Lecture 7:

The Rasterization Pipeline

(and its implementation on GPUs)

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026

Review: raycasting to compute visibility

You know how to test ray-scene visibility by
generating “camera” rays and intersecting them \

with scene triangles ’ ‘4

- visible triangle = triangle with closest hit

Stanford (5248A, Winter 2026

Review: determining the location of the hit point (in the domain of the surface)

o

(Xx2,¥2,Z2,u2,V2)

(X1,Y1,21,uU1,V1)

You know how to turn the 3D point of
intersection into a point in the parametric
domain of the surface

(Xo,Y0,20,U0,V0)

X = X0 + 8(x1 — X0) + 7(x2 — X0)
= (1 —a— B)xo + B(Xx1 — Xo) + v(x2 — Xo)
= aXg + OX1 + X2

Stanford (5248A, Winter 2026

Review

And so we have a mapping between 2D screen sample points ... to 3D points on the surface
... to the 2D parametric domain of the surface.

SR
iﬁ:’vﬁg:@

7

m"‘;—iv“'f,
aravavAVAIAN
o

Qv

Stanford (S248A, Winter 2026

Review: texture mapping N N

m Atextureis a function that defines a value Y .
(e.g., a surface color) at every point on a e o /o e e a b
surface: * /e o s 0 e
- texture(u,v) Wil B

m When drawing a surface, was sample the
screen’s 2D domain (x,y)

m Each sample (x,y) corresponds to a hit point on
a triangle, which corresponds to a point (u,v)
on the hit surface. We color the sample
according to texture(u,v)

m S0 we are sampling the texture function
uniformly in screen (x,y)... but potentially
non-uniformly in texture space (u,v)

;« ~
£
v

AN

\
J

AVgny
A

&\“Eﬂm

3
£\
>

N
5,

\

Stanford (S248A, Winter 2026

Review: potential for aliasing

m Depending on the position/orientation of the camera and surface, the texture function
might be under sampled or oversampled

Stanford (5248A, Winter 2026

-

|

n
J

1 10

| / a
LA™

a
v

|

)

Review: texture magnification (using nearest neighbor filtering)

In this slide, we're heavily zoomed into the plane.

Red dots = location of
screen samples in texture space

o O O 0O O o o

O O o o o o o o o o o o o o Q

O o O o o O o o

0O O O o o o o o o o o o o o

0O O o o 0O O o o

0O O o o O O o o o o o o o

o O

o O

o O

o O

o O

o O

o O

o O

o O

o O

o

o o o o o o o o o

o o o o o o o o o o

O O O O O O O o o o Qg rOg
000006
O O 0O 0O O O O o o o Qg.g..g.

.g..g.
000000 o o (o) (o) (o) (o)

0000000000000000
V00000 0FD0P0000 © © o o o o
0000000000000000

O o o o o o o o o o

©O 0 0 0 0 0 O O O O @POQE0POEPOeROOP®Oo o0 o o0 o0 o

0O O o o O O O o o 0o o o o o o o o o 0O O o o

o o o o o o o o o o o o o o o o o o 0O O o o

Texture space (u,v)

Review: texture minification

Now image the surface with the Josephine texture map is very far away from the camera

y"’! Red dots = location of
e screen samples in texture space
e e I A 20
If texture(u,v) has high frequency content, then e
aliasing could occur. (And in this case it does have - S
very high frequency content — see detail in cat fur) o cooooo 000000000 e e o
°°°°° ®::cooc @ cocooo®
Texture space (u,v)

Stanford (5248A, Winter 2026

Review: key idea - mip mapping

m Remove high frequencies from the texture map prior to sampling
m But since plane can be viewed from many different distances in an interactive graphics
application, we precompute many different amounts of filtering

Original image

(Full res) _\,

Dynamically choose which image to sample from
based on change in u and v across adjacent screen
samples

In a raytracer, du/dx, du/dy, dv/dx, dv/dy can be
computed using “ray differentials” which you'll
learn about in assignment 2.

Average of all pixels

Stanford (5248A, Winter 2026

Review: a sample in a mip-map level is a precomputed average over a
square region of texture(u,v)... but in practice we seek to filter over
non-isotropic regions of texture space

——

HEIEEENEEEN

/7

o

HENIIEN NN
HENIIENEIInE
HEN/INNINIIN
HENENIINE
HEEENIIN
HENENA

Sugk
HERN>
HEREEA:
o =

—

—

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford (5248A, Winter 2026

Example: mipmap limitations

Supersampling: 512 texture samples per pixel
(desired answer)

Stanford (5248A, Winter 2026

Example: mipmap limitations

Overblurs
Why?

Mipmap trilinear sampling

Stanford (5248A, Winter 2026

Proper texture filtering requires anisotropic filter footprint

v=.75

[

Overblurringinu
direction

u=.25 u=.5

u=.75

Texture space: viewed from
camera with perspective

|]
-"]ﬂ m = m

~
-

Trilinear (Isotropic)
Filtering

i

/i

Anisotropic Filtering

(Modern anisotropic texture filtering
solutions combine multiple mip map samples
to approximate integral of texture value over
arbitrary texture space regions)

Stanford (5248A, Winter 2026

Today’s topic: the rasterization pipeline

m Your homework assignments in this class, you implement raytracing based
rendering that simulates image formation by a pinhole camera

m But we've seen how rasterization is an alternative way to perform the same "%

calculation

m Rasterization has long been used by most interactive graphics systems due to its
high efficiency, and amenability to acceleration via customized hardware that’s

been present in GPUs for decades
- And has long be supported by graphics APIs like OpenGL, Direct3D, and Vulkan

m S0 today we're going to focus on the details of the rasterization pipeline and how
its implemented by modern GPUs

Stanford (5248A, Winter 2026

What you know how to do (at this point in the course)

Position objects and the camera in the world

(w, h)

— i

3 g ;

(0,0)

Determine the position of
objects relative to the camera

Project objects onto
the screen

Sample triangle coverage Compute triangle attribute Sample texture maps
values at covered sample points
(Color, texture coords, depth)

Stanford (5248A, Winter 2026

One more detail on perspective projection

Stanford (5248A, Winter 2026

Basic perspective projection

Input point in 3D-H: X = [Xaz Xy Xz ”T
; P2D
1 ' Xz
Einhole 1 O O O
(0.0 0O 1 0 O
b= 0 0 1 0
0 0 1 O

Assumption:

Pinhole camera at (0,0) looking down z
Stanford (5248A, Winter 2026

View frustum

View frustum is the region of space the camera can see:

Pinhole
Camera
(0,0)

- Top/bottom/left/right planes correspond to sides of screen
- Near/far planes correspond to closest/furthest thing we want to draw

Stanford (5248A, Winter 2026

Mapping frustum to normalized cube

Before moving to 2D, map corners of view frustum to corners of cube:

X8

X8

y (1) z

X7

-Znear

-zfar

View frustum corresponding to pinhole camera
(perspective projection transform transforms this volume to normalized cube)

Why do we map frustum to unit cube?
1. Makes clipping much easier! (see next slide)
- Can quickly discard geometry outside range [-1,1]
2. Represent all vertices in normalized cube in fixed point math

Stanford (5248A, Winter 2026

Clipping

m “Clipping” is the process of eliminating triangles that aren’t visible from the camera (they outside the view frustum)
- Don’t waste time computing the appearance of primitives the camera can't see!
- Sample-in-triangle tests are expensive (“fine granularity” visibility)
- Makes more sense to toss out entire primitives (“coarse granularity”)
- Must deal with primitives that are partially clipped...

from: https://paroj.github.io/gltut/ Stanford CS248A, Winter 2026

Clipping in normalized device coordinates (ND(C)

m Discard triangles that lie complete outside the normalized cube (culling)
- They are off screen, don't bother processing them further

m (lip triangles that extend beyond the cube... to the sides of the cube

- Note: clipping may create more triangles
y

X4

Triangles after clipping

Triangles before clipping

* These figures are correct: normalized device coordinates for OpenGL (a popular graphics API) is left-handed coordinate space Stanford (5248A, Winter 2026

Matrix for perspective transform

Takes into account geometry of view frustum:

y
Z
X
= 0 0 0
0 =z 0 0 left (1), right (r), top (t), bottom (b), near (n), far (f)
o o =UWUtn) =2fn (matrix at left is perspective projection for frustum
f—n f—n . .
that is symmetric about x,y axes: |=-r, t=-b)
0 O —1 0

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html Stanford (52487, Winter 2026

Transformations: from objects to the screen

(Also called “normalized

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDlNATﬂEﬂSﬂ]) device coordinates”)
‘S’ view projection i
transform transform ==
\—J/%_‘Fh
(-1,-1,-1)

original description vertex positions now expressed relative to everything visible to the

of objects camera; camera is sitting at origin looking camera is mapped to unit

down -z direction cube for easy “clipping”

(Canonical frame of reference allows for
use of canonical projection matrix)

[WINDOW COORDINATES]

(w, h)
screen

transform

primitives are now 2D

and can be drawn via ‘
rasterization %

(0,0)

objects now in
2D screen coordinates Stanford CS248A, Winter 2026

Triangle visibility problem... in a rasterizer

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)

Stanford (S248A, Winter 2025

Occlusion using the Depth Buffer

Stanford (5248A, Winter 2026

Occlusion: which triangle is visible at each covered
sample point?

Opaque Triangles 50% transparent triangles

Stanford (5248A, Winter 2026

Depth buffer (aka “Z buffer”)

Color buffer: Ha i

—
i

(stores color per sample... e.g., RGB) AR T |
Whmamllil |} (N
| 1k | L | FL

Depth buffer:
(stores depth per sample)

Stores depth of closest surface drawn so far
black = close depth
white = far depth

Stanford (S248A, Winter 2026

Depth buffer (a better look)

p—
2
o
&
S
(V)
p .
@
o
@
=
S
=
[a'a)
(G)
o

>
=)
Qv

Ty
S
o
&
S
v
p
@
o
vd
—
@
&
@
p .
=
v
i~
Qv
&
p .
=
<)
J
v
@
p .
<)
d
(¥ 4]
'
o
=
=
2
p
=
<)
J

Stanford (S248A, Winter 2026

Depth buffer (a better look) shrter she distancetothe oset abjct

Corresponding depth buffer after rendering all triangles (stores closest scene depth per sample)
Stanford C5248A, Winter 2026

Occlusion using the depth-buffer (“Z-buffer”)

For each coverage sample point, the depth-buffer stores depth of closest
triangle at this sample point that has been processed by the renderer so far.

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

Initial state of depth buffer before —p
rendering any triangles
(all samples store “farthest” distance)

Grayscale value of sample point
used to indicate distance

Black = small distance O O O O O ® O O O

White = large distance o o o o o o o o o

Stanford (5248A, Winter 2026

How do we compute the triangle’s depth
at a screen sample point (x,y)?

Recall linear interpolation of values (defined at vertices)

C=(x2,y2,22,r2,q2,b2,u2, v2)

Here, I'm interpolating the position
(x,y,2), color (r,g,b), and texture
coordinate values (u,v)

B=(x1,y1,121,r1, 491, b1, ul, vl)

A = (x0, y0, z0, r0, g0, b0, u0, v0)

Stanford (5248A, Winter 2025

Not so fast... perspective incorrect interpolation

The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices.

But due to perspective projection, barycentric interpolation of values on a triangle with vertices of different depths in
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

P, (attribute value =A,)

Screen

l

® proj(P1)
~ proj(P) P=(Po+Pq)/2
— X ® P (attribute value = (Ao + A1) / 2)

=]
-
S.
p—
-
(=]
'

(@I [[[] @ |

0o (attribute value =Ay)

In this example, the 2D screen point proj(P) with attribute value (Ao + A1)/ 21s
not halfway between the 2D screen points proj(Po) and proj(P.).

Similarly, the attribute’s value at Pmia = (proj(Po) + proj(P1))/ 2 is not (Ao + A1) / 2.

Stanford (5248A, Winter 2025

Perspective correct interpolation on a projected triangle
(in 2D)

m Given:

- Some value f; at each of a 3D triangle’s vertices, that is linearly interpolated across the
trianglein 3D

- The 2D screen coordinates Pi=(x;,yi) of each of a triangle’s vertices after projection
- The homogenous coordinate w; for each vertex

m Compute:
- The value of f(x,y) for the projected triangle at a given 2D screen space location (x,y)

Stanford (5248A, Winter 2025

Perspective-correct interpolation

Assume a triangle attribute varies linearly across the triangle (in 3D)
Attribute’s value at 3D point on triangle P = [z y 2| is given by:

f(x,y,2) = ax + by + cz

Perspective project P, get 2D homogeneous representation:

| 1 0 0 O
ToD—H N?j 01 0 0
Y2D-H 2 00 1 0
2
A

w \
projection of P Drop z to
in 2D-H move to 2D-H

perspectivé projection
of Pin 3D-H

Then plug back in to equation for fat top of slide...

f(rop_H,Y2D_H) = arap_g + byap_g + cw

Simple perspective
projection matrix *

ToD—_H, _ a b
f(op 1, Y2p 1) = —T2D-H + —Y2Db-H +C
W W W
f(xap,y2p) @ b

= —T9oD + —Y2Dp +C
W W W

1

N LR

|;oi|;t Pin 3D-H

So...

= s affine function of 2D screen coordinates: |z2p y2p

w

* Note: using a more general perspective projection
matrix only changes the coefficient in front of x2q and y2q .

(property that f/w is affine still holds)

}T

Stanford (S248A, Winter 2025

Direct evaluation of surface attributes from 2D-H vertices

For any surface attribute (with value defined at triangle vertices as: /., /3, f¢)

w coordinate of vertex a after
perspective projection transform

a/—\ value of attribute at vertex a
Ay ~— — _ ____— projected 2D position of

Jo _ Ab, 4+ Bb, +C vertexd
fe
C_ o AC:B —l_ ch _I_ C
ba37l; 7bw 9
3 equations, solve for 3 unknowns (A, B, C) (ag,8,,ay), fa (bz; by, bu), fi

This is done as a per-triangle “setup” computation prior to sampling.

Stanford (5248A, Winter 2025

Efficient perspective-correct interpolation

Setup:
Given f;,, fy, fcand w,, wp, we... compute A, B, C for f/w(x,y) = Ax + By + (

Also compute equation for 7/w(x,y)

To evaluate surface attribute f(x,y) at every covered sample (x,y):

Evaluate /., (xy) (from precomputed equation for value /)
Reciprocate '/, (x,y) to get w(x,y)
For each triangle attribute:

Evaluate 7/, (x,y) (from precomputed equation for value 7,)

Multiply 7. (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute f that varies linearly across triangle: e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation” Stanford (S248A, Winter 2025

How do we compute a triangle’s depth at a screen (x,y)?

Assume we have a triangle defined by the screen-space 2D position and distance (“depth”) from the camera
of each vertex.

T
[pOJJ p()y} - Wo, dO
[Pm P1y}T, w1, dl
[pQCIJ PQy}T, wa, da

How do we compute the depth of the triangle at covered sample point (2, y)?

Interpolate it just like any other attribute that varies linearly over the surface of the triangle.

Stanford (5248A, Winter 2026

Example: rendering three opaque triangles

Stanford (S248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth=0.5

O O O

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O O O O O

O O O O O O

Depth buffer contents

Stanford (5248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O O O O O

O O O O O O

Depth buffer contents

Stanford (5248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:
depth =0.75

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O O O O O

O

O O O O O O

Depth buffer contents

Stanford (S248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O
O O
O
O

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O O O O O

O O ® ® O
O O ® ® O
O o o o o

o o o o o o
O O O O O

O O O O O O

Depth buffer contents

Stanford (5248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

Depth buffer contents

Stanford (5248A, Winter 2026

Occlusion using the depth-buffer (Z-buffer)

After processing red triang le: Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = samples that pass depth test

O O O O O O O O O O O O O O O O O
O O O O O O O O ® o o O
O O O O O O O O ® ® o O
O O O O O O O ® ® ® o o
O O O O O ® ® ® ® o
O O O O ® o o o o
O O o o o o ® o
O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O

Color buffer contents Depth buffer contents

Stanford (5248A, Winter 2026

Occlusion using the depth buffer (opaque surfaces)

bool pass_depth test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {

1f (pass_depth _test(tri_d, depth buffer[x]l[y]) {

depth_buffer[x][y] = tri_d; // update depth_buffer
color[x][y] = tri_color; // update color buffer

}
}

Stanford (5248A, Winter 2026

Does depth-buffer algorithm handle interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The relative depth of
triangles may be different at different sample points.

® ¢ ® ° ® ¢ ® ° o °
® ® o ° o ° o ® o ®
® ° ® ° o ° e L o °
Green triangle in frontof ° o ‘4 Y o ® o ©
yellow triangle
o ® o o ° o ® . ®
® ® °
Yellow triangle in front of
o ® o
green triangle o ®

Stanford (5248A, Winter 2026

Does depth-buffer algorithm handle interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The relative depth of
triangles may be different at different sample points.

- | ¢ o ¢ ® ¢ ® ® o
Now only showing . . .
colored samples: ¢ . o o
° o
o ® °
o ¢ o ® o
® ° o o
¢ o

Stanford (5248A, Winter 2026

Does depth buffer work with super sampling?

Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

Stanford (S248A, Winter 2026

Color buffer contents

Stanford (5248A, Winter 2026

Color buffer contents (4 samples per pixel)

Stanford (5248A, Winter 2026

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

Stanford (S248A, Winter 2026

Summary: occlusion using a depth buffer

m Store one depth value per coverage sample (not per pixel!)

m Constant space per sample
- Implication: constant space for depth buffer

m Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a depth buffer read if “fail”

m Not specific to triangles: only requires that surface depth can be evaluated at a screen sample
point

But what about semi-transparent surfaces?

Stanford (5248A, Winter 2026

Compositing

Stanford (5248A, Winter 2026

Representing opacity as alpha
Alpha describes the opacity of an object
- Fully opaque surface: a =1

- 50% transparent surface: o = 0.5

- Fully transparent surface: o =0

Red triangle with decreasing opacity

A o

o=1 oa=0.75 o

0.5 o =0.25 o =0

Stanford (5248A, Winter 2026

Alpha: coverage analogy

m (Can think of alpha as describing the opacity of a semi-transparent surface
m Or... as partial coverage by fully opaque object
- consider a screen door

(Squint at this slide and the scene on the left and the right will appear similar)

Stanford (5248A, Winter 2026

Alpha: additional channel of image (rgba)

Alpha describes the opacity of an object .
" Fully opaque surface: a =1 =
" 50% transparent surface: & = 0.5 | g ‘
" Fully transparent surface: a =0)

o of foreground object

Stanford (5248A, Winter 2026

Over operator

ity org over image A with opacity o

th opac

Composite image Bw

<X
S
D
=
Q
(~a]
A
(~a]
-
v
=
(=
<X

"is not commutative

“Over

A overB

BoverA

Koala over NY(

Stanford (S248A, Winter 2026

Over operator: non-premultiplied alpha

Composite image B with opacity ag over image A with opacity o,

First attempt: (represent colors as 3-vectors, alpha separately)

A=A, A, A

- T
B= B, B, By
Appearance of semi-
. transparent A
Composited color: l

C=apB+(1—ap)asA

f !

Appearance of = What B lets through
semi-transparent B

Composite alpha:

ac =ap+ (1 —ap)ag

BoverA

A overB

A overB '= BoverA

“Over” is not commutative

Stanford (5248A, Winter 2026

Premultiplied alpha representation

m Represent (potentially transparent) color as a 4-vector where RGB values have been
premultiplied by alpha

A = [aAAT asA, aaAy CVA}T

Example: 50% opaque red
[0.5, 0.0, 0.0, 0.5]

Example: 75% opaque magenta
[0.75, 0.0, 0.75, 0.75]

Stanford (5248A, Winter 2026

Over operator: using premultiplied alpha

Composite image B with opacity ag over image A with opacity o,

Non-premultiplied alpha representation:

A=A, A, A
: - B A
B =B, B, Bb}
C=apB+ (1 —ap)apA <+—— two multiplies, one add B over A
(referring to vector ops on colors)
Composite alpha:
ac =ap+ (1 —ap)ay
Premultiplied alpha representation:
T Notice premultiplied alpha composites alpha

I _
A" = [O‘AA”'“ aadg aady O‘A] just like how it composites rgb.

B/: [OzBBf,a OzBBg OJBBb OAB}T

C' =B 4+ (1—ap)A’ <——— onemultiply, one add

Stanford (5248A, Winter 2026

Fringing

Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha
ST, MR AR

M o A 3 g
. R O L r L < T e
. BV A e
; e SR N
e 5 «
-1 .'l ”
-
; !
4
)

AT N
kg, DA NS
NN

| “‘ 3 \Y . 3 "

4 "i l‘\tl' 5 ’ e X
:‘,‘ | qk)‘_' .‘\\‘\'\L‘ .s\f\ #\ _*,
F f 3 % e AT] :"!'} g .’." \ ‘ oL
=3 L ’ £] " 5 ‘, \ "

R
'y

f.ringi.hg. - . no fringing

Stanford (5248A, Winter 2026

Inging

No fr

Stanford (S248A, Winter 2026

-

Fringing (...why does this happen?)

’“"/—;-.-;’;'7 lj\‘ " 0
> v by & // .
-~ 4 .r /’ l » o e
'-/// y B0 1,

o

‘;{/
> £ .4 PN
P g - .—--/) ' : /A'j' N

" - . - , ""r““ . -'

3 > 3 / .’-r ‘ ‘1."
7

e
e Foch
-
-
o ;
- =

-

Stanford (S248A, Winter 2026

A problem with non-premultiplied alpha

m Suppose we upsample an image w/ an alpha mask, then composite it onto a background
m How should we compute the interpolated color/alpha values?

m [fweinterpolate color and alpha separately, then blend using the non-premultiplied “over” operator, here’s
what happens:

original original
color alpha

upsampled upsampled
color alpha

Notice black “fringe” that occurs because we're blending, e.g.,
50% blue pixels using 50% alpha, rather than, 100% blue pixels
with 50% alpha.

composited onto
yellow background Stanford (S248A, Winter 2026

Eliminating fringe w/ premultiplied “over”

If we instead use the premultiplied “over” operation, we get the correct alpha:

(1-alpha) background

upsampled color (1-alpha)*background composite image
w/ no fringe

Stanford (5248A, Winter 2026

Another problem with non-premultiplied alpha

Consider pre-filtering a texture with an alpha matte
Desired filtered result

.y
»
:

—>

Downsampling non-premultiplied alpha
image results in 50% opaque brown
(incorrect!)

a
B

input color filtered color

filtered result - Result of filtering premultiplied
—) (composited over white) alpha image (correct!)
0.25*((0,1,0,1)+(0,1,0,1)+(0,0,0,0)+(0,0,0,0))=(0,0.5,0,0.5)

input « filtered a

Stanford (S248A, Winter 2026

]
ad T

File Edit Tools Window Help

Properties
Edit

‘.’, Wind

‘% Global properties

Actions

L Wind wizard...
R’ Randomize
File

‘O Browse samples...

Help

ii Documentation...

? Forum...

Generation

Add

LS

o Lighting

Forest_Stump_2_Rocks.spm X

View Scene

©) ®
~

~

:.E Window properties

-
A Compute AO

’ Export...

E: Open...

[3 video tutorials...

% Shop for models...

[Image credit: SpeedTree Cinema 8]

Resolution

High

Medium

Low

Draft

Edit

Generators

Nodes

@

Anchors

b X

(@)

Show Material

Hickory_Fall_3_front

A

D
% |

WL
Edit Cutout - Hickory_Fall_3_front Cutout

Options

Tessellation

v Double-sided

Angle

Common use of textures with alpha: foliage

Materials

 /

Settings
Two-sided

Hickory_Fall_3_front

7 Season

2.00 Max resolution
Unwrapping scale
or data
Information
Vertices 10
Triangles 10
Coverage 75.3%

all_3_frontCutor ¥ ~

Edit...

fake New Set...
Opadity

 :

v

Metallic

H o

v

ickory_Fall_3_front Cutout

Switch to simple mesh

on

v

Search Help:

Preview

Normal
1
v

-

Subsurface

v

Show Alignment Help

Subsurface%

Verts 127

Polygons 228

Stanford (5248A, Winter 2026

Foliage example

[Image credit: SpeedTree Cinema 8] Stanford (S248A, Winter 2026

Another problem: applying “over” repeatedly

Consider composite image C with opacity ac over B with opacity os over image A with opacity oa

A=[4, A, A,
B=[B, B, By B A
C=apB+ (1 —ap)asA

ac =ap+ (1 —ap)ag

]T

Consider first step of of compositing 50% red over 50% red: C
C=10.75 0 0 " Wait... this result is the premultiplied color!

ac = 0.75 So “over” for non-premultiplied alpha takes non-premultiplied colors to
premultiplied colors (“over” operation is not closed)

CoverBoverA

Cannot compose “over” operations on non-premultiplied values:
over(C, over(B, A))

There is a closed form for non-premultiplied alpha:

1
C=—(apB+ (1 —ap)asA)

acC

Stanford (5248A, Winter 2026

Summary: advantages of premultiplied alpha

m Simple: compositing operation treats all channels (rgb and a) the same

m Closed under composition

m Better representation for filtering textures with alpha channel

m More efficient than non-premultiplied representation: “over” requires fewer math ops

Stanford (5248A, Winter 2026

Color buffer update: semi-transparent surfaces

Assume: color buffer values and tri_color are represented with premultiplied alpha

over(cl, c2) {
return cl + (l1l-cl.a) *x c2:

}

update_color_buffer(tri_z, tri_color, x, y) {
// Note: no depth check, no depth buffer update
color[x]1[y] = over(tri_color, color[x]llyl]l);

}

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford (5248A, Winter 2026

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles

Step 1: render opaque surfaces using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems a little complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering.

More on this later in the course, and in (5348B
Stanford (5248A, Winter 2026

Combining opaque and semi-transparent triangles

Assume: color buffer values and tri_color are represented with premultiplied alpha

update_color_buffer(tri_z, tri_color, x, y) {
1f (pass_depth_test(tri_z, zbuffer[xl[y]l) {
color[x][y] = tri_color;
zbuffer[x][y]l = tri_z;

}
}

update_color_buffer(tri_z, tri_color, x, y) {
1f (pass_depth_test(tri_z, zbuffer[xl[yl) {

color[x][y] = over(tri_color, color[x]llyl);

Stanford (5248A, Winter 2026

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

Stanford (5248A, Winter 2026

Command: draw these triangles!

Inputs:
list _of positions = { list of texcoords = {
vox, vOy, vOz, vOu, voOv,
vlx, vly, vlz, vliu, vlyv,
v2X, v2y, v2z, v2u, Vv2v,
v3x, v3y, v3z, v3u, Vv3v,
vdx, v4y, v4z, v4u, v4v,
vbx, vby, vbz }; vSu, v5v };

Object-to-camera-space transform: 1’

Texture map

Perspective projection transform P
Size of output image (W, H)

Use depth test /update depth buffer: YES!

Stanford (S248A, Winter 2026

Step 1:

Transform triangle vertices into camera space
(apply modeling and camera transform)

Stanford (5248A, Winter 2026

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole
Camera .
(0,0) Znear ‘ %3 ® X

Camera-space positions: 3D Normalized space positions

Note: I'm illustrating normalized 3D space after the homogeneous divide, it is
more accurate to think of this volume in 3D-H space as defined by:

(-w, -w, -w, w) and (w, w, w, w)

Stanford (5248A, Winter 2026

Step 3: clipping

m Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don’t bother processing them further
m (lip triangles that extend beyond the unit cube to the cube

- Note: clipping may create more triangles
y

X4

(1,1,1)

Triangles after clipping

Triangles before clipping
Stanford C5248A, Winter 2026

Step 4: transform to screen coordinates

Transform vertex xy positions from normalized coordinates into screen coordinates
(based on screen w,h)

(w, h)

(0,0)

Stanford (5248A, Winter 2026

Step 5: setup triangle (triangle preprocessing)
Compute triangle edge equations (implicit equations for inside/outside tests)

Compute triangle attribute interpolation equations

Eo1(z,y) U(z,y)
Bz, y) V(z,y)
Eoo(x,y
%(l‘, Y)

Stanford (5248A, Winter 2026

sample coverage

Evaluate attributes z, u, v at all covered samples

Step 6

Stanford (5248A, Winter 2026

Step 6: compute triangle color at sample point

e.g., sample texture map *

* So far, we've only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Laterin the course, we'll discuss more advanced algorithms for computing its color based on material

properties and scene lighting conditions.

®

®

O e

O O
u(x,y), v(x,y)
O O

Stanford (S248A, Winter 2026

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

®
FAIL

@
FAIL

o
FAIL
o
FAIL
o
FAIL
o
FAIL

PASS

o o
PASS PASS

PASS PASS

e o o
PASS PASS PASS

e 0
PASS PASS PASS
PASS PASS PASS

Stanford (5248A, Winter 2026

Review: occlusion using the depth buffer (opaque surfaces)

bool pass_depth test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {

1f (pass_depth _test(tri_d, depth buffer[x]l[y]) {

depth_buffer[x][y] = tri_d; // update depth_buffer
color[x][y] = tri_color; // update color buffer

}
}

Stanford (5248A, Winter 2026

Step 8: update color buffer (if depth test passed)

Step 9:

m Repeat steps 1-8 for all triangles in the scene!

Stanford (5248A, Winter 2026

One reminder about transparent surfaces

Stanford (5248A, Winter 2026

Color buffer update: semi-transparent surfaces

Assume: color buffer values and tri_color are represented with premultiplied alpha

over(cl, c2) {
return cl + (l1l-cl.a) *x c2:

}

update_color_buffer(tri_z, tri_color, x, y) {
// Note: no depth check, no depth buffer update
color[x]1[y] = over(tri_color, color[x]llyl]l);

}

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

Stanford (5248A, Winter 2026

Putting it all together *
Consider rendering a mixture of opaque and transparent triangles

Step 1: render opaque surfaces using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

* If this seems complicated, you will enjoy the simplicity of using ray tracing algorithm for rendering. More on this in a few weeks.

Stanford (5248A, Winter 2026

Combining opaque and semi-transparent triangles

Assume: color buffer values and tri_color are represented with premultiplied alpha

update_color_buffer(tri_z, tri_color, x, y) {
1f (pass_depth_test(tri_z, zbuffer[xl[y]l) {
color[x][y] = tri_color;
zbuffer[x][y]l = tri_z;

}
}

update_color_buffer(tri_z, tri_color, x, y) {
1f (pass_depth_test(tri_z, zbuffer[xl[yl) {

color[x][y] = over(tri_color, color[x]llyl);

Stanford (5248A, Winter 2026

Real time graphics APIs

m OpenGL
m Microsoft Direct3D
m Apple Metal

m You now know a lot about the algorithms implemented underneath these APIs: drawing
3D triangles (key transformations and rasterization), texture mapping, anti-aliasing via
supersampling, etc.

m Internet is full of useful tutorials on how to program using these APlIs

Stanford (5248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

Structures rendering computation as a series of operations on vertices, primitives, fragments, and screen samples

°3
°1 . .
l— °4 |nput: verticesin 3D space
°2
Operations on JErtexierocessing
vertices presennmseesenneeeees 5
Vertex stream : ° : o o . .
l ; © . . Verticesin positioned in normalized
primitives o
(triangles, lines, etc.) Primitive stream A
Fragment Generation . Triangles positioned on screen

(Rasterization) § §
Operations on Fragment streaml
fragments %:. Fragments (one fragment per covered sample)

Eragmentibrocessing
Shaded f tst
aded fragment s reaml % ?- Shaded fragments
Operations on Screen sample operations
(depth and color) ronemrenanoa e :

screen samples : :

Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted Stanford CS248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

°1

°4 |nput vertices in 3D space
| °2
Operations on [dp09 Ylugasilily) | €= transform matrices
vertices Vertex streaml

primitives
(trianglles, lines, etc.) Primitive stream

Fragment Generation

(Rasterization)

Operations on Fragment streaml Pipeline inputS:
fragments
[FragMentiProcessing] — Inputvertex data
Shaded fragment stream ' — Parameters needed to compute position on vertices
in normalized coordinates (e.g., transform matrices)

Operations on SUEENSAMpICoperations — Parameters needed to compute color of fragments

(e.q., textures)

(depth and color)

screen samples

— “Shader” programs that define behavior of vertex
and fragment stages

* Several stages of the modern OpenGL pipeline are omitted Stanford C5248A, Winter 2026

OpenGL/Direct3D graphics pipeline *

JertexiProcessing

l

Fragment Generation

(Rasterization)

l

[tragment Rw&:whuy]

l

Screen sample operations

(depth and color)

* Several stages of the modern OpenGL pipeline are omitted Stanford C5248A, Winter 2026

Shader programs

Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

Example GLSL fragment shader program

uniform sampler2D myTextuV Program parameters

uniform vec3 lightDir; .
Per-fragment attributes

Shader function executes once per fragment.

Outputs color of surface at sample point

varying vec2 uv; _— (interpolated by rasterizer) corresponding to fragment.

Ol N on; (this shader performs a texture lookup to obtain the surface’s
material color at this point, then performs a simple lighting

void diffuseShader() computation)

{ Sample surface albedo

(reflectance color) from texture
vec3 kd;

kd = texture2d(myTexture, uv);
kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);

gl_FragColor = vec4(kd, 1.0);
} /r

Shader outputs surface color Modulate surface albedo by incident

irradiance (incoming light)
Stanford (5248A, Winter 2026

Texture coordinate visualization

Defines mapping from point on surface to point (uv) in texture domain

Red channel = u, Green channel =v
So uv=(0,0) is black, uv=(1,1) is yellow Stanford (S248A, Winter 2026

Rendered result (after evaluating fragment shader for each pixel)

N L

Stanford (5248A, Winter 2026

-

100 ofthousands to mllllon;oft dn %fs.th.asce“e_ ‘

o Co’mplex vertex‘hnd fragment shad@ige dmputations ;*-
"nggh resolutlon screen outputs (2 y U lxel + supersa m“plm)

-30- 60fps =l SR Y

'l

-~ E] ~/’ :L
N
4 Y ,).'ub'
’. e :
-y T, oy oot ;
’ AR AN iy
< 2 \X' ~‘ \\;\ 3 |
\ AT A AN .
- 13 —~ -_' ' “
K\ \')\"I '
- \.‘,\‘ih‘#
‘f: by » !
' /

Red Dead Redemption 2 " kﬂl ¥

P ™, |
f : V\. " "‘ .
‘\"}."*“Q\

’
L

' A (‘.

e w

AP

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

Discrete GPU card
(NVIDIA RTX 4090 GPU)

Processor
Graphics

‘\\\ ' F e SHEINES = B == . PEEIEE T
K : ‘f N e 8 3 ‘ : e P . : =1 . | =
N L 9 N - == B " i :
L ~ . . .y - . * . ¢ | .
Q R p -.0 4 ' | F = = " » ") i SyStem f :
E ' : A b ,
: . : | * Core . Core i 1Agent &
' RN | & 21 kTR E 5 ek =
\:\ ' | AT T VA Tl VA ﬁ § = :-T. I8
“\"; R ¥ | - g | v ! - - o A - g " ‘- ol
- - 3 V t 11 11 - -+ o ey "’:' includin i .
W &5 : 5 ik the ‘ h e T . E
N W v - - I dJ & £ -
» o - |

T
.
-
‘.' -y ‘

Integrated GPU part of modern Intel CPU chlp

Stanford (5248A, Winter 2026

GPU: heterogeneous, multi-core processor

T-OP’s of fixed-function
Modern GPUs offer ~2-4 TFLOPs of performance for compute capability over here

executing vertex and fragment shader programs |] I

I

Tessellate Tessellate
_ GPU
Clip/Cull Clip/Cull —
m m m m - - Memory
Clip/Cull Clip/Cull
Rasterize Rasterize
Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend
Blend Blend Blend
Scheduler / Work Distributor

Take Kayvon's Visual Computing Systems course (C5348V) for more details! Stanford (5248A, Winter 2026

Summary

m Occlusion resolved independently at each screen sample using the depth buffer

m Alpha compositing for semi-transparent surfaces
- Premultiplied alpha forms simply repeated composition

- “Over” compositing operations is not commutative: requires triangles to be processed in back-to-front
(or front-to-back) order

m Rasterization-based GPU-accelerated graphics pipeline:

- Abstracts rendering computation as a sequence of operations performed on vertices, primitives (e.g.,
triangles), fragments, and screen samples

- Behavior of parts of the pipeline is application-defined. .. using shader programs

- Pipeline operations implemented by highly, optimized parallel processors and fixed-function hardware
(GPUs)

Stanford (5248A, Winter 2026

