
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2026

Lecture 7:

The Rasterization Pipeline 
(and its implementation on GPUs)
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Review: raycasting to compute visibility

You know how to test ray-scene visibility by 
generating “camera” rays and intersecting them 
with scene triangles 

- visible triangle = triangle with closest hit

o

d
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Review: determining the location of the hit point (in the domain of the surface)

You know how to turn the 3D point of 
intersection into a point in the parametric 
domain of the surface

o

d

(x0,y0,z0,u0,v0)

(x1,y1,z1,u1,v1)

(x2,y2,z2,u2,v2)

(x,y,z,u,v)

<latexit sha1_base64="QOsx92o9UsSrsT6tg9Q+s+PyIMc="></latexit>

x = x0 + ω(x1 → x0) + ε(x2 → x0)

= (1→ ϑ→ ω)x0 + ω(x1 → x0) + ε(x2 → x0)

= ϑx0 + ωx1 + εx2
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Review
And so we have a mapping between 2D screen sample points … to 3D points on the surface 
… to the 2D parametric domain of the surface.

u

v
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Review: texture mapping
A texture is a function that defines a value 
(e.g., a surface color) at every point on a 
surface: 
- texture(u,v) 

When drawing a surface, was sample the 
screen’s 2D domain (x,y) 

Each sample (x,y) corresponds to a hit point on 
a triangle, which corresponds to a point (u,v) 
on the hit surface. We color the sample 
according to texture(u,v) 

So we are sampling the texture function 
uniformly in screen (x,y)… but potentially 
non-uniformly in texture space (u,v) u

v
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Review: potential for aliasing
Depending on the position/orientation of the camera and surface, the texture function 
might be under sampled or oversampled
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Consider this texture map, applied to a plane
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Review: texture magnification (using nearest neighbor filtering)

Texture space (u,v)

Red dots = location of 
screen samples in texture space

In this slide, we’re heavily zoomed into the plane.
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Review: texture minification
Now image the surface with the Josephine texture map is very far away from the camera

Texture space (u,v)

Red dots = location of 
screen samples in texture space

If texture(u,v) has high frequency content, then 
aliasing could occur.  (And in this case it does have 
very high frequency content — see detail in cat fur)
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Review: key idea - mip mapping
Remove high frequencies from the texture map prior to sampling  
But since plane can be viewed from many different distances in an interactive graphics 
application, we precompute many different amounts of filtering

Average of all pixels

Original image  
(Full res)

Dynamically choose which image to sample from 
based on change in u and v across adjacent screen 
samples 

In a raytracer, du/dx, du/dy, dv/dx, dv/dy can be 
computed using “ray differentials” which you’ll 
learn about in assignment 2.
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Review: a sample in a mip-map level is a precomputed average over a 
square region of texture(u,v)… but in practice we seek to filter over 
non-isotropic regions of texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic
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Example: mipmap limitations

Point samplingSupersampling: 512 texture samples per pixel 
(desired answer)
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Example: mipmap limitations

Point samplingMipmap trilinear sampling 

Overblurs  
Why?
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Proper texture filtering requires anisotropic filter footprint

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25 L

Trilinear (Isotropic) 
Filtering

Anisotropic Filtering

Overblurring in u 
direction

Texture space: viewed from 
camera with perspective

(Modern anisotropic texture filtering 
solutions combine multiple mip map samples 
to approximate integral of texture value over 
arbitrary texture space regions)
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Today’s topic: the rasterization pipeline
Your homework assignments in this class, you implement raytracing based 
rendering that simulates image formation by a pinhole camera 

But we’ve seen how rasterization is an alternative way to perform the same 
calculation 

Rasterization has long been used by most interactive graphics systems due to its 
high efficiency, and amenability to acceleration via customized hardware that’s 
been present in GPUs for decades 
- And has long be supported by graphics APIs like OpenGL, Direct3D, and Vulkan 

So today we’re going to focus on the details of the rasterization pipeline and how 
its implemented by modern GPUs 
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What you know how to do (at this point in the course)
Position objects and the camera in the world

z
x

y
z

x

y

Determine the position of 
objects relative to the camera 

Project objects onto 
the screen

(0, 0)

(w, h)

Sample triangle coverage Compute triangle attribute 
values at covered sample points 

(Color, texture coords, depth)

Sample texture maps
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One more detail on perspective projection
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Basic perspective projection

Lecture 3 Math

x

f(x)

Pinhole 
Camera 

(0,0)

1

Assumption: 
Pinhole camera at (0,0) looking down z

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|
f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = R
T
uvwRz,✓Ruvw

Complex:

z = a+ bi

i
2 = �1

(a+ bi)(c+ di) = (ac� bd) + (bc+ ad)i

iz = i(a+ bi) = �b+ ai

i(iz) = �a� bi = �z

R✓ = e
i✓ = cos ✓ + i sin ✓

Q = (qv,qw) = iqx + jqy + kqz + qw

Projection:

px = xx/xz

py = xy/xz

4

Projection:

px = xx/xz

py = xy/xz

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤

5

Projection:

p2D =
⇥
xx/xz xy/xz

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

5

Input point in 3D-H:

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T
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View frustum

Pinhole 
Camera 

(0,0)

z

x

y

-znear

-zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

View frustum is the region of space the camera can see:

• Top/bottom/left/right planes correspond to sides of screen 
• Near/far planes correspond to closest/furthest thing we want to draw
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Mapping frustum to normalized cube

z

x

y

-znear
-zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1,1,1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Before moving to 2D, map corners of view frustum to corners of cube:

Why do we map frustum to unit cube? 
1. Makes clipping much easier! (see next slide) 

- Can quickly discard geometry outside range [-1,1] 
2. Represent all vertices in normalized cube in fixed point math

View frustum corresponding to pinhole camera 
(perspective projection transform transforms this volume to normalized cube)
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Clipping
“Clipping” is the process of eliminating triangles that aren’t visible from the camera (they outside the view frustum) 
- Don’t waste time computing the appearance of primitives the camera can’t see! 
- Sample-in-triangle tests are expensive (“fine granularity” visibility) 
- Makes more sense to toss out entire primitives (“coarse granularity”) 
- Must deal with primitives that are partially clipped…

from: https://paroj.github.io/gltut/
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Clipping in normalized device coordinates (NDC)
Discard triangles that lie complete outside the normalized cube (culling) 
- They are off screen, don’t bother processing them further 

Clip triangles that extend beyond the cube… to the sides of the cube 
- Note: clipping may create more triangles 

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping
* These figures are correct: normalized device coordinates for OpenGL (a popular graphics API) is left-handed coordinate space
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Matrix for perspective transform

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Takes into account geometry of view frustum:

left (l), right (r), top (t), bottom (b), near (n), far (f) 

(matrix at left is perspective projection for frustum 
that is symmetric about x,y axes: l=-r, t=-b)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

-znear

-zfar

z

x

y
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Transformations: from objects to the screen

original description 
of objects

[WORLD COORDINATES]

vertex positions now expressed relative to 
camera; camera is sitting at origin looking 

down -z direction 
(Canonical frame of reference allows for 

use of canonical projection matrix)

z
x

y

[VIEW COORDINATES]

everything visible to the 
camera is mapped to unit 

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

objects now in 
2D screen coordinates

[WINDOW COORDINATES]

primitives are now 2D 
and can be drawn via 

rasterization

(Also called “normalized 
device coordinates”)

projection 
transform

view 
transform

screen 
transform
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Triangle visibility problem... in a rasterizer

Question 1: what samples does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to the 
camera in each sample? (“occlusion”)

Sample
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Occlusion using the Depth Buffer
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Occlusion: which triangle is visible at each covered 
sample point? 

Opaque Triangles 50% transparent triangles
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Depth buffer (aka “Z buffer”)

Depth buffer: 
(stores depth per sample) 

Stores depth of closest surface drawn so far 
black = close depth 
white = far depth

Color buffer: 
(stores color per sample… e.g., RGB)



Stanford CS248A, Winter 2026

Depth buffer (a better look)

Color buffer (stores color measurement per sample, eg., RGB value per sample)
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Depth buffer (a better look)

Corresponding depth buffer after rendering all triangles (stores closest scene depth per sample)

Visualization: the darker the pixel, the 
shorter the distance to the closest object
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Occlusion using the depth-buffer (“Z-buffer”)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, the depth-buffer stores depth of closest 
triangle at this sample point that has been processed by the renderer so far.

Black = small distance
White = large distance

Grayscale value of sample point 
used to indicate distance

Initial state of depth buffer before 
rendering any triangles 
(all samples store “farthest” distance)
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How do we compute the triangle’s depth 
at a screen sample point (x,y)?
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A = (x0, y0, z0, r0, g0, b0, u0, v0)

B = (x1, y1, z1, r1, g1, b1, u1, v1)

C = (x2, y2, z2, r2, g2, b2, u2, v2)

x

Recall linear interpolation of values (defined at vertices)

Here, I’m interpolating the position 
(x,y,z), color (r,g,b), and texture 
coordinate values (u,v)

Vertex is green, so (r2,g2,b2) = (0,1,0)

Vertex is red, so (r1,g1,b1) = (1,0,0)

Vertex is black, so (r0,g0,b0) = (0,0,0)
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Not so fast… perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices. 
But due to perspective projection, barycentric interpolation of values on a triangle with vertices of different depths in 
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with attribute value (A0 + A1) / 2 is 
not halfway between the 2D screen points proj(P0) and proj(P1). 

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) +  proj(P1)) / 2 is not (A0 + A1) / 2. 

Pmid
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Perspective correct interpolation on a projected triangle 
(in 2D)

Given: 
- Some value fi at each of a 3D triangle’s vertices, that is linearly interpolated across the 

triangle in 3D  
- The 2D screen coordinates Pi=(xi,yi) of each of a triangle’s vertices after projection  
- The homogenous coordinate wi for each vertex 

Compute: 
- The value of f(x,y) for the projected triangle at a given 2D screen space location (x,y)



Attribute’s value at 3D point on triangle                                        is given by:
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Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume a triangle attribute varies linearly across the triangle (in 3D)

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to 
move to 2D-H

point P in 3D-HSimple perspective 
projection matrix * 

projection of P 
in 2D-H

So …           is affine function of 2D screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective projection 
matrix only changes the coefficient in front of x2d and y2d . 
(property that f/w is affine still holds)

perspective projection 
of P in 3D-H
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Direct evaluation of surface attributes from 2D-H vertices
For any surface attribute (with value defined at triangle vertices as:                     )

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per-triangle “setup” computation prior to sampling.

value of attribute at vertex a

projected 2D position of 
vertex a 

w coordinate of vertex a after 
perspective projection transform

x
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Efficient perspective-correct interpolation
Setup: 

Given fa, fb, fc and wa, wb, wc … compute A, B, C  for f/w(x,y) = Ax + By + C 
Also compute equation for 1/w(x,y)  

To evaluate surface attribute f(x,y) at every covered sample (x,y): 

Evaluate 1/w (x,y)                                                       (from precomputed equation for value 1/w) 
Reciprocate 1/w (x,y) to get w(x,y) 
For each triangle attribute: 

 Evaluate f/w (x,y)                                              (from precomputed equation for value  f/w) 
 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute  f  that varies linearly across triangle:  e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation”
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How do we compute a triangle’s depth at a screen (x,y)?
Assume we have a triangle defined by the screen-space 2D position and distance (“depth”) from the camera 
of each vertex.    

How do we compute the depth of the triangle at covered sample point              ?

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤
, d0

⇥
p1x p1y

⇤
, d1

⇥
p2x p2y

⇤
, d2

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Interpolate it just like any other attribute that varies linearly over the surface of the triangle.

<latexit sha1_base64="WD5nId82gtbpiCsxP2l1qke+DXE=">AAACNHicbZDLSsNAFIYn9VbrLerSzWARXEhJilSXRTeCmwr2Ak0Jk8lpO3RyYWZiKaEP5cYHcSOCC0Xc+gxO2i608cDAz/+dw5nzezFnUlnWq1FYWV1b3yhulra2d3b3zP2DlowSQaFJIx6JjkckcBZCUzHFoRMLIIHHoe2NrjPefgAhWRTeq0kMvYAMQtZnlChtuebt2LXOsDOUMaGQ2hBMse9a2HFKY9fOAXsOqjlQzYBrlq2KNSucF/ZClNGiGq757PgRTQIIFeVEyq5txaqXEqEY5TAtOYkEvWVEBtDVMiQByF46O3qKT7Tj434k9AsVnrm/J1ISSDkJPN0ZEDWUyywz/2PdRPUveykL40RBSOeL+gnHKsJZgthnAqjiEy0IFUz/FdMhEYQqnXMWgr18cl60qhW7VqndnZfrV4s4iugIHaNTZKMLVEc3qIGaiKJH9ILe0YfxZLwZn8bXvLVgLGYO0Z8yvn8AvuKn4A==</latexit>

w0, d0

w1, d1

w2, d2
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Example: rendering three opaque triangles
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Depth buffer contents

Processing yellow triangle: 
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Red = samples that pass depth test

Occlusion using the depth-buffer (Z-buffer)
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Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

Processing blue triangle: 
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

After processing blue triangle: 

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

Processing red triangle: 
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Depth buffer contents

After processing red triangle: 

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point 
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test
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Occlusion using the depth buffer (opaque surfaces)
bool pass_depth_test(d1, d2) { 
   return d1 < d2;    
}  

depth_test(tri_d, tri_color, x, y) { 

  if (pass_depth_test(tri_d, depth_buffer[x][y]) { 

    // if triangle is closest object seen so far at this 
    // sample point. Update depth and color buffers.   

    depth_buffer[x][y] = tri_d;   // update depth_buffer 
    color[x][y] = tri_color;      // update color buffer 
  } 
} 
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Does depth-buffer algorithm handle interpenetrating surfaces?
Of course! 
Occlusion test is based on depth of triangles at a given sample point.  The relative depth of 
triangles may be different at different sample points.

Green triangle in front of 
yellow triangle

Yellow triangle in front of 
green triangle
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Does depth-buffer algorithm handle interpenetrating surfaces?
Of course! 
Occlusion test is based on depth of triangles at a given sample point.  The relative depth of 
triangles may be different at different sample points.

Now only showing 
colored samples:



Stanford CS248A, Winter 2026

Does depth buffer work with super sampling? 
Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle



Stanford CS248A, Winter 2026

Color buffer contents
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Color buffer contents (4 samples per pixel)
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Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.
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Summary: occlusion using a depth buffer
Store one depth value per coverage sample (not per pixel!) 

Constant space per sample 
- Implication: constant space for depth buffer 

Constant time occlusion test per covered sample 
- Read-modify write of depth buffer if “pass” depth test 
- Just a depth buffer read if “fail”  

Not specific to triangles: only requires that surface depth can be evaluated at a screen sample 
point

But what about semi-transparent surfaces?
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Compositing
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Representing opacity as alpha
Alpha describes the opacity of an object 

- Fully opaque surface:  α = 1 
- 50% transparent surface: α = 0.5 
- Fully transparent surface:  α = 0

α = 1 α =0α = 0.75 α = 0.5 α = 0.25

Red triangle with decreasing opacity
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Alpha: coverage analogy
Can think of alpha as describing the opacity of a semi-transparent surface 
Or… as partial coverage by fully opaque object  
- consider a screen door

α = 0.5

(Squint at this slide and the scene on the left and the right will appear similar)
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Alpha: additional channel of image (rgba)
Alpha describes the opacity of an object 

- Fully opaque surface:  α = 1 
- 50% transparent surface: α = 0.5 
- Fully transparent surface:  α = 0

α of foreground object  
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Over operator:
Composite image B with opacity αB over image A with opacity αA

B over A

B A
B

A
A over B

A over B  !=  B over A 
“Over” is not commutative

Koala over NYC
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Over operator: non-premultiplied alpha
Composite image B with opacity αB over image A with opacity αA 
First attempt: (represent colors as 3-vectors, alpha separately)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Appearance of 
semi-transparent B

B over A

B A

B A

A over BWhat B lets through

Appearance of semi-
transparent A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

A over B  !=  B over A

Composited color:

“Over” is not commutativeComposite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A
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Premultiplied alpha representation
Represent (potentially transparent) color as a 4-vector where RGB values have been 
premultiplied by alpha

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Example: 50% opaque red  
[0.5, 0.0, 0.0, 0.5]

Example: 75% opaque magenta  
[0.75, 0.0, 0.75, 0.75]
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Over operator: using premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

B over A

B A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A
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⇥
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⇥
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⇥
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⇥
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⇥
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C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab
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⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A
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⇥
↵AAr ↵AAg ↵AAb ↵A
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⇥
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⇤T

Non-premultiplied alpha representation:

Premultiplied alpha representation:

Composite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
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C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

one multiply, one add

two multiplies, one add 
(referring to vector ops on colors)

Notice premultiplied alpha composites alpha 
just like how it composites rgb.

C 0 = B0 + (1� ↵B)A
0
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Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing
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No fringing
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Fringing (…why does this happen?)



Stanford CS248A, Winter 2026

A problem with non-premultiplied alpha
Suppose we upsample an image w/ an alpha mask, then composite it onto a background 
How should we compute the interpolated color/alpha values? 
If we interpolate color and alpha separately, then blend using the non-premultiplied “over” operator, here’s 
what happens:

original 
color

original 
alpha

upsampled 
color

upsampled 
alpha

composited onto 
yellow background

Notice black “fringe” that occurs because we’re blending, e.g., 
50% blue pixels using 50% alpha, rather than, 100% blue pixels 
with 50% alpha.
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Eliminating fringe w/ premultiplied “over”
If we instead use  the premultiplied “over” operation, we get the correct alpha:

upsampled color

+ =

(1-alpha)*background composite image 
w/ no fringe

background(1-alpha)
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Another problem with non-premultiplied alpha
Consider pre-filtering a texture with an alpha matte

Desired filtered result

input color

input α 

filtered result 
(composited over white)

filtered color

filtered α 

Downsampling non-premultiplied alpha 
image results in 50% opaque brown 
(incorrect!)

Result of filtering premultiplied 
alpha image (correct!)

0.25 * ((0, 1, 0, 1) + (0, 1, 0, 1) + (0, 0, 0, 0) + (0, 0, 0, 0)) = (0, 0.5, 0, 0.5)  

α
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Common use of textures with alpha: foliage

[Image credit: SpeedTree Cinema 8]



Stanford CS248A, Winter 2026

Foliage example

[Image credit: SpeedTree Cinema 8]
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Another problem: applying “over” repeatedly
Consider composite image C with opacity αC  over B with opacity αB over image A with opacity αA

Lecture 5 Math
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w
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⇤T
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C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
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⇤T

B =
⇥
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⇥
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⇥
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↵C = ↵B + (1� ↵B)↵A

Consider first step of of compositing 50% red over 50% red:

C over B over A

B A

C
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Wait… this result is the premultiplied color! 
So “over” for non-premultiplied alpha takes non-premultiplied colors to 
premultiplied colors (“over” operation is not closed) 

Cannot compose “over” operations on non-premultiplied values: 
 over(C, over(B, A))

Lecture 5 Math
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↵C = 0.75

There is a closed form for non-premultiplied alpha:
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Summary: advantages of premultiplied alpha
Simple: compositing operation treats all channels (rgb and a) the same 
Closed under composition 
Better representation for filtering textures with alpha channel 
More efficient than non-premultiplied representation: “over” requires fewer math ops
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Color buffer update: semi-transparent surfaces 

over(c1, c2) { 
   return c1 + (1-c1.a) * c2;    
}  
  
update_color_buffer(tri_z, tri_color, x, y) { 
   // Note: no depth check, no depth buffer update 
   color[x][y] = over(tri_color, color[x][y]); 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order? 
Modify code:   over(color[x][y], tri_color)
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Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion 

If pass depth test, triangle overwrites value in color buffer at sample
Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. 

If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. 
More on this later in the course, and in CS348B
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Combining opaque and semi-transparent triangles

// phase 1: render opaque surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 
   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
      color[x][y] = tri_color; 
      zbuffer[x][y] = tri_z; 
   } 
} 

// phase 2: render semi-transparent surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 

   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
       // Note: no depth buffer update 
       color[x][y] = over(tri_color, color[x][y]); 
  } 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha
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End-to-end rasterization pipeline 
(“real-time graphics pipeline”)
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Command: draw these triangles!

list_of_positions = { 

    v0x, v0y, v0z,  
    v1x, v1y, v1z, 
    v2x, v2y, v2z, 
    v3x, v3y, v3z, 
    v4x, v4y, v4z, 
    v5x, v5y, v5z   }; 

list_of_texcoords = { 

    v0u, v0v,  
    v1u, v1v, 
    v2u, v2v, 
    v3u, v3v, 
    v4u, v4v, 
    v5u, v5v   }; 

Texture map

Size of output image  (W, H)

Object-to-camera-space transform:

Lecture 5 Math
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T = P

Perspective projection transform

Lecture 5 Math
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A =
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⇥
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⇥
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⇥
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C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Use depth test /update depth buffer: YES!

Inputs:
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Step 1:
Transform triangle vertices into camera space 
(apply modeling and camera transform)

z

x

y
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Step 2:
Apply perspective projection transform to transform triangle vertices 
into normalized coordinate space

Pinhole 
Camera 

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect
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x2D =
⇥
xx/�xz xy/�xz

⇤T
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2

x2D =
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xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)
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2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions

Note: I’m illustrating normalized 3D space after the homogeneous divide, it is 
more accurate to think of this volume in 3D-H space as defined by: 
 (-w, -w, -w, w) and (w, w, w, w)
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Step 3: clipping
Discard triangles that lie complete outside the unit cube (culling) 
- They are off screen, don’t bother processing them further 
Clip triangles that extend beyond the unit cube to the cube 
- Note: clipping may create more triangles 

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)
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tan(✓/2)
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Step 4: transform to screen coordinates
Transform vertex xy positions from normalized coordinates into screen coordinates 
(based on screen w,h)

(0, 0)

(w, h)
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Step 5: setup triangle (triangle preprocessing)
Compute triangle edge equations (implicit equations for inside/outside tests) 

Compute triangle attribute interpolation equations
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Evaluate attributes z, u, v at all covered samples
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Step 6: sample coverage
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Step 6: compute triangle color at sample point
e.g., sample texture map *

u

vu(x,y), v(x,y)

* So far, we’ve only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a 
texture map.  Later in the course, we’ll discuss more advanced algorithms for computing its color based on material 
properties and scene lighting conditions.
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Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)
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Review: occlusion using the depth buffer (opaque surfaces)

bool pass_depth_test(d1, d2) { 
   return d1 < d2;    
}  

depth_test(tri_d, tri_color, x, y) { 

  if (pass_depth_test(tri_d, depth_buffer[x][y]) { 

    // if triangle is closest object seen so far at this 
    // sample point. Update depth and color buffers.   

    depth_buffer[x][y] = tri_d;   // update depth_buffer 
    color[x][y] = tri_color;      // update color buffer 
  } 
} 



Stanford CS248A, Winter 2026

Step 8: update color buffer (if depth test passed)
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Step 9:
▪ Repeat steps 1-8 for all triangles in the scene!
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One reminder about transparent surfaces
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Color buffer update: semi-transparent surfaces 

over(c1, c2) { 
   return c1 + (1-c1.a) * c2;    
}  
  
update_color_buffer(tri_z, tri_color, x, y) { 
   // Note: no depth check, no depth buffer update 
   color[x][y] = over(tri_color, color[x][y]); 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order? 
Modify code:   over(color[x][y], tri_color)
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Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion 

If pass depth test, triangle overwrites value in color buffer at sample
Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. 

If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More on this in a few weeks.
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Combining opaque and semi-transparent triangles

// phase 1: render opaque surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 
   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
      color[x][y] = tri_color; 
      zbuffer[x][y] = tri_z; 
   } 
} 

// phase 2: render semi-transparent surfaces 
update_color_buffer(tri_z, tri_color, x, y) { 

   if (pass_depth_test(tri_z, zbuffer[x][y]) { 
       // Note: no depth buffer update 
       color[x][y] = over(tri_color, color[x][y]); 
  } 
}

Assume: color buffer values and tri_color are represented with premultiplied alpha
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Real time graphics APIs
OpenGL 
Microsoft Direct3D 
Apple Metal 

You now know a lot about the algorithms implemented underneath these APIs: drawing 
3D triangles (key transformations and rasterization), texture mapping, anti-aliasing via 
supersampling, etc. 

Internet is full of useful tutorials on how to program using these APIs
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OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized 
coordinate space 

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space1

2

3
4

Structures rendering computation as a series of operations on vertices, primitives, fragments, and screen samples
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OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Pipeline inputs: 
- Input vertex data 
- Parameters needed to compute position on vertices 

in normalized coordinates (e.g., transform matrices) 
- Parameters needed to compute color of fragments 

(e.g., textures)

Input vertices in 3D space1

2

3
4

transform matrices

textures

- “Shader” programs that define behavior of vertex 
and fragment stages

* Several stages of the modern OpenGL pipeline are omitted



Stanford CS248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

* Several stages of the modern OpenGL pipeline are omitted
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Shader programs
Define behavior of vertex processing and fragment processing stages 
Describe operation on a single vertex (or single fragment)

uniform sampler2D myTexture; 
uniform vec3 lightDir; 
varying vec2 uv; 
varying vec3 norm; 

void diffuseShader() 
{ 
  vec3 kd; 
  kd = texture2d(myTexture, uv); 
  kd *= clamp(dot(-lightDir, norm), 0.0, 1.0); 
  gl_FragColor = vec4(kd, 1.0);    
} 

Example GLSL fragment shader program

Sample surface albedo 
(reflectance color) from texture

Modulate surface albedo by incident 
irradiance (incoming light)

Shader outputs surface color

Per-fragment attributes 
(interpolated by rasterizer)

Shader function executes once per fragment. 

Outputs color of surface at sample point 
corresponding to fragment. 
(this shader performs a texture lookup to obtain the surface’s 
material color at this point, then performs a simple lighting 
computation)

Program parameters
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Texture coordinate visualization 
Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v  
So uv=(0,0) is black, uv=(1,1) is yellow
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Rendered result (after evaluating fragment shader for each pixel)
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Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene 
- Complex vertex and fragment shader computations 
- High resolution screen outputs (2-4 Mpixel + supersampling)  
- 30-60 fps
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Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card 
(NVIDIA RTX 4090 GPU) 

Integrated GPU: part of modern Intel CPU chip
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GPU: heterogeneous, multi-core processor

GPU 
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function 
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for 
executing vertex and fragment shader programs

Take Kayvon’s Visual Computing Systems course (CS348V) for more details!
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Summary
Occlusion resolved independently at each screen sample using the depth buffer 
Alpha compositing for semi-transparent surfaces 
- Premultiplied alpha forms simply repeated composition 
- “Over” compositing operations is not commutative: requires triangles to be processed in back-to-front 

(or front-to-back) order 

Rasterization-based GPU-accelerated graphics pipeline: 
- Abstracts rendering computation as a sequence of operations performed on vertices, primitives (e.g., 

triangles), fragments, and screen samples 
- Behavior of parts of the pipeline is application-defined… using shader programs 
- Pipeline operations implemented by highly, optimized parallel processors and fixed-function hardware 

(GPUs)


