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Direct lighting example: light from an area light source

Light source

Occluder
(blocks light)

Ground receives
shadow
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Monte Carlo integration applied to illumination (hemisphere sampling)

We want to estimate this integral

E(r) = /H , Li(z,w) cosf duw (total incident irradiance at surface point x)

Lf,;(x,w)

4

Monte Carlo estimator:

1 We sample directions (aka rays) uniformly from
X i " p(LU) — — < the hemisphere of directions
T (a ray direction is a random variable)

Y = f(Xi)

V.= L.(r.w:)cosB. I For each ray we compute the incident
¢ 7’( ’ 7’) ¢ differential irradiance.

N
FN — 2_7T E Y; §———— Weaverage all these samples, and scale
N “ . by the size of the domain we are
7=

Then the expected value of the — |
sampling from.
result is the value of the integral. (The hemisphere has 21 steradians)
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle
F(x) = / L(x,w) cosfdw
H?2

Given surface point X A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; (fronx uniform distribution over hemisphere) *
Compute incoming radiance arriving L; at p from direction: (v,
Compute incidentirradiance duetoray: dF;, — L;cos 0,

2 . :
Accumulate NﬂdEi into estimator

* We will relax the uniform probability restriction soon... Stanford (5248A, Winter 2026



Direct lighting: hemisphere sampling

Incident lighting estimator uses random directions
when computing incident lighting for different points.
Some of those directions hit the light (and contribute
illumination, some do not)

(The estimator is a random variable!)

16 light samples
Uniformly sampled from hemisphere)
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Back to the Monte Carlo
Integration story...
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Now let’s reparameterize the integral as integration over the light

cosfcost | We want to estimate this integral
L (33) — /H , L; (:E,w) cos 0 dw = / / L ‘ T x,|2 dA (total incident irradiance at surface point x)

Monte Carlo estimator:

) 1 We sample points on the light source uniformly
X i " p(QZ ) = <€— with respect to area (a point on the lightis a
A random variable)
Y; = f(X5)
/ o o o o
cos 6 cos 6 We compute the incident differential
Y, =L <4— irradiance from the sampled point on
| T — aj‘/ ‘ 2 the light to surface point x.
y N
Then the expected value of the —— v = — Y, €————— Weaverageall these samples, and
. . N - scale by the size of the domain we are
result is the value of the integral. v=1 sampling from. (The light has area &)

* Assume area light emits radiance L from all directions from all points on surface. Stanford CS248A. Winter 2026



Direct lighting estimate (area sampling light with area A’)

Given surface point x
For each sample i of N samples:

Generate random point x’ on area light, compute direction fromxtox’: w;

/
Compute incident irradiance due to ray fromx’toxas dE; = L= b cos

/ ‘fB—x/P

Accumulate % dF,; intoestimator

Stanford (S248A, Winter 2026



Direct lighting: area sampling

16 light samples (16 shadow rays)

Wait... how do we compute the shadows in this photo?
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Shadowed light area sampling

Note new: visibility term:

V(x.x') 0 blocked
x? x = e o
1 wvisible

Monte Carlo estimator:
Scene occluder l N ( / ) 1

/
E(x) = / Ve o)L S0

x — x|

A/
w — T —x
6 Y, = f(X;)
i / ' cos 0 cos 0’
FNW =T —X Y, =V(x,2")L
7 r — x|
[=>) N
X A’
Fn = N 3 Y,

* Assume area light emits radiance L from all directions from all points on surface. Stanford CS248A. Winter 2026



Direct lighting estimate (area sampling light with area A’)

Given surface point x
For each of N samples:
Generate random point x’ on area light, compute direction fromxtox’: w;

cos 6, cos b,

Compute incident irradiance due toray fromx’'toxas dre; = L,(2/, —w;)V (z, ')

x — 2/ |?

/
Accumulate % dFE; into estimator I

How do you evaluate V()?
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How to compute if point is visible from another point?

How to evaluate V' (x, x) using ray tracing:

1. Trace ray from x toward x’
2. See if there is any hit with scene geometry closer to x than T — ' |
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Shadowed direct lighting estimate (area sampling light with area A')

Given surface point x
For each sample j of N samples:

Generate random point x’ on area light, compute direction fromxtox’: w;

cos 6 cos O’

Compute incident irradiance due toray fromx’toxas dE; = L ‘ E
L — X

Trace shadow ray from x in direction w; .
A/
If shadow ray does not hit geometry before x;, accumulate N dE; into estimator
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Random sampling introduces noise

Incident lighting estimator uses different
random directions when computing inciden
lighting for different points. Some of those
directions are occluded, some are not!

(The estimator is a random variable!)
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Random sampling introduces noise

Always sample light center Random area sampling

1 shadow ray per eye ray
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Quality improves with more samples (more shadow rays)

Uniform area sampling, 1 shadow ray Uniform area sampling, 16 shadow rays
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Why is area sampling better than hemisphere sampling?

Uniform hemisphere sampling Uniform area sampling
16 shadow rays 16 shadow rays
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Variance

m Definition / Variance is expected squared deviation from mean
VIY]=E[(Y - E[Y])"]
= EB[Y?] — E[Y]

m Variance decreases linearly with number of samples

VI 20| = VI = N VY] = VY

Properties of variance:

A ] N
V> Y| => VY]
L 1=1 i 1=1

ViaeY] =a* VI]Y]

Stanford (5248A, Winter 2026



Samples vs. error

256 1024
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“Biasing” sample selection

m  We previously used a uniform probability distribution to generate samples in our estimator
m Example 1: uniform over directions, Example 2: uniform over light surface area

m ldea: change the distribution—bias the selection of samples

m However, for estimator to remain unbiased, must change the estimator to:

m Note: “biasing” selection of random samples is different than creating a biased estimator

- Biased estimator: expected value of estimator does not equal integral it is designed to
estimate (not good!)
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General unbiased Monte Carlo estimator

L f(X) ] [
N;p(Xi)} —/a Jloyde

E[Fy] =FE

X; ~ p(x)

Consider the special case where X is drawn from uniform distribution:

b— a —
N = N Zf(Xz) 1
i=1
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Biased sample selection, but unbiased estimator...

E[Fy] =F

1 o [
=7 r)dx
Properties of expectation: N Z /a /()

E Y | ' :/abf(a:)dx

Note: Even though my notation suggests this is integration over 1D domain [a,b],
this proof holds for any integration domain, such as the 2D hemisphere of directions on the previous slide.
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Importance sampling

Idea: bias selection of samples towards parts of domain where function we are integrating is

large (“the most useful samples”)

Draw samples according to magnitude of f(x)

ﬁ ($ ) — Cf (.CU ) <—— Normalization to make a pdf

1
[ f(z)dx

C —

o S
F=

Recall definition of variance

VIf1=ELf"1-E°[f]

<4— (seneralized MC estimator

Bl = | % p(z) de

/ @) QCf(aﬁ)dx

flz)_
/ ) dx
/ r)dx

Zero variance!

~o

VIfl = E[f?] -
What's the gotcha??

E?[f] =

0

/|
/]

| p(x) dx_

cp(z)dx

1 2
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Effect of sampling distribution “Fit”

f(x)
' P2(x)

p1(x)

What is the behavior of f(x)/p1(x)? f(x)/p2(x)?
How does this impact the variance of the estimator?
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Texture(u,v) defines incoming radiance from a direction:
L(w) = L(¢,0)




A

AOOC
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Consider this environmen

HDRI Haven: Quattro Canti Stanford CS248A, Winter 2026




Real world lighting: large differences in incoming radiance

sl
- Rk ~eal &

1" . - -
B
¥ b - 5.
- .i > - - e "‘.'3 — - =
- -

~0.1

HDRI Haven: Quattro Canti
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Importance sampling environment map lights

|ldea: sampling incident lighting directions proportional to luminance
(prioritize directions that contribute the most)

-
a—
—

Luminance map

HDRI Haven: Quattro Canti Stanford CS248A, Winter 2026



Sky environment map with a bright sun

_

Most of the incoming light comes from this direction.
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Uniform vs. importance sampling the environment light

256 1024

Uniform
sampling

Importance
sampling
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Comparing different techniques

m Variance in an estimator manifests as noise in rendered images

m Estimator efficiency measure:
1

Variance x Cost

Efficiency o<

m [f one integration technique has twice the variance as another, then it takes twice as
many samples to achieve the same variance

m [f one technique has twice the cost of another technique with the same variance, then it
takes twice as much time to achieve the same variance
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Putting it all together: reflectance due to direct lighting

Estimating reflectance off surface point x in direction w,, due to incident illumination from

multiple area light sources v s
Tn
Given surface point x Radiance from light / é ~
Sum over lights \A\K‘ /> /
For each area light /: , cosfcosl
g LO(ZU,(U) — Z/A’ f(Xawiawo)L(l)(Xax)V(X7X) ‘X_X/‘Q dA
: . z z
For each sample i of N samples: iE,

Generate random point x’ on light | according to »() for light, compute direction from x to x": (;

Evaluate BRDF f (X, w;, w,)
Compute incident irradiance due to ray fromx’tox:as dF;

Trace shadow ray from x in direction Wq,
. 1 _f(X, wi,wo) dEZ- . .
If shadow ray does not hit geometry before x; accumulate % into estimator

Cost???
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M Ilght sources

Pixar, Coco
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[Bitterli et al. 2020]



Multiple light sources

N
m Now we need a Monte Carlo estimate for a finite sum of terms 2 _ /i (not an integral)
1=1

m Define a discrete probability over terms) p;

Zpizl

m Draw /Vsamples j ~ p;

m Estimator:

1 iy
N2
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Multiple light sources

m Consider drawing a single sample:

) DraW one Sample ] ~ D Choose a Ilght Incoming radiance from light
- Compute /; \

1 fj — f(X7 Wi, wo) Li(j) (UJj) COS 91 dwi
- Estimator: f;/p;

m Expected value:

L 12 232531%5?1=:§£:f}

Py _

m What's a good discrete distribution p; for choosing lights? (uniform?)
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Putting it all together: reflectance due to direct lighting

Estimating reflectance off surface point x in direction w,, due to incident illumination from
multiple area light sources o

A} "
@ | /O

Given surface pointyx... Radiance from light /
. Sum over only the sampled IlghtN@‘D

For all K chosen lights: 0 cos 0
Z fxwz,wo)L(l)( )V (x, %)l 227 g A

x — x|

dl;

Select area light / with probability P!

For each sample j of N samples:

Generate random point x’ on light | according to () for light, compute direction fromxtox’: W;

Evaluate BRDF [ (X, w;, Wo )
Compute incident irradiance due to ray from x’ to x: as d F;

Trace shadow ray from x in direction ;.

: I iy Wo)dE; | . :
If shadow ray does not hit geometry before x;, accumulate —— f(x, Wi, wo) into estimator

KN | prp(x’)

Stanford (5248A, Winter 2026



Zero day scene (beeple@)

Very large number of lights

. S
(f

= '.-°:'.: ‘
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Uniform sampling (16 spp)

Choosing 16 lights (K=16, uniform probability across lights), tracing one ray to random point on each light (N=1)

R v

Rl i LT

'_-'_':I "
FLEXEY

p=la
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Importance sampling: sampling lights proportional to light power (16 spp)

Choosing 16 lights (K=16, light probability proportional to its power), tracing one ray to random point on each light (N=1)
(12 4x Iower mean squared error than uniform samplmg)
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Summary: Monte Carlo integration

m Monte Carlo estimator

- Estimate integral by evaluating function at random sample points in domain
] n _ .
1 f(X5) /
FElFn| =F | — E = f(x)dax
[ ] N i—1 p(XZ) a ( )

m The function (the estimator) is cor_nput;d by a réy tracer!

m Useful in rendering due to estimate high dimension integrals
- Faster convergence in estimating high dimensional integrals than non-randomized methods
- Butit'sstill slow...
- Suffers from noise due to variance in estimate (need many samples to produce good quality images)

® [mportance sampling

- Reduce variance by biasing choice of samples to regions of domain where value of function is large
= Intuition: pick samples that will “contribute most” to estimate
- Intelligent sampling matters A LOT!
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But wait.... We know how to numerically estimate the o
reflection equation, but that depends on Z; (p, w,) Voo fa e

Reflection equation in terms of integration over solid angles: / C/> /

Lo(p,wo) = fr(p,wi = wo) Li(p, w;) cos b dw;
H2

Monte Carlo estimate via sampling solid angle according to the PDF: p(w)
We talked about how get this radiance

. . from a light source in the scene, or
Sample‘ w] ~ P (w) / from an environment map

N
| 1 (P, w;j — wo | Li(p, w;)|cos b,
Estimate: N g_

p(w;



Henr

Image cred



To compute realistically lit images,
we have to account for many bounds of light in a scene.
(Next time...)
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