
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 7:

The Rasterization Pipeline
(and its implementation on GPUs)

Stanford CS248A, Winter 2026

Review: raycasting to compute visibility

You know how to test ray-scene visibility by
generating “camera” rays and intersecting them
with scene triangles

- visible triangle = triangle with closest hit

o

d

Stanford CS248A, Winter 2026

Review: determining the location of the hit point (in the domain of the surface)

You know how to turn the 3D point of
intersection into a point in the parametric
domain of the surface

o

d

(x0,y0,z0,u0,v0)

(x1,y1,z1,u1,v1)

(x2,y2,z2,u2,v2)

(x,y,z,u,v)

<latexit sha1_base64="QOsx92o9UsSrsT6tg9Q+s+PyIMc=">AAADA3ictVLPa9swFJa9duu8dku70+hFLLSklAY7lLSXQdguO6bQJIU4hGdFTkQl20hyaTCGXfav9NLDxth1/8Ru+28mJ2b51eseCD5979P7pKcXJJwp7bp/LPvZ1vbzFzsvnVe7e6/fVPYPuipOJaEdEvNY3gSgKGcR7WimOb1JJAURcNoLbj8V+d4dlYrF0bWeJnQgYByxkBHQhhruW+98AXoShNl9jo8/4H+7oZvjU+wHVAOuLVgvP1uWnBSaMQixImqsi3zfMbVrHj7DPvBkAgUoSp/8V8PS60mLZYdFzeWSw0rVrbuzwJvAK0EVldEeVn77o5ikgkaacFCq77mJHmQgNSOc5o6fKpoAuYUx7RsYgaBqkM3+MMdHhhnhMJZmRRrP2OUTGQilpiIwyuKOaj1XkE/l+qkOLwcZi5JU04jMjcKUYx3jYiDwiElKNJ8aAEQyc1dMJiCBaDM2jmmCt/7kTdBt1L1mvXl1Xm19LNuxgw7Re1RDHrpALfQZtVEHEeuL9WB9s77bX+1H+4f9cy61rfLMW7QS9q+/+MHueA==</latexit>

x = x0 + ω(x1 → x0) + ε(x2 → x0)

= (1→ ϑ→ ω)x0 + ω(x1 → x0) + ε(x2 → x0)

= ϑx0 + ωx1 + εx2

Stanford CS248A, Winter 2026

Review
And so we have a mapping between 2D screen sample points … to 3D points on the surface
… to the 2D parametric domain of the surface.

u

v

Stanford CS248A, Winter 2026

Review: texture mapping
A texture is a function that defines a value
(e.g., a surface color) at every point on a
surface:
- texture(u,v)

When drawing a surface, was sample the
screen’s 2D domain (x,y)

Each sample (x,y) corresponds to a hit point on
a triangle, which corresponds to a point (u,v)
on the hit surface. We color the sample
according to texture(u,v)

So we are sampling the texture function
uniformly in screen (x,y)… but potentially
non-uniformly in texture space (u,v) u

v

Stanford CS248A, Winter 2026

Review: potential for aliasing
Depending on the position/orientation of the camera and surface, the texture function
might be under sampled or oversampled

Stanford CS248A, Winter 2026

Consider this texture map, applied to a plane

Stanford CS248A, Winter 2026

Review: texture magnification (using nearest neighbor filtering)

Texture space (u,v)

Red dots = location of
screen samples in texture space

In this slide, we’re heavily zoomed into the plane.

Stanford CS248A, Winter 2026

Review: texture minification
Now image the surface with the Josephine texture map is very far away from the camera

Texture space (u,v)

Red dots = location of
screen samples in texture space

If texture(u,v) has high frequency content, then
aliasing could occur. (And in this case it does have
very high frequency content — see detail in cat fur)

Stanford CS248A, Winter 2026

Review: key idea - mip mapping
Remove high frequencies from the texture map prior to sampling
But since plane can be viewed from many different distances in an interactive graphics
application, we precompute many different amounts of filtering

Average of all pixels

Original image
(Full res)

Dynamically choose which image to sample from
based on change in u and v across adjacent screen
samples

In a raytracer, du/dx, du/dy, dv/dx, dv/dy can be
computed using “ray differentials” which you’ll
learn about in assignment 2.

Stanford CS248A, Winter 2026

Review: a sample in a mip-map level is a precomputed average over a
square region of texture(u,v)… but in practice we seek to filter over
non-isotropic regions of texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford CS248A, Winter 2026

Example: mipmap limitations

Point samplingSupersampling: 512 texture samples per pixel
(desired answer)

Stanford CS248A, Winter 2026

Example: mipmap limitations

Point samplingMipmap trilinear sampling

Overblurs
Why?

Stanford CS248A, Winter 2026

Proper texture filtering requires anisotropic filter footprint

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25 L

Trilinear (Isotropic)
Filtering

Anisotropic Filtering

Overblurring in u
direction

Texture space: viewed from
camera with perspective

(Modern anisotropic texture filtering
solutions combine multiple mip map samples
to approximate integral of texture value over
arbitrary texture space regions)

Stanford CS248A, Winter 2026

Today’s topic: the rasterization pipeline
Your homework assignments in this class, you implement raytracing based
rendering that simulates image formation by a pinhole camera

But we’ve seen how rasterization is an alternative way to perform the same
calculation

Rasterization has long been used by most interactive graphics systems due to its
high efficiency, and amenability to acceleration via customized hardware that’s
been present in GPUs for decades
- And has long be supported by graphics APIs like OpenGL, Direct3D, and Vulkan

So today we’re going to focus on the details of the rasterization pipeline and how
its implemented by modern GPUs

Stanford CS248A, Winter 2026

What you know how to do (at this point in the course)
Position objects and the camera in the world

z
x

y
z

x

y

Determine the position of
objects relative to the camera

Project objects onto
the screen

(0, 0)

(w, h)

Sample triangle coverage Compute triangle attribute
values at covered sample points

(Color, texture coords, depth)

Sample texture maps

Stanford CS248A, Winter 2026

One more detail on perspective projection

Stanford CS248A, Winter 2026

Basic perspective projection

Lecture 3 Math

x

f(x)

Pinhole
Camera

(0,0)

1

Assumption:
Pinhole camera at (0,0) looking down z

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|
f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = R
T
uvwRz,✓Ruvw

Complex:

z = a+ bi

i
2 = �1

(a+ bi)(c+ di) = (ac� bd) + (bc+ ad)i

iz = i(a+ bi) = �b+ ai

i(iz) = �a� bi = �z

R✓ = e
i✓ = cos ✓ + i sin ✓

Q = (qv,qw) = iqx + jqy + kqz + qw

Projection:

px = xx/xz

py = xy/xz

4

Projection:

px = xx/xz

py = xy/xz

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤

5

Projection:

p2D =
⇥
xx/xz xy/xz

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

5

Input point in 3D-H:

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Stanford CS248A, Winter 2026

View frustum

Pinhole
Camera

(0,0)

z

x

y

-znear

-zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

View frustum is the region of space the camera can see:

• Top/bottom/left/right planes correspond to sides of screen
• Near/far planes correspond to closest/furthest thing we want to draw

Stanford CS248A, Winter 2026

Mapping frustum to normalized cube

z

x

y

-znear
-zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1,1,1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Before moving to 2D, map corners of view frustum to corners of cube:

Why do we map frustum to unit cube?
1. Makes clipping much easier! (see next slide)

- Can quickly discard geometry outside range [-1,1]
2. Represent all vertices in normalized cube in fixed point math

View frustum corresponding to pinhole camera
(perspective projection transform transforms this volume to normalized cube)

Stanford CS248A, Winter 2026

Clipping
“Clipping” is the process of eliminating triangles that aren’t visible from the camera (they outside the view frustum)
- Don’t waste time computing the appearance of primitives the camera can’t see!
- Sample-in-triangle tests are expensive (“fine granularity” visibility)
- Makes more sense to toss out entire primitives (“coarse granularity”)
- Must deal with primitives that are partially clipped…

from: https://paroj.github.io/gltut/

Stanford CS248A, Winter 2026

Clipping in normalized device coordinates (NDC)
Discard triangles that lie complete outside the normalized cube (culling)
- They are off screen, don’t bother processing them further

Clip triangles that extend beyond the cube… to the sides of the cube
- Note: clipping may create more triangles

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping
* These figures are correct: normalized device coordinates for OpenGL (a popular graphics API) is left-handed coordinate space

Stanford CS248A, Winter 2026

Matrix for perspective transform

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Takes into account geometry of view frustum:

left (l), right (r), top (t), bottom (b), near (n), far (f)

(matrix at left is perspective projection for frustum
that is symmetric about x,y axes: l=-r, t=-b)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

-znear

-zfar

z

x

y

Stanford CS248A, Winter 2026

Transformations: from objects to the screen

original description
of objects

[WORLD COORDINATES]

vertex positions now expressed relative to
camera; camera is sitting at origin looking

down -z direction
(Canonical frame of reference allows for

use of canonical projection matrix)

z
x

y

[VIEW COORDINATES]

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

objects now in
2D screen coordinates

[WINDOW COORDINATES]

primitives are now 2D
and can be drawn via

rasterization

(Also called “normalized
device coordinates”)

projection
transform

view
transform

screen
transform

Stanford CS248A, Winter 2025

Triangle visibility problem... in a rasterizer

Question 1: what samples does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

Stanford CS248A, Winter 2026

Occlusion using the Depth Buffer

Stanford CS248A, Winter 2026

Occlusion: which triangle is visible at each covered
sample point?

Opaque Triangles 50% transparent triangles

Stanford CS248A, Winter 2026

Depth buffer (aka “Z buffer”)

Depth buffer:
(stores depth per sample)

Stores depth of closest surface drawn so far
black = close depth
white = far depth

Color buffer:
(stores color per sample… e.g., RGB)

Stanford CS248A, Winter 2026

Depth buffer (a better look)

Color buffer (stores color measurement per sample, eg., RGB value per sample)

Stanford CS248A, Winter 2026

Depth buffer (a better look)

Corresponding depth buffer after rendering all triangles (stores closest scene depth per sample)

Visualization: the darker the pixel, the
shorter the distance to the closest object

Stanford CS248A, Winter 2026

Occlusion using the depth-buffer (“Z-buffer”)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, the depth-buffer stores depth of closest
triangle at this sample point that has been processed by the renderer so far.

Black = small distance
White = large distance

Grayscale value of sample point
used to indicate distance

Initial state of depth buffer before
rendering any triangles
(all samples store “farthest” distance)

Stanford CS248A, Winter 2026

How do we compute the triangle’s depth
at a screen sample point (x,y)?

Stanford CS248A, Winter 2025

A = (x0, y0, z0, r0, g0, b0, u0, v0)

B = (x1, y1, z1, r1, g1, b1, u1, v1)

C = (x2, y2, z2, r2, g2, b2, u2, v2)

x

Recall linear interpolation of values (defined at vertices)

Here, I’m interpolating the position
(x,y,z), color (r,g,b), and texture
coordinate values (u,v)

Vertex is green, so (r2,g2,b2) = (0,1,0)

Vertex is red, so (r1,g1,b1) = (1,0,0)

Vertex is black, so (r0,g0,b0) = (0,0,0)

Stanford CS248A, Winter 2025

Not so fast… perspective incorrect interpolation
The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices.
But due to perspective projection, barycentric interpolation of values on a triangle with vertices of different depths in
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

Screen

(attribute value = A0)

P = (P0 + P1) / 2

P0

P1 (attribute value = A1)

(attribute value = (A0 + A1) / 2)

proj(P0)

proj(P1)

In this example, the 2D screen point proj(P) with attribute value (A0 + A1) / 2 is
not halfway between the 2D screen points proj(P0) and proj(P1).

proj(P)

Similarly, the attribute’s value at Pmid = (proj(P0) + proj(P1)) / 2 is not (A0 + A1) / 2.

Pmid

Stanford CS248A, Winter 2025

Perspective correct interpolation on a projected triangle
(in 2D)

Given:
- Some value fi at each of a 3D triangle’s vertices, that is linearly interpolated across the

triangle in 3D
- The 2D screen coordinates Pi=(xi,yi) of each of a triangle’s vertices after projection
- The homogenous coordinate wi for each vertex

Compute:
- The value of f(x,y) for the projected triangle at a given 2D screen space location (x,y)

Attribute’s value at 3D point on triangle is given by:

Stanford CS248A, Winter 2025

Perspective project P, get 2D homogeneous representation:

Perspective-correct interpolation
Assume a triangle attribute varies linearly across the triangle (in 3D)

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2DH y2DH w

⇤T
=

⇥
x y z

⇤T

f = ax2DH + by2DH + cw

f

w
= a

x2DH

w
+ b

y2DH

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

2

664

x
y
z
z

3

775 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

2

664

x
y
z
1

3

775

2

4
x2D�H

y2D�H

w

3

5

Drop z to
move to 2D-H

point P in 3D-HSimple perspective
projection matrix *

projection of P
in 2D-H

So … is affine function of 2D screen coordinates:

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

P =
⇥
x y z

⇤T

f(x, y, z) = ax+ by + cz
⇥
x2D-H y2D-H w

⇤T
=

⇥
x y z

⇤T

f = ax2D-H + by2D-H + cw

f

w
= a

x2D-H

w
+ b

y2D-H

w
+ c

f

w
= ax2D + by2D + c

⇥
x2D y2D

⇤T

3

Then plug back in to equation for f at top of slide…
f(x2D�H, y2D�H) = ax2D�H + by2D�H + cw

f(x2D�H, y2D�H)

w
=

a

w
x2D�H +

b

w
y2D�H + c

f(x2D, y2D)

w
=

a

w
x2D +

b

w
y2D + c

* Note: using a more general perspective projection
matrix only changes the coefficient in front of x2d and y2d .
(property that f/w is affine still holds)

perspective projection
of P in 3D-H

Stanford CS248A, Winter 2025

Direct evaluation of surface attributes from 2D-H vertices
For any surface attribute (with value defined at triangle vertices as:)

3 equations, solve for 3 unknowns (A, B, C)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

f = fa, fb, fc

fa = Aax +Bay + C

fb = Abx +Bby + C

fc = Acx +Bcy + C

kEac(bx,by) = 1

kEac(xx,xy) = �

� =
(ay � cy)xx + (cx � ax)xy + axcy � cxay
(ay � cy)bx + (cx � ax)by + axcy � cxay

� =
Eac(xx,xy)

Eac(bx,by)

� = c1

� = c2

2

This is done as a per-triangle “setup” computation prior to sampling.

value of attribute at vertex a

projected 2D position of
vertex a

w coordinate of vertex a after
perspective projection transform

x

Stanford CS248A, Winter 2025

Efficient perspective-correct interpolation
Setup:

Given fa, fb, fc and wa, wb, wc … compute A, B, C for f/w(x,y) = Ax + By + C
Also compute equation for 1/w(x,y)

To evaluate surface attribute f(x,y) at every covered sample (x,y):

Evaluate 1/w (x,y) (from precomputed equation for value 1/w)
Reciprocate 1/w (x,y) to get w(x,y)
For each triangle attribute:

 Evaluate f/w (x,y) (from precomputed equation for value f/w)
 Multiply f/w (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute f that varies linearly across triangle: e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation”

Stanford CS248A, Winter 2026

How do we compute a triangle’s depth at a screen (x,y)?
Assume we have a triangle defined by the screen-space 2D position and distance (“depth”) from the camera
of each vertex.

How do we compute the depth of the triangle at covered sample point ?

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤
, d0

⇥
p1x p1y

⇤
, d1

⇥
p2x p2y

⇤
, d2

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Interpolate it just like any other attribute that varies linearly over the surface of the triangle.

<latexit sha1_base64="WD5nId82gtbpiCsxP2l1qke+DXE=">AAACNHicbZDLSsNAFIYn9VbrLerSzWARXEhJilSXRTeCmwr2Ak0Jk8lpO3RyYWZiKaEP5cYHcSOCC0Xc+gxO2i608cDAz/+dw5nzezFnUlnWq1FYWV1b3yhulra2d3b3zP2DlowSQaFJIx6JjkckcBZCUzHFoRMLIIHHoe2NrjPefgAhWRTeq0kMvYAMQtZnlChtuebt2LXOsDOUMaGQ2hBMse9a2HFKY9fOAXsOqjlQzYBrlq2KNSucF/ZClNGiGq757PgRTQIIFeVEyq5txaqXEqEY5TAtOYkEvWVEBtDVMiQByF46O3qKT7Tj434k9AsVnrm/J1ISSDkJPN0ZEDWUyywz/2PdRPUveykL40RBSOeL+gnHKsJZgthnAqjiEy0IFUz/FdMhEYQqnXMWgr18cl60qhW7VqndnZfrV4s4iugIHaNTZKMLVEc3qIGaiKJH9ILe0YfxZLwZn8bXvLVgLGYO0Z8yvn8AvuKn4A==</latexit>

w0, d0

w1, d1

w2, d2

Stanford CS248A, Winter 2026

Example: rendering three opaque triangles

Stanford CS248A, Winter 2026

Depth buffer contents

Processing yellow triangle:
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = samples that pass depth test

Occlusion using the depth-buffer (Z-buffer)

Stanford CS248A, Winter 2026

Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248A, Winter 2026

Depth buffer contents

Processing blue triangle:
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248A, Winter 2026

Depth buffer contents

After processing blue triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248A, Winter 2026

Depth buffer contents

Processing red triangle:
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248A, Winter 2026

Depth buffer contents

After processing red triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Occlusion using the depth-buffer (Z-buffer)

Red = samples that pass depth test

Stanford CS248A, Winter 2026

Occlusion using the depth buffer (opaque surfaces)
bool pass_depth_test(d1, d2) {
 return d1 < d2;
}

depth_test(tri_d, tri_color, x, y) {

 if (pass_depth_test(tri_d, depth_buffer[x][y]) {

 // if triangle is closest object seen so far at this
 // sample point. Update depth and color buffers.

 depth_buffer[x][y] = tri_d; // update depth_buffer
 color[x][y] = tri_color; // update color buffer
 }
}

Stanford CS248A, Winter 2026

Does depth-buffer algorithm handle interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The relative depth of
triangles may be different at different sample points.

Green triangle in front of
yellow triangle

Yellow triangle in front of
green triangle

Stanford CS248A, Winter 2026

Does depth-buffer algorithm handle interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The relative depth of
triangles may be different at different sample points.

Now only showing
colored samples:

Stanford CS248A, Winter 2026

Does depth buffer work with super sampling?
Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

Stanford CS248A, Winter 2026

Color buffer contents

Stanford CS248A, Winter 2026

Color buffer contents (4 samples per pixel)

Stanford CS248A, Winter 2026

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

Stanford CS248A, Winter 2026

Summary: occlusion using a depth buffer
Store one depth value per coverage sample (not per pixel!)

Constant space per sample
- Implication: constant space for depth buffer

Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a depth buffer read if “fail”

Not specific to triangles: only requires that surface depth can be evaluated at a screen sample
point

But what about semi-transparent surfaces?

Stanford CS248A, Winter 2026

Compositing

Stanford CS248A, Winter 2026

Representing opacity as alpha
Alpha describes the opacity of an object

- Fully opaque surface: α = 1
- 50% transparent surface: α = 0.5
- Fully transparent surface: α = 0

α = 1 α =0α = 0.75 α = 0.5 α = 0.25

Red triangle with decreasing opacity

Stanford CS248A, Winter 2026

Alpha: coverage analogy
Can think of alpha as describing the opacity of a semi-transparent surface
Or… as partial coverage by fully opaque object
- consider a screen door

α = 0.5

(Squint at this slide and the scene on the left and the right will appear similar)

Stanford CS248A, Winter 2026

Alpha: additional channel of image (rgba)
Alpha describes the opacity of an object

- Fully opaque surface: α = 1
- 50% transparent surface: α = 0.5
- Fully transparent surface: α = 0

α of foreground object

Stanford CS248A, Winter 2026

Over operator:
Composite image B with opacity αB over image A with opacity αA

B over A

B A
B

A
A over B

A over B != B over A
“Over” is not commutative

Koala over NYC

Stanford CS248A, Winter 2026

Over operator: non-premultiplied alpha
Composite image B with opacity αB over image A with opacity αA
First attempt: (represent colors as 3-vectors, alpha separately)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Appearance of
semi-transparent B

B over A

B A

B A

A over BWhat B lets through

Appearance of semi-
transparent A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

A over B != B over A

Composited color:

“Over” is not commutativeComposite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Stanford CS248A, Winter 2026

Premultiplied alpha representation
Represent (potentially transparent) color as a 4-vector where RGB values have been
premultiplied by alpha

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Example: 50% opaque red
[0.5, 0.0, 0.0, 0.5]

Example: 75% opaque magenta
[0.75, 0.0, 0.75, 0.75]

Stanford CS248A, Winter 2026

Over operator: using premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

B over A

B A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Non-premultiplied alpha representation:

Premultiplied alpha representation:

Composite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

one multiply, one add

two multiplies, one add
(referring to vector ops on colors)

Notice premultiplied alpha composites alpha
just like how it composites rgb.

C 0 = B0 + (1� ↵B)A
0

<latexit sha1_base64="q3up20GEd+xu7yb6Hk0u91XeSUc=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWCRVsSSSEU3Qm03LivYB7QhTKaTduhkEmYmQgl146+4caGIW//CnX/jtM1CWw9cOJxzL/fe40WMSmVZ30ZmaXlldS27ntvY3NreMXf3mjKMBSYNHLJQtD0kCaOcNBRVjLQjQVDgMdLyhrWJ33ogQtKQ36tRRJwA9Tn1KUZKS655UCvAa1gtwFNYtM+6iEUD5FZPbgqumbdK1hRwkdgpyYMUddf86vZCHAeEK8yQlB3bipSTIKEoZmSc68aSRAgPUZ90NOUoINJJph+M4bFWetAPhS6u4FT9PZGgQMpR4OnOAKmBnPcm4n9eJ1b+lZNQHsWKcDxb5McMqhBO4oA9KghWbKQJwoLqWyEeIIGw0qHldAj2/MuLpHlessuli7tyvlJN48iCQ3AEisAGl6ACbkEdNAAGj+AZvII348l4Md6Nj1lrxkhn9sEfGJ8/EUuTeA==</latexit>

Stanford CS248A, Winter 2026

Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing

Stanford CS248A, Winter 2026

No fringing

Stanford CS248A, Winter 2026

Fringing (…why does this happen?)

Stanford CS248A, Winter 2026

A problem with non-premultiplied alpha
Suppose we upsample an image w/ an alpha mask, then composite it onto a background
How should we compute the interpolated color/alpha values?
If we interpolate color and alpha separately, then blend using the non-premultiplied “over” operator, here’s
what happens:

original
color

original
alpha

upsampled
color

upsampled
alpha

composited onto
yellow background

Notice black “fringe” that occurs because we’re blending, e.g.,
50% blue pixels using 50% alpha, rather than, 100% blue pixels
with 50% alpha.

Stanford CS248A, Winter 2026

Eliminating fringe w/ premultiplied “over”
If we instead use the premultiplied “over” operation, we get the correct alpha:

upsampled color

+ =

(1-alpha)*background composite image
w/ no fringe

background(1-alpha)

Stanford CS248A, Winter 2026

Another problem with non-premultiplied alpha
Consider pre-filtering a texture with an alpha matte

Desired filtered result

input color

input α

filtered result
(composited over white)

filtered color

filtered α

Downsampling non-premultiplied alpha
image results in 50% opaque brown
(incorrect!)

Result of filtering premultiplied
alpha image (correct!)

0.25 * ((0, 1, 0, 1) + (0, 1, 0, 1) + (0, 0, 0, 0) + (0, 0, 0, 0)) = (0, 0.5, 0, 0.5)

α

Stanford CS248A, Winter 2026

Common use of textures with alpha: foliage

[Image credit: SpeedTree Cinema 8]

Stanford CS248A, Winter 2026

Foliage example

[Image credit: SpeedTree Cinema 8]

Stanford CS248A, Winter 2026

Another problem: applying “over” repeatedly
Consider composite image C with opacity αC over B with opacity αB over image A with opacity αA

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Consider first step of of compositing 50% red over 50% red:

C over B over A

B A

C

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

Wait… this result is the premultiplied color!
So “over” for non-premultiplied alpha takes non-premultiplied colors to
premultiplied colors (“over” operation is not closed)

Cannot compose “over” operations on non-premultiplied values:
 over(C, over(B, A))

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

There is a closed form for non-premultiplied alpha:

Stanford CS248A, Winter 2026

Summary: advantages of premultiplied alpha
Simple: compositing operation treats all channels (rgb and a) the same
Closed under composition
Better representation for filtering textures with alpha channel
More efficient than non-premultiplied representation: “over” requires fewer math ops

Stanford CS248A, Winter 2026

Color buffer update: semi-transparent surfaces

over(c1, c2) {
 return c1 + (1-c1.a) * c2;
}

update_color_buffer(tri_z, tri_color, x, y) {
 // Note: no depth check, no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford CS248A, Winter 2026

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion

If pass depth test, triangle overwrites value in color buffer at sample
Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.

If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering.
More on this later in the course, and in CS348B

Stanford CS248A, Winter 2026

Combining opaque and semi-transparent triangles

// phase 1: render opaque surfaces
update_color_buffer(tri_z, tri_color, x, y) {
 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 color[x][y] = tri_color;
 zbuffer[x][y] = tri_z;
 }
}

// phase 2: render semi-transparent surfaces
update_color_buffer(tri_z, tri_color, x, y) {

 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 // Note: no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
 }
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

Stanford CS248A, Winter 2026

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

Stanford CS248A, Winter 2026

Command: draw these triangles!

list_of_positions = {

 v0x, v0y, v0z,
 v1x, v1y, v1z,
 v2x, v2y, v2z,
 v3x, v3y, v3z,
 v4x, v4y, v4z,
 v5x, v5y, v5z };

list_of_texcoords = {

 v0u, v0v,
 v1u, v1v,
 v2u, v2v,
 v3u, v3v,
 v4u, v4v,
 v5u, v5v };

Texture map

Size of output image (W, H)

Object-to-camera-space transform:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Perspective projection transform

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Use depth test /update depth buffer: YES!

Inputs:

Stanford CS248A, Winter 2026

Step 1:
Transform triangle vertices into camera space
(apply modeling and camera transform)

z

x

y

Stanford CS248A, Winter 2026

Step 2:
Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

Pinhole
Camera

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions

Note: I’m illustrating normalized 3D space after the homogeneous divide, it is
more accurate to think of this volume in 3D-H space as defined by:
 (-w, -w, -w, w) and (w, w, w, w)

Stanford CS248A, Winter 2026

Step 3: clipping
Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don’t bother processing them further
Clip triangles that extend beyond the unit cube to the cube
- Note: clipping may create more triangles

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping

Stanford CS248A, Winter 2026

Step 4: transform to screen coordinates
Transform vertex xy positions from normalized coordinates into screen coordinates
(based on screen w,h)

(0, 0)

(w, h)

Stanford CS248A, Winter 2026

Step 5: setup triangle (triangle preprocessing)
Compute triangle edge equations (implicit equations for inside/outside tests)

Compute triangle attribute interpolation equations

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Evaluate attributes z, u, v at all covered samples

Stanford CS248A, Winter 2026

Step 6: sample coverage

Stanford CS248A, Winter 2026

Step 6: compute triangle color at sample point
e.g., sample texture map *

u

vu(x,y), v(x,y)

* So far, we’ve only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Later in the course, we’ll discuss more advanced algorithms for computing its color based on material
properties and scene lighting conditions.

Stanford CS248A, Winter 2026

Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)

Stanford CS248A, Winter 2026

Review: occlusion using the depth buffer (opaque surfaces)

bool pass_depth_test(d1, d2) {
 return d1 < d2;
}

depth_test(tri_d, tri_color, x, y) {

 if (pass_depth_test(tri_d, depth_buffer[x][y]) {

 // if triangle is closest object seen so far at this
 // sample point. Update depth and color buffers.

 depth_buffer[x][y] = tri_d; // update depth_buffer
 color[x][y] = tri_color; // update color buffer
 }
}

Stanford CS248A, Winter 2026

Step 8: update color buffer (if depth test passed)

Stanford CS248A, Winter 2026

Step 9:
▪ Repeat steps 1-8 for all triangles in the scene!

Stanford CS248A, Winter 2026

One reminder about transparent surfaces

Stanford CS248A, Winter 2026

Color buffer update: semi-transparent surfaces

over(c1, c2) {
 return c1 + (1-c1.a) * c2;
}

update_color_buffer(tri_z, tri_color, x, y) {
 // Note: no depth check, no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford CS248A, Winter 2026

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles
Step 1: render opaque surfaces using depth-buffered occlusion

If pass depth test, triangle overwrites value in color buffer at sample
Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.

If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More on this in a few weeks.

Stanford CS248A, Winter 2026

Combining opaque and semi-transparent triangles

// phase 1: render opaque surfaces
update_color_buffer(tri_z, tri_color, x, y) {
 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 color[x][y] = tri_color;
 zbuffer[x][y] = tri_z;
 }
}

// phase 2: render semi-transparent surfaces
update_color_buffer(tri_z, tri_color, x, y) {

 if (pass_depth_test(tri_z, zbuffer[x][y]) {
 // Note: no depth buffer update
 color[x][y] = over(tri_color, color[x][y]);
 }
}

Assume: color buffer values and tri_color are represented with premultiplied alpha

Stanford CS248A, Winter 2026

Real time graphics APIs
OpenGL
Microsoft Direct3D
Apple Metal

You now know a lot about the algorithms implemented underneath these APIs: drawing
3D triangles (key transformations and rasterization), texture mapping, anti-aliasing via
supersampling, etc.

Internet is full of useful tutorials on how to program using these APIs

Stanford CS248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space1

2

3
4

Structures rendering computation as a series of operations on vertices, primitives, fragments, and screen samples

Stanford CS248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Pipeline inputs:
- Input vertex data
- Parameters needed to compute position on vertices

in normalized coordinates (e.g., transform matrices)
- Parameters needed to compute color of fragments

(e.g., textures)

Input vertices in 3D space1

2

3
4

transform matrices

textures

- “Shader” programs that define behavior of vertex
and fragment stages

* Several stages of the modern OpenGL pipeline are omitted

Stanford CS248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

* Several stages of the modern OpenGL pipeline are omitted

Stanford CS248A, Winter 2026

Shader programs
Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

uniform sampler2D myTexture;
uniform vec3 lightDir;
varying vec2 uv;
varying vec3 norm;

void diffuseShader()
{
 vec3 kd;
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
 gl_FragColor = vec4(kd, 1.0);
}

Example GLSL fragment shader program

Sample surface albedo
(reflectance color) from texture

Modulate surface albedo by incident
irradiance (incoming light)

Shader outputs surface color

Per-fragment attributes
(interpolated by rasterizer)

Shader function executes once per fragment.

Outputs color of surface at sample point
corresponding to fragment.
(this shader performs a texture lookup to obtain the surface’s
material color at this point, then performs a simple lighting
computation)

Program parameters

Stanford CS248A, Winter 2026

Texture coordinate visualization
Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow

Stanford CS248A, Winter 2026

Rendered result (after evaluating fragment shader for each pixel)

Stanford CS248A, Winter 2026Red Dead Redemption 2

Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene
- Complex vertex and fragment shader computations
- High resolution screen outputs (2-4 Mpixel + supersampling)
- 30-60 fps

Stanford CS248A, Winter 2026

Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card
(NVIDIA RTX 4090 GPU)

Integrated GPU: part of modern Intel CPU chip

Stanford CS248A, Winter 2026

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

Take Kayvon’s Visual Computing Systems course (CS348V) for more details!

Stanford CS248A, Winter 2026

Summary
Occlusion resolved independently at each screen sample using the depth buffer
Alpha compositing for semi-transparent surfaces
- Premultiplied alpha forms simply repeated composition
- “Over” compositing operations is not commutative: requires triangles to be processed in back-to-front

(or front-to-back) order

Rasterization-based GPU-accelerated graphics pipeline:
- Abstracts rendering computation as a sequence of operations performed on vertices, primitives (e.g.,

triangles), fragments, and screen samples
- Behavior of parts of the pipeline is application-defined… using shader programs
- Pipeline operations implemented by highly, optimized parallel processors and fixed-function hardware

(GPUs)

