

Lecture 8:

Radiometry, BRDFs, and the Reflection Equation

+ plus a bit on simple volume rendering to get you going on assignment 2

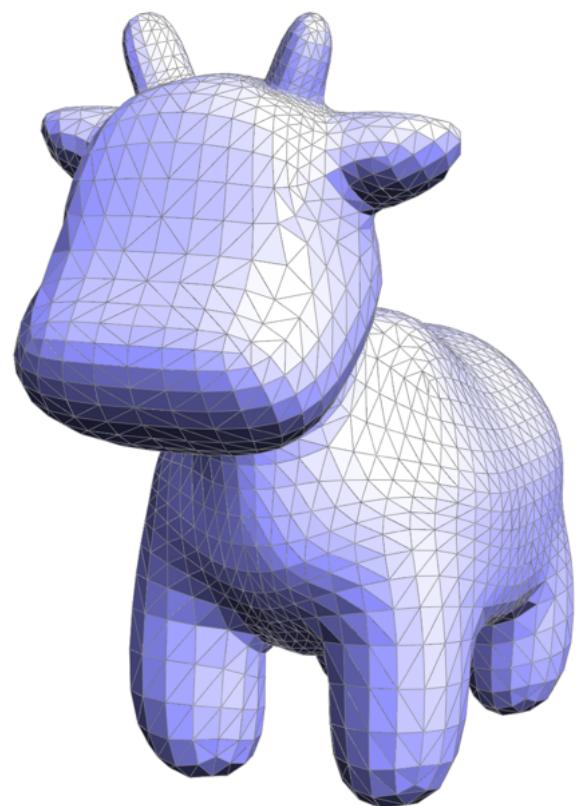
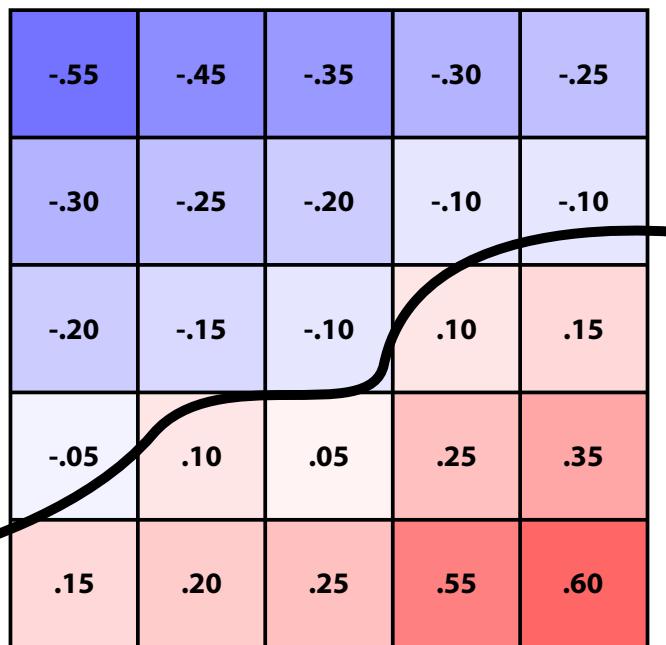
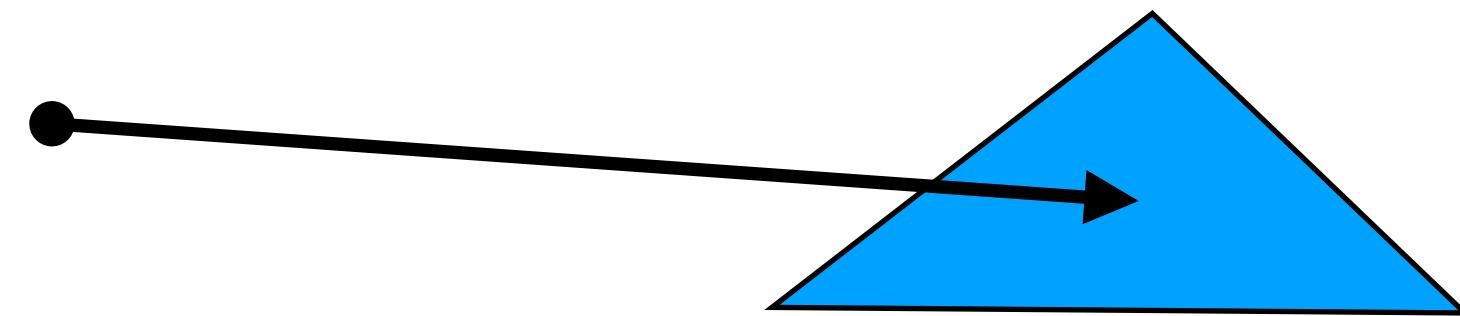
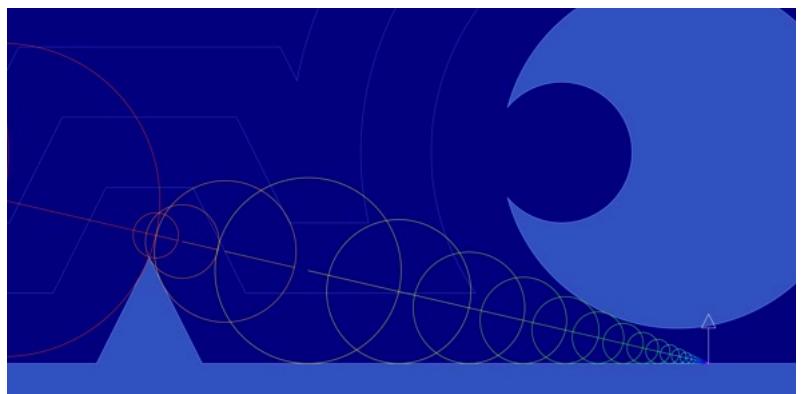
Interactive Computer Graphics
Stanford CS248A, Winter 2026

Warm up:

**Reviewing the rasterization pipeline we discussed last time
(We'll discuss on top of last lecture's slides)**

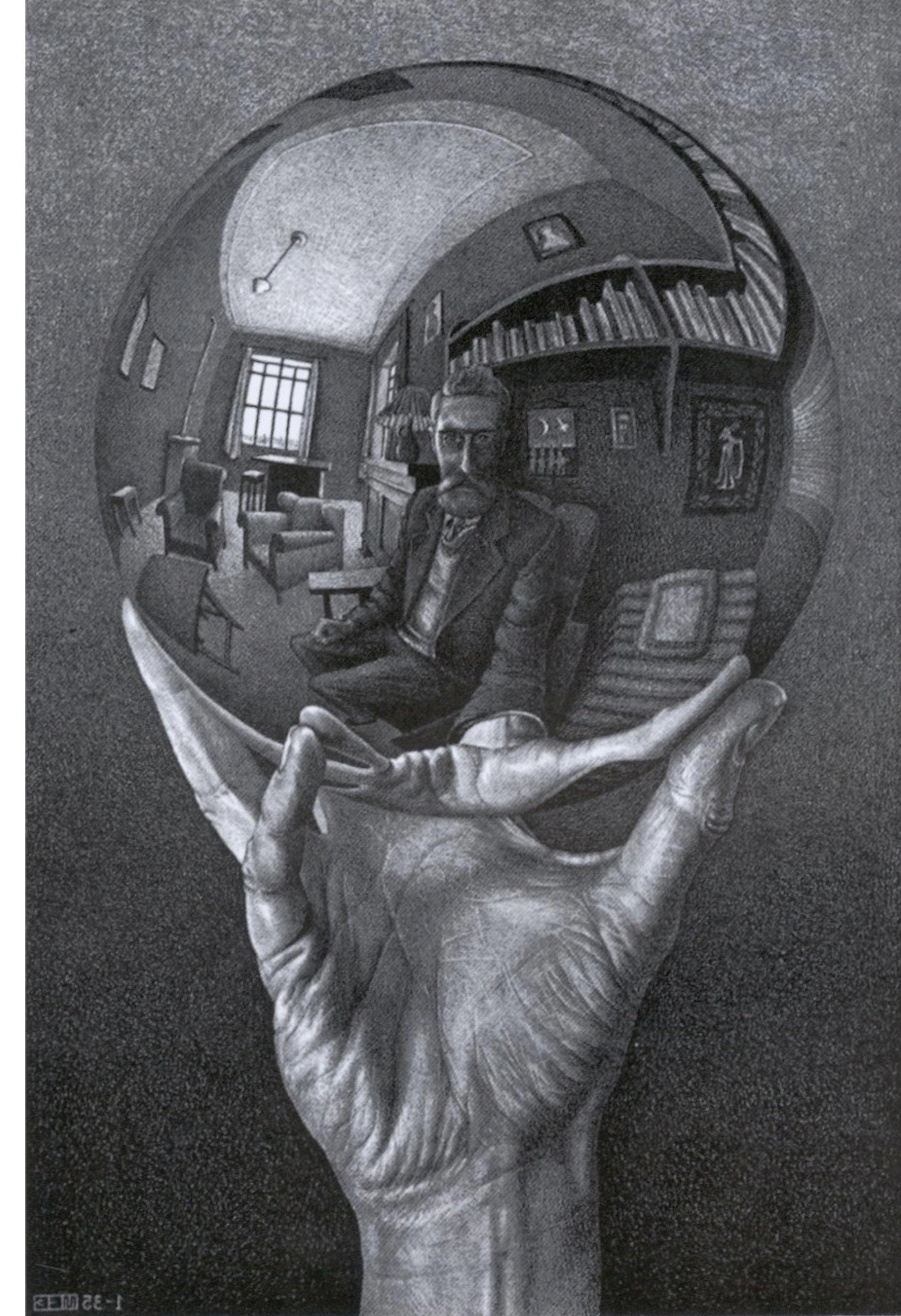
Things you know so far!

- **Representing geometry**
 - As triangle meshes, implicit surfaces, SDFs, occupancy fields, etc.
- **Visibility and occlusion**
 - Ray tracing: determining what is the closest surface a ray hits
 - Rasterization using zbuffer: determining if projected primitives “cover” a sample (and which one is closest)
- **Today: basics of lights and materials**
 - Computing the “appearance” of the surface at a point
 - Thinking about “appearance” in terms of reflected light (electromagnetic energy)



“Shading” in drawing

- Depicting the appearance of the surface
- Due to factors like surface material, lighting conditions

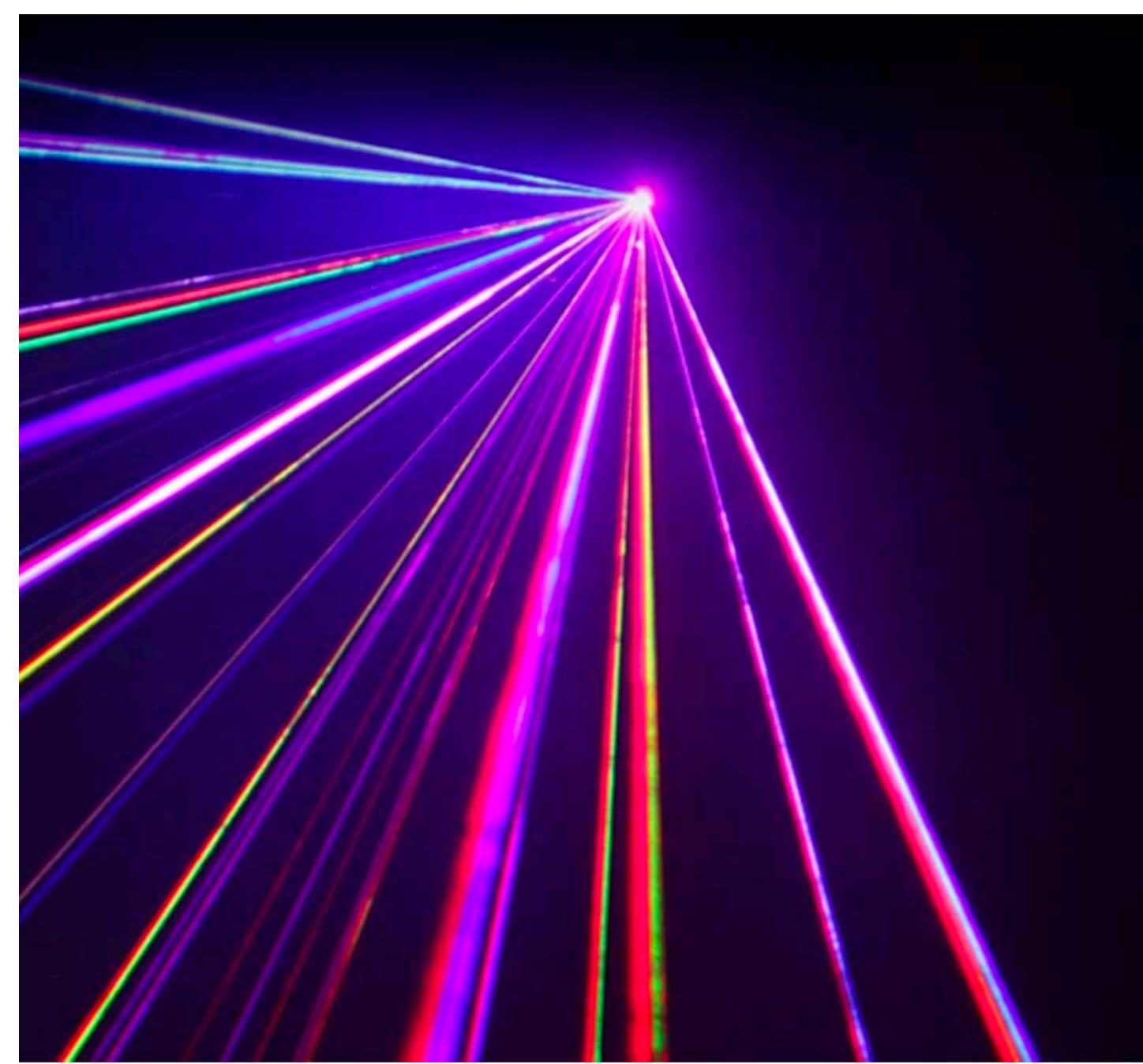


MC Escher pencil sketch

Lighting

Credit: ETC

Credit: Pixar



Lighting

Credit: Wikipedia
(Nasir ol Molk Mosque)

Lighting

Portrait Lighting Cheat Sheet

0° 45° 90° 135° 180° 225° 270° 315°

Flash
@45°
Down

Flash
@0°

Flash
@45°
Up



(cc) DIYPhotography.net

Diffuse material

Plastic

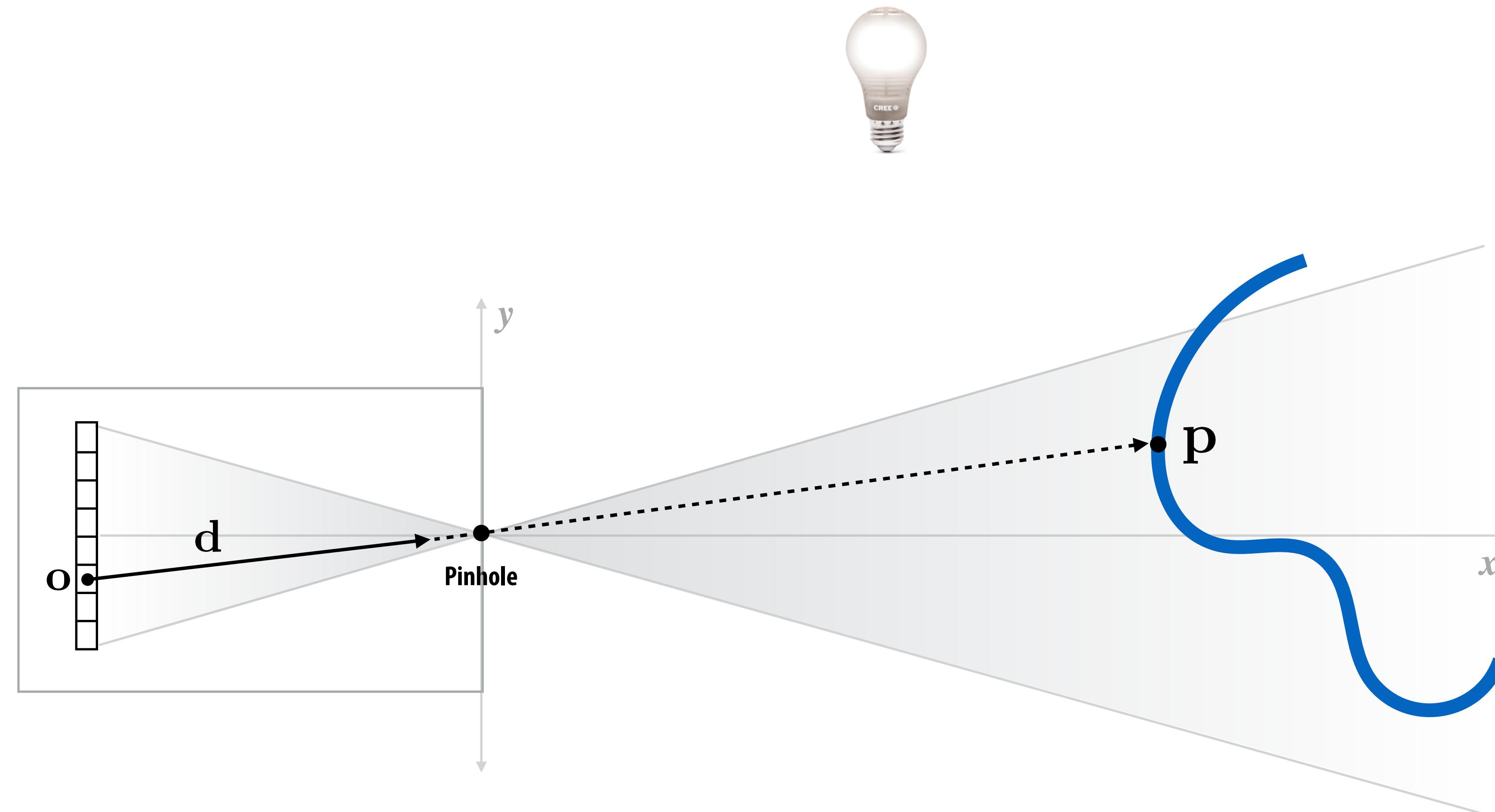
Red semi-gloss paint

Ford mystic lacquer paint

Mirror

Gold

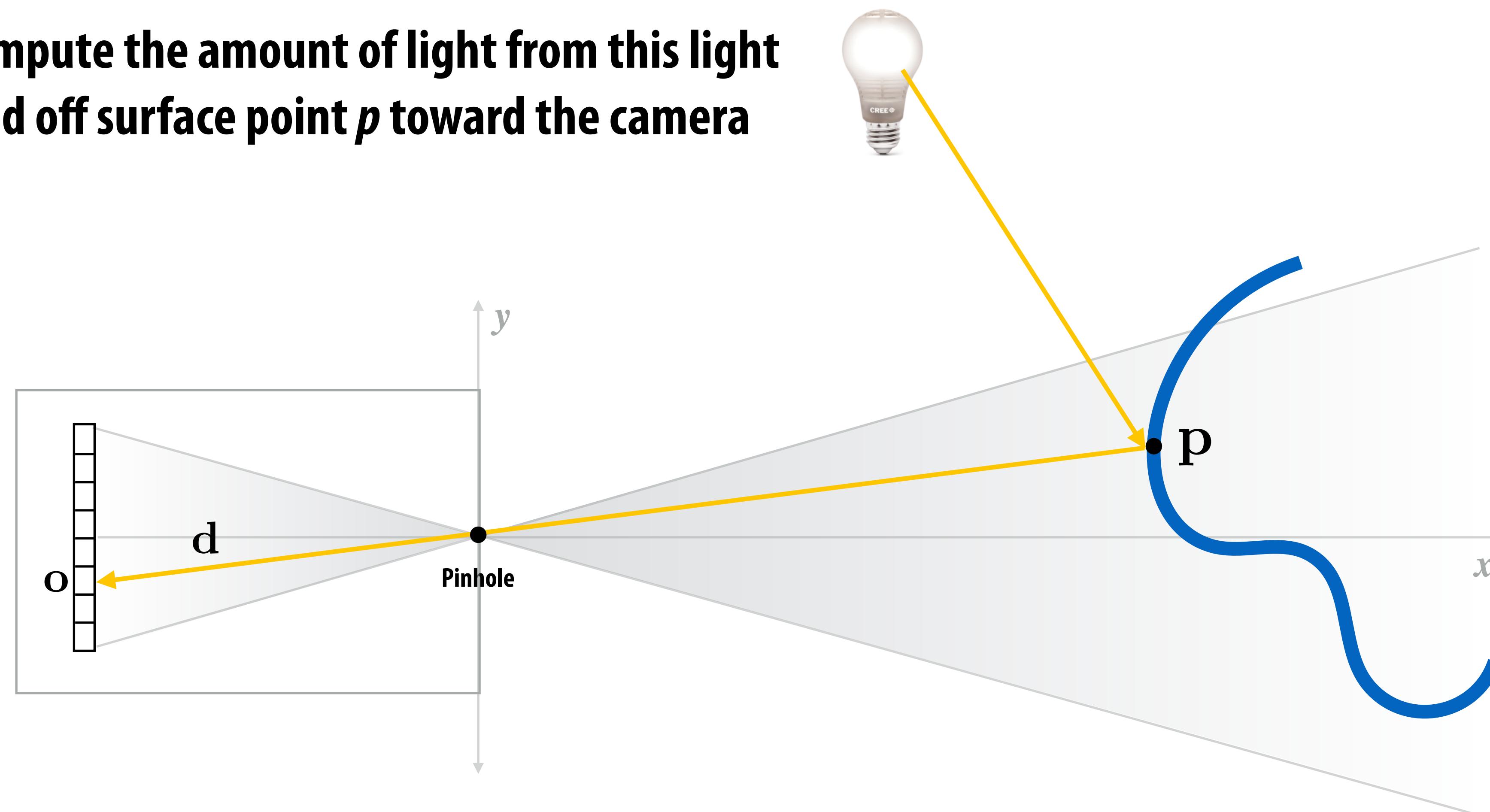
A renderer measures light energy along a ray



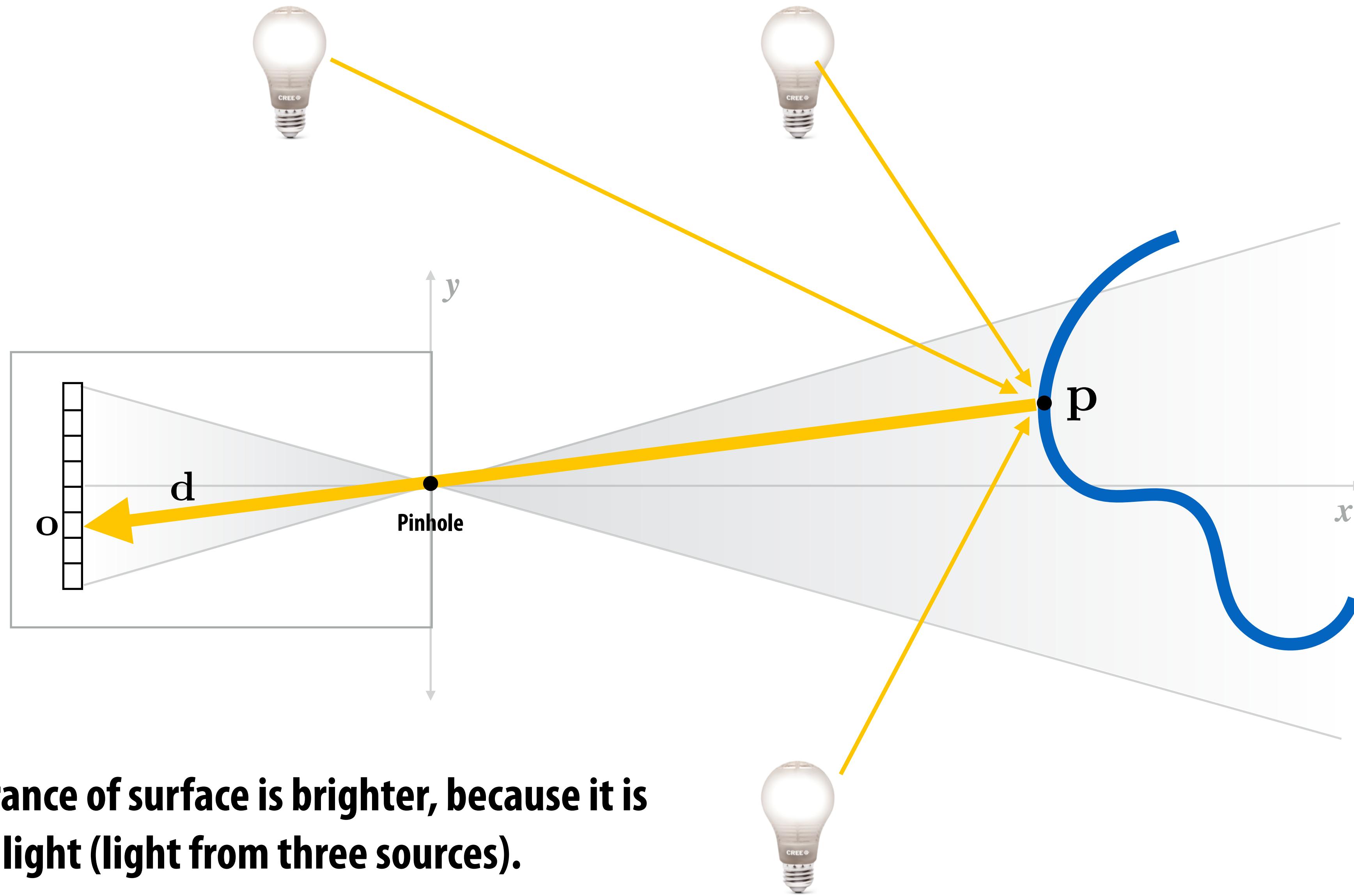
Up until now in the course I've said that we are sampling “the color of the surface” visible along a ray...
but now let's make that more precise.

Renderer measures light energy along a ray

We want to compute the amount of light from this light source reflected off surface point p toward the camera



Multiple light sources



Now the appearance of surface is brighter, because it is reflecting more light (light from three sources).

What is light?

Light is electromagnetic radiation that is visible to the eye

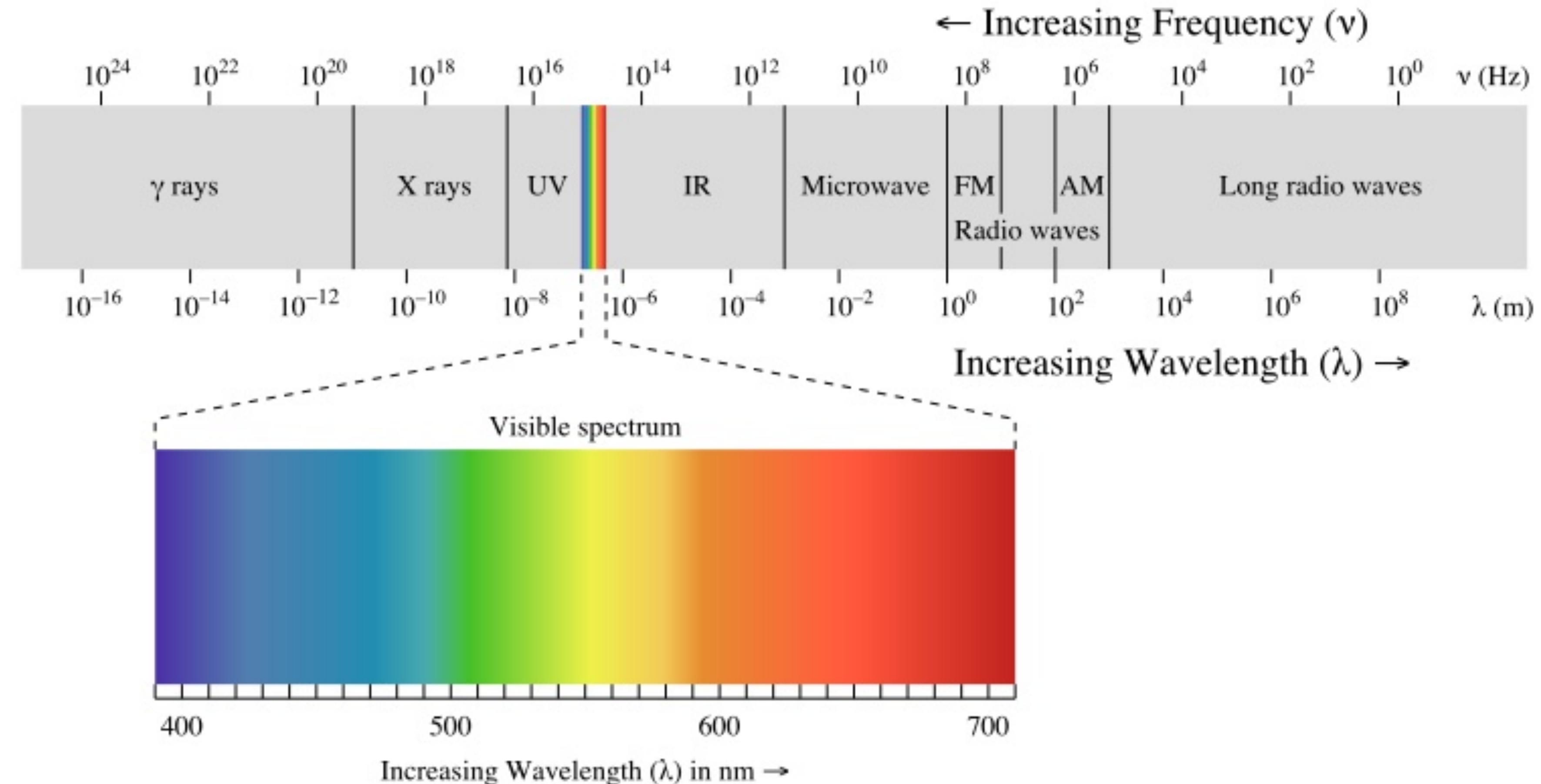


Image credit: Licensed under CC BY-SA 3.0 via Commons

https://commons.wikimedia.org/wiki/File:EM_spectrum.svg#/media/File:EM_spectrum.svg

Stanford CS248A, Winter 2026

What do lights do?

Cree 11 W LED light bulb
("60 Watt" incandescent replacement)

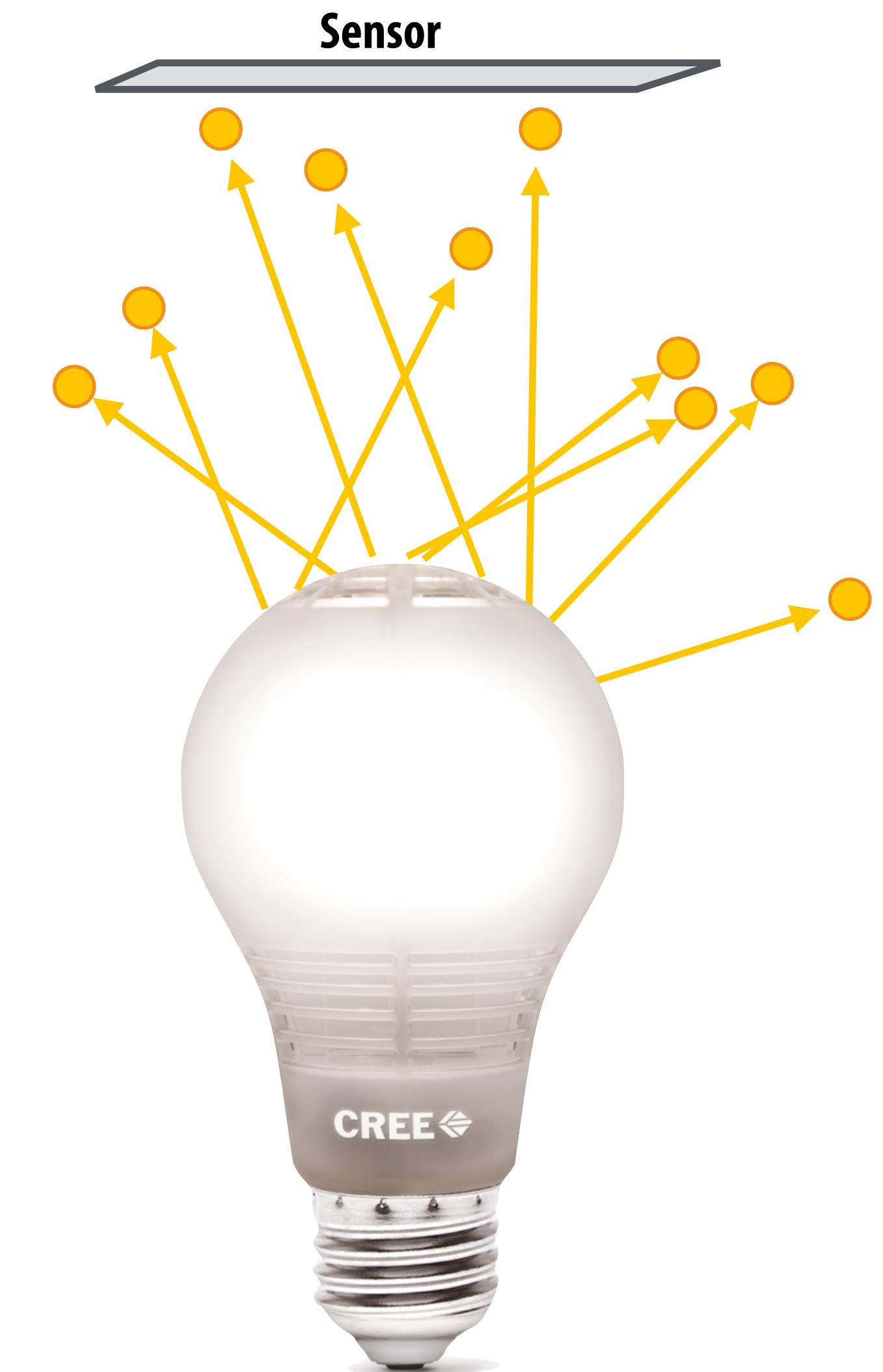
- Physical process converts input energy into photons
 - Each photon carries a small amount of energy
- Over some amount of time, light fixture consumes some amount of energy, Joules
 - Some input energy is turned into heat, some into photons
- Energy of photons hitting an object ~ exposure
 - Film, sensors, sunburn, solar panels, ...
- In graphics we generally assume “*steady state*” process
 - Rate of energy consumption = power, Watts (Joules/second)

Measuring illumination: radiant flux (power)

- Given a sensor, we can count how many photons reach it
 - Over a period of time, gives the power received by the sensor
- Given a light, consider counting the number of photons emitted by it
 - Over a period of time, gives the power emitted by the light
- Energy carried by a photon:

$$Q = \frac{hc}{\lambda}$$

$$h \approx 6.626 \times 10^{-34}$$



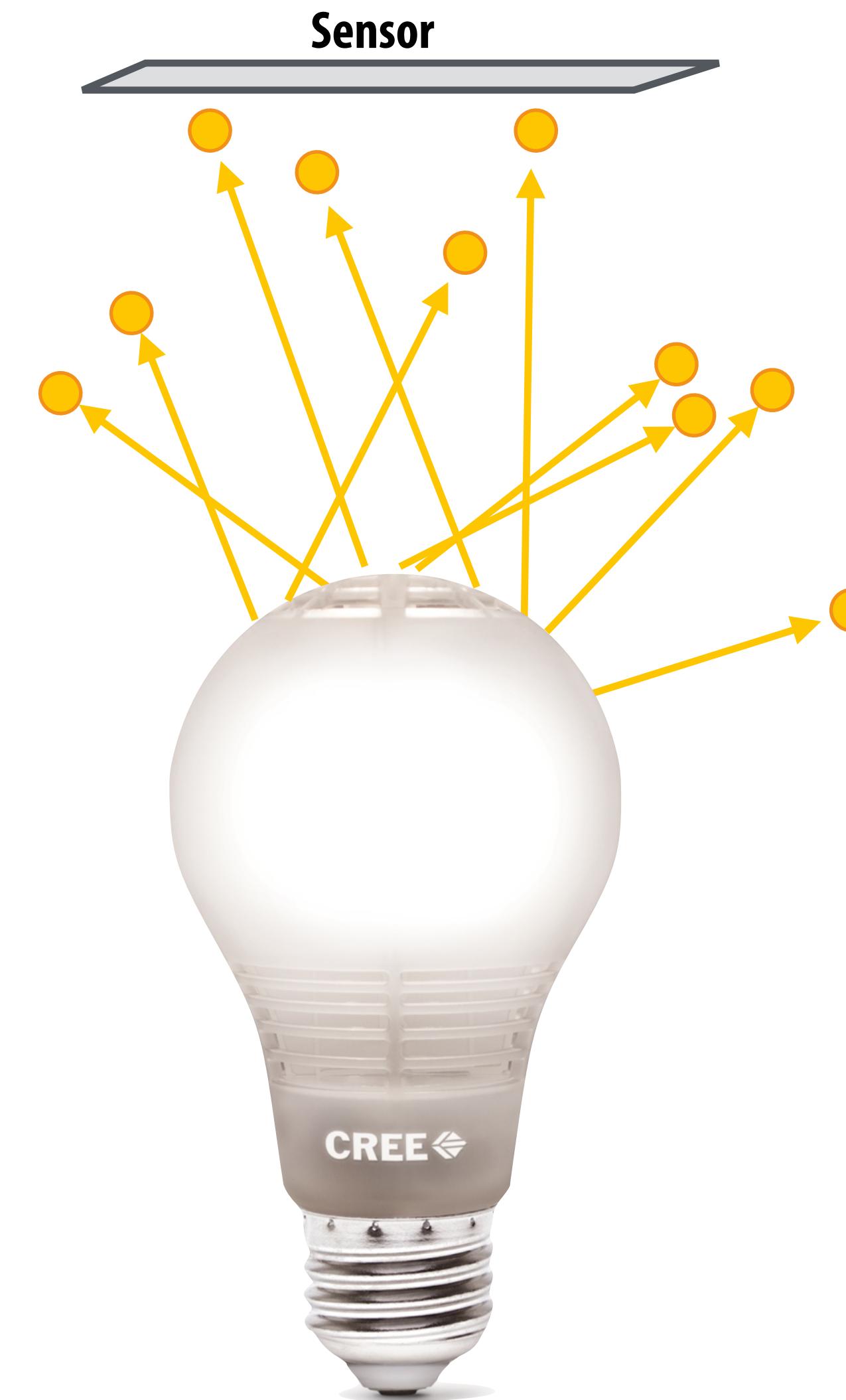
Measuring illumination: radiant flux (power)

- Flux: energy per unit time (Watts) received by the sensor (or emitted by the light)

$$\Phi = \lim_{\Delta \rightarrow 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} \left[\frac{\text{J}}{\text{s}} \right]$$

- Time integral of flux is total radiant energy

$$Q = \int_{t_0}^{t_1} \Phi(t) dt$$



Spectral power distribution

Describes distribution of energy by wavelength

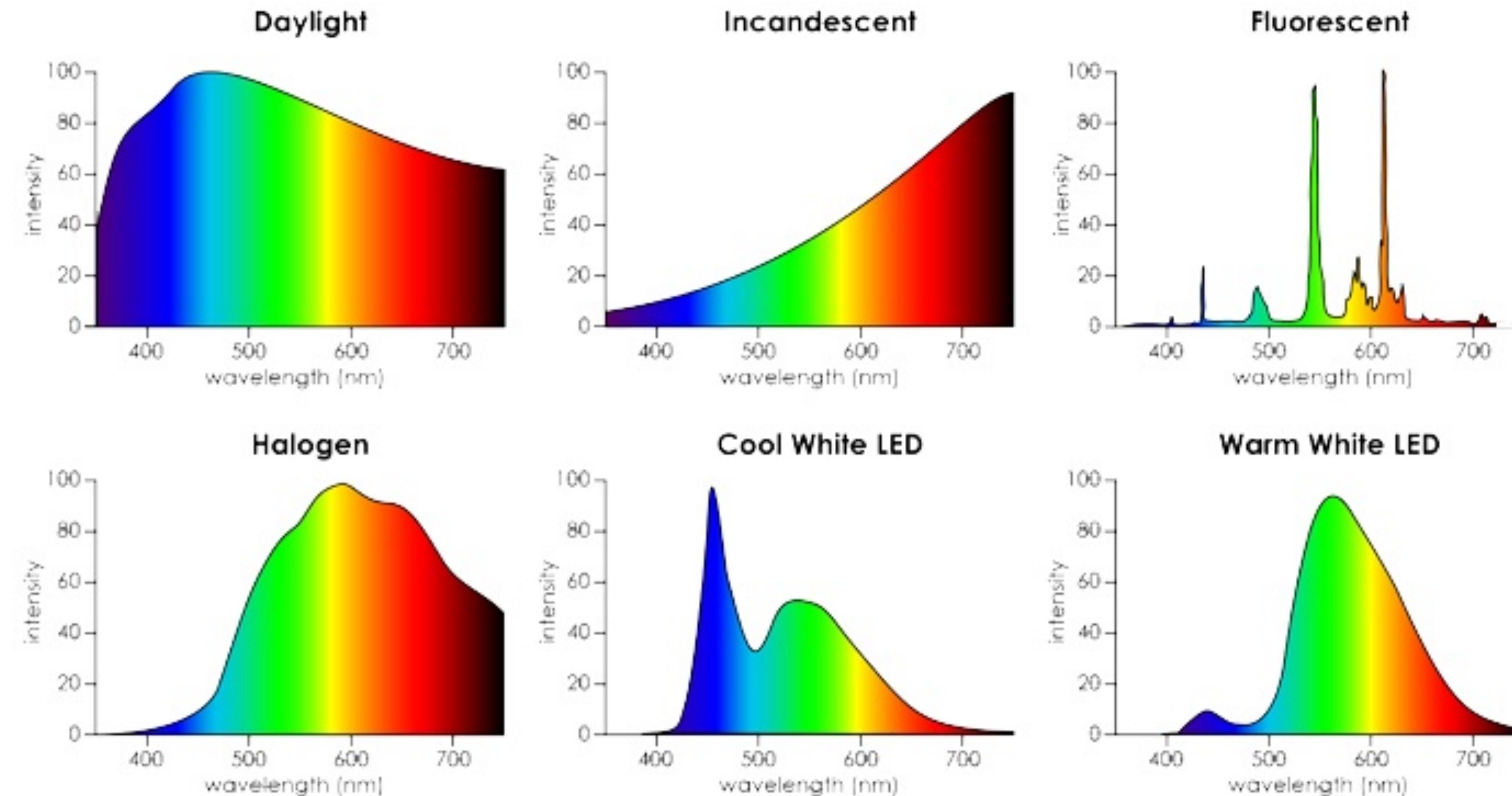


Figure credit:

“Warm” vs. “cool” white light LED

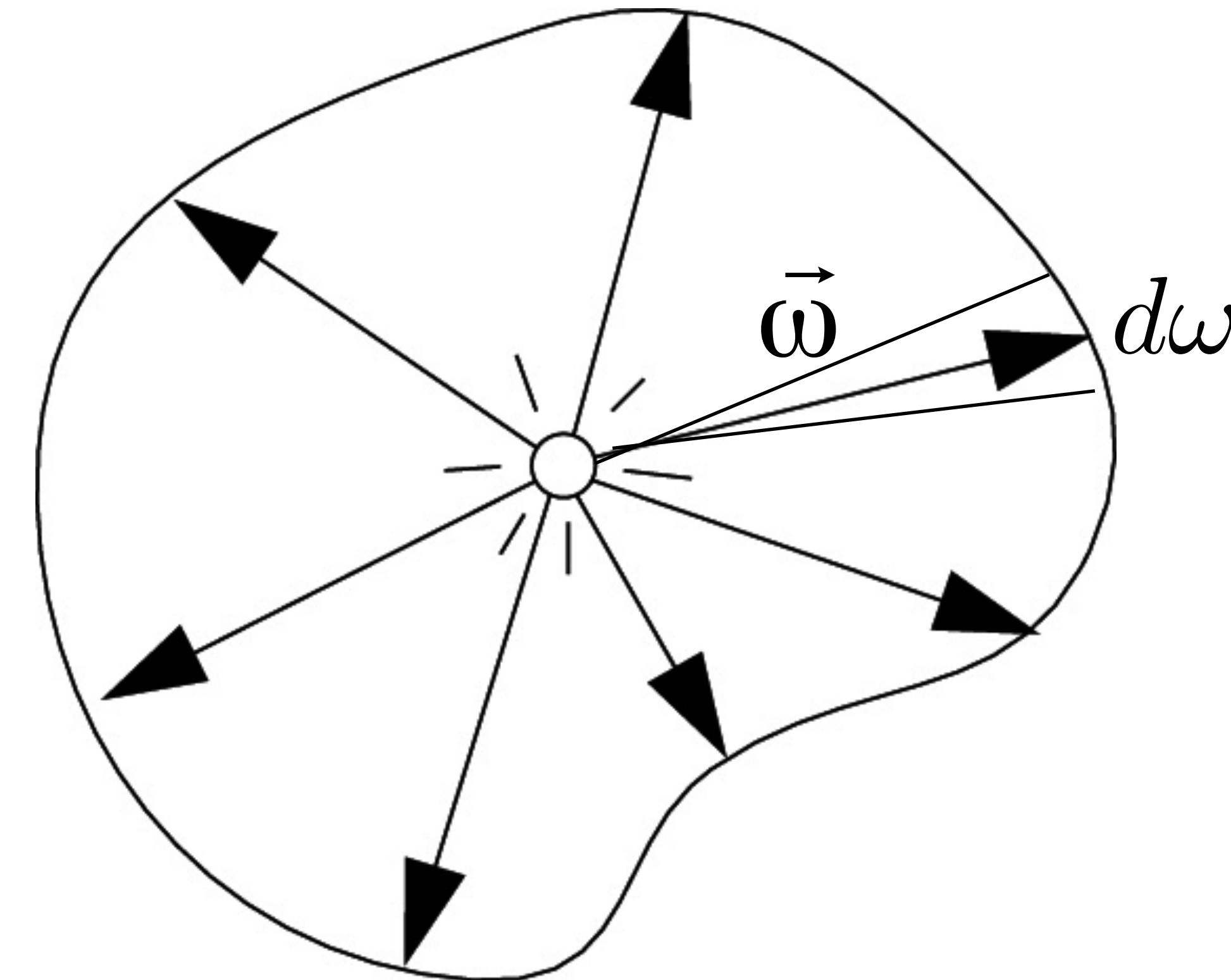
Radiant intensity

The *radiant intensity* is the power per unit solid angle emanating from a point source.

$$I(\omega) = \frac{d\Phi}{d\omega}$$

$$\left[\frac{W}{sr} \right]$$

Units = Watts per steradian



Angles and solid angles

Angle

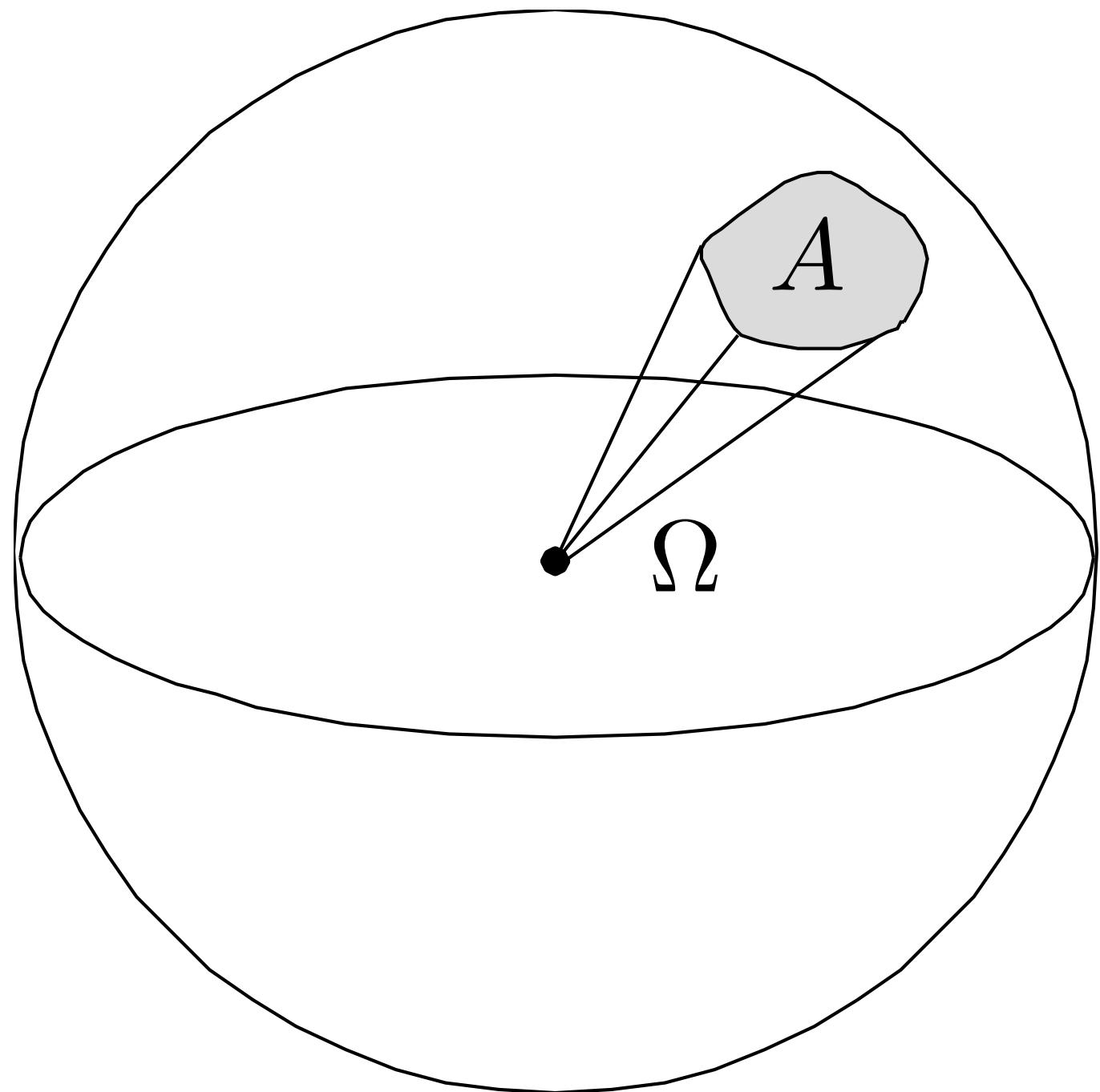
$$\theta = \frac{l}{r}$$

\Rightarrow circle has 2π radians

Solid angle

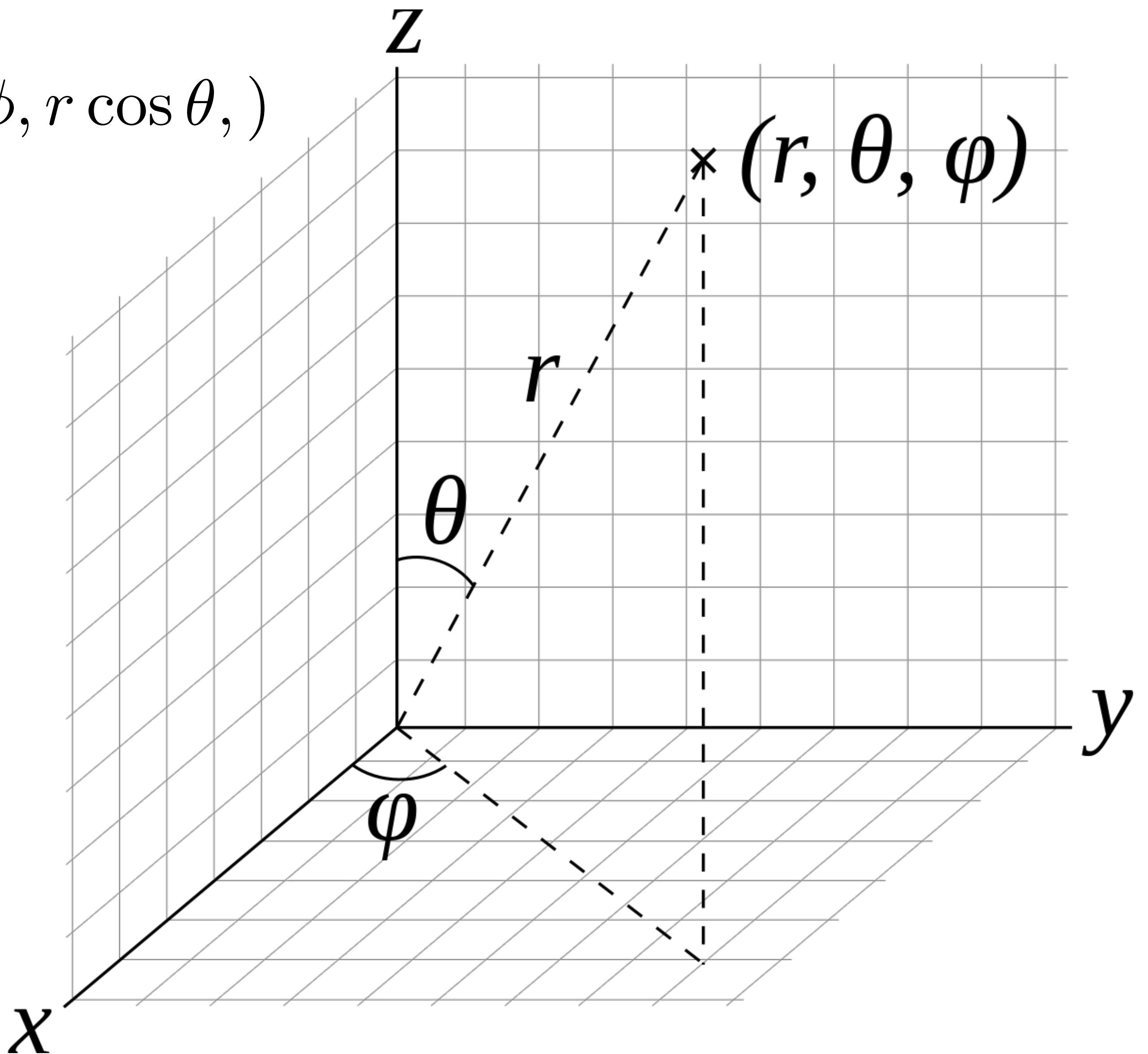
$$\Omega = \frac{A}{R^2}$$

\Rightarrow sphere has 4π steradians



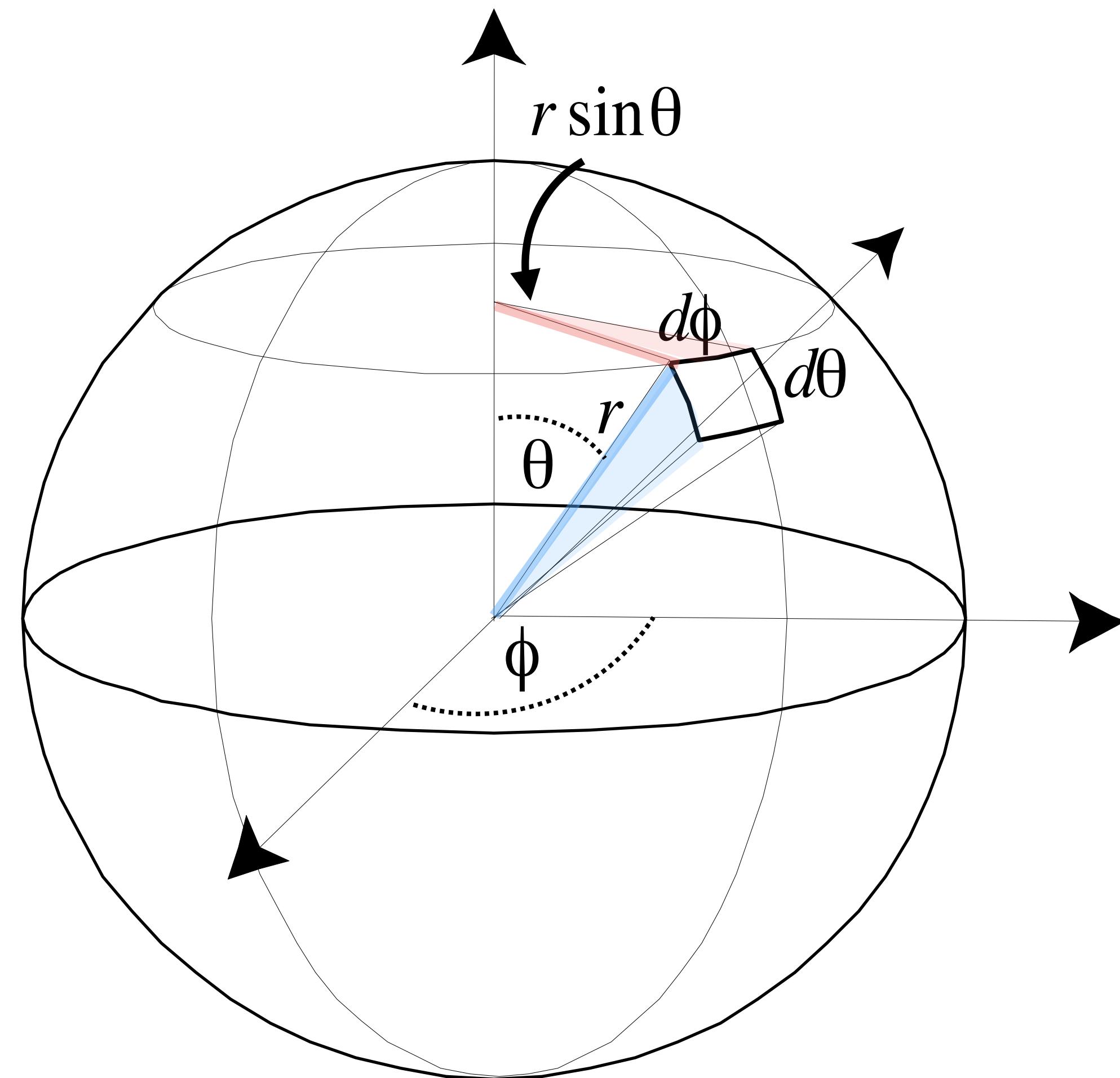
Review of spherical coordinates

$$(x, y, z) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta,)$$



Differential solid angles

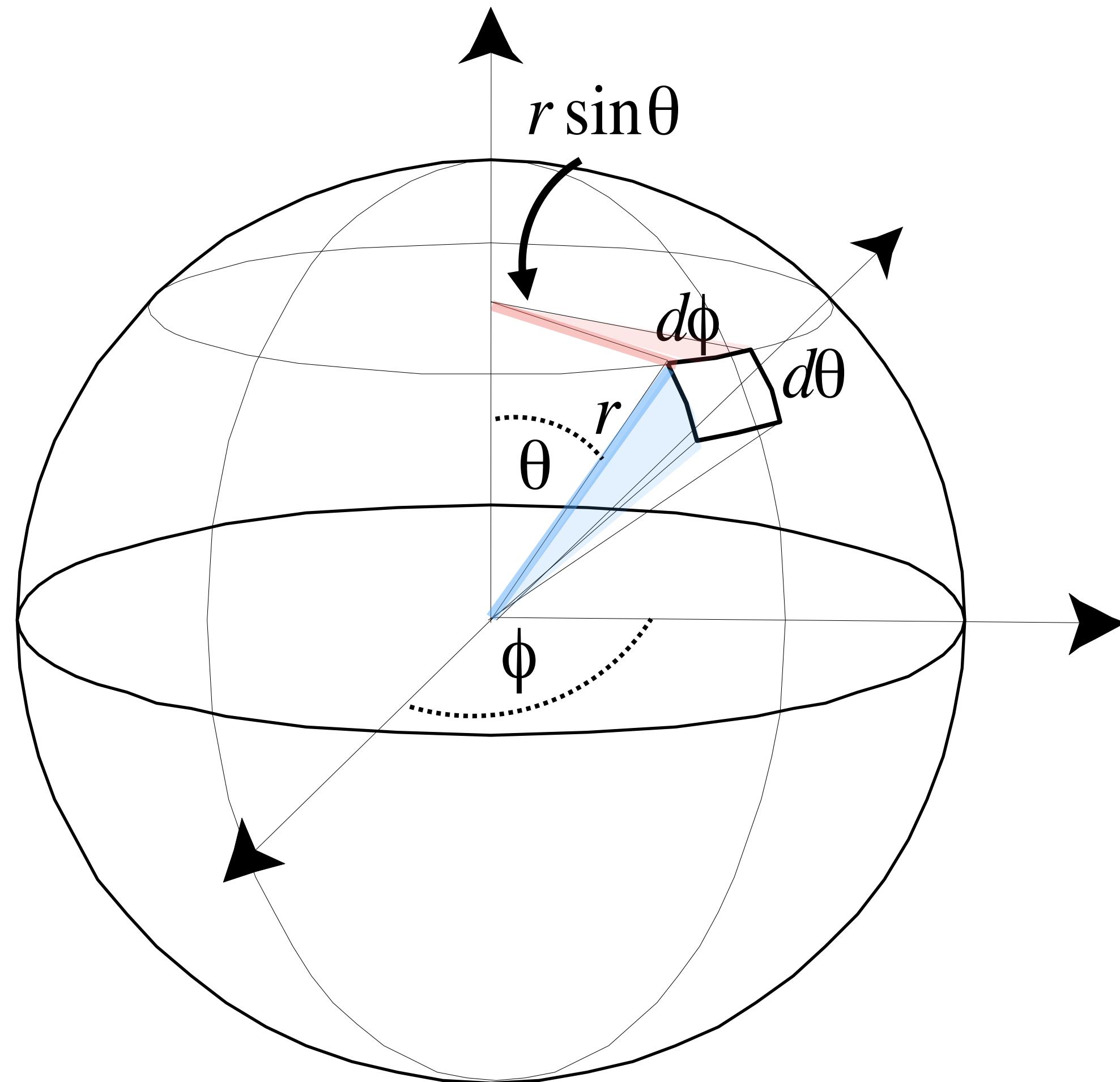
Sphere with radius r



$$\begin{aligned} dA &= (r d\theta)(r \sin \theta d\phi) \\ &= r^2 \sin \theta d\theta d\phi \end{aligned}$$

Differential solid angles

Sphere with radius r

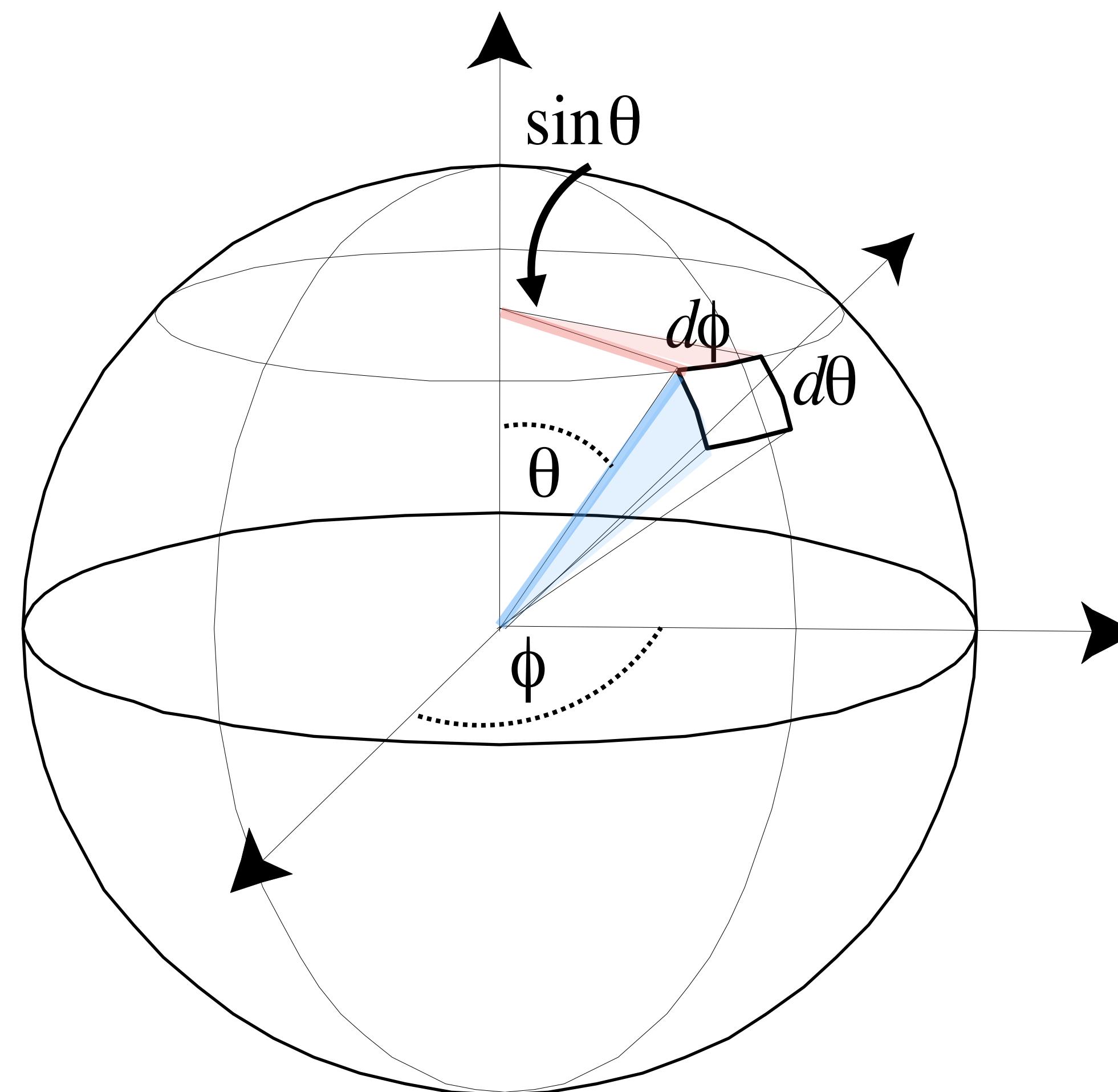


$$\begin{aligned} dA &= (r d\theta)(r \sin \theta d\phi) \\ &= r^2 \sin \theta d\theta d\phi \end{aligned}$$

$$d\omega = \frac{dA}{r^2} = \sin \theta d\theta d\phi$$

Integrating solid angle over the unit sphere

Sphere S^2



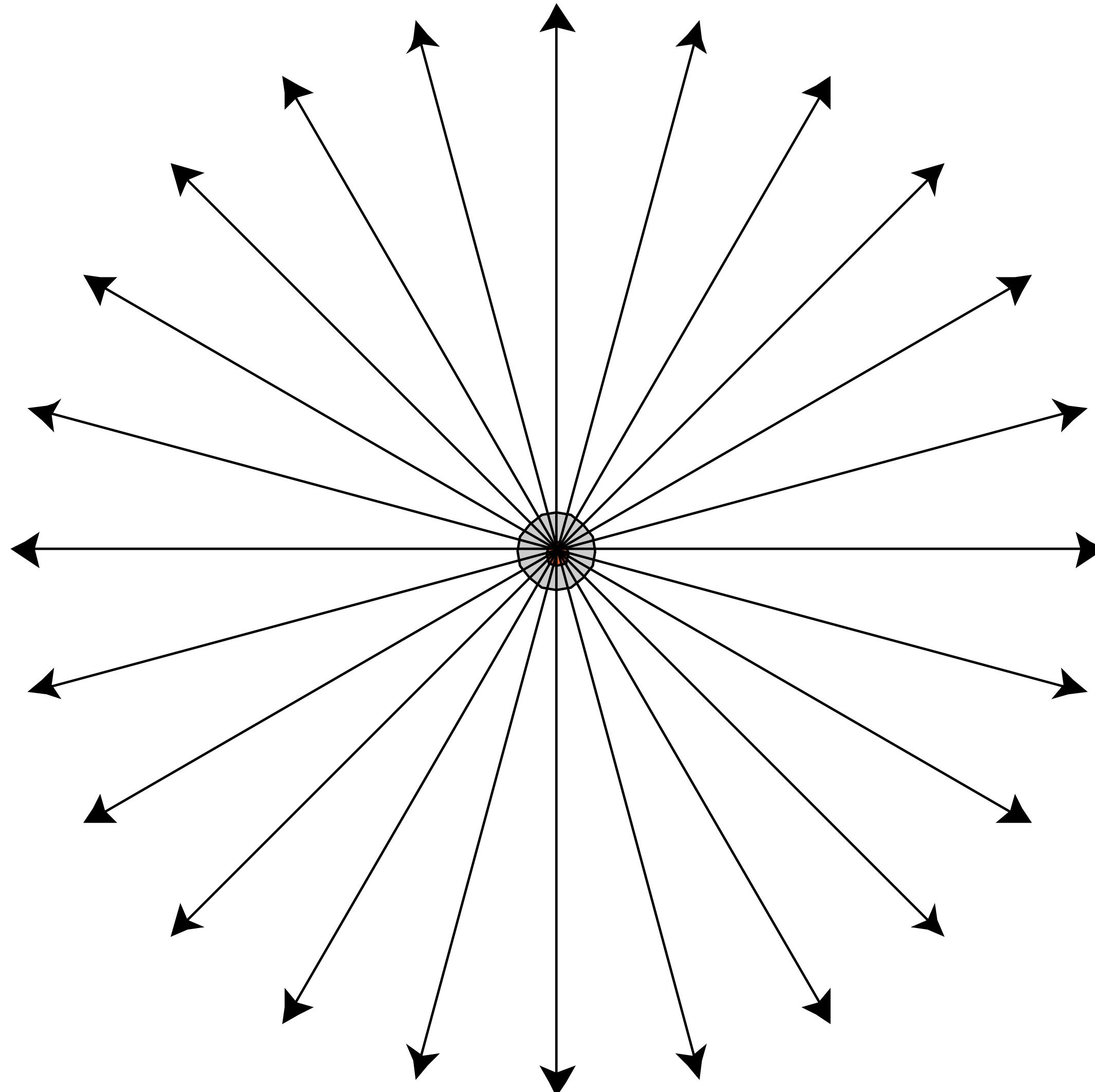
$$d\omega = \sin \theta \, d\theta \, d\phi$$

$$\begin{aligned}\Omega &= \int_{S^2} d\omega \\ &= \int_0^{2\pi} \int_0^\pi \sin \theta \, d\theta \, d\phi \\ &= 4\pi\end{aligned}$$

A sphere subtends 4π steradians.

Isotropic point source

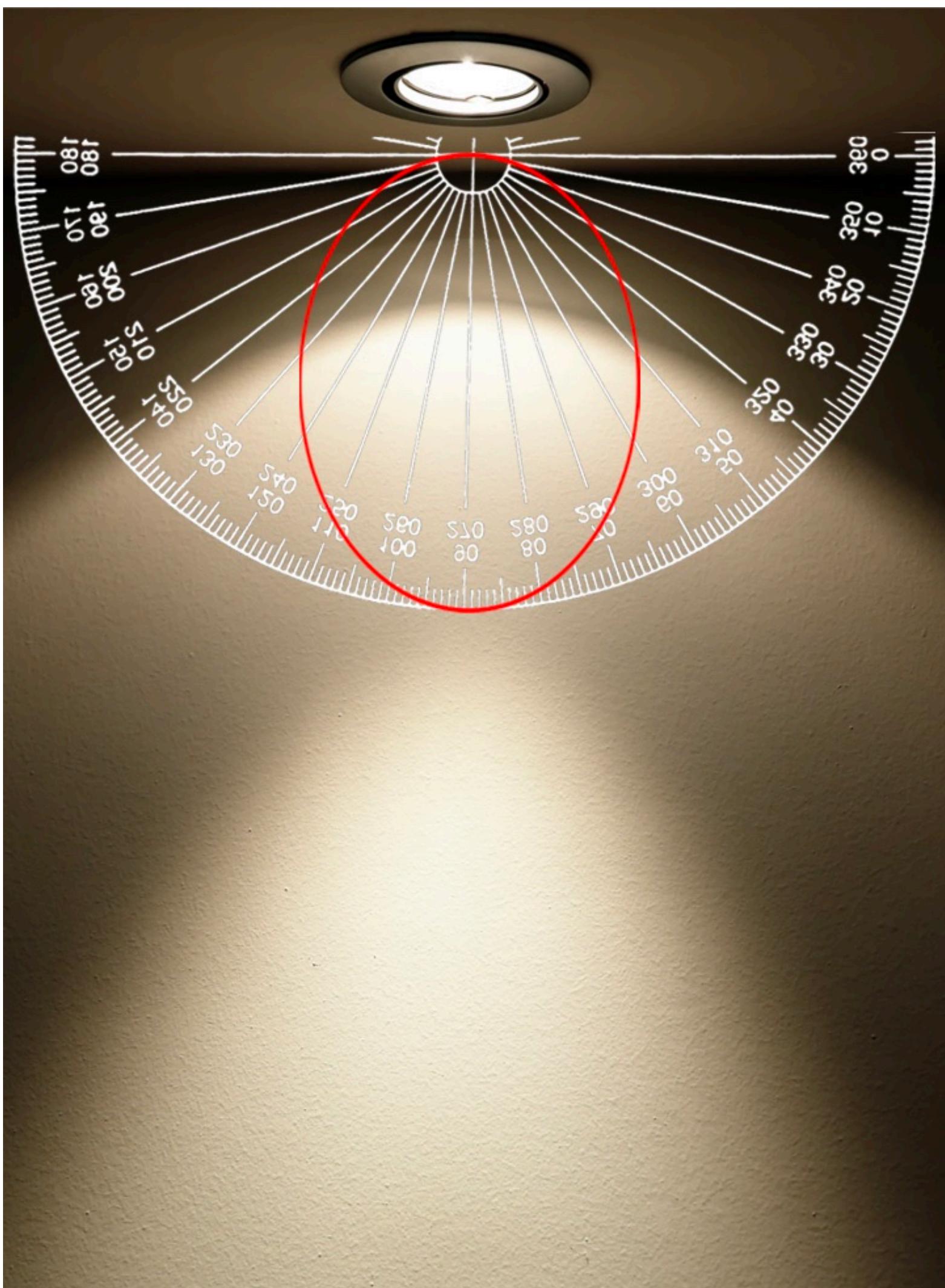
Radiating total power Φ . Radiating with same intensity I in all directions.



$$\Phi = \int_I d\omega_{S^2} = 4\pi I$$

$$I = \frac{\Phi}{4\pi}$$

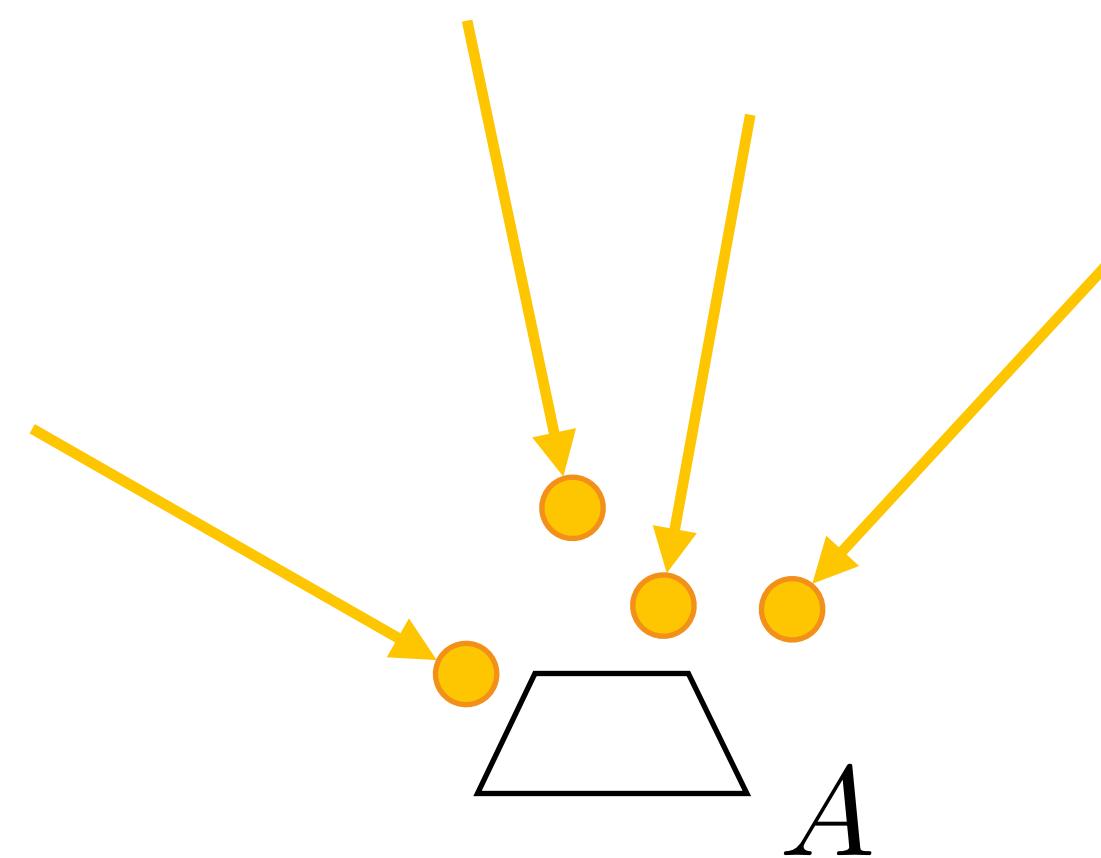
Anisotropic intensity distributions



ADJ H20 Dmx Pro Ir Led Water Effect Spotlight

Measuring illumination: irradiance

- **Flux: time density of energy**
- **Irradiance: area density of flux**



Given a sensor of with area A , we can consider the average flux over the entire sensor area:

$$\frac{\Phi}{A}$$

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

$$E(p) = \lim_{\Delta \rightarrow 0} \frac{\Delta \Phi(p)}{\Delta A} = \frac{d\Phi(p)}{dA} \left[\frac{\text{W}}{\text{m}^2} \right]$$

Units = Watts per area

Beam power in terms of irradiance

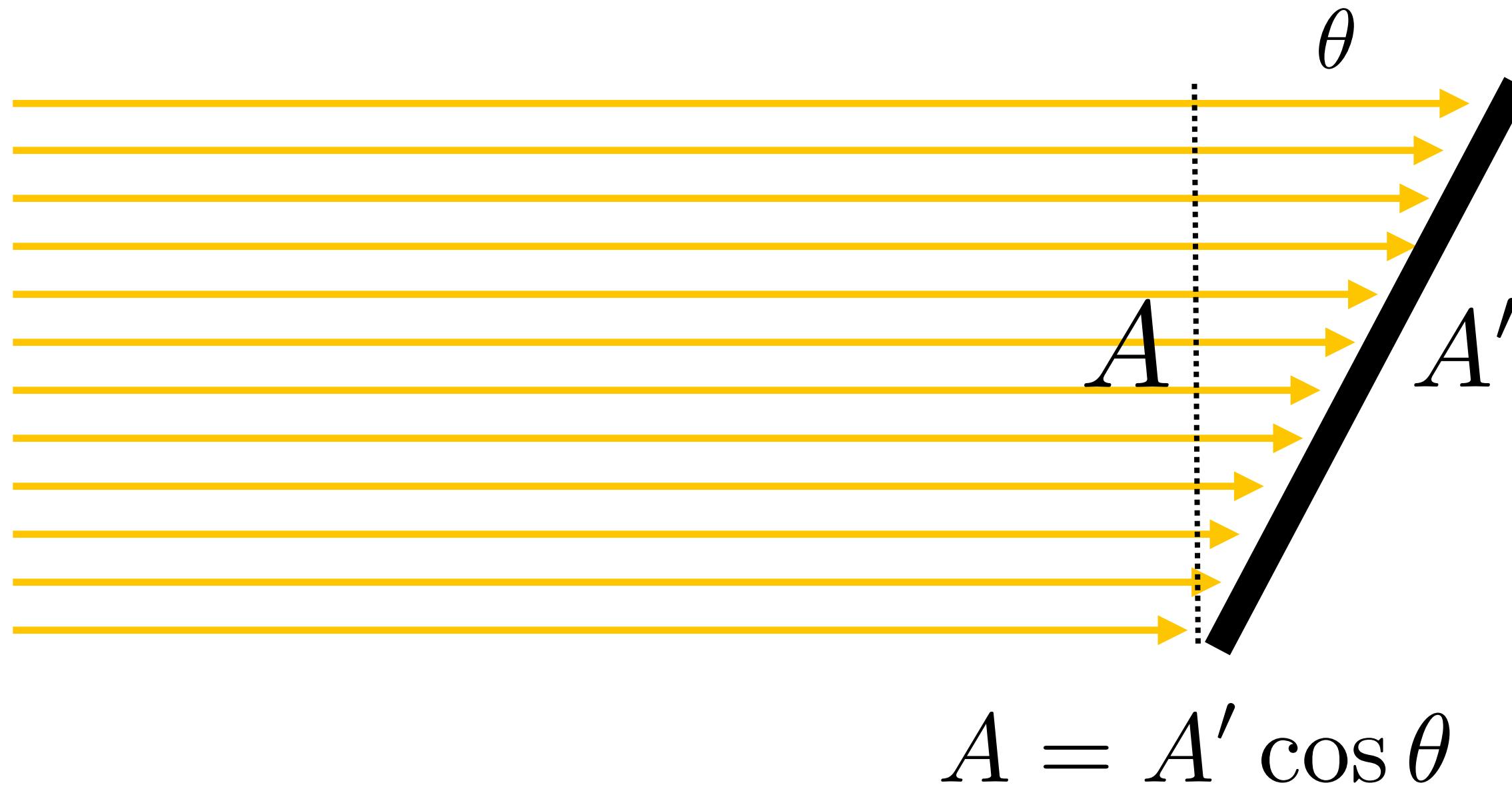
Consider beam with flux Φ incident on surface with area A

$$E = \frac{\Phi}{A}$$

$$\Phi = EA$$

Projected area

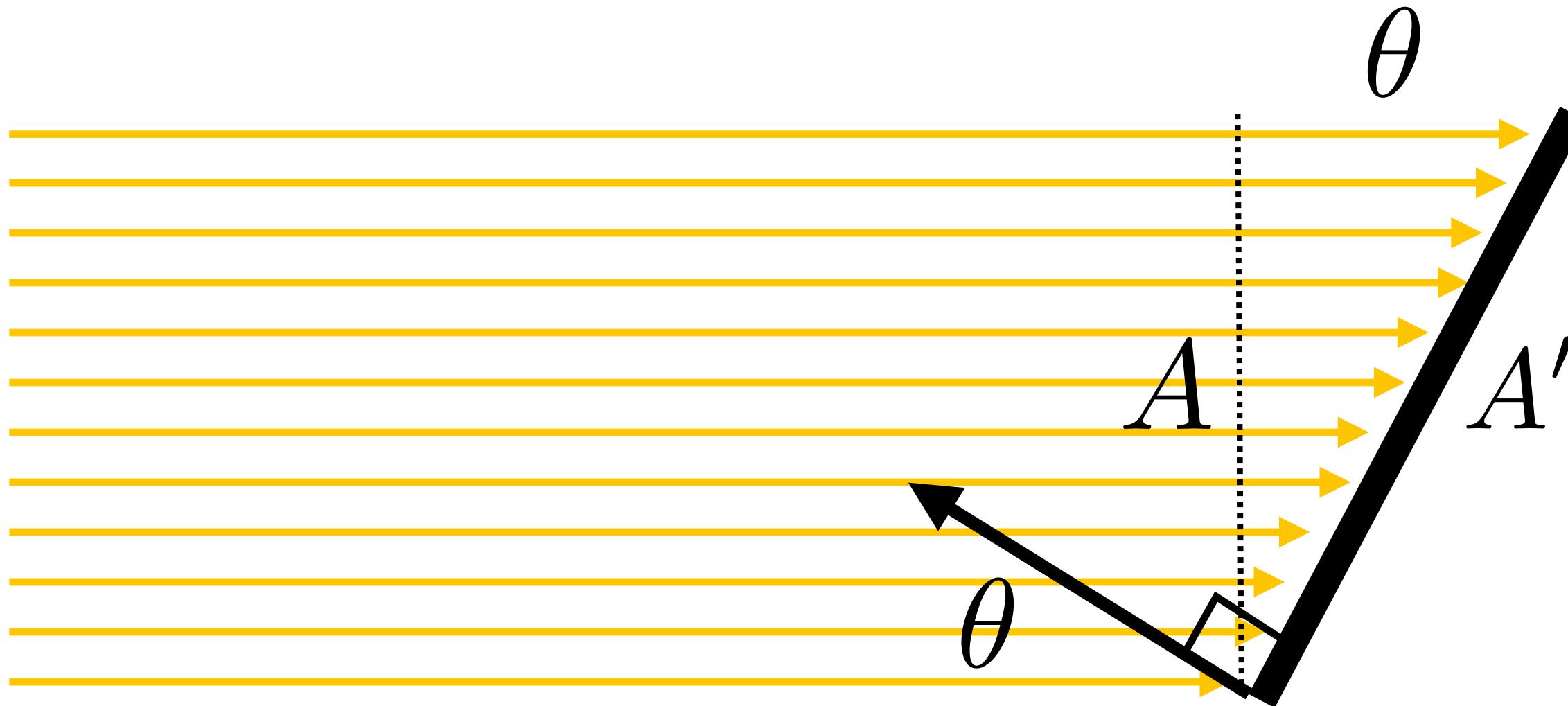
Consider beam with flux Φ incident on angled surface with area A'



A = projected area of surface relative to direction of beam

Lambert's Law

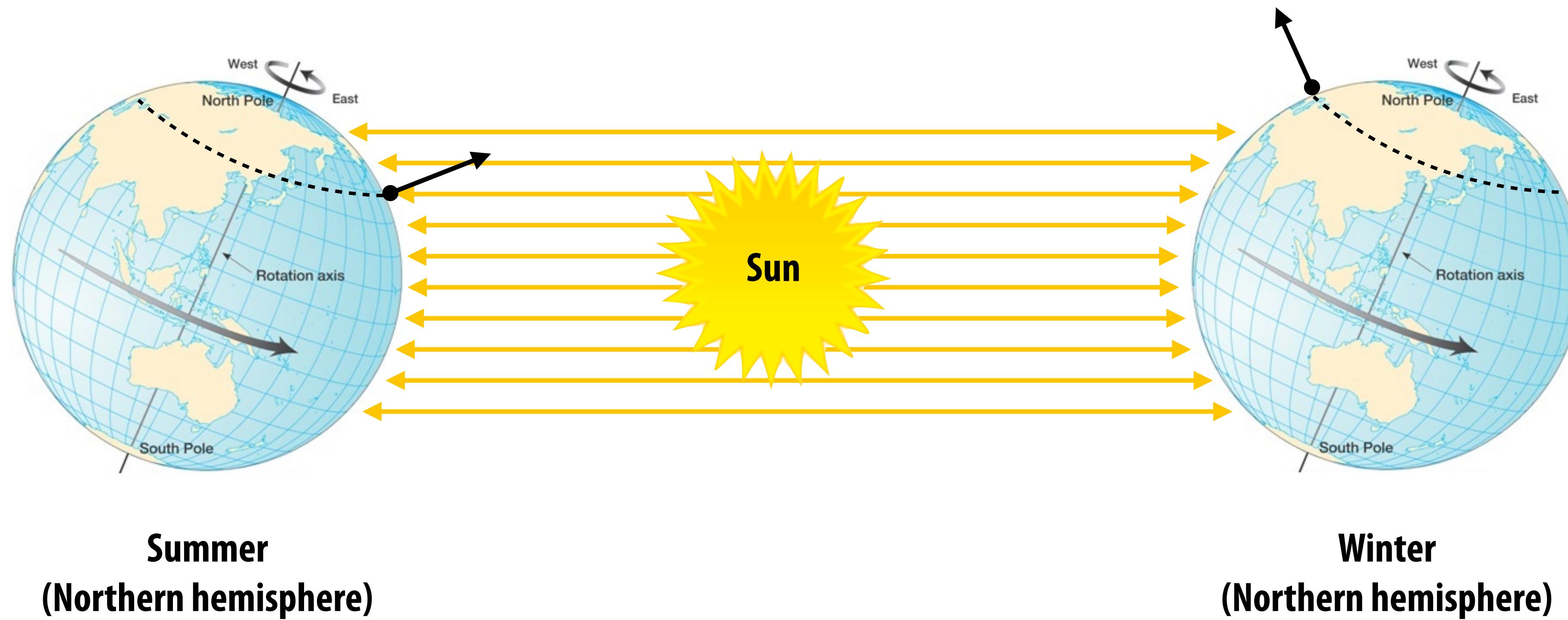
Irradiance at surface is proportional to cosine of angle between light direction and surface normal.



$$A = A' \cos \theta$$

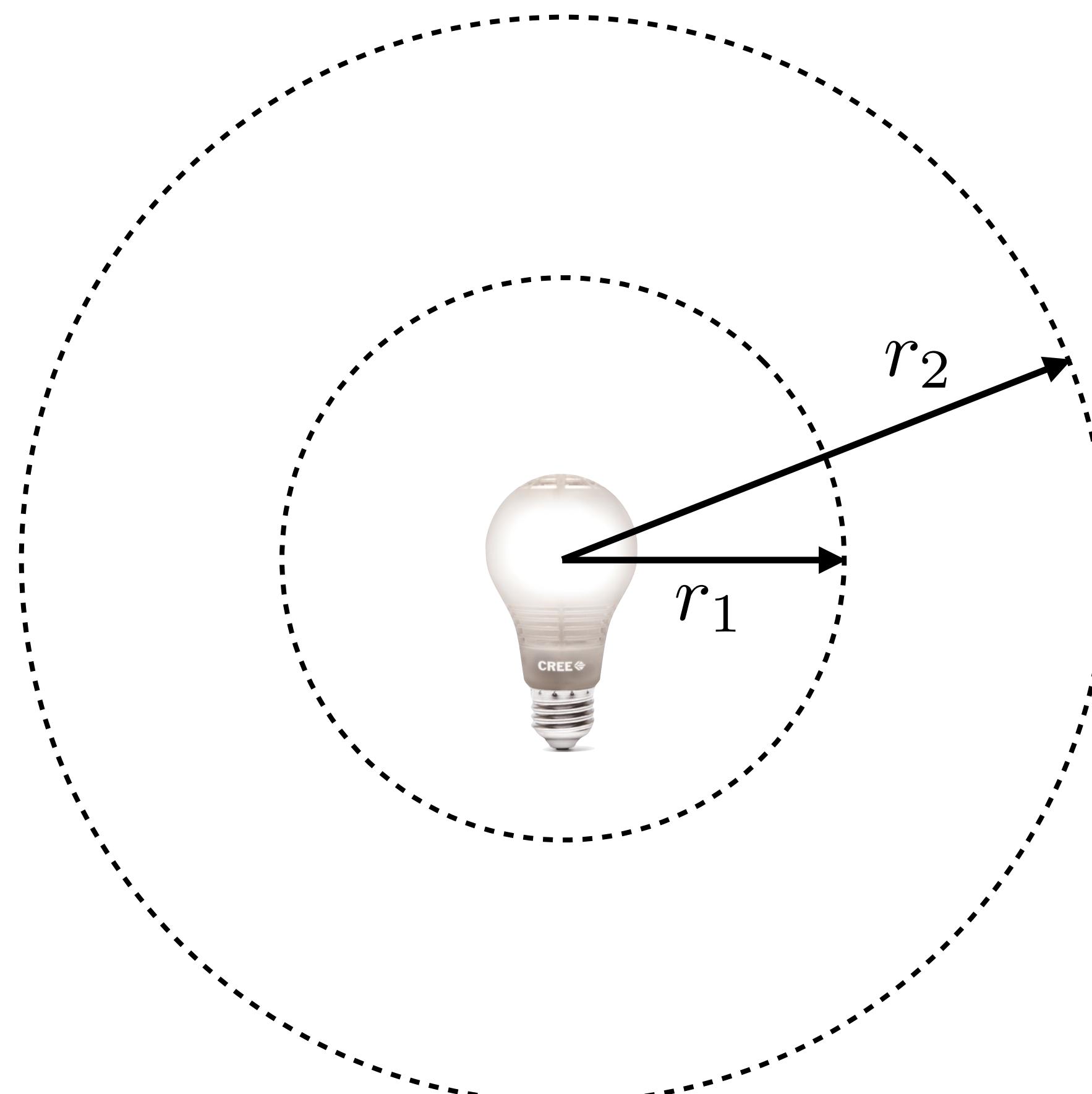
$$E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}$$

Why do we have seasons?



Earth's axis of rotation: $\sim 23.5^\circ$ off axis

Irradiance falloff with distance



Assume light is emitting flux Φ in a uniform angular distribution

Compare irradiance at surface of two spheres:

$$E_1 = \frac{\Phi}{4\pi r_1^2}$$

$$E_2 = \frac{\Phi}{4\pi r_2^2}$$

$$\frac{E_2}{E_1} = \frac{r_1^2}{r_2^2}$$

Why does a room get darker farther from a light source?

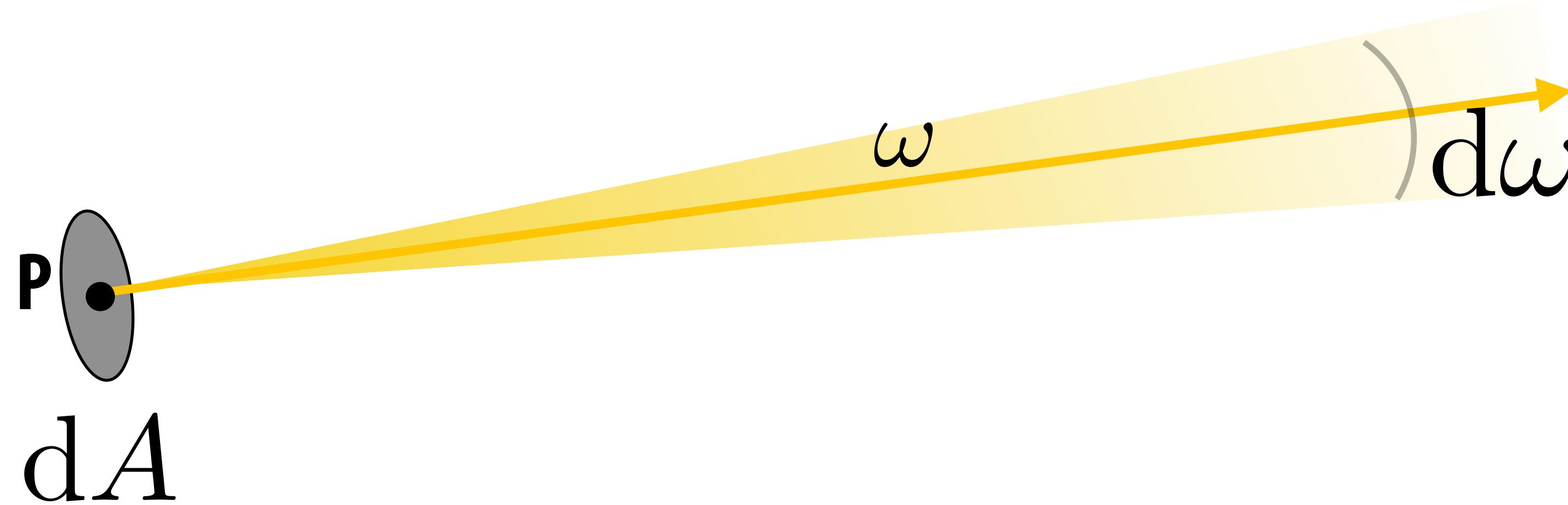
Measuring illumination: radiance

- Radiance (L) is the solid angle density of irradiance (irradiance per unit direction) where the differential surface area is oriented to face in the direction ω

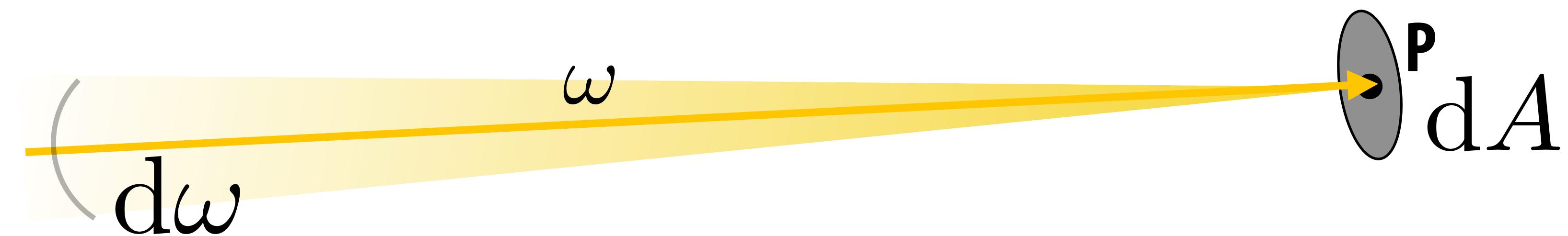
In other words, radiance is energy along a ray defined by origin point p and direction ω

$$L(p, \omega) = \lim_{\Delta \rightarrow 0} \frac{\Delta \Phi(p, \omega)}{\Delta A \Delta \omega} = \frac{d^2 \Phi(p, \omega)}{dA d\omega}$$

Radiance as energy in an infinitesimal small beam



Outgoing from a region: energy leaving an tiny patch of area leaving in the direction of a tiny solid angle



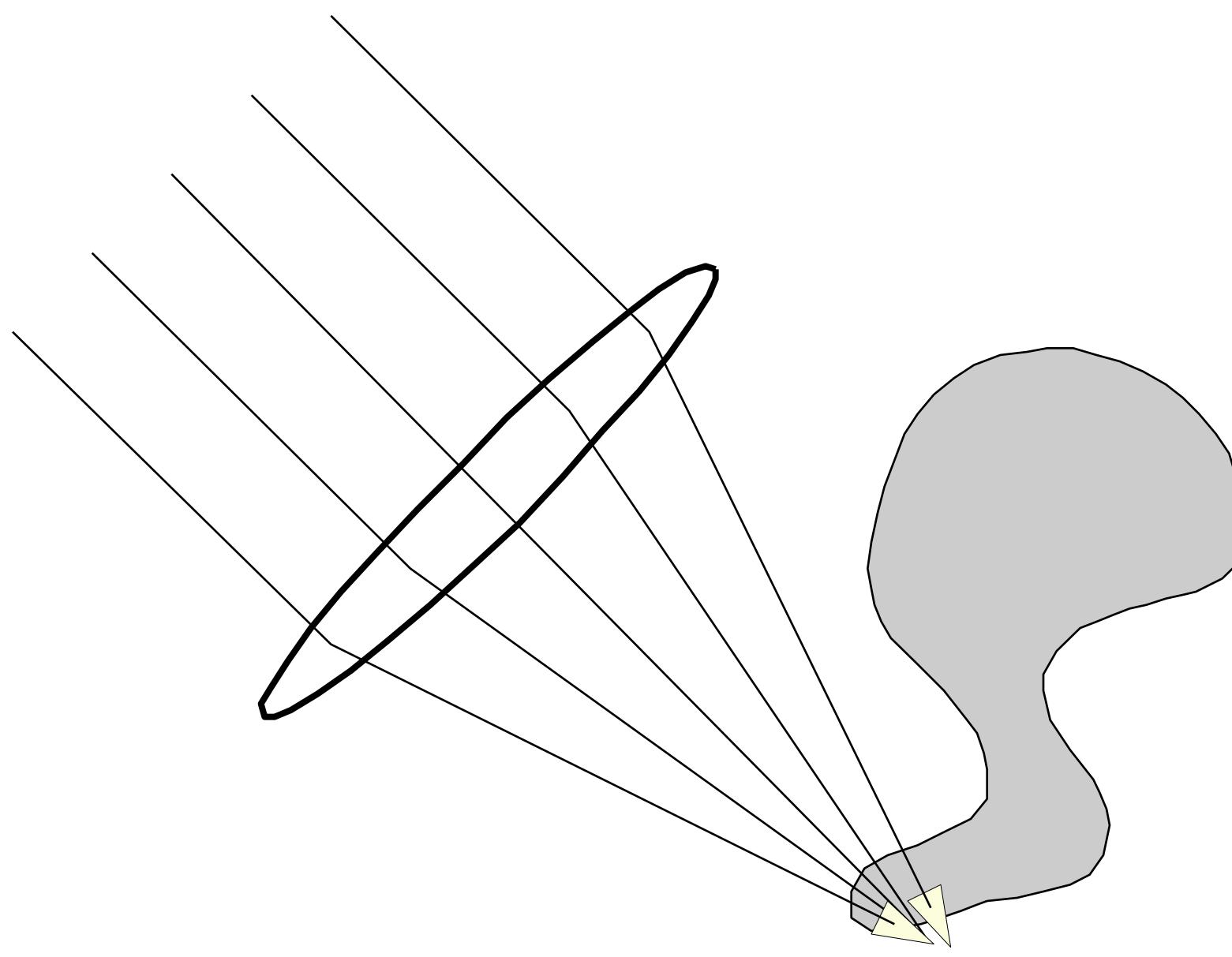
Incoming to a region: Energy arriving at a tiny patch of area from a tiny solid angle.

Properties of radiance

- **Fundamental field quantity that characterizes the distribution of light in an environment**
 - **Radiance is the quantity associated with a ray**
 - **Ray tracers compute the radiance along a ray**
- **If we assume rays travel through a vacuum, radiance is invariant along a ray**
 - **For now, we won't consider “participating media” like fog, smoke, clouds, dust, etc.**

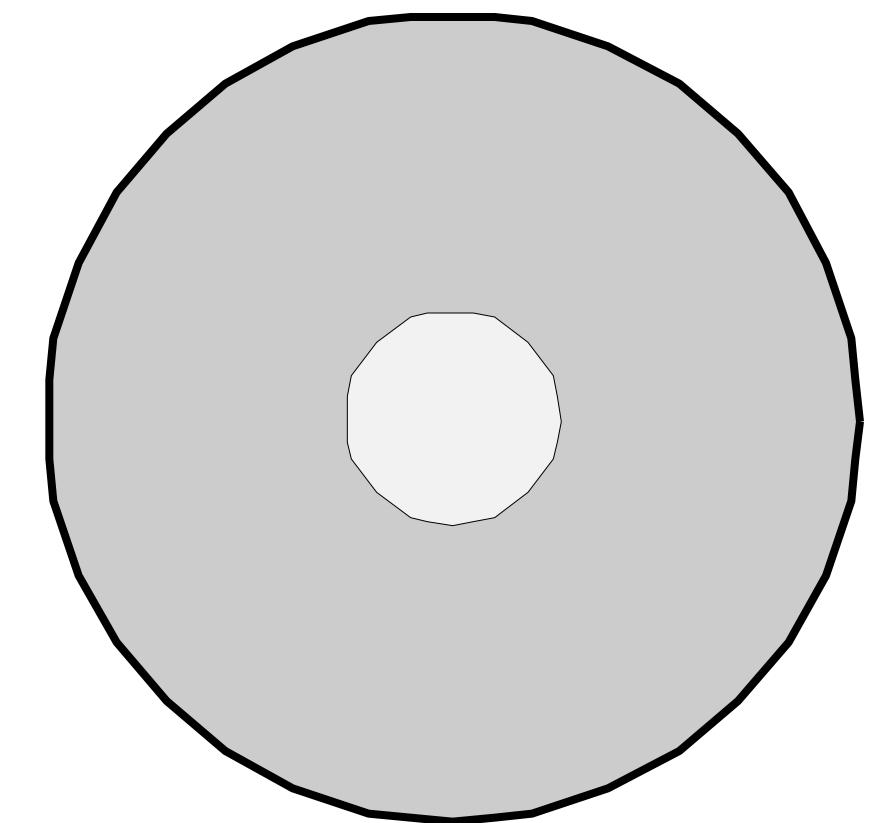
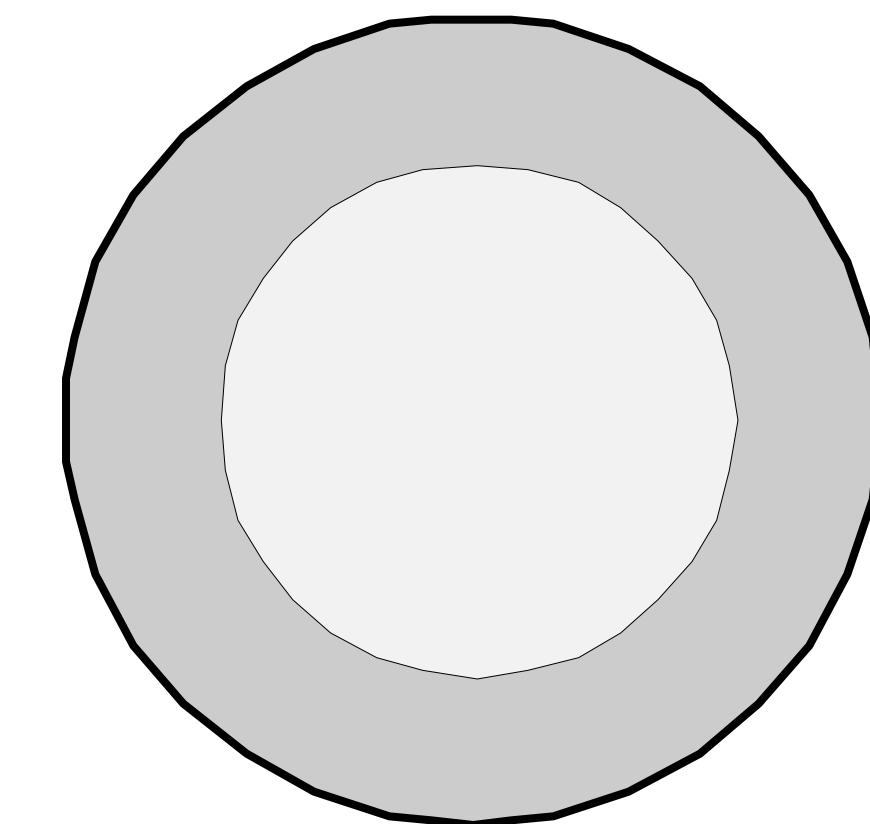
Quiz

Does radiance increase under a magnifying glass?



No!!

But irradiance does since magnifying glass focuses many rays of light on the same spot.



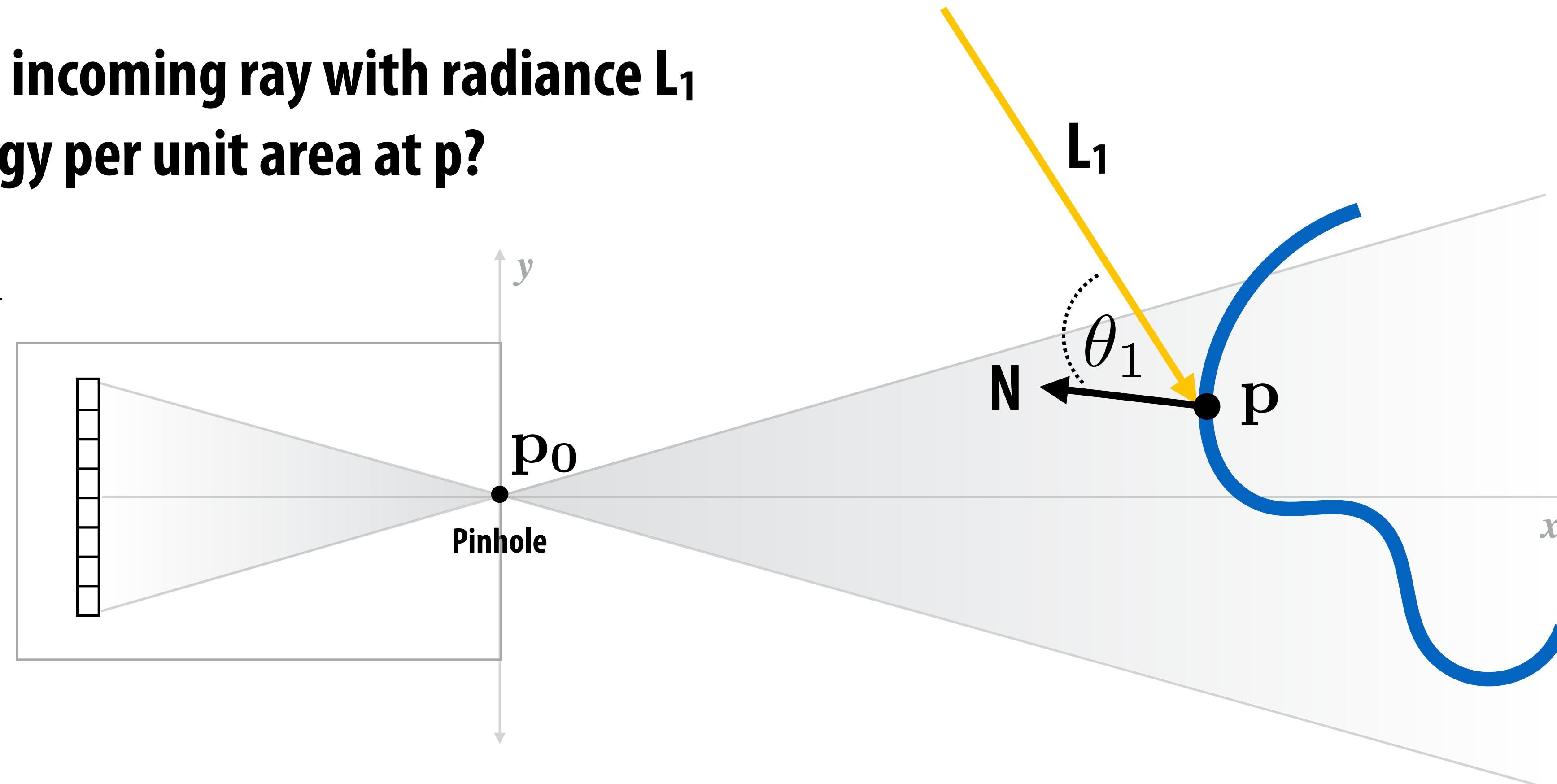
How much light hits the surface at point p?

(What is irradiance at point p?)

Imagine one incoming ray with radiance L_1

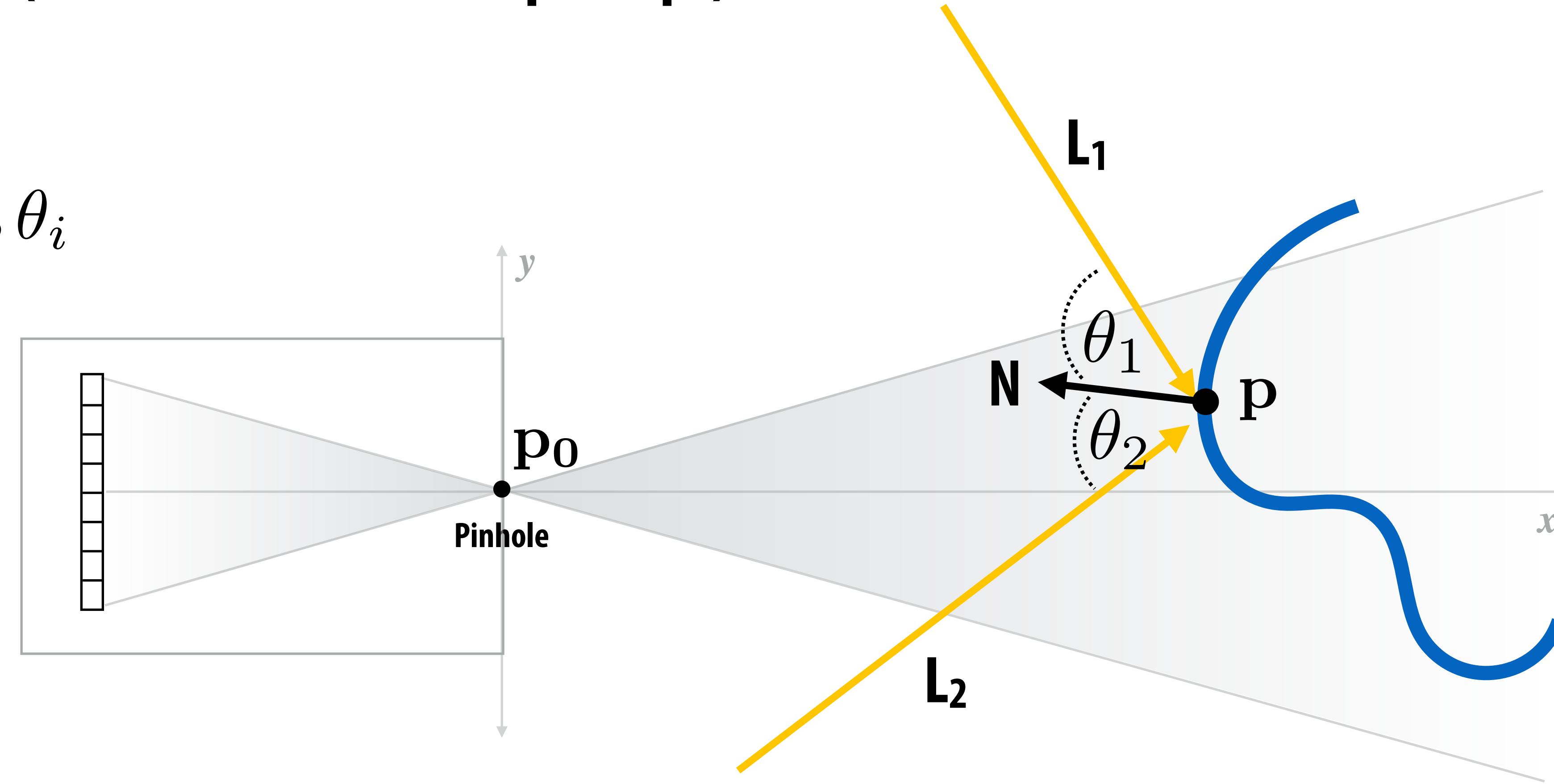
What is energy per unit area at p?

$$L_1 \cos \theta_1$$



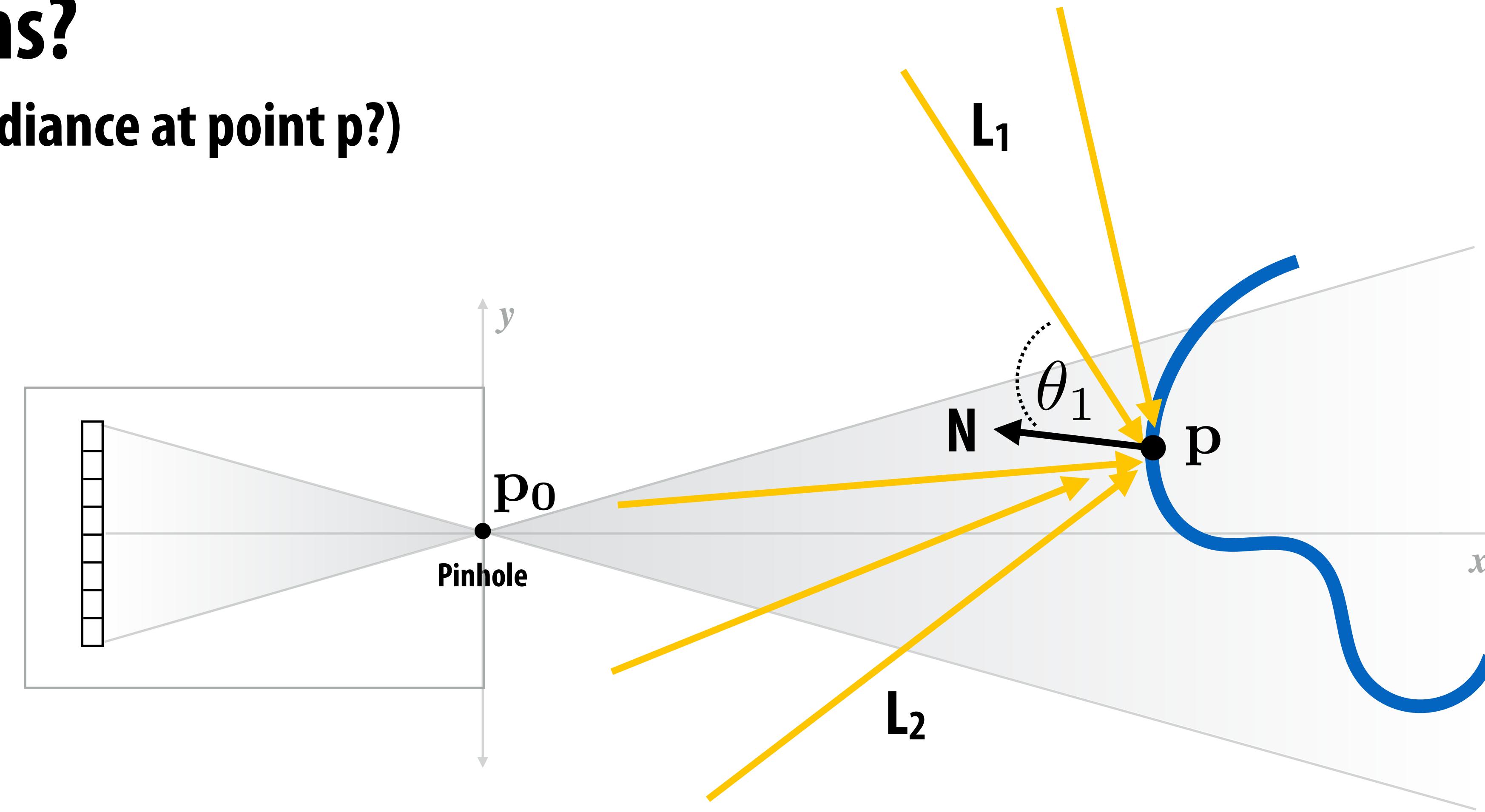
How much light hits the surface at point p from multiple light sources? (What is irradiance at point p?)

$$\sum_i L_i \cos \theta_i$$



How much light hits the surface at point p from light from all directions?

(What is irradiance at point p?)

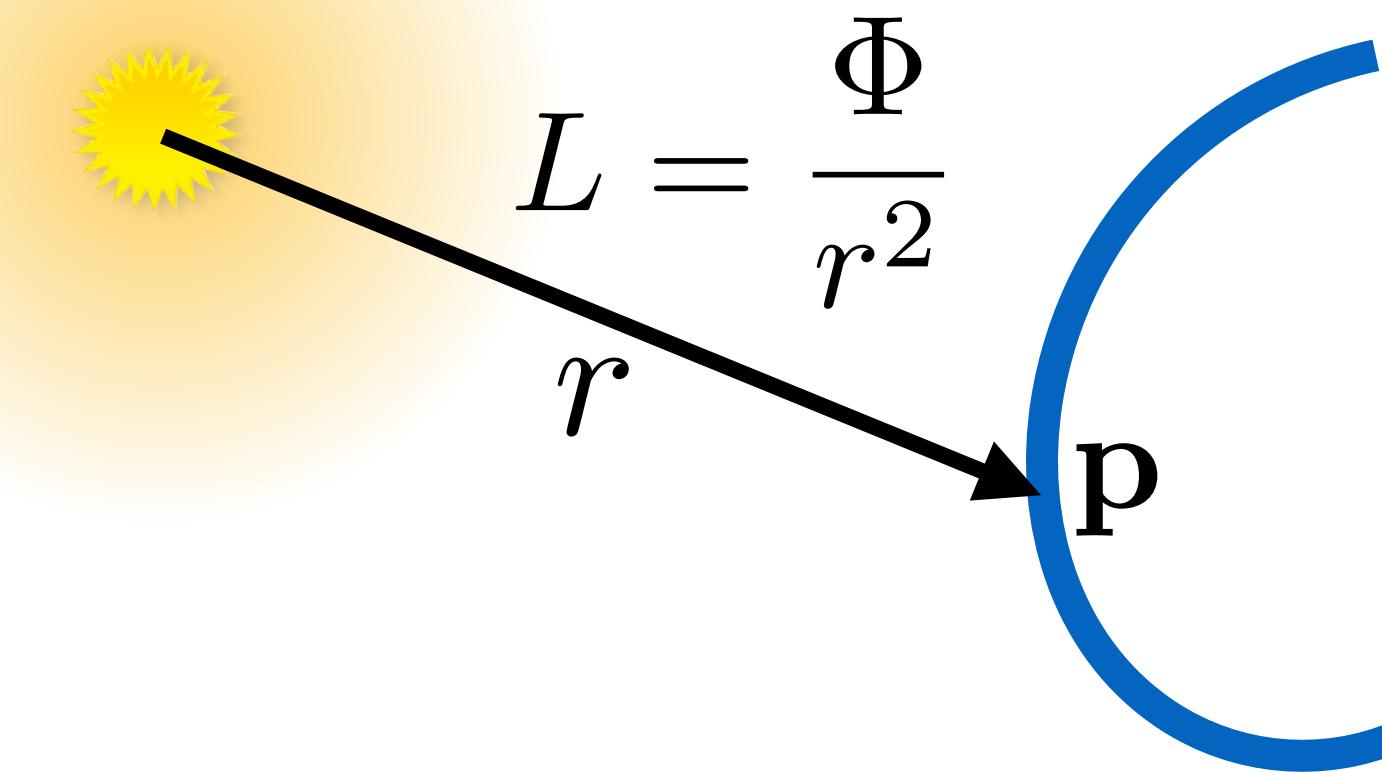


$$\int_{S^2} L(\omega_i) \cos \theta_i \, d\omega_i = \int_0^{2\pi} \int_0^\pi L(\theta_i, \phi_i) \cos \theta_i \sin \theta_i \, d\theta_i \, d\phi_i$$

Types of lights

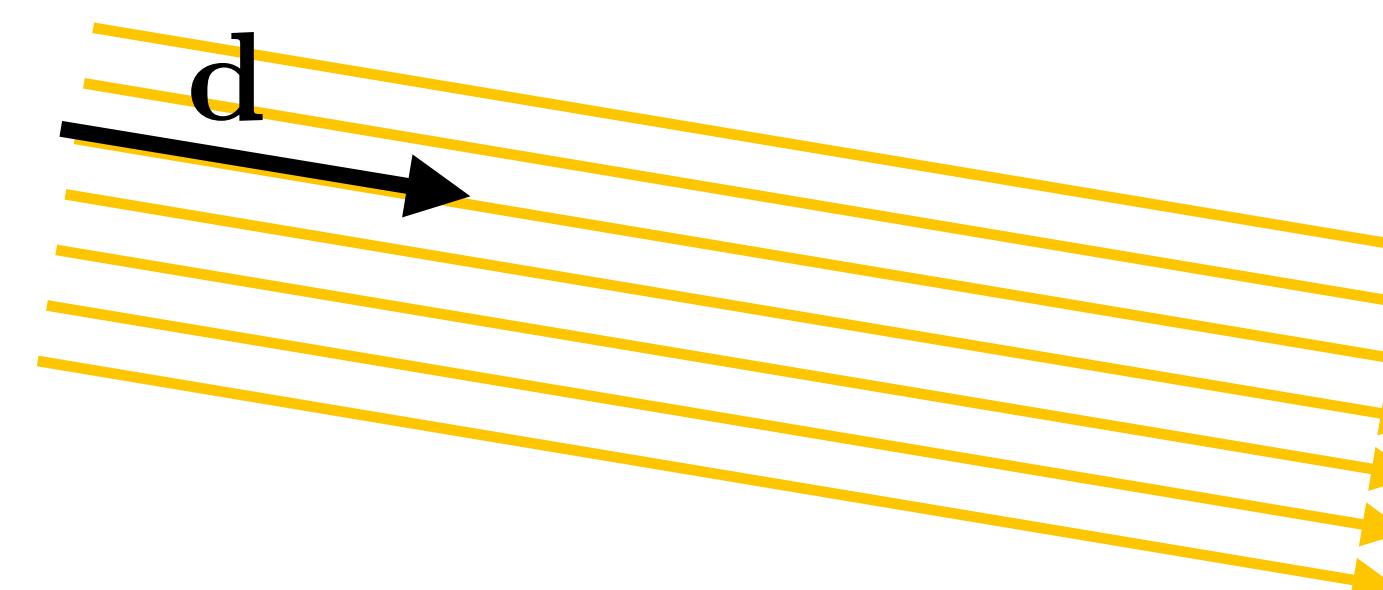
■ Attenuated omnidirectional point light

(emits equally in all directions, energy arriving at point P (radiant intensity) falls off with distance: $1/R^2$ falloff)



■ Infinite directional light in direction d

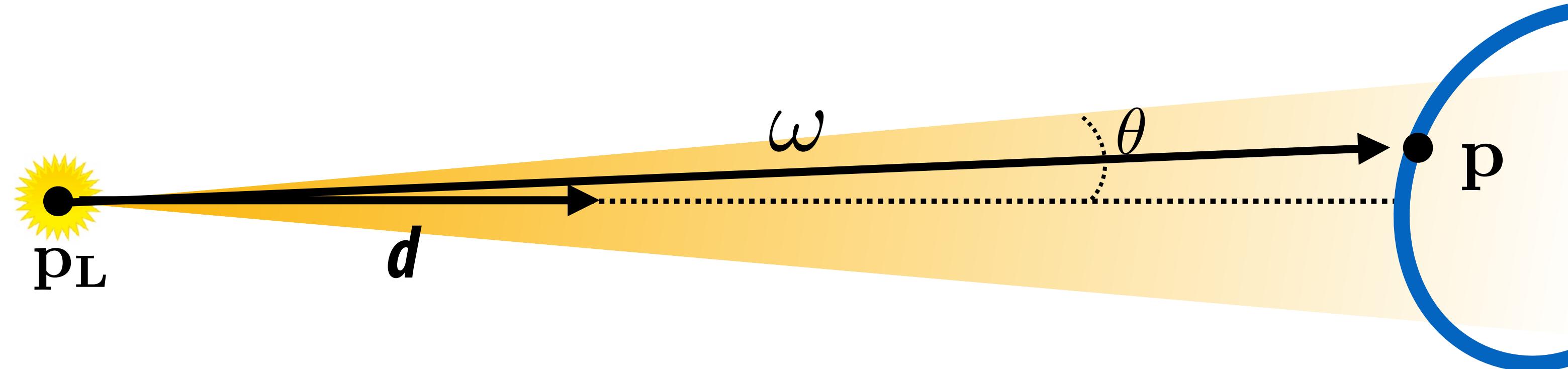
(infinitely far away, all points in scene receive light with radiance L from direction d)



Spot light

Does not emit equally in all directions...

intensity falls off in directions away from main spotlight direction d



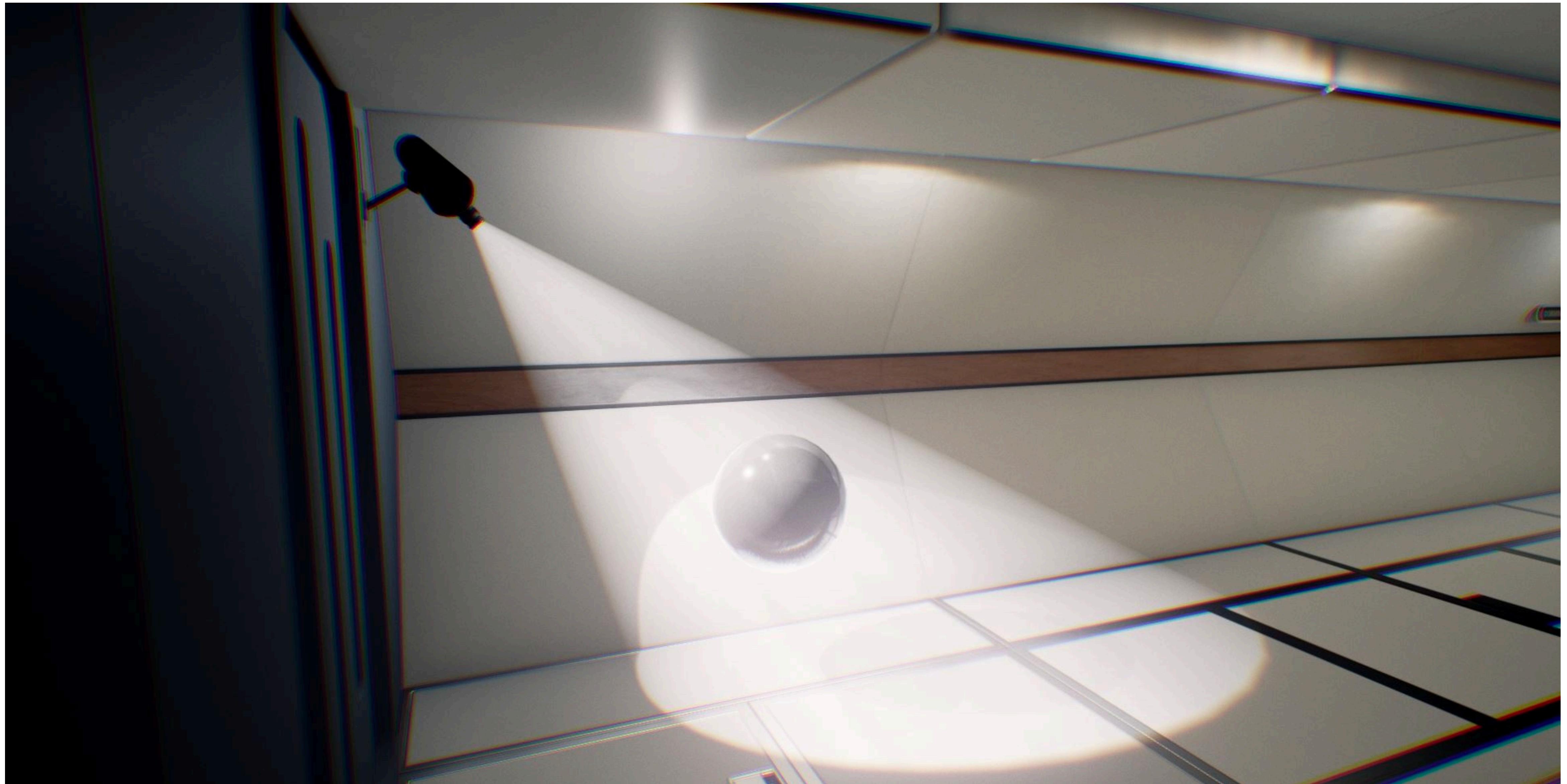
$$\omega = \text{normalize}(\mathbf{p} - \mathbf{p}_L)$$

$$\begin{aligned} L(\omega) &= 0 & \text{if } \omega \cdot d > \cos \theta \\ &= L_0 & \text{otherwise} \end{aligned}$$

Or, if spotlight intensity falls off from direction d

$$L(\omega) \propto \omega \cdot d$$

Spot light

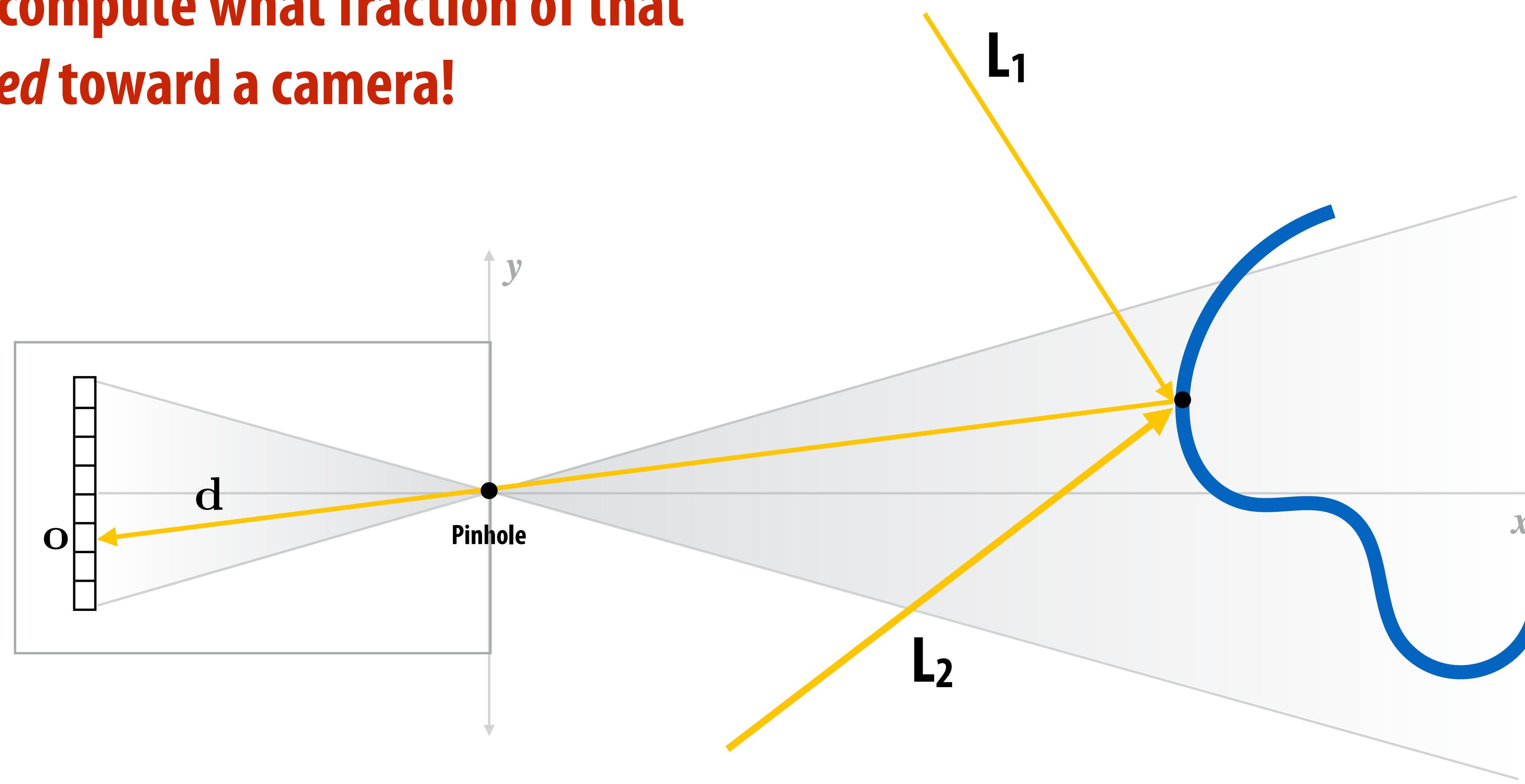


Environment light (represented by a texture map)

Pixel (x,y) stores radiance L from direction (ϕ, θ)

So far... we've discussed how to compute the light arriving at a surface point (radiance along incoming ray)

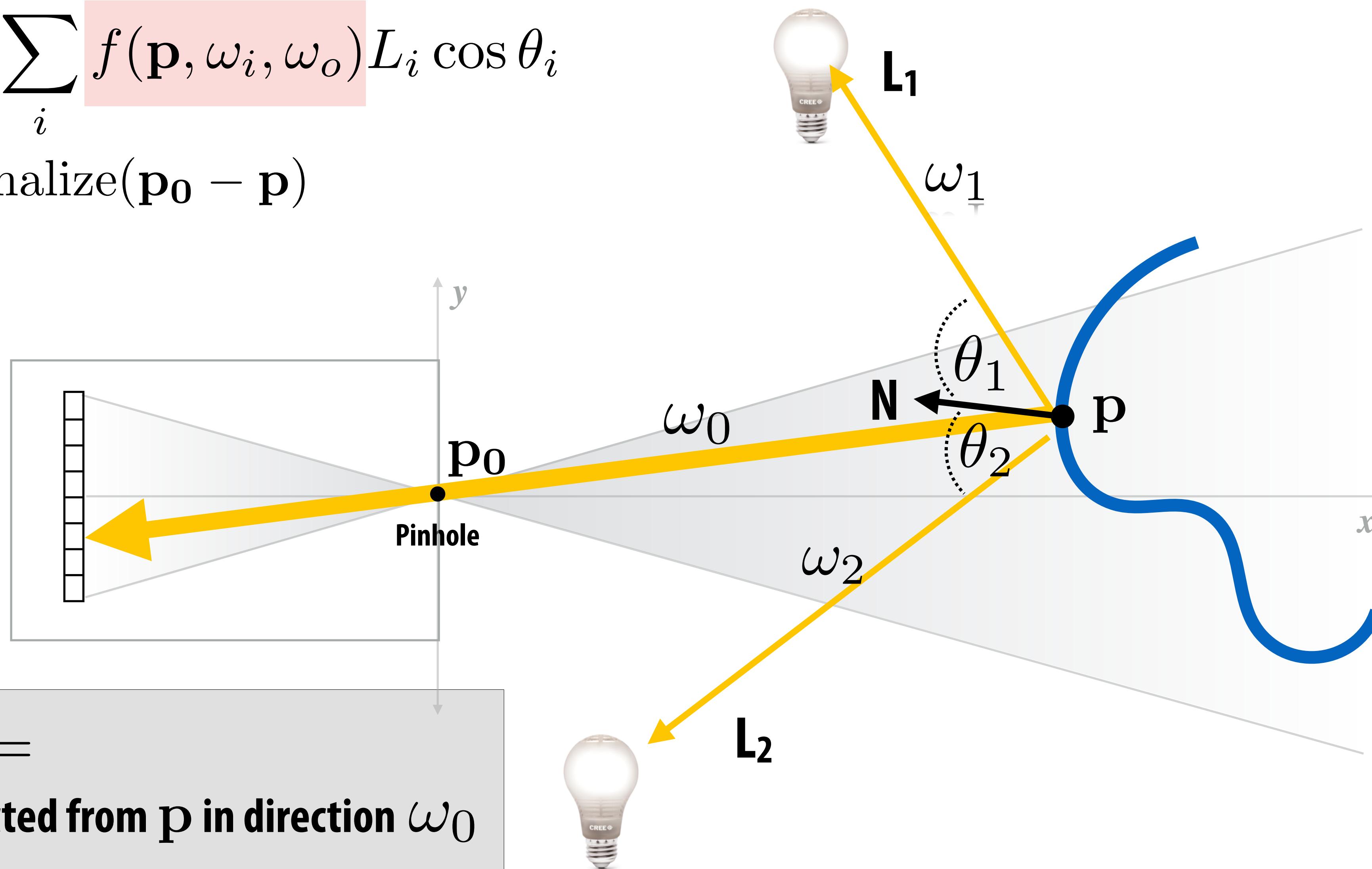
But goal is to compute what fraction of that light is *reflected* toward a camera!



How much light is REFLECTED from p toward p_0 ?

$$L(\mathbf{p}, \omega_o) = \sum_i f(\mathbf{p}, \omega_i, \omega_o) L_i \cos \theta_i$$

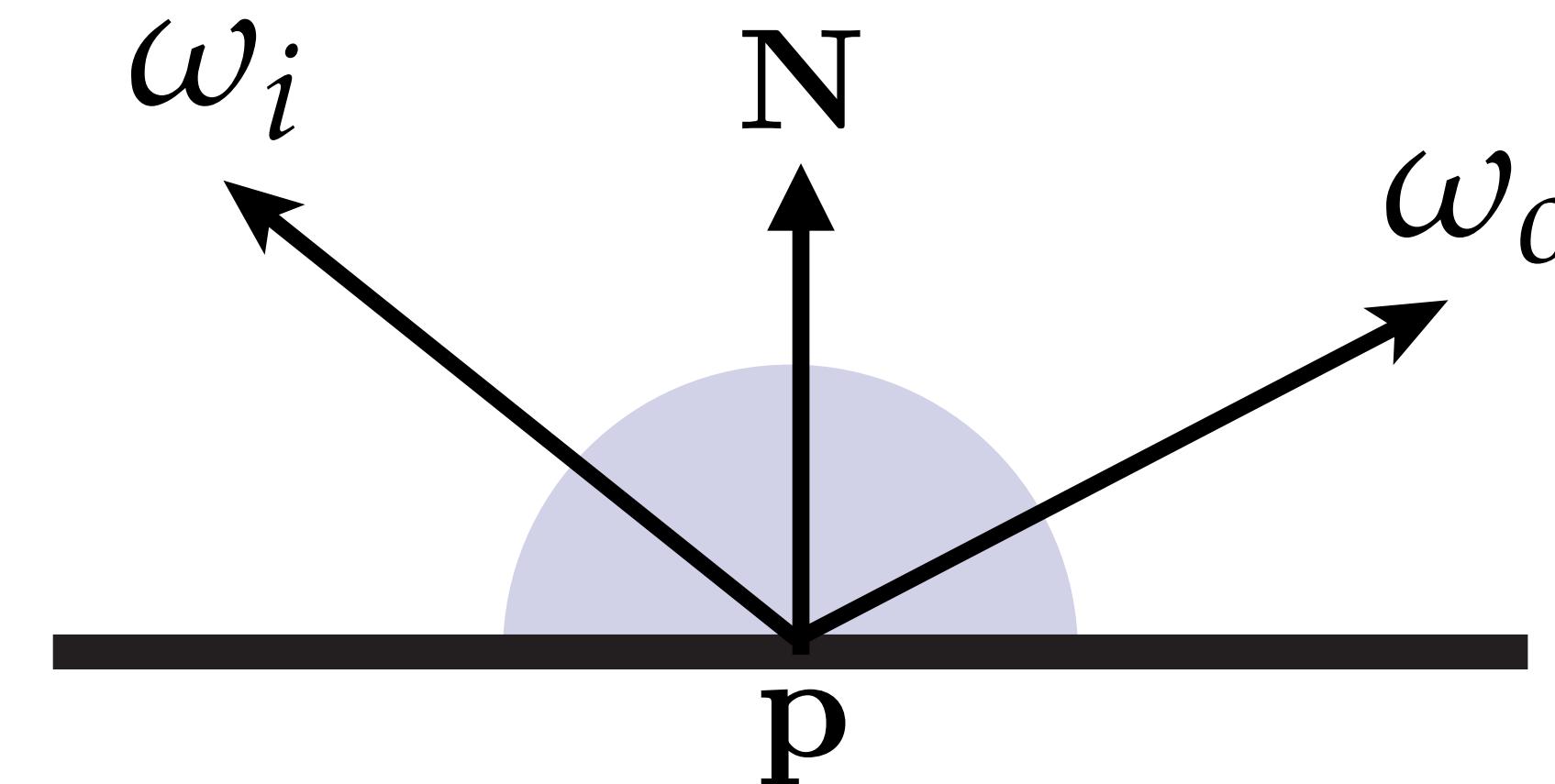
$$\omega_o = \text{normalize}(\mathbf{p}_0 - \mathbf{p})$$



Bidirectional reflectance distribution function (BRDF)

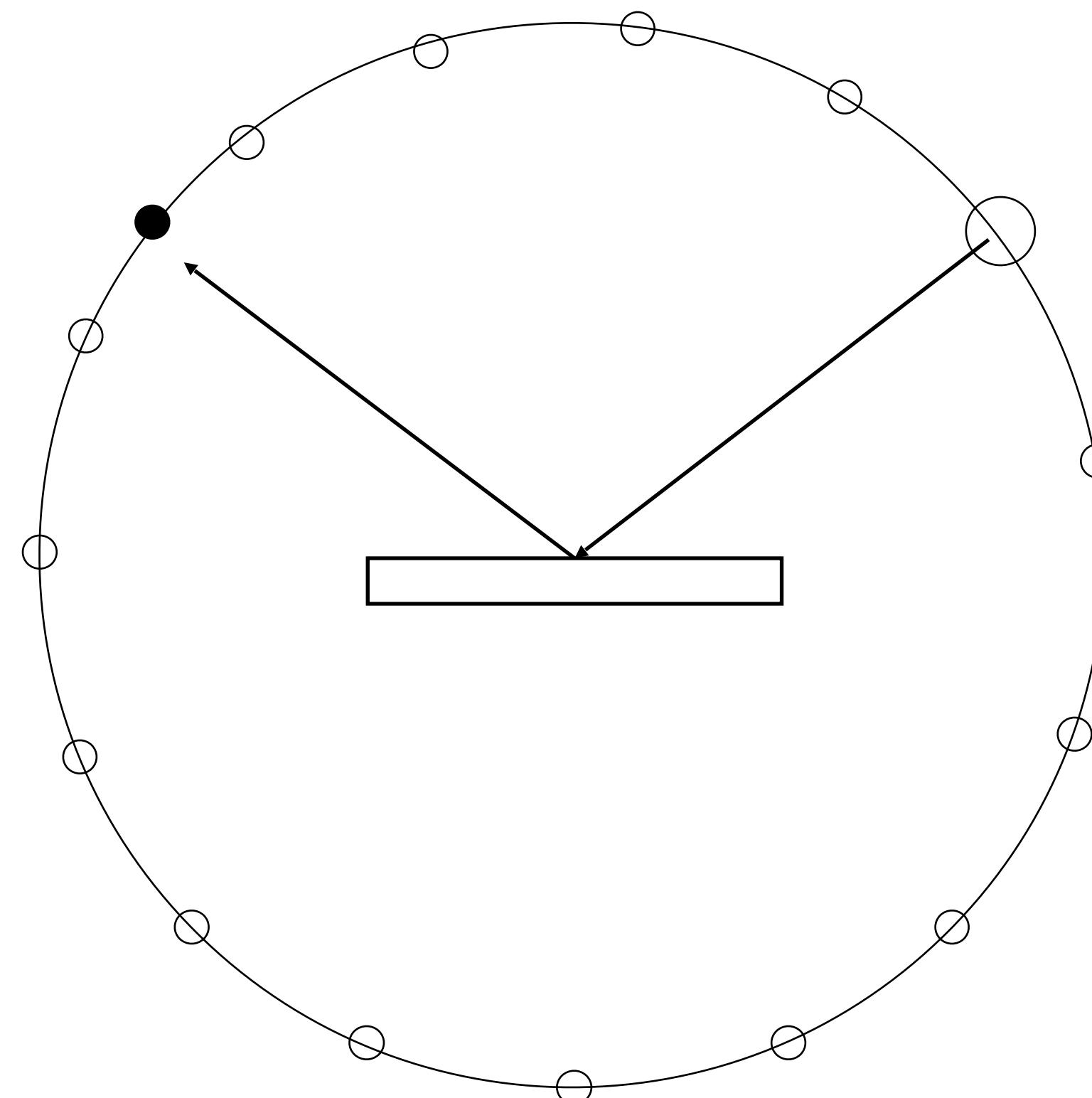
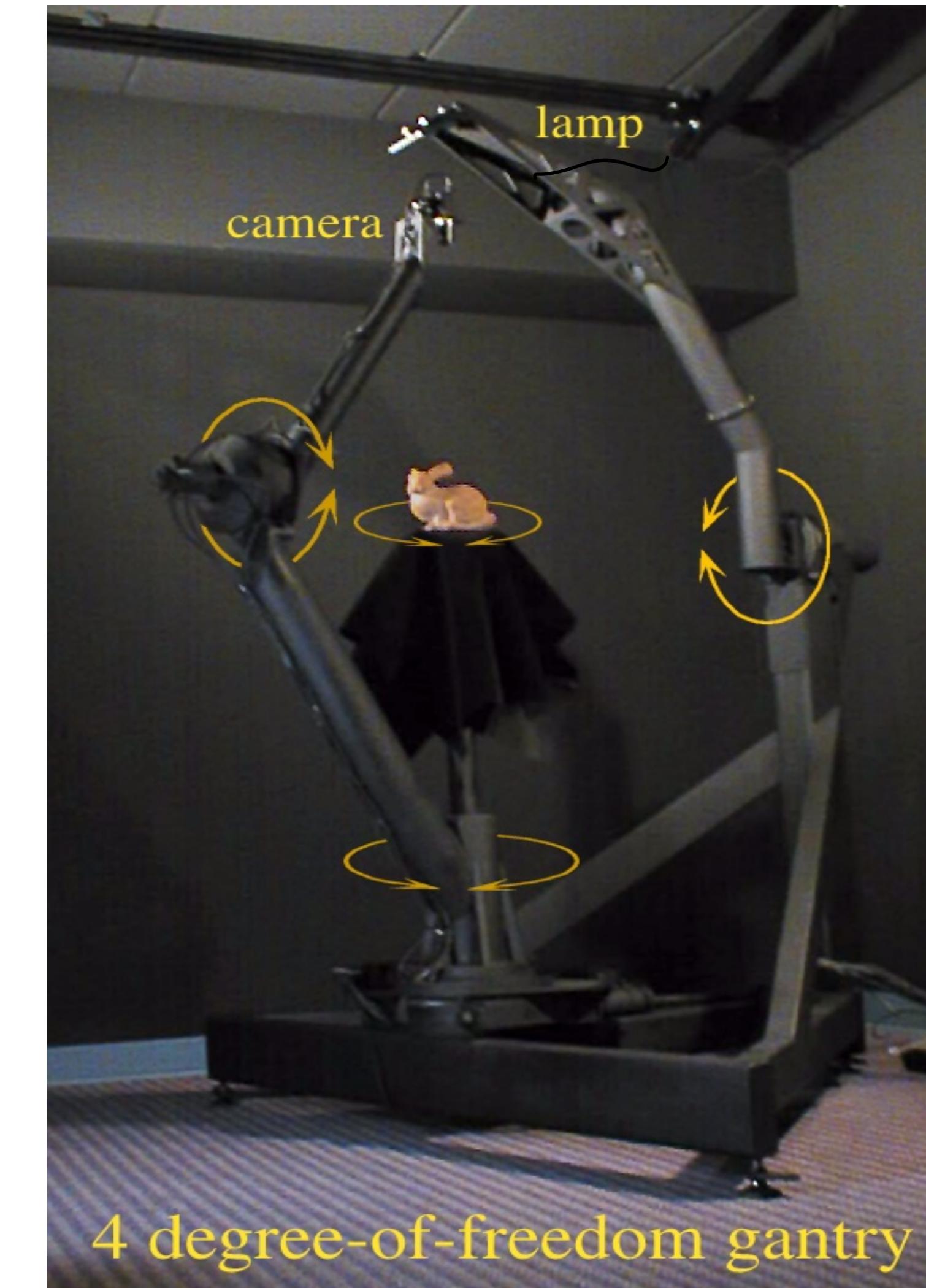
Gives fraction of light arriving at surface point p from incoming direction* ω_i is reflected in the direction ω_o (outgoing direction)

$$f(p, \omega_i, \omega_o)$$



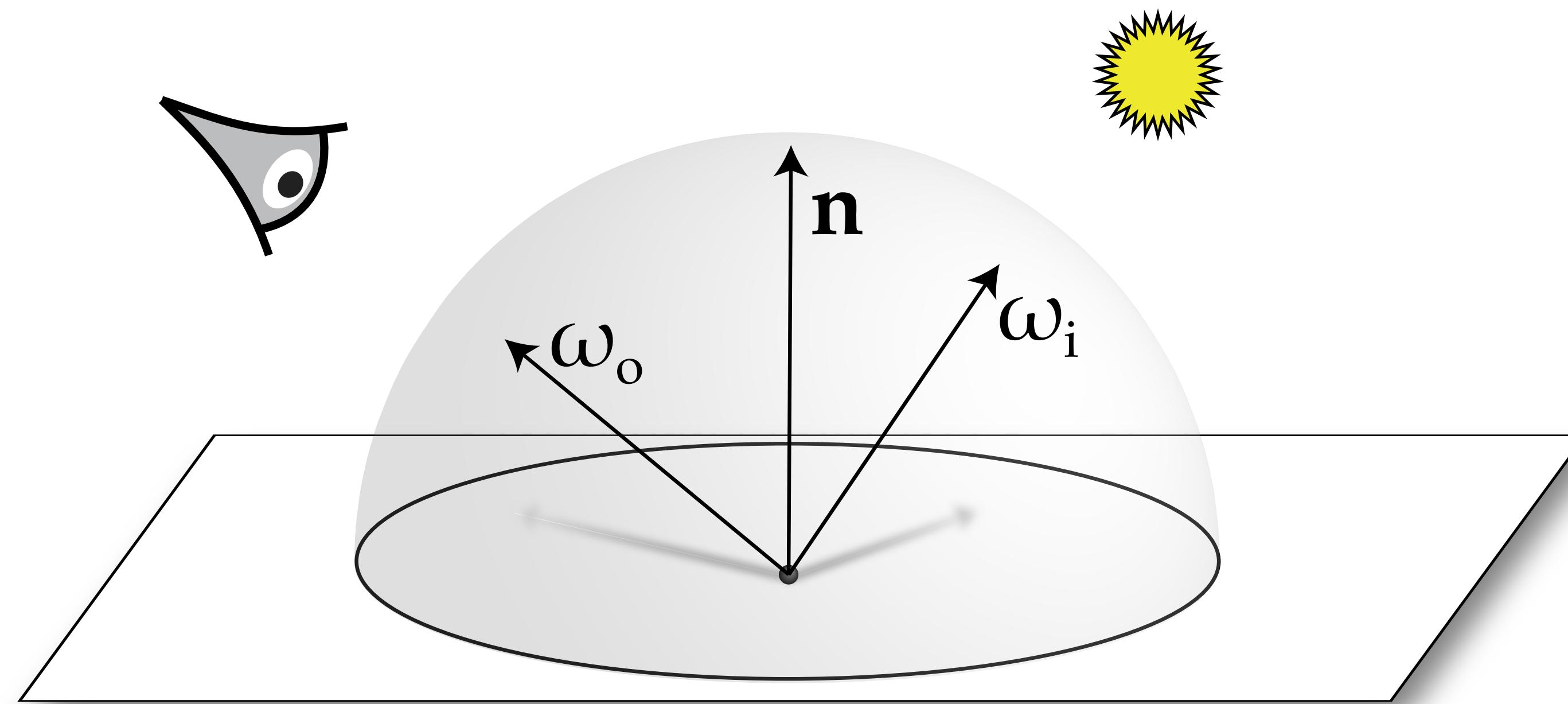
* (Convention: ω_i is oriented out from the surface “towards the incoming direction”)

Measuring BRDFs: the Stanford Gonioreflectometer



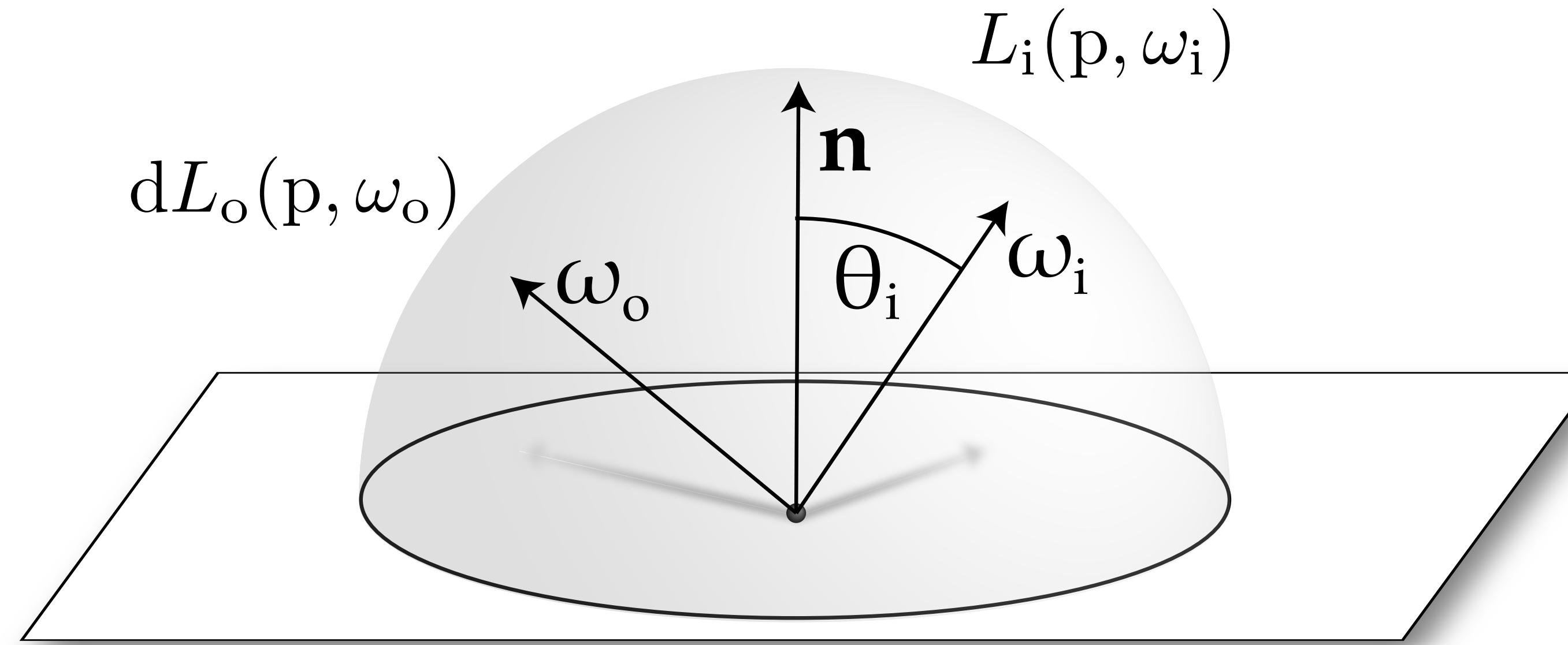
The reflection equation

Gives radiance reflected from point p in direction ω_o due to light incident on the surface at p .



$$L_o(p, \omega_o) = \int_{\Omega^2} \underbrace{f_r(p, \omega_i \rightarrow \omega_o)}_{\text{BRDF}} \underbrace{L_i(p, \omega_i) \cos \theta_i}_{\text{Illumination}} d\omega_i$$

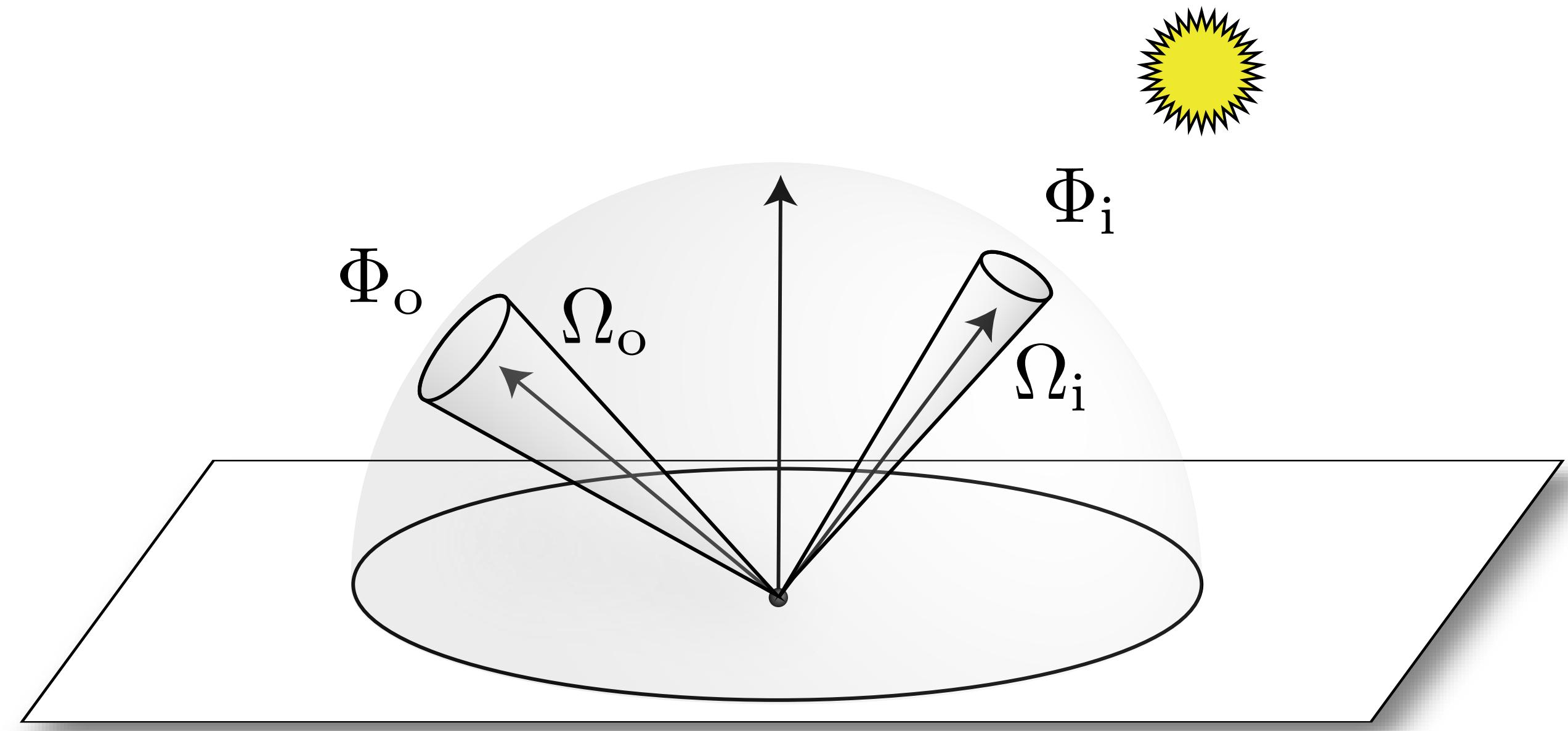
Units of the BRDF



$$f_r(\omega_i \rightarrow \omega_o) \equiv \frac{dL_o(\omega_o)}{dE_i(\omega_i)} \left[\frac{1}{sr} \right]$$

“For a given change in incident irradiance, how much does exit radiance change”

BRDF energy conservation



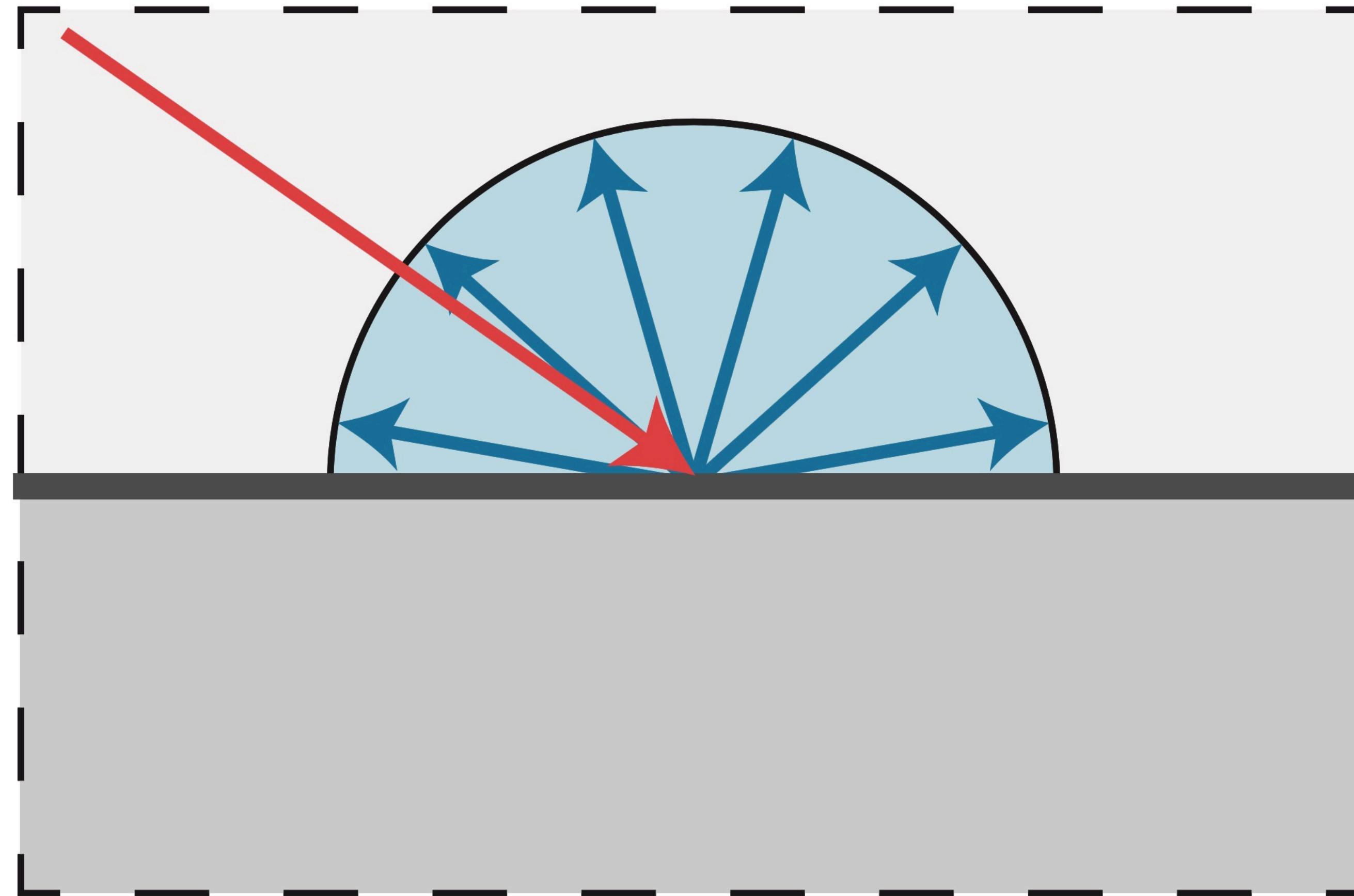
Reflectance
$$\rho = \frac{\Phi_o}{\Phi_i} = \frac{\int_{\Omega_o} L_o(\omega_o) \cos \theta_o d\omega_o}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i}$$

$$0 \leq \rho \leq 1$$

Reflection models

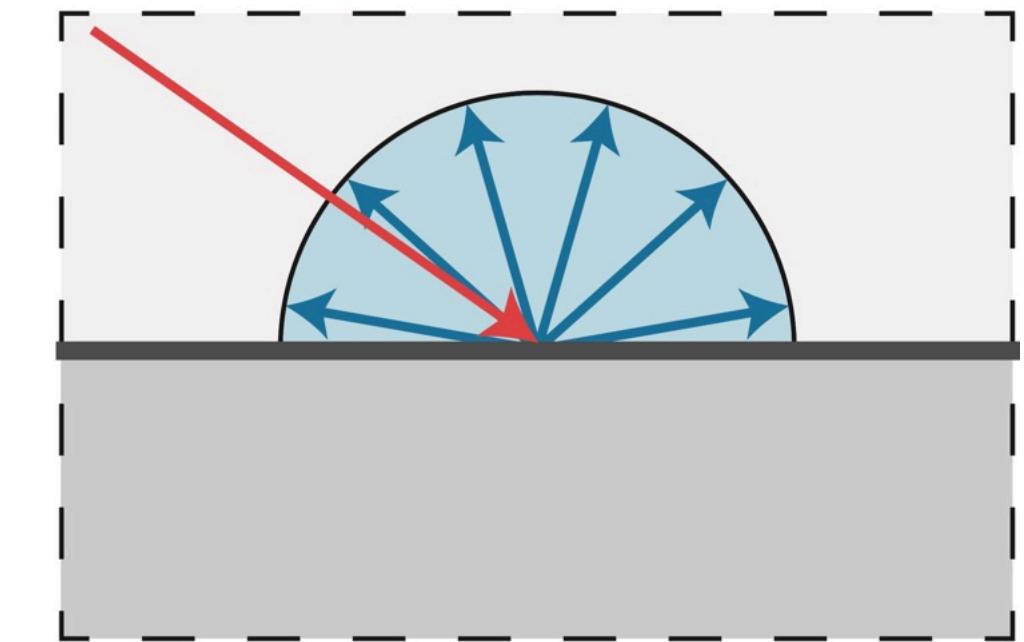
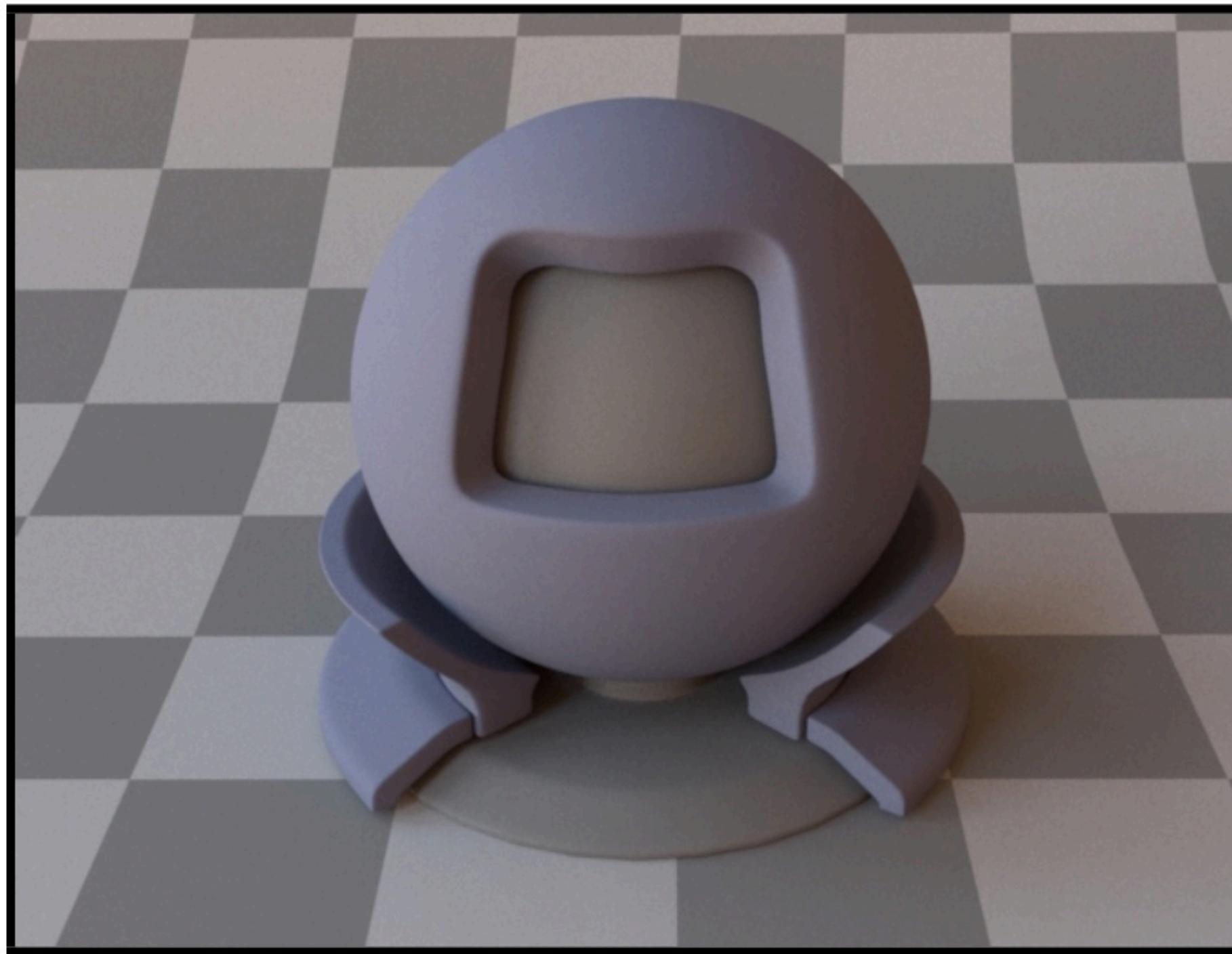
- ***Reflection* is the process by which light incident on a surface interacts with the surface such that it leaves on the incident (same) side without change in frequency**
- **Choice of reflection function determines surface appearance**

What is this material?

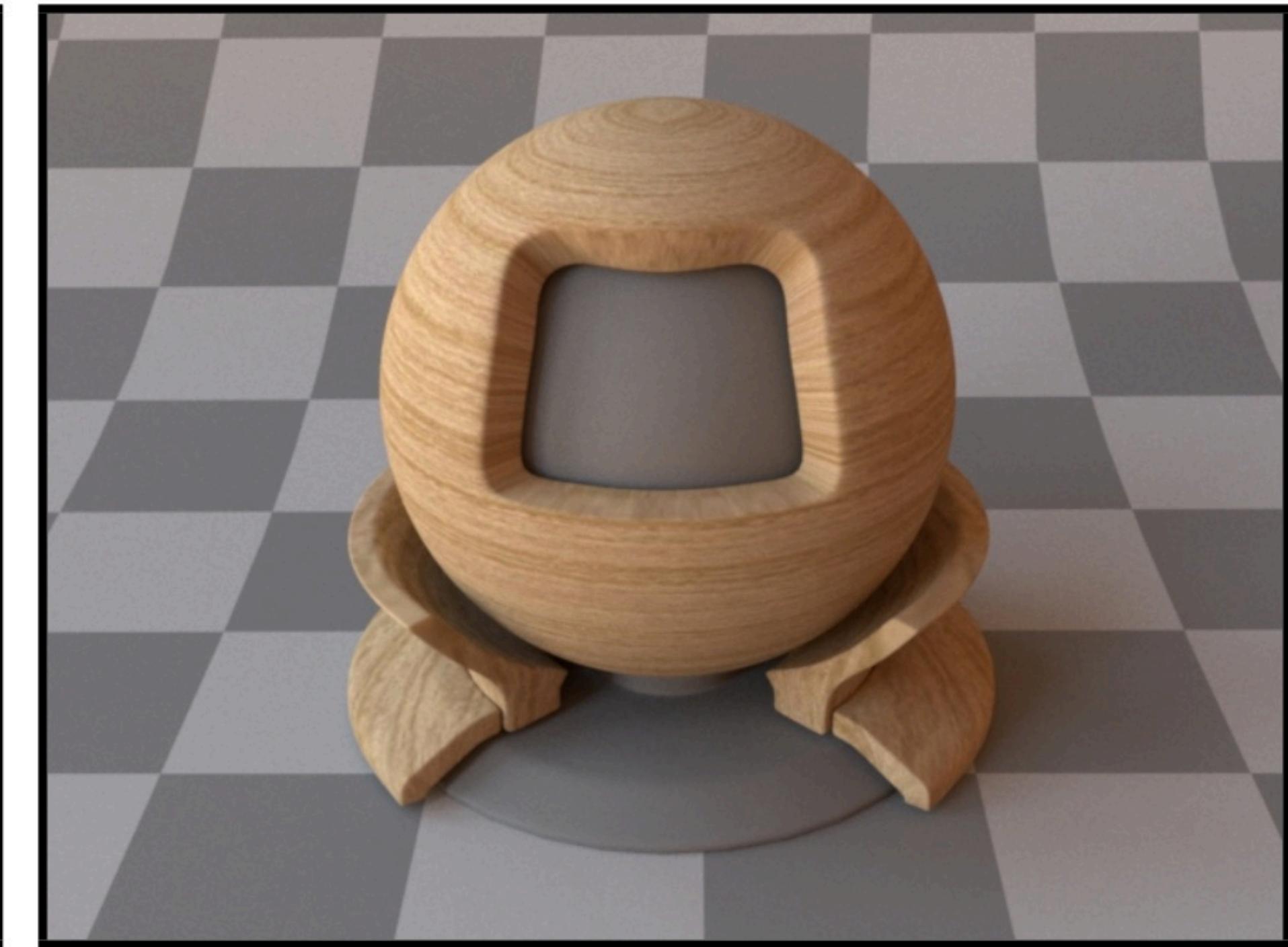


Light is scattered equally in all directions

Diffuse / Lambertian material



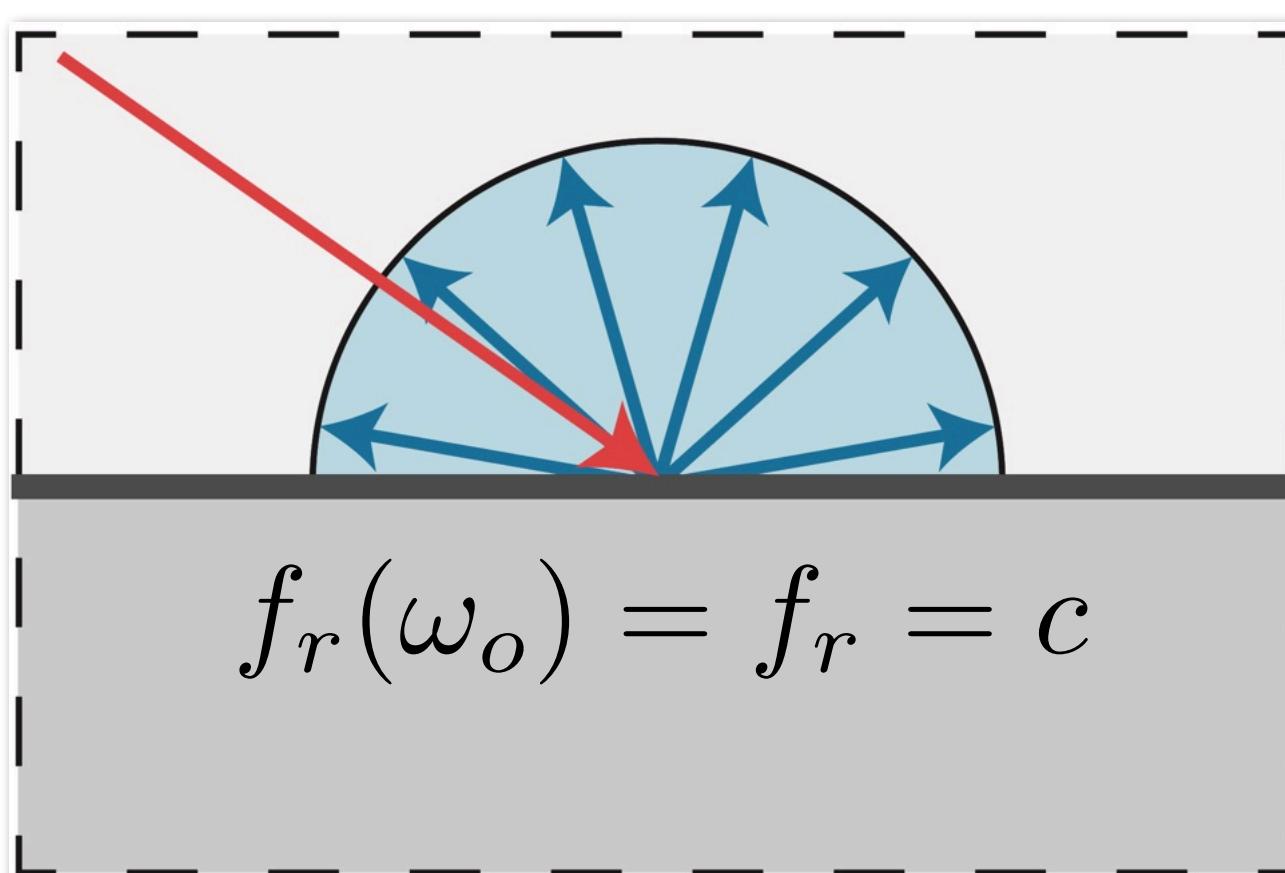
Uniform colored diffuse BRDF
Albedo (fraction of light reflected) is same
for all surface points p



Textured diffuse BRDF
Albedo is spatially varying,
and is encoded in texture map.

BRDF for diffuse surface with albedo ρ

$$\begin{aligned} L_o(w_o) &= \int_{H^2} f_r L_i(w_i) \cos \theta_i d\omega_i \\ &= f_r \int_{H^2} L_i(w_i) \cos \theta_i d\omega_i \\ &= f_r E \quad \text{Let } E = \text{total incoming irradiance} \end{aligned}$$



Let's call the overall reflectance (albedo) of the surface ρ

Total outgoing
surface irradiance

$$\rho E = \int_{H^2} f_r E \cos \theta_o d\omega_o \quad L_o(w_o)$$

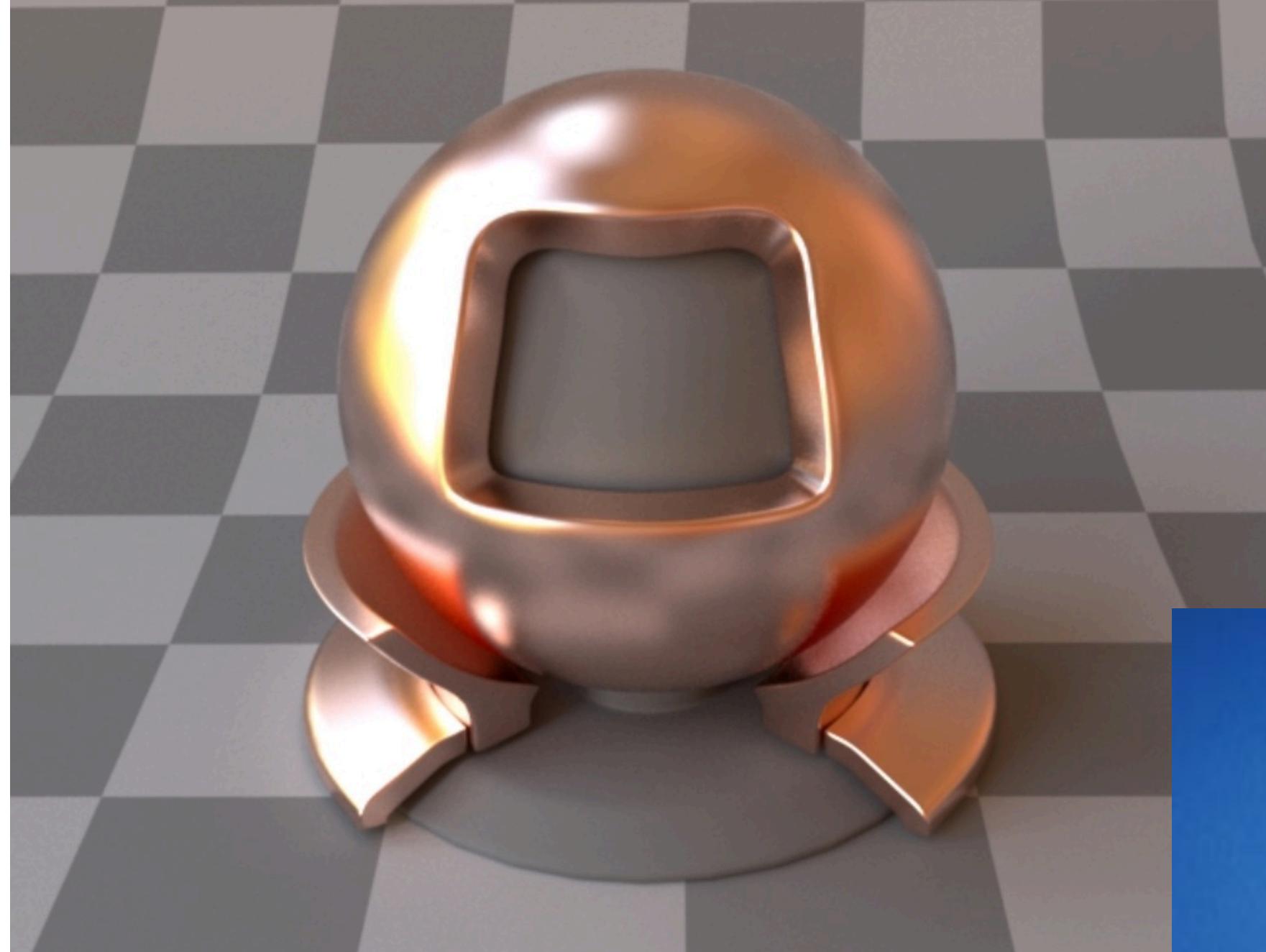
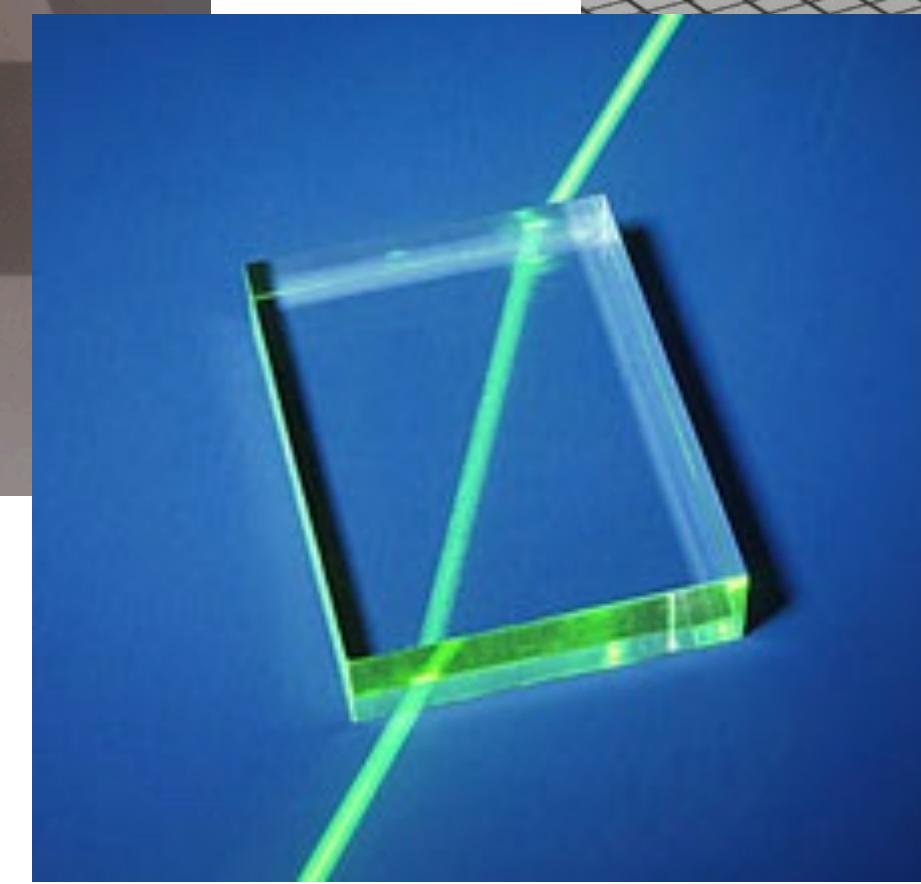
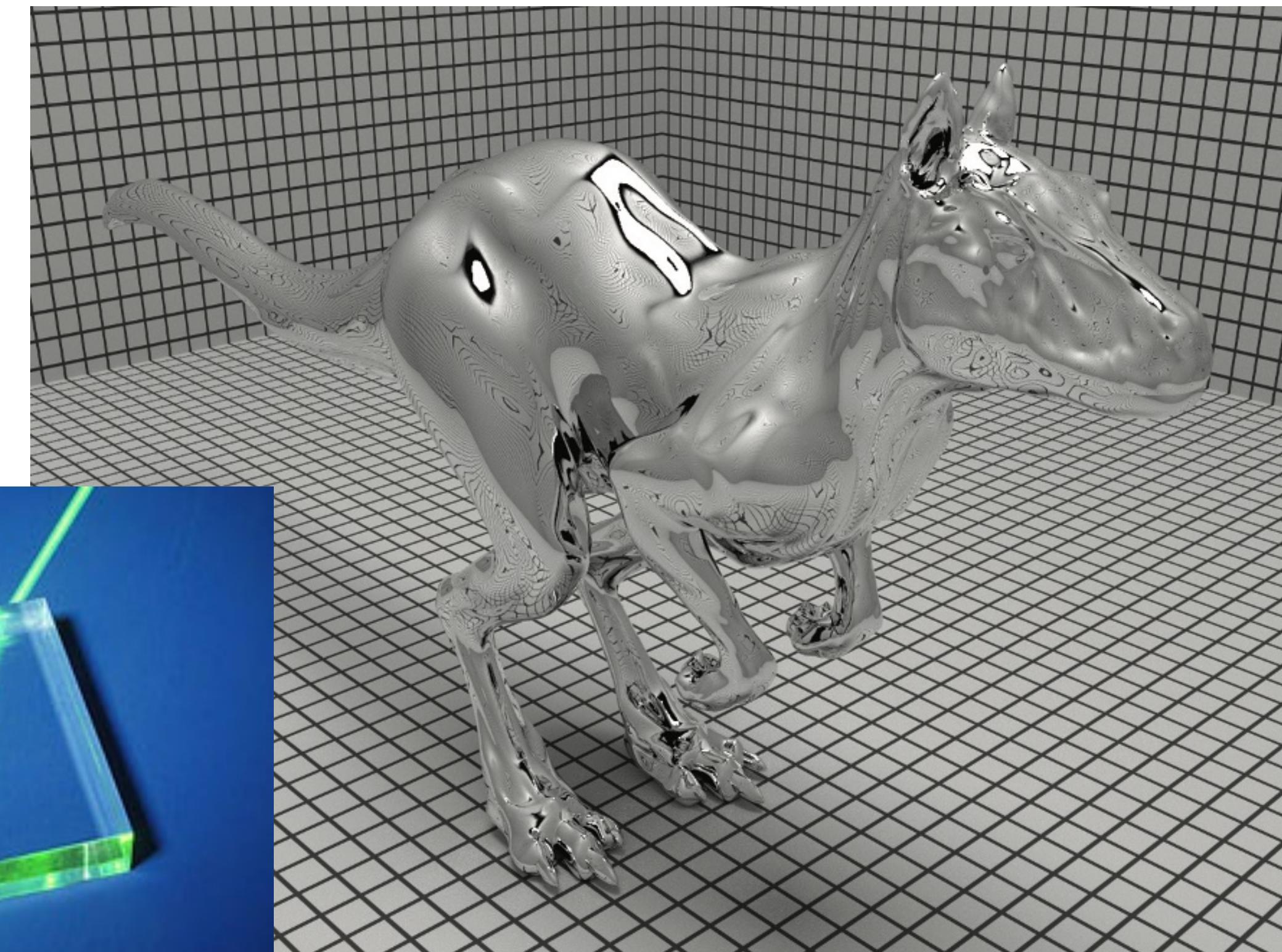
$$\rho = f_r \int_{H^2} \cos \theta_o d\omega_o$$

$$\rho = f_r \pi$$

$$f_r = \frac{\rho}{\pi}$$

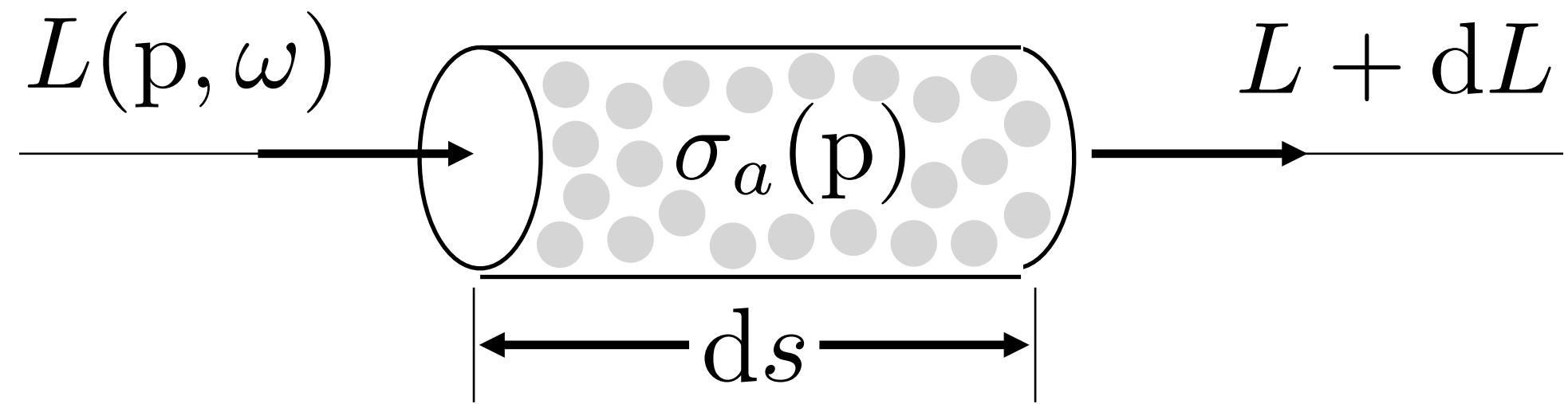
So given a desired ρ , the BRDF should be the constant $\frac{\rho}{\pi}$

**Next time we'll talk about more types of materials:
Glossy materials, mirrors, glass, etc**



But what about scenes like this...

Absorption in a volume



$$p = (x, y, z)$$

$$\omega = (\phi, \theta)$$

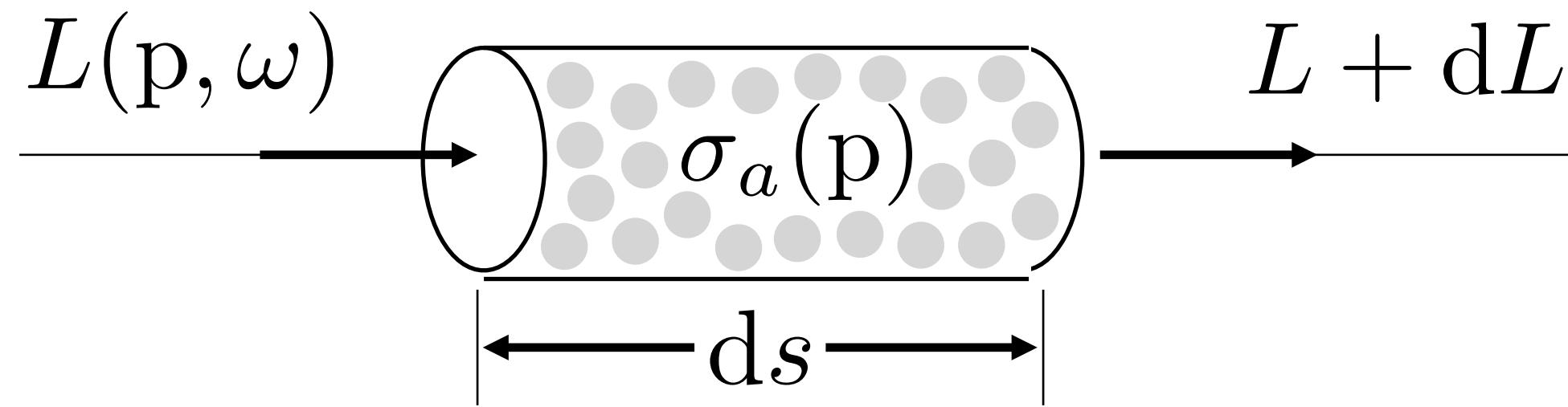
$$dL(p, \omega) = -\sigma_a(p) L(p, \omega) ds$$

$$\frac{dL(p, \omega)}{ds} = -\sigma_a(p) L(p, \omega)$$

- $L(p, \omega)$ **radiance along a ray from p in direction ω**
- **Absorption cross section at point in space: $\sigma_a(p)$**
 - **Probability of being absorbed per unit length**
 - **Units: 1/distance**

Absorption in a volume

Transmittance:



$$\begin{aligned} p &= (x, y, z) \\ \omega &= (\phi, \theta) \end{aligned}$$

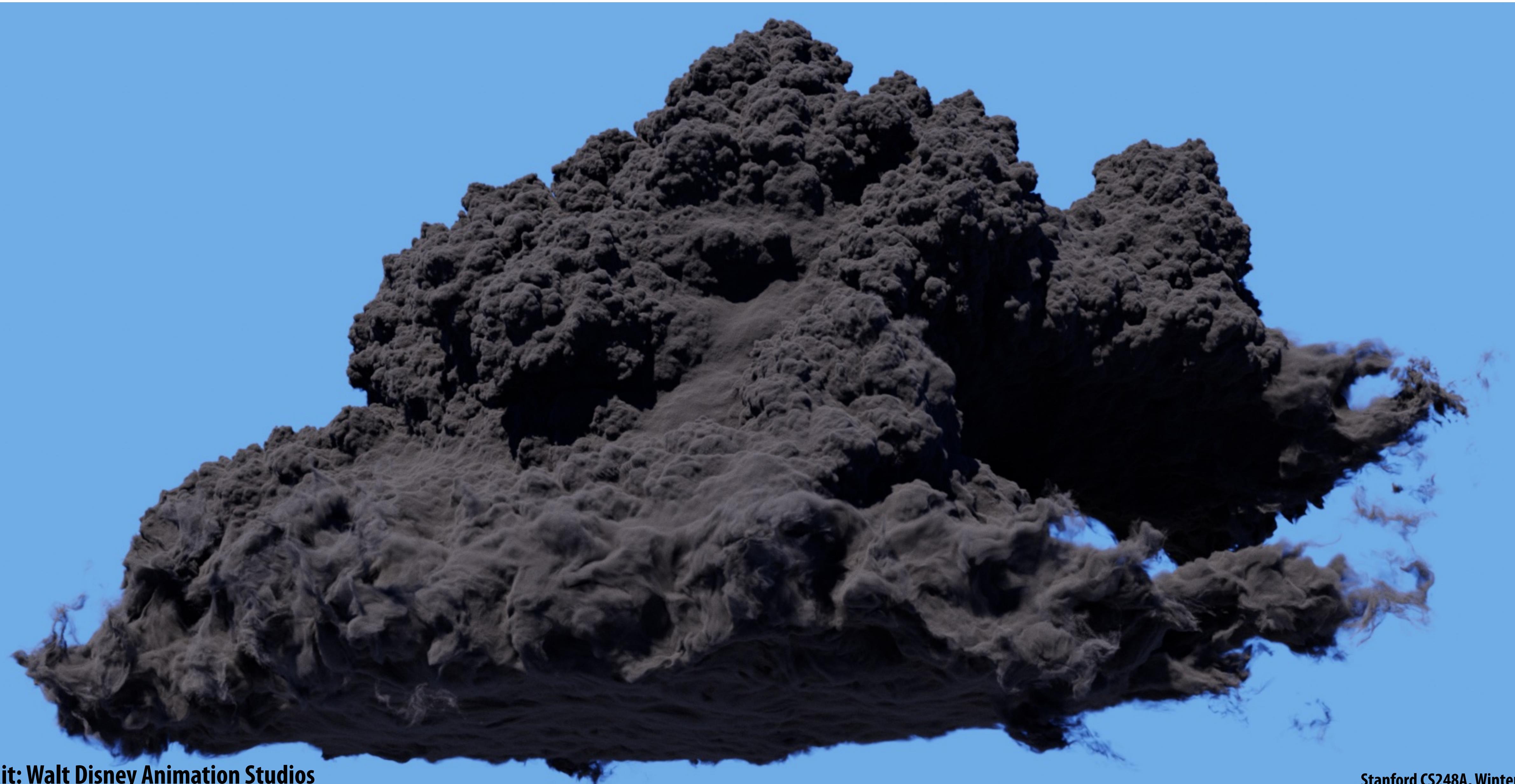
$$\frac{dL(p, \omega)}{L(p, \omega)} = -\sigma_a(p)ds$$

$$L(p + s\omega, \omega) = e^{-\int_0^s \sigma_a(p + s'\omega) ds'} L(p, \omega) = T(s) L(p, \omega)$$

$$T(s) = e^{-\int_0^s \sigma_a(p + s'\omega, \omega) ds'}$$

Absorption: lower density

Absorption: higher density



Ray marching to compute transmittance through volume

Step through volume in small steps

Given “camera ray” from point \mathbf{o} in direction \mathbf{w} ...

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{w}$$

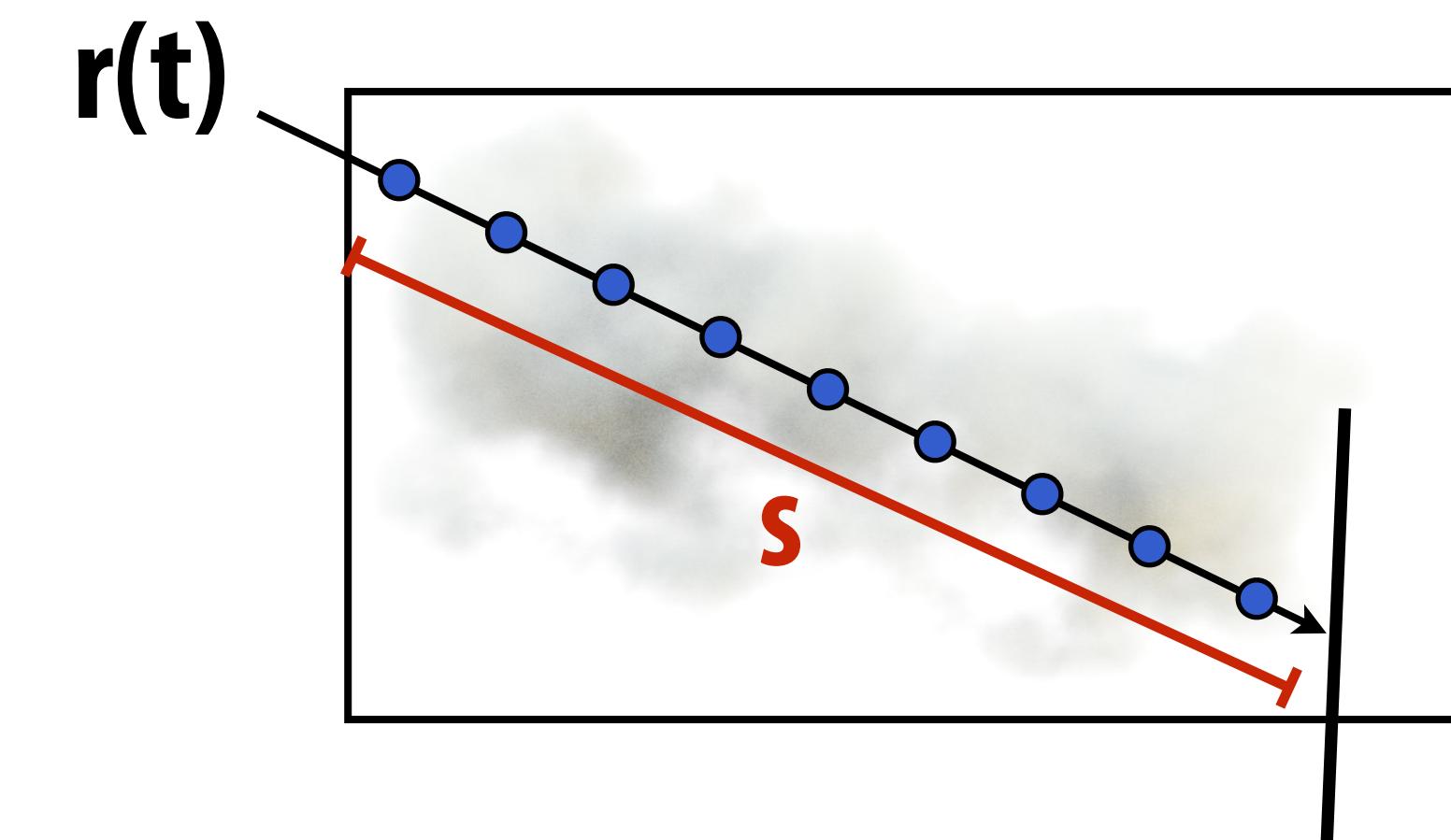
And volume with density

$$\sigma(\mathbf{p})$$

Estimate optical thickness as:

$$\tau(s) \approx \frac{s}{N} \sum_i^N \sigma(p_i)$$

$$p_i = \mathbf{o} + \frac{i + 0.5}{N} \mathbf{w}$$



Trying to approximate this integral

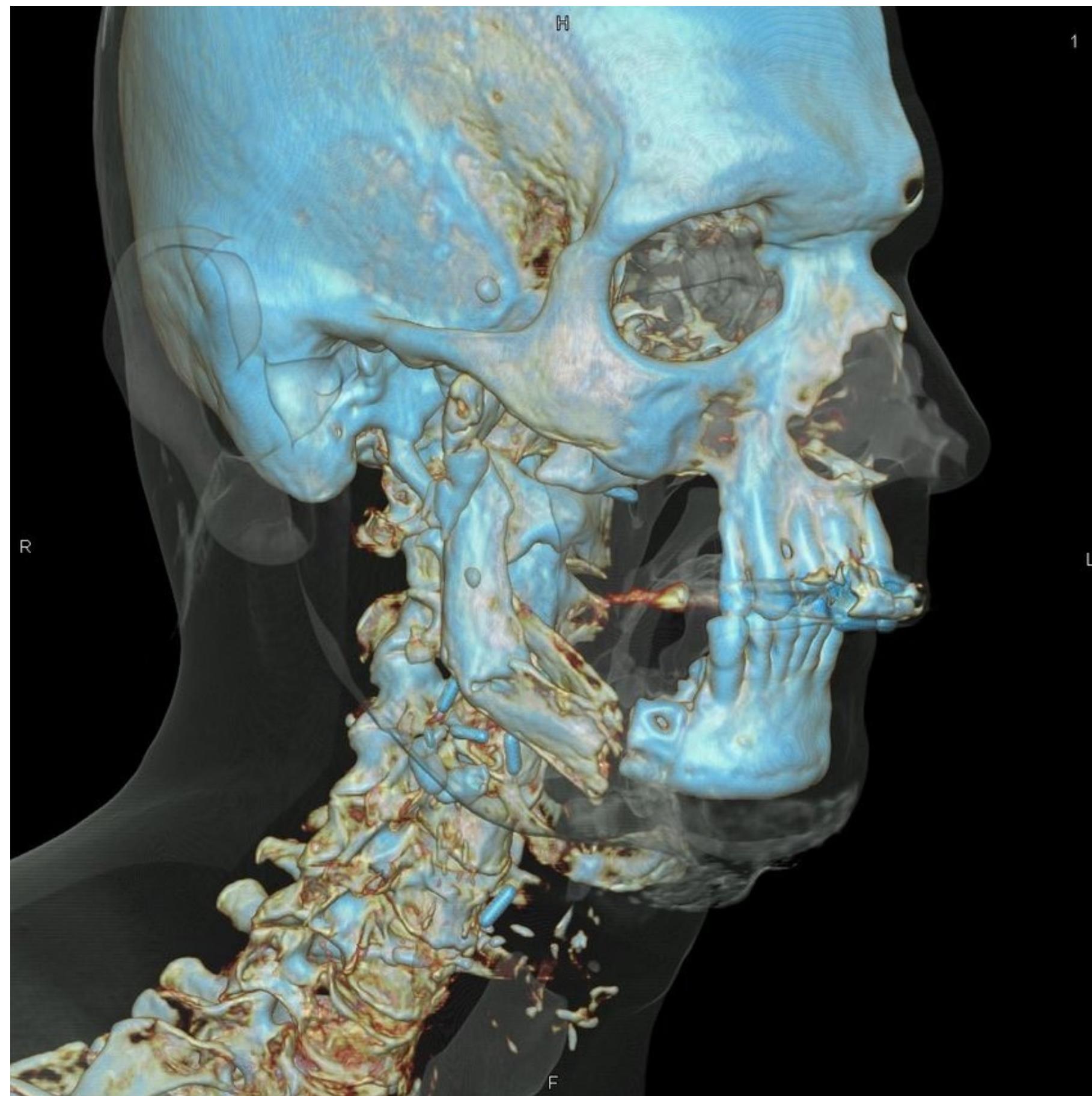
$$\tau(s) = \int_0^s \sigma(\mathbf{p} + s' \mathbf{w}) ds'$$

To compute:

$$T(s) = e^{-\tau(s)}$$

Simple volume rendering

Consider representing a scene as a volume



Volume rendered CT scan

Volume density and “reflectance” at all points in space

$$\sigma(p)$$
$$c(p, \omega) = c(x, y, z, \phi, \theta)$$

The reflectance off surface at point p in direction ω

Volume rendered scene
(Mildenhall et al.)

Rendering volumes

Given “camera ray” from point \mathbf{o} in direction \mathbf{w}

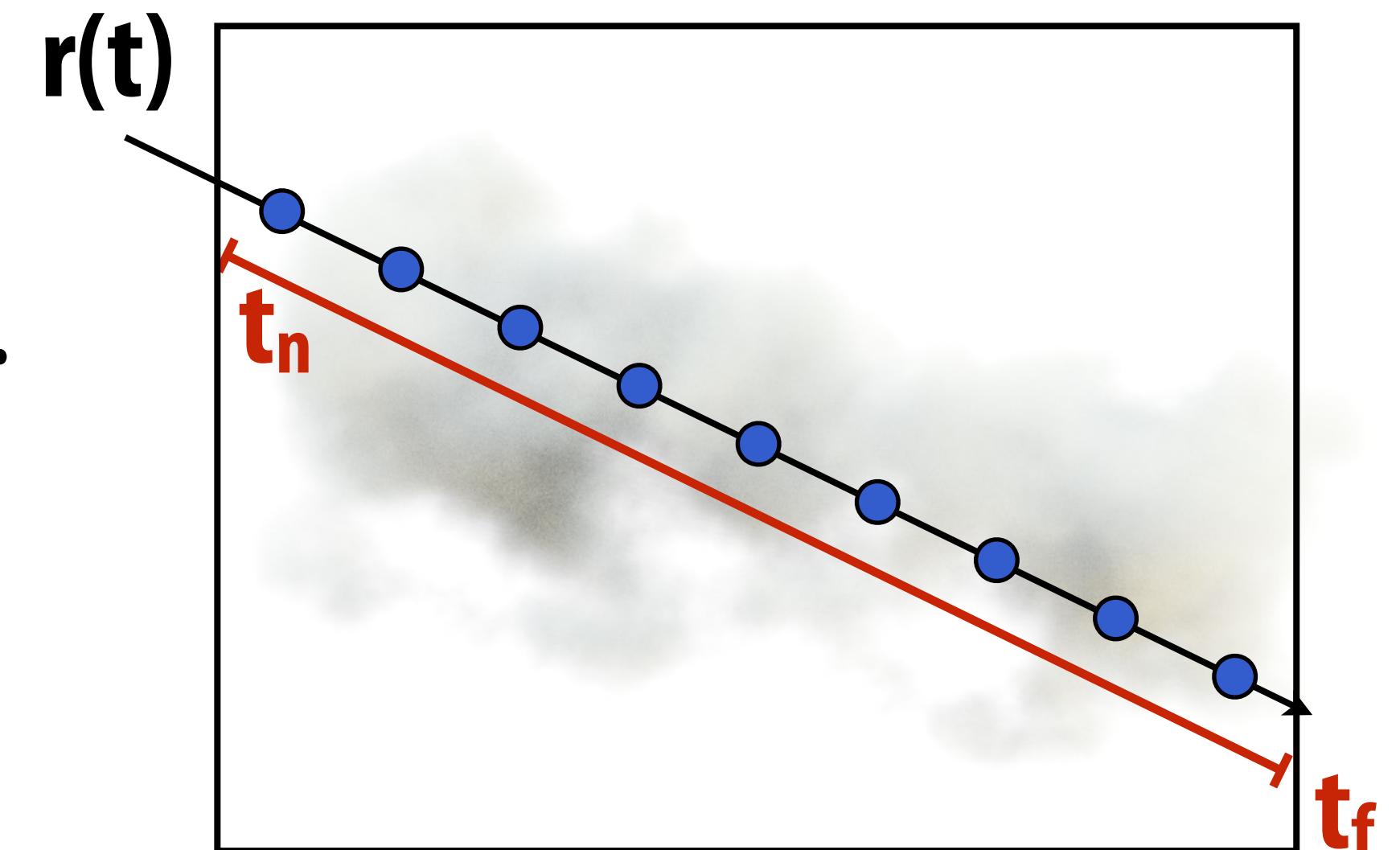
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{w}$$

And volume with density and directional radiance.

$$\begin{matrix} \sigma(\mathbf{p}) \\ \mathbf{c}(\mathbf{p}, \mathbf{w}) \end{matrix}$$

Volume density and color at all points in space.

Step through the volume to compute radiance along the ray.



$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{w}) dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$$

Summary

- **Appearance of a surface is determined by:**
 - **The amount of light reaching the surface from different directions**
 - **Surface irradiance: the amount of light arriving at a surface point**
 - **Radiance: the amount of light arriving at a surface point from a given direction**
 - **The reflectance properties of the surface:**
 - **BRDF(w_i, w_o): the fraction of energy from direction w_i reflected in direction w_o**

Acknowledgements

- **Thanks to Keenan Crane, Ren Ng, Pat Hanrahan and Matt Pharr for presentation resources**