Lecture 8:

Radiometry, BRDFs, and
the Reflection Equation

+ plus a bit on simple volume rendering to get You golng on assignment 2
Interactive Computer Graphics
Stanford C5248A, Winter 2026




Warm up:
Reviewing the rasterization pipeline we discussed last time
(We'll discuss on top of last lecture’s slides)
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Things you know so far!

m Representing geometry
- As triangle meshes, implicit surfaces, SDFs, occupancy
fields, etc.

m Visibility and occlusion
- Ray tracing: determining what is the closest surface a
ray hits
- Rasterization using zbuffer: determining if projected
primitives “cover” a sample (and which one is closest)

m Today: basics of lights and materials
- Computing the “appearance” of the surface at a point
- Thinking about “appearance” in terms of reflected light
(electromagnetic energy)
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“Shading” in drawing

m Depicting the appearance of the surface

m Due to factors like surface material,
lighting conditions

MC Escher pencil sketch
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Lighting

Credit: Pixar
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Lighting

Credit: Wikipedia
(Nasir ol Molk Mosque)




Lighting

Credit: Platon

Portrait Lighting Cheat Sheet

45° OO akgigy Al w2ay 20N St
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Ford mystic lacquer paint
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A renderer measures light energy along a ray

(i

Pinhole

Up until now in the course I've said that we are sampling “the color of the surface” visible along a ray...

but now let’s make that more precise.
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Renderer measures light energy along a ray

We want to compute the amount of light from this light
source reflected off surface point p toward the camera

(i

d ®

O Pinhole
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Multiple light sources

(g

(g

d @

O Pinhole

Now the appearance of surface is brighter, because it is
reflecting more light (light from three sources).

i
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What iis light?
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Light is electromagnetic radiation that is visible to the eye
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Image credit: Licensed under CC BY-SA 3.0 via Commons
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What do lights do?

m Physical process converts input energy into photons
- Each photon carries a small amount of energy

m  Oversome amount of time, light fixture consumes some amount of energy, Joules
- Some input energy is turned into heat, some into photons

m Energy of photons hitting an object ~ exposure
- Film, sensors, sunburn, solar panels, ...

m Ingraphics we generally assume “steady state” process
- Rate of energy consumption = power, Watts (Joules/second)

Cree 11 W LED light bulb
(“60 Watt” incandescent replacement)
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Measuring illumination: radiant flux (power)

Sensor

m Given a sensor, we can count how many photons reach it
- Over a period of time, gives the power received by the sensor

m Given a light, consider counting the number of photons
emitted by it

- Over a period of time, gives the power emitted by the light

m Energy carried by a photon:

hc
h ~ 6.626 x 10~ -—
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Measuring illumination: radiant flux (power)

Sensor

m Flux: energy per unit time (Watts) received by the
sensor (or emitted by the light)

® = lim AQ—@ g
 AS0 At dt S

m Timeintegral of flux is total radiant energy

0= [ owa

to
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Spectral power distribution

Describes distribution of energy by wavelength

Figure credit:

admesy
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“Warm” vs. “cool” white light LED

Credit: https://www.ledholidaylighting.com/LED-faq.aspx Stanford (S248A, Winter 2026




Radiant intensity

The radiant intensity is the power per unit solid angle emanating from a point source.

dD
[(W) =—
(W) -

__\

Units = Watts per steradian

dw
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Angles and solid angles

Angle [

0 = —
: 4

= circle has 2 m radians <

Solid angle
A
() =

R2

= sphere has 4 i steradians
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Review of spherical coordinates

(x,y,2) = (rsinf cos ¢, rsinfsin ¢, rcosb, )

(r, 0, 0)

./_____________________;(
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Differential solid angles

Sphere with radius r

</

dA = (rdO )(rsm0 do)
=7°sin0 dO dd
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Differential solid angles

Sphere with radius r
A

r S0
TN

</ r dA = (r dO )(rsin® di)
) { =7°sin0 dO dd

}
dw = d—? = s1n0 db d¢

r
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Integrating solid angle over the unit sphere

dw = sinf df do
Sphere S2

</

27 T
» = / / sin 6 d6 do
0 0

= 47

A sphere subtends 4 77 steradians.
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Isotropic point source

Radiating total power ®d. Radiating with same intensity /in all directions.

D= (/dow
J
= 4q [
< >
[
4
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Anisotropic intensity
distributions

T

ADJ H20 Dmx Pro Ir Led Water Effect Spotligl'{f%

http://www.photometrictesting.co.uk/File/understanding_photometric_data_files.php Stanford (S248A, Winter 2026



Measuring illumination: irradiance

m Flux: time density of energy
m Irradiance: area density of flux

[\

A

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

o

A

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

.. A®(p)  do(p) [W
Blp) = tm =4 = a4 ‘m2

Units = Watts per area
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Beam power in terms of irradiance

Consider beam with flux P incident on surface with area A
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Projected area

Consider beam with flux & incident on angled surface with area A’

0

A A

A= A"cosb

A = projected area of surface relative to direction of heam
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Lambert’s Law

Irradiance at surface is proportional to cosine of angle between light direction and
surface normal.
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Why do we have seasons?

e e \ e e
| . Rotation axis Su n : . Rotation axis
S <
/ vSouth} Pole / South Pole
Summer Winter
(Northern hemisphere) (Northern hemisphere)

Earth’s axis of rotation: ~23.5° off axis

[Image credit: Pearson Prentice Hall] Stanford (5248A, Winter 2026



Irradiance falloff with distance
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Image cred



Measuring illumination: radiance

m Radiance (L) is the solid angle density of irradiance (irradiance per unit direction)

where the differential surface area is oriented to face in the direction (W

oy,
P@ dw
dA

In other words, radiance is energy along a ray defined by origin point p and direction (u

_ Ad(p,w)  d*®(p,w)
L — 1 p—
(pyw) = lim — = dA dw
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Radiance as energy in an infinitesimal small beam

4
dA

Outgoing from a region: energy leaving an tiny patch of area leaving in the direction of a tiny solid angle

W dw

\P
dw . OdA

Incoming to a region: Energy arriving at a tiny patch of area from a tiny solid angle.
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Properties of radiance

m Fundamental field quantity that characterizes the distribution of light in an
environment

- Radiance is the quantity associated with a ray
- Ray tracers compute the radiance along a ray

m |f we assume rays travel through a vacuum, radiance is invariant along a ray
- For now, we won't consider “participating media” like fog, smoke, clouds, dust, etc.
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Quiz

Does radiance increase under a magnifying glass?

N
/

But irradiance does since magnifying glass
focuses many rays of light on the same spot.

p
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How much light hits the surface at point p?

(What is irradiance at point p?)

Imagine one incoming ray with radiance L;
What is energy per unit area at p?

L+ cos 6

Po

®
Pinhole
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How much light hits the surface at point p from multiple light
SOUrces? (Whatis irradiance at point p?)

Z L, cos 0,

Po

®
Pinhole
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How much light hits the surface at point p from light from all

directions?
(What is irradiance at point p?) L1

Po

®
Pinhole

27 T
/ L(wz) COS (9@ dwi — / / L(@Z, ¢z) COS 6’2 S1N (9@ d92d¢z
S 0 0
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Types of lights

m Attenuated omnidirectional point light

(emits equally in all directions, energy arriving at point P (radiant intensity) falls off with distance: 1/R2 falloff)

m Infinite directional light in direction d

(infinitely far away, all points in scene receive light with radiance L from direction d

d
\
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Spot light
Does not emit equally in all directions...
intensity falls off in directions away from main spotlight direction d

PL d

w = normalize(p — pL)

L(w)=0 ifw-d>cosb

— L otherwise

Or, if spotlight intensity falls off from direction d
L(w) xw-d
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Spot light
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Environment light (represented by a texture map)

Pixel (x,y) stores radiance L from direction (¢, 0)

Image credit: USC High-Resolution Light Probe Image Gallery Stanford (5248A, Winter 2026




So far... we've discussed how to compute the light arriving at a surface point
(radiance along incoming ray)

But goal is to compute what fraction of that
light is reflected toward a camera!

d ®

O Pinhole
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How much light is REFLECTED from p toward po?

L(pawa) — Z f(pawivwa)Li COS 6)7, |_1

(g

w, = normalize(pg — P)

Po

®
Pinhole

L(p,w,) = L,

Radiance reflected from p in direction (W

e
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Bidirectional reflectance distribution function (BRDF)

Gives fraction of light arriving at surface point p from incoming direction* w; is reflected
in the direction w, (outgoing direction)

f(p7 Wi WO)

Wi N
Wo

P

* (Convention: w; is oriented out from the surface “towards the incoming direction”)
Stanford (5248A, Winter 2026



Measuring BRDFs: the Stanford Gonioreflectometer

- '\-.: ? ~
S

e
..
~

4 degree-of-freedom gantry
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The reflection equation

Gives radiance reflected from point p in direction direction wo due to light incident on

the surface at p. *
v A
n
W, W;
Lo(p,wo) = fr(p,w; = wo) Li(p,w;) cos b; dw;

QQ I | |
BRDF lHllumination
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Units of the BRDF

- Li(pawl)
dL, (p,wo) a w.
Folwr — wo) = i[];&?)) S_1T

“For a given change in incident irradiance, how much does exit radiance change”
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BRDF energy conservation

o O, fﬂo Lo(wo) cos B, dw,
eflectance p=— = I () cos 6 d
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Reflection models

m Reflection is the process by which light incident on a surface interacts with the surface
such that it leaves on the incident (same) side without change in frequency

m Choice of reflection function determines surface appearance

Green Water Color Prussian Green Oil Paint Yellow Spray

- .
l'o °.0 ’

Alme Dark Blue Fabric Joint Compound Household Dust
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What is this material?

Light is scattered equally in all directions
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Diffuse / Lambertian material

Uniform colored diffuse BRDF Textured diffuse BRDF
Albedo (fraction of light reflected) is same Albedo is spatially varying,
for all surface points p and is encoded in texture map.

[Mitsuba renderer, Wenzel Jakob, 2010] Stanford CS248A, Winter 2026



BRDF for diffuse surface with albedo p

LO(UJO) — erz (wz) COS (97/ dwi
H2

g

— f,r/ Lz (wz) COS (91 dwz-
2

— f,r L LetE=totalincomingirradiance

14
r 7]
| | Y
Total outgoing | £ 0 AnaA A, e

fT(wO):f’l“:C p:fr/ Coseodwo
2
L _
P — f r 7t
,0 So given a desired /0 , the BRDF should be the constant —
f.== T
T
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Absorption in a volume

L(p,w L +dL
(p )_@ Ua(p) >—+ P = (CC,y,Z)
W

—ds—|

dL(p,w) = —04(p) L(p,w) ds

dL(p,w)
ds

— ~0Oa (p)L(p, w)

m L(p,w) radiance along aray from p in direction w
m Absorption cross section at point in space: o, (p)

- Probability of being absorbed per unit length

- Units: 1/distance
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Absorption in a volume

Transmittance:

L(p,w L +dL
(p )_@ O'a(p) >—+ P (CC,y,Z)
W

(¢,0)

—ds—|

dL(p,w)
L(p,w)

L(p + sw,w) = e~ Jo 72T AL (p ) = T(s) L(p,w)

= —0,(p)ds

T(S) — e f()s oa(p+s'w,w)ds’
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Absorption: lower density

Credit: Walt Disney Animation Studios Stanford (S248A, Winter 2026



Absorption: higher density

Credit: Walt Disney Animation Studios Stanford (S248A, Winter 2026



Ray marching to compute transmittance through volume

Step through volume in small steps

r(t)
Given “camera ray” from point o in direction w....
r(t) = o+ tw
S
And volume with density
o(p)
Estimate optical thickness as:
N Trying to approximate this integral

r(s)~ 53 op) o= | (b 4 s'w)ds’

D; = O g To compute:
7 I

T(s) =e T
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Simple volume rendering

Consider representing a scene as a volume Volume density and “reflectance” at all points in space

—
o(p)

C(p7 w) — C('CE7 y? Z? ¢7 6)

The reflectance off surface
at point p in direction w

,'"t’
l“ . P
]

e
R D\
/Al 1 [
1 | “
(s ‘,‘ .
fA‘a \
f |

Volume rendered scene
(Mildenhall et al.)

Volume rendered CT scan

Credit: Taubmann et al., Siemens Healthineers Stanford €5248A, Winter 2026



Rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

r(t
And volume with density and directional radiance. (t)

o (p> <4— Volume density and color at all points in space. th

c(p,w)

Step through the volume to compute radiance along the ray.

C(r) = /t:f T(t)o(r(t))c(r(t);w)dt, where T'(t) = exp (— /t: a(r(s))ds)
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Summary

m Appearance of a surface is determined by:

- The amount of light reaching the surface from different directions

- Surface irradiance: the amount of light arriving at a surface point

- Radiance: the amount of light arriving at a surface point from a given direction
- The reflectance properties of the surface:

- BRDF(w;,w,): the fraction of energy from direction w; reflected in direction w,

Stanford (5248A, Winter 2026



Acknowledgements

m Thanks to Keenan Crane, Ren Ng, Pat Hanrahan and Matt Pharr for presentation
resources

Stanford (5248A, Winter 2026



