
Interactive Computer Graphics
Stanford CS248A, Winter 2026

Lecture 10:

Materials (Part 2) +
Monte Carlo Integration Basics

Stanford CS248A, Winter 2026

Review (again): radiometry and illumination

Stanford CS248A, Winter 2026

Review: differential solid angles

2

()(sin)
sin

dA r d r d
r d d

θ θ φ

θ θ φ

=

=

2 sindAd d d
r

ω θ θ φ= =

dφ
dθ

θ

φ

r

sinr θ

Sphere with radius r

Stanford CS248A, Winter 2026

Review: irradiance = power per unit area

A

Irradiance at surface is proportional to cosine of angle between light direction
and surface normal. (Lambert’s Law)

A0

✓

A = A0 cos ✓

E =
�

A0 =
� cos ✓

A

✓

Stanford CS248A, Winter 2026

Review: radiance

Radiance is the solid angle density of irradiance (irradiance per unit direction)

where denotes that the differential surface area is oriented to face in the direction

Radiance (L) is energy along a ray defined by origin point p and direction

dA

!

!

P

!

Stanford CS248A, Winter 2026

How much light hits the surface at point p from light from
all directions?

Pinhole x

y

p0

N p

(What is irradiance at point p?)

Z

S2

L(!i) cos ✓i d!i =

Z 2⇡

0

Z ⇡

0
L(✓i,�i) cos ✓i sin ✓i d✓id�i

<latexit sha1_base64="wl9xNv5K3seh+iLb79E8ksVXwJQ=">AAACnnicdVFtaxNBEN67qq3xLdaP/TIYhAoS7kKl/VKoCiK+YEXTBrLpsbfZJEv35didE8JxP8s/4jf/jZvLibGtAwvPPDPzzOxMXijpMUl+RfHWrdt3tnfudu7df/DwUffx7pm3peNiyK2ybpQzL5Q0YogSlRgVTjCdK3GeX75Zxc+/C+elNd9wWYiJZnMjZ5IzDFTW/UGlwaz6ejGo4eM+tVrMWSafA+XWA8WFwOACfQFUM1w4XU1r+JMFx7CuTuqLakALWW/4jRsUW4kgUCzkDcpemv/0+ctutG5EIOv2kn7SGFwHaQt6pLXTrPuTTi0vtTDIFfN+nCYFTirmUHIl6g4tvSgYv2RzMQ7QMC38pGrWW8OzwExhZl14BqFhNysqpr1f6jxkrib1V2Mr8qbYuMTZ0aSSpihRGL5uNCsVoIXVrWAqneColgEw7mSYFfiCOcYxXLQTlpBe/fJ1cDbopwf9l18Oeiev23XskD3ylOyTlBySE/KOnJIh4dFe9Cp6H32IIX4bf4o/r1PjqK15Qv6xePQbTmzMdw==</latexit>

Stanford CS248A, Winter 2026

Irradiance at point X from a uniform area source

A

Ω!

Ω

Constant
(it’s a uniform source)

x

E(x) =

Z

H2

L(!) cos ✓ d!

=L

Z

⌦
cos ✓ d!

=L⌦̃

<latexit sha1_base64="yT3jlsCBBafWfj9EGBi+v+hL9JQ=">AAACmXicnVFdaxNBFJ3d+lHjV1TwpS+DQUlBwm5pqQ8WqlIJUrCiaQuZGGZnb5Kh87HM3BXDsv/J3+Kb/8bZZAXb+uSBgTPnnntn7r1ZoaTHJPkVxRs3bt66vXmnc/fe/QcPu48en3pbOgEjYZV15xn3oKSBEUpUcF444DpTcJZdvGviZ9/AeWnNF1wWMNF8buRMCo5BmnZ/HPWZ5rhwuvpeb9ODF5RJg9Nq+HWnpsd9ZjXM+TZlLykT1lOGC0C+urZZeb32UMY69BJCreO2GvvYWOr/q8FQqhz+1Jh2e8kgWYFeJ2lLeqTFybT7k+VWlBoMCsW9H6dJgZOKO5RCQd1hpYeCiws+h3Gghmvwk2o12Zo+D0pOZ9aFY5Cu1L8zKq69X+osOJte/NVYI/4rNi5x9mpSSVOUCEasH5qViqKlzZpoLh0IVMtAuHAy/JWKBXdcYFhmJwwhvdrydXK6M0h3B3ufdnuHb9txbJIt8oz0SUr2ySEZkhMyIiJ6Gr2OjqL38Vb8Jh7GH9bWOGpznpBLiD//Bhg9wTw=</latexit>

Total projected solid angle

Assume single light source in scene, so incoming light is 0 except from directions toward the light

Stanford CS248A, Winter 2026

Irradiance at point X from a uniform area source

A!
x!

x

θ
θ "

Radiance leaving light from x’ in direction ω’ = radiance arriving at surface at x from ω.
(assuming that ω is pointing at the light)

Integral reparameterization:

Reparameterization: now integrate over light
source area, instead of solid angle

Li(x,!) = Lo(x
0,!0) = L

<latexit sha1_base64="8/mYKPHPGjLLDNKLYxLXJogV8bE=">AAACDHicbZDLSsNAFIYn9VbrLerSzWCQVpCSSEU3QtGNiy4q2Au0IUymk3boJBNmJtIS+gBufBU3LhRx6wO4822ctllo9YeBn++cw5nz+zGjUtn2l5FbWl5ZXcuvFzY2t7Z3zN29puSJwKSBOeOi7SNJGI1IQ1HFSDsWBIU+Iy1/eD2tt+6JkJRHd2ocEzdE/YgGFCOlkWdaNY+WRiddHpI+OoaXsObx0qiYgeKcmJZdtmeCf42TGQtkqnvmZ7fHcRKSSGGGpOw4dqzcFAlFMSOTQjeRJEZ4iPqko22EQiLddHbMBB5p0oMBF/pFCs7oz4kUhVKOQ193hkgN5GJtCv+rdRIVXLgpjeJEkQjPFwUJg4rDaTKwRwXBio21QVhQ/VeIB0ggrHR+BR2Cs3jyX9M8LTuV8tltxapeZXHkwQE4BCXggHNQBTegDhoAgwfwBF7Aq/FoPBtvxvu8NWdkM/vgl4yPby/fmIc=</latexit>

E(x) =

Z

H2

Li(x,!) cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="kn9Hd4TnB27GuPgzDKdmJLYuWac=">AAAC13icdVJNbxMxEJ1dvkr4CvSEuFhEKCBBtFsVwQWpBSFx4FCkpi1KQuR1nMSq117Zs6XpNuIAQlz5a9z4N0ycRaJNGWlWb96b2RnbkxVaeUyS31F86fKVq9fWrjdu3Lx1+07z7r09b0snZFdYbd1Bxr3UysguKtTyoHCS55mW+9nhm4W+fySdV9bs4qyQg5xPjBorwZEo2/wMb+ExHMMTYPCKvA8KDCAMoYJ38Ak2YE7se4pVyHtKGRZykDABHqr6xC2+gngfEMKUdCT9rzo6U7XaaRvadR9G0f//dRHfDrGFI4pdqD+lOZ+RtwktTzAPM2yz+8NmK+kkwdgqSGvQgtp2hs1f/ZEVZS4NCs2976VJgYOKO1RCy3mjX3pZcHHIJ7JH0PBc+kEV3mXOHhEzYmPryA2ywP5bUfHc+1meUWbOcerPawvyIq1X4vjloFKmKFEasWw0LjVDyxaPzEbKSYF6RoALp2hWJqbccYG0Cg26hPT8kVfB3kYn3ew8/7DZ2npdX8caPICHtAYpvIAtWo8d6IKIdqOT6Gv0Lf4Yf4m/xz+WqXFU16zDGYt//gGC+rRK</latexit>

Reparameterize integral over solid angle to integral over area of light source.

Stanford CS248A, Winter 2026

Review: the reflection equation

n
ωo

ωi

BRDF Illumination

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k=">AAAC2HicfVJLaxRBEO4ZH4nra9Wjl8ZFiBCWmRCMFyHgJYeAEdwkuL0OPb01u036MXTXKMsw4EERr/40b/4K/4I9m1E22ZCChq/rq6+quqrzUkmPSfI7im/cvHV7Y/NO7+69+w8e9h89Pva2cgJGwirrTnPuQUkDI5So4LR0wHWu4CQ/e9PyJ5/AeWnNe1yUMNF8ZmQhBcfgyvp/DjOmOc6drm2z9Q+WzTZlVsOMr7Av6GvKpMGsZm9b6uNOQ4v/vLtWLRvKnJzNkTtnP1+Vm23Tw5Xw65Mtw5mwnjKcA16sE5juNm3WlFl/kAyTpdF1kHZgQDo7yvq/2NSKSoNBobj34zQpcVJzh1IoaHqs8lByccZnMA7QcA1+Ui8X09DnwTOlhXXhGKRL76qi5tr7hc5DZNuhv8y1zqu4cYXFq0ktTVkhGHFeqKgURUvbLdOpdCBQLQLgwsnQKxVz7rjA8Bd6YQjp5Sevg+OdYfpymL7bHewfdOPYJE/JM7JFUrJH9skBOSIjIqJRVEdfo2/xh/hL/D3+cR4aR53mCblg8c+/Xgzo1A==</latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

Li(p,!i)

<latexit sha1_base64="bf9wJdwjv2BrgI2CXLaZtxjeACc=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEClISqeiy6MaFiwr2AU0Ik+m0HTozCTMToYTixl9x40IRt36FO//GSZuFth64cDjnXu69J4wZVdpxvq3C0vLK6lpxvbSxubW9Y+/utVSUSEyaOGKR7IRIEUYFaWqqGenEkiAeMtIOR9eZ334gUtFI3OtxTHyOBoL2KUbaSIF9cBvQiseRHkqexpNT6EWcDFBATwK77FSdKeAicXNSBjkagf3l9SKccCI0ZkipruvE2k+R1BQzMil5iSIxwiM0IF1DBeJE+en0hQk8NkoP9iNpSmg4VX9PpIgrNeah6cyOVfNeJv7ndRPdv/RTKuJEE4Fni/oJgzqCWR6wRyXBmo0NQVhScyvEQyQR1ia1kgnBnX95kbTOqm6ten5XK9ev8jiK4BAcgQpwwQWogxvQAE2AwSN4Bq/gzXqyXqx362PWWrDymX3wB9bnD3iSltg=</latexit>

Lo(p,!o)

<latexit sha1_base64="SdmnnxjZ3E+djEMyx2P/AO5tBqk=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEClISqeiy6MaFiwr2AU0Ik+m0HTqTCTMToYTixl9x40IRt36FO//GSZuFth64cDjnXu69J4wZVdpxvq3C0vLK6lpxvbSxubW9Y+/utZRIJCZNLJiQnRApwmhEmppqRjqxJIiHjLTD0XXmtx+IVFRE93ocE5+jQUT7FCNtpMA+uA1ExeNIDyVP48kp9AQnAxSIk8AuO1VnCrhI3JyUQY5GYH95PYETTiKNGVKq6zqx9lMkNcWMTEpeokiM8AgNSNfQCHGi/HT6wgQeG6UH+0KaijScqr8nUsSVGvPQdGbHqnkvE//zuonuX/opjeJEkwjPFvUTBrWAWR6wRyXBmo0NQVhScyvEQyQR1ia1kgnBnX95kbTOqm6ten5XK9ev8jiK4BAcgQpwwQWogxvQAE2AwSN4Bq/gzXqyXqx362PWWrDymX3wB9bnD4tMluQ=</latexit>

Stanford CS248A, Winter 2026

More About Materials

Stanford CS248A, Winter 2026

Last time: diffuse materials

Stanford CS248A, Winter 2026

What is this material?

Stanford CS248A, Winter 2026

Glossy material (BRDF)

Copper Aluminum

[Mitsuba renderer, Wenzel Jakob, 2010]

Stanford CS248A, Winter 2026

What is this material?

Stanford CS248A, Winter 2026

Perfect specular reflection

[Zátonyi Sándor]

Stanford CS248A, Winter 2026

Perfect specular reflection

Image credit: PBRT

Stanford CS248A, Winter 2026

Calculating direction of specular reflection

~n
!i !o

✓i ✓o
�i �o

!o + !i = 2 cos ✓ ~n = 2(!i · ~n)~n

!o = �!i + 2(!i · ~n)~n

�o = (�i + ⇡)mod 2⇡✓ = ✓o = ✓i

Top-down view
(looking straight down on surface)

Stanford CS248A, Winter 2026

Hemispherical incident radiance

Consider view of hemisphere from this point

Image credit Matt Pharr

Stanford CS248A, Winter 2026

Hemispherical incident radiance
At any point on any surface in the scene,
there’s an incident radiance field that gives
the directional distribution of incoming
illumination at the point

(0,0)

Image credit Matt Pharr

Stanford CS248A, Winter 2026

Diffuse reflection

Incident radiance Exitant radiance

Exitant radiance is the same in all directions

Image credit Matt Pharr

Stanford CS248A, Winter 2026

Ideal specular reflection

Incident radiance Exitant radiance

Image credit Matt Pharr

Stanford CS248A, Winter 2026

How might you render a specular surface
Compute direction from surface point p to camera = ωo
Given normal at p, compute reflection direction ωi
Light reflected in direction ωo is light arriving from direction ωi
How do you measure light arriving from ωi?

(�, ✓)

Pixel (x,y) stores radiance L from direction

One idea…
look up amount in environment map!
(more on this later)

Stanford CS248A, Winter 2026

Plastic

Incident radiance Exitant radiance

Image credit Matt Pharr

Stanford CS248A, Winter 2026

Copper

Incident radiance Exitant radiance

Image credit Matt Pharr

Stanford CS248A, Winter 2026

Some basic reflection functions
Ideal specular

Ideal diffuse

Glossy specular

Retro-reflective

Diagrams illustrate how incoming light energy from a
given direction is reflected in various directions.

Perfect mirror

Uniform reflection in all directions

Reflects light back toward source

Majority of light distributed in reflection direction

Stanford CS248A, Winter 2026

More complex materials

Stanford CS248A, Winter 2026

Isotropic / anisotropic materials (BRDFs)
Key: directionality of underlying surface

Isotropic

Anisotropic

Surface (normals) BRDF (fix wi, vary wo)

Stanford CS248A, Winter 2026

Reflection depends on azimuthal angle �

Results from oriented microstructure of
surface, e.g., brushed metal

Anisotropic BRDFs

fr(✓i,�i; ✓r,�r) = fr(✓i, ✓r,�r � �i)/

Stanford CS248A, Winter 2026

Anisotropic reflection due to grooved surfaces

http://i270.photobucket.com/albums/jj108/Charliebrown775/LowAngle_AnisotropicRidgeReflections.jpg

Stanford CS248A, Winter 2026

Anisotropic BRDF: Nylon

[Westin et al. 1992]

Stanford CS248A, Winter 2026

Anisotropic BRDF: Velvet

[Westin et al. 1992]

Stanford CS248A, Winter 2026

Anisotropic BRDF: Velvet

[Westin et al. 1992]
[https://www.youtube.com/watch?v=2hjoW8TYTd4]

Stanford CS248A, Winter 2026

What is this material?

Stanford CS248A, Winter 2026

Ideal reflective / refractive
material (BxDF *)

Air <-> water interface Air <-> glass interface
(with absorption)

[Mitsuba renderer, Wenzel Jakob, 2010]
* X stands in for reflectance “r” off surface, transmission “t” through surface, scattering “s” within surface, etc.

Stanford CS248A, Winter 2026

Transmission
In addition to reflecting off surface, light may be
transmitted through the surface.

Light refracts when it enters a new medium.

Stanford CS248A, Winter 2026

Snell’s Law

~n!i

!t

⌘i sin ✓i = ⌘t sin ✓t

Transmitted angle depends on index of refraction of medium incident ray is in and index of
refraction of medium light is entering.

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

⌘Medium *

* index of refraction is wavelength dependent
(these are averages)

Stanford CS248A, Winter 2026

Fresnel reflection
For many real materials, reflectance
increases w/ viewing angle

[Lafortune et al. 1997]

Stanford CS248A, Winter 2026

Snell + Fresnel: example

Transmittance is dominant:
see effects of refraction (Snell’s Law)

Reflection is dominant (Fresnel)

Stanford CS248A, Winter 2026

Subsurface scattering
Visual characteristics of many surfaces caused by
light entering at different points than it exits
- Violates a fundamental assumption of the BRDF
- Need to generalize scattering model (BSSRDF)

[Jensen et al 2001]

[Donner et al 2008]
* BSSRDF = bidirectional subsurface scatting reflectance distribution function

Stanford CS248A, Winter 2026

Translucent materials: skin

Stanford CS248A, Winter 2026

BRDF

Stanford CS248A, Winter 2026

BSSRDF

Stanford CS248A, Winter 2026

Parameters to Disney BRDF

• specularTint - a concession for artistic control that tints incident specular towards the base color.
Grazing specular is still achromatic.

• roughness - surface roughness, controls both di↵use and specular response.

• anisotropic - degree of anisotropy. This controls the aspect ratio of the specular highlight. (0 =
isotropic, 1 = maximally anisotropic).

• sheen - an additional grazing component, primarily intended for cloth.

• sheenTint - amount to tint sheen towards base color.

• clearcoat - a second, special-purpose specular lobe.

• clearcoatGloss - controls clearcoat glossiness (0 = a “satin” appearance, 1 = a “gloss” appearance).

Rendered examples of the e↵ect of each of our parameters are shown in Figure 16.

subsurface

metallic

specular

roughness

anisotropic

specularTint

sheen

sheenTint

clearcoat

clearcoatGloss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 16: Examples of the e↵ect of our BRDF parameters. Each parameter is varied across the row
from zero to one with the other parameters held constant.

13

Stanford CS248A, Winter 2026

Pattern generation vs. BRDF
In practice, it is convenient to separate computation of spatially varying BRDF parameters (like albedo, shininess, etc.) from
the reflectance function itself

* +

Example 1: albedo value at surface point is given
by expression combining multiple textures

Example 2:
Different textures defining different spatially varying

BRDF input parameters

Stanford CS248A, Winter 2026

Unity’s shader graph

Stanford CS248A, Winter 2026

Numerical Integration

Stanford CS248A, Winter 2026

So far in this lecture, we’ve seen examples of needing to
compute integrals

A!
x!

x

θ
θ "

E(x) =

Z

H2

L cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="6h8j7h2DNL4uth2Z5U24+y6E4/g=">AAACwXicfVJLbxMxEJ5dXiW8ApwQF4sIBSSIdqsiuBS1VEgcOBSJtJWSEHm9TmLVj5U9WzXa5k/2xr9h4kQVpBUjjf35+zzjscdFpVXALPudpLdu37l7b+t+68HDR4+ftJ8+Owqu9kL2hdPOnxQ8SK2s7KNCLU8qL7kptDwuTg+W+vGZ9EE5+xPnlRwZPrVqogRHolxbw1d4A+fwFhjskg9BgQWEMTTwDX7BNiyI/R6Vd3EU4CBEhDADSSO/UkuaHRhip5HdzLgP3at8zX9y3cR349rBGa19jL+gut+TdwmtKl3EGvbZC2iN252sl0Vj10G+Bh1Y2+G4fTksnaiNtCg0D2GQZxWOGu5RCS0XrWEdZMXFKZ/KAUHLjQyjJnZgwV4TU7KJ8+QWWWT/jmi4CWFuCtppOM7CprYkb9IGNU4+jRplqxqlFauDJrVm6NiynaxUXgrUcwJceEW1MjHjngukpi8fId+88nVwtN3Ld3offux09r6sn2MLXsIr+hg5fIQ9+giH0AeRfE7KxCQ2PUhVWqV+tTVN1jHP4R9Lmz/SN69h</latexit>

Example: computing incident irradiance at x due to a single area light source.

Stanford CS248A, Winter 2026

Review: fundamental theorem of calculus

Z x

a
f(t)dt = F (x)� F (a)

Z b

a
f(x)dx = F (b)� F (a)

f(x) =
d

dx
F (x)

x� F (x)� F (a)

x� F (x)� F (a)

x� F (x)� F (a)� x = a

x� F (x)� F (a)

x� F (x)� F (a)

Stanford CS248A, Winter 2026

Definite integral as “area under curve”

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)

Stanford CS248A, Winter 2026

Simple case: constant function

f(x)

x = a

x = b

x = a

x = b

Z b

a
Cdx = (b� a)C

Z b

a
Cdx = (b� a)C

C

Stanford CS248A, Winter 2026

Affine function:

f(x)

x = a

x = b

x = a

x = b

f(x) = cx+ d
Z b

a
f(x)dx =

1

2
(f(a) + f(b))(b� a)

f(a)� f(b)

f(a)� f(b)

1

2
(f(a) + f(b))

Stanford CS248A, Winter 2026

Piecewise affine function

f(x)

Sum of integrals of individual affine components

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Z b

a
f(x)dx =

1

2

n�1X

i=0

(xi+1 � xi)(f(xi) + f(xi+1))

Stanford CS248A, Winter 2026

Piecewise affine function

f(x)

If N-1 segments are of equal length:

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1

Z b

a
f(x)dx =

h

2

n�1X

i=0

(f(xi) + f(xi+1)

= h

n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!

=
nX

i=0

Aif(xi)
Weighted combination
of measurements.

Stanford CS248A, Winter 2026

Arbitrary function f(x)?

f(x)

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Stanford CS248A, Winter 2026

Trapezoidal rule

f(x)

Approximate integral of f(x) by assuming function is piecewise linear

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx = h

n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!
For equal length segments:

Stanford CS248A, Winter 2026

Trapezoidal rule

f(x)

h ⇠ 1

n

Consider cost and accuracy of estimate as (or) n ! 1 h ! 0

Work:
Error can be shown to be: O(h2) = O(

1

n2
)

O(n)

(for f(x) with continuous second derivative)

Stanford CS248A, Winter 2026

Integration in 2D
Consider integrating using the trapezoidal rule
(apply rule twice: when integrating in x and in y)

f(x, y)

First application of rule

Second application

Errors add, so error still:

Z by

ay

Z bx

ax

f(x, y)dxdy =

Z by

ay

O(h2) +

nX

i=0

Aif(xi, y)

!
dy

= O(h2) +
nX

i=0

Ai

Z by

ay

f(xi, y)dy

= O(h2) +
nX

i=0

Ai

0

@O(h2) +
nX

j=0

Ajf(xi, yj)

1

A

= O(h2) +
nX

i=0

nX

j=0

AiAjf(xi, yj)

O(h2)

But work is now: O(n2)

Must perform much more work in 2D to get same error bound on integral!

(n x n set of measurements)
In K-D, let N = nk

Error goes as: O
✓

1

N2/k

◆

Stanford CS248A, Winter 2026

Monte Carlo integration

Stanford CS248A, Winter 2026

Monte Carlo numerical integration
▪ Estimate value of integral using random sampling of function

- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

▪ Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are impossible to integrate directly

▪ Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O(n1/2)

Stanford CS248A, Winter 2026

Monte Carlo algorithms
Advantages
- Easy to implement
- Easy to think about (but be careful of subtleties)
- Robust when used with complex integrands (lights, BRDFs) and domains (shapes)
- Efficient for high-dimensional integrals
- Efficient when only need solution at a few points

Disadvantages
- Noisy
- Slow (many samples needed for convergence)

Stanford CS248A, Winter 2026

Review: random variables
X random variable. Represents a distribution of potential values

probability density function (PDF). Describes relative probability of a
random process choosing value

X ⇠ p(x)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

X takes on values 1,2,3,4,5,6

X ⇠ p(x)

Uniform PDF: all values over a domain are equally likely

e.g., for an unbiased die

Stanford CS248A, Winter 2026

Think: is the probability that a random measurement of will yield the value

Discrete probability distributions

xi

xi

pi pi

pi � 0

pi =
1

6

n discrete values

With probability

Requirements of a PDF:

Six-sided die example:

nX

i=1

pi = 1

pi X xi

X takes on the value with probabilityxi pi

Stanford CS248A, Winter 2026

Cumulative distribution function (CDF)

0  Pi  1

Pn = 1

Pj

0

1

Cumulative PDF:

where:
xi

pi

Pj =
jX

i=1

pi

(For a discrete probability distribution)

Stanford CS248A, Winter 2026

Sampling from discrete probability distributions

⇠

Pi�1 < ⇠  Pi

To randomly select an event, select ifxi

2 [0, 1)Uniform random variable

x2

Pj

0

1

How do we generate samples of a discrete random
variable (with a known PDF)?

Stanford CS248A, Winter 2026

Continuous probability distributions
PDF p(x)

p(x) � 0

P (x)

P (x) =

Z x

0
p(x) dx

P (x) = Pr(X < x)

P (1) = 1

= P (b)� P (a)

CDF

Pr(a  X  b) =

Z b

a
p(x) dx

Uniform distribution: p(x) = c
(for random variable defined on [0,1] domain)

1

0 1

0 1

X

CDF P(x)

Stanford CS248A, Winter 2026

Sampling continuous random variables using the
inversion method

Cumulative probability distribution function
P (x) = Pr(X < x)

Construction of samples:
Solve for x = P�1(⇠)

0

1

⇠

x

Must know the formula for:
1. The integral of
2. The inverse function

p(x)

P�1(x) 1

CDF P(x)

Stanford CS248A, Winter 2026

Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Compute PDF from f(x):

1 =

Z 2

0
c f(x) dx

= c(F (2)� F (0))

= c
1

3
23

=
8c

3
c =

3

8
, p(x) =

3

8
x2

Relative density of probability
of random variable taking on
value x over [0,2] domain

Probability density function
(integrates to 1)

F (x) =
1

3
x3

<latexit sha1_base64="vpbYoGZkWxBYUhLbrimVPUtvdPg=">AAAB/nicbVDJSgNBEK2JW4zbqHjy0hiEeAkzJqIXISiIxwhmgWQMPZ2epEnPQnePJAwD/ooXD4p49Tu8+Td2loMmPih4vFdFVT034kwqy/o2MkvLK6tr2fXcxubW9o65u1eXYSwIrZGQh6LpYkk5C2hNMcVpMxIU+y6nDXdwPfYbj1RIFgb3ahRRx8e9gHmMYKWljnlwUxieoEvU9gQmiZ0mpXT4UOqYeatoTYAWiT0jeZih2jG/2t2QxD4NFOFYypZtRcpJsFCMcJrm2rGkESYD3KMtTQPsU+kkk/NTdKyVLvJCoStQaKL+nkiwL+XId3Wnj1Vfzntj8T+vFSvvwklYEMWKBmS6yIs5UiEaZ4G6TFCi+EgTTATTtyLSxzoIpRPL6RDs+ZcXSf20aJeLZ3flfOVqFkcWDuEICmDDOVTgFqpQAwIJPMMrvBlPxovxbnxMWzPGbGYf/sD4/AE7IpRm</latexit>

Stanford CS248A, Winter 2026

Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Compute CDF:

p(x) =
3

8
x2

P (x) =

Z x

0
p(x) dx

=
x3

8

Stanford CS248A, Winter 2026

Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Sample from

p(x) =
3

8
x2

p(x)

P (x) =
x3

8

⇠ = P (x) =
x3

8

x = 3
p

8⇠
x

⇠

Stanford CS248A, Winter 2026

How do we uniformly sample the area of a unit circle?
(Choose any point P=(px, py) in circle with equal probability)

Stanford CS248A, Winter 2026

Uniformly sampling the area of a unit circle: first try
 = uniform random angle between 0 and
 = uniform random radius between 0 and 1
Return point:

2⇡

(r cos ✓, r sin ✓)

This algorithm does not produce the desired uniform sampling of the area of a circle.
Why?

(r cos ✓, r sin ✓)
(r cos ✓, r sin ✓)

Stanford CS248A, Winter 2026

Because sampling is not uniform in area!

✓ = 2⇡⇠1 r = ⇠2

rdrd✓

Points farther from center of circle are less likely to be chosen

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r

Stanford CS248A, Winter 2026

Uniform area sampling of a circle
WRONG

Not Equi-areal
RIGHT

Equi-areal

✓ = 2⇡⇠1

r =
p

⇠2

✓ = 2⇡⇠1

r = ⇠2

Stanford CS248A, Winter 2026

Sampling a circle (via inversion in 2D)
A =

Z 2⇡

0

Z 1

0
r dr d✓ =

Z 1

0
r dr

Z 2⇡

0
d✓ =

✓
r2

2

◆ ���
1

0
✓
���
2⇡

0
= ⇡

p(r, ✓) dr d✓ =
1

⇡
r dr d✓ ! p(r, ✓) =

r

⇡

p(r, ✓) = p(r)p(✓)

p(✓) =
1

2⇡

P (✓) =
1

2⇡
✓ ✓ = 2⇡⇠1

p(r) = 2r

P (r) = r2 r =
p

⇠2

rdrd✓
independent r, ✓

Stanford CS248A, Winter 2026

Shirley’s mapping

r = ⇠1

✓ =
⇡⇠2
4r

Distinct cases for eight octants

Stanford CS248A, Winter 2026

Uniform sampling via rejection sampling

do {
 x = uniform(-1,1);
 y = uniform(-1,1);
} while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square

Generate random point within unit circle

Stanford CS248A, Winter 2026

Rejection sampling to generate 2D directions

x = uniform(-1,1);
y = uniform(-1,1);

r = sqrt(x*x+y*y);
x_dir = x/r;
y_dir = y/r;

Goal: generate random directions in 2D with
uniform probability

This algorithm is not correct! What is wrong?
What’s a better algorithm?

Stanford CS248A, Winter 2026

Now back to Monte Carlo integration…
(Remember the whole point was to approximate the value of integrals numerically on a computer)

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k=">AAAC2HicfVJLaxRBEO4ZH4nra9Wjl8ZFiBCWmRCMFyHgJYeAEdwkuL0OPb01u036MXTXKMsw4EERr/40b/4K/4I9m1E22ZCChq/rq6+quqrzUkmPSfI7im/cvHV7Y/NO7+69+w8e9h89Pva2cgJGwirrTnPuQUkDI5So4LR0wHWu4CQ/e9PyJ5/AeWnNe1yUMNF8ZmQhBcfgyvp/DjOmOc6drm2z9Q+WzTZlVsOMr7Av6GvKpMGsZm9b6uNOQ4v/vLtWLRvKnJzNkTtnP1+Vm23Tw5Xw65Mtw5mwnjKcA16sE5juNm3WlFl/kAyTpdF1kHZgQDo7yvq/2NSKSoNBobj34zQpcVJzh1IoaHqs8lByccZnMA7QcA1+Ui8X09DnwTOlhXXhGKRL76qi5tr7hc5DZNuhv8y1zqu4cYXFq0ktTVkhGHFeqKgURUvbLdOpdCBQLQLgwsnQKxVz7rjA8Bd6YQjp5Sevg+OdYfpymL7bHewfdOPYJE/JM7JFUrJH9skBOSIjIqJRVEdfo2/xh/hL/D3+cR4aR53mCblg8c+/Xgzo1A==</latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

E(x) =

Z

H2

Li(x,!) cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="kn9Hd4TnB27GuPgzDKdmJLYuWac=">AAAC13icdVJNbxMxEJ1dvkr4CvSEuFhEKCBBtFsVwQWpBSFx4FCkpi1KQuR1nMSq117Zs6XpNuIAQlz5a9z4N0ycRaJNGWlWb96b2RnbkxVaeUyS31F86fKVq9fWrjdu3Lx1+07z7r09b0snZFdYbd1Bxr3UysguKtTyoHCS55mW+9nhm4W+fySdV9bs4qyQg5xPjBorwZEo2/wMb+ExHMMTYPCKvA8KDCAMoYJ38Ak2YE7se4pVyHtKGRZykDABHqr6xC2+gngfEMKUdCT9rzo6U7XaaRvadR9G0f//dRHfDrGFI4pdqD+lOZ+RtwktTzAPM2yz+8NmK+kkwdgqSGvQgtp2hs1f/ZEVZS4NCs2976VJgYOKO1RCy3mjX3pZcHHIJ7JH0PBc+kEV3mXOHhEzYmPryA2ywP5bUfHc+1meUWbOcerPawvyIq1X4vjloFKmKFEasWw0LjVDyxaPzEbKSYF6RoALp2hWJqbccYG0Cg26hPT8kVfB3kYn3ew8/7DZ2npdX8caPICHtAYpvIAtWo8d6IKIdqOT6Gv0Lf4Yf4m/xz+WqXFU16zDGYt//gGC+rRK</latexit>

Stanford CS248A, Winter 2026

Monte Carlo integration
Definite integral

Random variables

Expectation of a random variable

Monte Carlo estimator of the integral

 is the value of a random sample drawn from the
distribution
 is also a random variable because its a function of

Xi ⇠ p(x)

Yi = f(Xi)

Xi ⇠ p(x)
Xi ⇠ p(x)

Yi = f(Xi)

Z b

a
f(x)dx

E[Yi] = E[f(Xi)] =

Z b

a
f(x) p(x) dx

FN =
b� a

N

NX

i=1

Yi

Monte Carlo estimate of

Assuming samples drawn from uniform pdf.
I will provide estimator for arbitrary PDFs later.

f(x)�Xi

Z b

a
f(x)dx

The integral we seek to estimate

Xi ⇠ p(x)

Stanford CS248A, Winter 2026

Basic unbiased Monte Carlo estimator

Assume uniform
probability density for now

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY] =aE[Y]

Xi ⇠ U(a, b)

p(x) =
1

b� a

E[FN] =E

"
b� a

N

NX

i=1

Yi

#

=
b� a

N

NX

i=1

E[Yi] =
b� a

N

NX

i=1

E[f(Xi)]

=
b� a

N

NX

i=1

Z b

a
f(x) p(x)dx

=
1

N

NX

i=1

Z b

a
f(x) dx

=

Z b

a
f(x) dx

Unbiased estimator:
Expected value of estimator is
the integral we wish to evaluate.

Stanford CS248A, Winter 2026

Monte Carlo estimator:

Yi = f(Xi)

FN =
2⇡

N

NX

i=1

Yi

We want to estimate this integral
(total incident irradiance at surface point x)

We sample directions (aka rays) uniformly from
the hemisphere of directions
(a ray direction is a random variable)

For each ray we compute the incident
irradiance on surface at x.

We average all these samples, and scale
by the size of the domain we are
sampling from.
(The hemisphere has 2∏ steradians)

Then the expected value of the
estimator is the value of the
integral.

Xi ⇠ p(!) =
1

2⇡

<latexit sha1_base64="mqN7xuH+7L5wTI7YOy7Reanfszk=">AAACDHicbVDLSgMxFM34rPVVdekmWIS6KTOlohuh6MZlBfuAzlAyaaYNzWNIMkIZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPGDOqjet+Oyura+sbm4Wt4vbO7t5+6eCwrWWiMGlhyaTqhkgTRgVpGWoY6caKIB4y0gnHN1O/80CUplLcm0lMAo6GgkYUI2Olfqnc7VPoa8phXPElJ0N0Bq+gHymEUy9La35MM5tyq+4McJl4OSmDHM1+6csfSJxwIgxmSOue58YmSJEyFDOSFf1EkxjhMRqSnqUCcaKDdHZMBk+tMoCRVPYJA2fq74kUca0nPLRJjsxIL3pT8T+vl5joMkipiBNDBJ4vihIGjYTTZuCAKoINm1iCsKL2rxCPkC3C2P6KtgRv8eRl0q5VvXr1/K5eblzndRTAMTgBFeCBC9AAt6AJWgCDR/AMXsGb8+S8OO/Oxzy64uQzR+APnM8fzduaOQ==</latexit>

✓

d!

dA

E(x) =

Z

H2

Li(x,!) cos ✓ d!

<latexit sha1_base64="DijS1oD2DgruGiYpOXIDFEI3iE4=">AAACKHicbVDLSiNBFK12fMZXHJduCoMQQUK3KLqRkRHBhQsFo0I6NtWVm6SwHk3V7cHQ5HNm46+4GQZF3PolVh4LXwcKDuecS9170kwKh2H4Ekz8mJyanpmdK80vLC4tl1d+XjqTWw51bqSx1ylzIIWGOgqUcJ1ZYCqVcJXeHg38qz9gnTD6AnsZNBXraNEWnKGXkvKv4+rdJj2gsdCYFCc32316mojq3VZsFHTYJo25cTTGLiCj8RaNFcOuVUWrPwok5UpYC4egX0k0JhUyxllS/h+3DM8VaOSSOdeIwgybBbMouIR+Kc4dZIzfsg40PNVMgWsWw0P7dMMrLdo21j+NdKi+nyiYcq6nUp8c7Ok+ewPxO6+RY3u/WQid5Qiajz5q55KioYPWaEtY4Ch7njBuhd+V8i6zjKPvtuRLiD6f/JVcbteindru+U7l8Pe4jlmyRtZJlURkjxySE3JG6oSTv+SBPJKn4D74FzwHL6PoRDCeWSUfELy+AQe4pNk=</latexit>

Li(x,!)

<latexit sha1_base64="zsIoPCk1PWVh3fOmfe2QGXT2o38=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BItQQcquVPRY9OLBQwX7Ae1SsulsG5ps1iRbLKW/w4sHRbz6Y7z5b0zbPWjrg4HHezPMzAtizrRx3W8ns7K6tr6R3cxtbe/s7uX3D+paJopCjUouVTMgGjiLoGaY4dCMFRARcGgEg5up3xiC0kxGD2YUgy9IL2Iho8RYyb/rsOLTWVsK6JHTTr7gltwZ8DLxUlJAKaqd/Fe7K2kiIDKUE61bnhsbf0yUYZTDJNdONMSEDkgPWpZGRID2x7OjJ/jEKl0cSmUrMnim/p4YE6H1SAS2UxDT14veVPzPayUmvPLHLIoTAxGdLwoTjo3E0wRwlymgho8sIVQxeyumfaIINTannA3BW3x5mdTPS165dHFfLlSu0ziy6AgdoyLy0CWqoFtURTVE0SN6Rq/ozRk6L8678zFvzTjpzCH6A+fzB7/VkXI=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

Yi = Li(x,!i) cos ✓i

<latexit sha1_base64="uYh4OvQpEUCHHClLWbaNUNC5Oys=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUkDIjim4E0Y0LFxWsDzplyKR32mBmMiR3xFL8ADf+ihsXirj1A9z5N6Z1Ftp6IHByzrkk94SpFAZd98spTExOTc8UZ0tz8wuLS+XllQujMs2hwZVU+ipkBqRIoIECJVylGlgcSrgMb44H/uUtaCNUco69FFox6yQiEpyhlYJy5ToQ9ICeBqJ6t+WrGDosEJvU58pQH7uA9mpTbs0dgo4TLycVkqMelD/9tuJZDAlyyYxpem6KrT7TKLiE+5KfGUgZv2EdaFqasBhMqz9c5p5uWKVNI6XtSZAO1d8TfRYb04tDm4wZds2oNxD/85oZRvutvkjSDCHhPw9FmaSo6KAZ2hYaOMqeJYxrYf9KeZdpxtH2V7IleKMrj5OL7Zq3U9s926kcHuV1FMkaWSdV4pE9ckhOSJ00CCcP5Im8kFfn0Xl23pz3n2jByWdWyR84H99vQ5oA</latexit>

Direct lighting estimate
Estimate incident irradiance by uniformly-sampling hemisphere of directions with respect to solid angle

Stanford CS248A, Winter 2026

Direct lighting estimate

Given surface point x

For each of N samples:

Generate random direction:

Compute incoming radiance arriving at x from direction:

Compute incident irradiance due to ray:

Accumulate into estimator

Uniformly-sample hemisphere of directions with respect to solid angle

2⇡

N
dEi

dEi = Licos ✓i

Li

!i

!i

A ray tracer evaluates radiance along a ray

E(x) =

Z

H2

Li(x,!) cos ✓ d!

<latexit sha1_base64="DijS1oD2DgruGiYpOXIDFEI3iE4=">AAACKHicbVDLSiNBFK12fMZXHJduCoMQQUK3KLqRkRHBhQsFo0I6NtWVm6SwHk3V7cHQ5HNm46+4GQZF3PolVh4LXwcKDuecS9170kwKh2H4Ekz8mJyanpmdK80vLC4tl1d+XjqTWw51bqSx1ylzIIWGOgqUcJ1ZYCqVcJXeHg38qz9gnTD6AnsZNBXraNEWnKGXkvKv4+rdJj2gsdCYFCc32316mojq3VZsFHTYJo25cTTGLiCj8RaNFcOuVUWrPwok5UpYC4egX0k0JhUyxllS/h+3DM8VaOSSOdeIwgybBbMouIR+Kc4dZIzfsg40PNVMgWsWw0P7dMMrLdo21j+NdKi+nyiYcq6nUp8c7Ok+ewPxO6+RY3u/WQid5Qiajz5q55KioYPWaEtY4Ch7njBuhd+V8i6zjKPvtuRLiD6f/JVcbteindru+U7l8Pe4jlmyRtZJlURkjxySE3JG6oSTv+SBPJKn4D74FzwHL6PoRDCeWSUfELy+AQe4pNk=</latexit>

Stanford CS248A, Winter 2026

Uniform hemisphere sampling

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Generate random direction on hemisphere (all directions equally likely)

p(!) =
1

2⇡
Direction computed from uniformly distributed point on 2D plane:

Exercise to students: derive from the inversion method

(⇠1, ⇠2) = (
q

1� ⇠21 cos(2⇡⇠2),
q

1� ⇠21 sin(2⇡⇠2), ⇠1)

Stanford CS248A, Winter 2026

Example scene with an “area light”

Light source

Occluder
(blocks light)

Stanford CS248A, Winter 2026

Direct lighting estimate: uniform hemisphere sampling

16 samples to estimate incoming irradiance

Light source

Occluder
(blocks light)

Stanford CS248A, Winter 2026

Direct lighting: uniform hemisphere sampling

16 samples to estimate incoming irradiance
(Uniformly sampled from hemisphere)

Incident lighting estimator uses random directions
when computing incident lighting for different points.
Some of those directions hit the light (and contribute
illumination, some do not)

(The estimator is a random variable!)

Stanford CS248A, Winter 2026

Variance of a random variable
Definition

Variance decreases linearly with number of samples

V [Y] = E[(Y � E[Y])2]

= E[Y 2]� E[Y]2

V

"
1

N

NX

i=1

Yi

#
=

1

N2

NX

i=1

V [Yi] =
1

N2
N V [Y] =

1

N
V [Y]

V [aY] = a2 V [Y]

Properties of variance:

V

"
NX

i=1

Yi

#
=

NX

i=1

V [Yi]

Stanford CS248A, Winter 2026

Direct lighting estimate: uniform hemisphere sampling

Light source

Occluder
(blocks light)

1000’s of samples
(Uniformly sampled from hemisphere)

Stanford CS248A, Winter 2026

Direct lighting: only sample center of light

1 light sample, always sample center of light
(Notice “hard shadow”… what you’d expect from a point light source, not an area light source)

Light source

Occluder
(blocks light)

Q. Why is there no “noise”?

Stanford CS248A, Winter 2026

Summary: Monte Carlo integration
Monte Carlo estimator
- Estimate integral of function by evaluating function at N random sample points in its domain
- For the special case of uniform sampling a N-dimensional domain

The estimator is computed by a ray tracer!

Useful in rendering due to need to estimate high dimensional integrals
- Faster convergence in estimating high dimensional integrals than non-randomized methods
- But it is still slow…
- Suffers from noise due to variance in estimate (need many samples to produce good quality images)

Coming soon: importance sampling = picking good samples to reduce variance

E[FN] = E

"
D

N

NX

i=1

f(Xi)

#
=

Z

⌦
f(x) dx

<latexit sha1_base64="EMdsEEG9DIfuXoXeoOsdphoLk44=">AAACRXicbVBNaxRBFOyJH4nr1xqPXhoXIYIsM5KQXAIhGvG0RnCThelx6Ol9s9uku2fofiNZmvlzXrx78x948aCIV+3Z7EETCxqKqle811XUSjqM4y/R2rXrN26ub9zq3b5z9979/oPNE1c1VsBYVKqyk4I7UNLAGCUqmNQWuC4UnBZnLzr/9ANYJyvzDhc1ZJrPjCyl4BikvM+O0lf5KKP79IgyBSWmrLRc+JetH7WUuUbnXu4n7fsRLbcmuXxKmZWzOXYJJg3mnr3RMONtsM+D+YwyzXFutZ+253l/EA/jJehVkqzIgKxwnPc/s2klGg0GheLOpUlcY+a5RSkUtD3WOKi5OOMzSAM1XIPL/LKFlj4JypSWlQ3PIF2qfyc8184tdBEmuxPdZa8T/+elDZZ7mZembhCMuFhUNopiRbtK6VRaEKgWgXBhZbiVijkPLWIovhdKSC5/+So5eT5Mtoc7b7cHB4erOjbII/KYbJGE7JID8pockzER5CP5Sr6TH9Gn6Fv0M/p1MboWrTIPyT+Ifv8BwjGwIg==</latexit>

Let D be the size of the
integration domain

⌦

<latexit sha1_base64="stkaudQD0h62aiewQx95TTWX3YE=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegF29GMA9IljA76U3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqWaQoMqrnQ7IgY4k9CwzHJoJxqIiDi0otHN1G89gTZMyQc7TiAUZCBZzCixTmp27wQMSK9c8av+DHiZBDmpoBz1Xvmr21c0FSAt5cSYTuAnNsyItoxymJS6qYGE0BEZQMdRSQSYMJtdO8EnTunjWGlX0uKZ+nsiI8KYsYhcpyB2aBa9qfif10ltfBVmTCapBUnni+KUY6vw9HXcZxqo5WNHCNXM3YrpkGhCrQuo5EIIFl9eJs2zanBevbg/r9Su8ziK6Agdo1MUoEtUQ7eojhqIokf0jF7Rm6e8F+/d+5i3Frx85hD9gff5A2HJjwM=</latexit>

Stanford CS248A, Winter 2026

Acknowledgements
Thanks to Keenan Crane, Ren Ng, Pat Hanrahan and Matt Pharr for presentation resources

