
Interactive Computer Graphics 
Stanford CS248A, Winter 2026

Lecture 10:

Materials (Part 2) + 
Monte Carlo Integration Basics
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Review (again): radiometry and illumination
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Review: differential solid angles
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Review: irradiance = power per unit area

A

Irradiance at surface is proportional to cosine of angle between light direction 
and surface normal. (Lambert’s Law) 

A0

✓

A = A0 cos ✓

E =
�

A0 =
� cos ✓

A
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Review: radiance

Radiance is the solid angle density of irradiance (irradiance per unit direction) 
 
where         denotes that the differential surface area is oriented to face in the direction

Radiance (L) is energy along a ray defined by origin point p and direction  

dA

!

!

P

!
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How much light hits the surface at point p from light from 
all directions?

Pinhole x

y

p0

N p

(What is irradiance at point p?) 

Z

S2

L(!i) cos ✓i d!i =

Z 2⇡

0

Z ⇡

0
L(✓i,�i) cos ✓i sin ✓i d✓id�i

<latexit sha1_base64="wl9xNv5K3seh+iLb79E8ksVXwJQ="></latexit>
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Irradiance at point X from a uniform area source

A

Ω!

Ω

Constant 
(it’s a uniform source)

x

E(x) =

Z

H2

L(!) cos ✓ d!

=L

Z

⌦
cos ✓ d!

=L⌦̃

<latexit sha1_base64="yT3jlsCBBafWfj9EGBi+v+hL9JQ="></latexit>

Total projected solid angle

Assume single light source in scene, so incoming light is 0 except from directions toward the light
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Irradiance at point X from a uniform area source

A!
x!

x

θ
θ "

Radiance leaving light from x’ in direction ω’ = radiance arriving at surface at x from ω. 
(assuming that ω is pointing at the light)

Integral reparameterization:

Reparameterization: now integrate over light 
source area, instead of solid angle

Li(x,!) = Lo(x
0,!0) = L

<latexit sha1_base64="8/mYKPHPGjLLDNKLYxLXJogV8bE=">AAACDHicbZDLSsNAFIYn9VbrLerSzWCQVpCSSEU3QtGNiy4q2Au0IUymk3boJBNmJtIS+gBufBU3LhRx6wO4822ctllo9YeBn++cw5nz+zGjUtn2l5FbWl5ZXcuvFzY2t7Z3zN29puSJwKSBOeOi7SNJGI1IQ1HFSDsWBIU+Iy1/eD2tt+6JkJRHd2ocEzdE/YgGFCOlkWdaNY+WRiddHpI+OoaXsObx0qiYgeKcmJZdtmeCf42TGQtkqnvmZ7fHcRKSSGGGpOw4dqzcFAlFMSOTQjeRJEZ4iPqko22EQiLddHbMBB5p0oMBF/pFCs7oz4kUhVKOQ193hkgN5GJtCv+rdRIVXLgpjeJEkQjPFwUJg4rDaTKwRwXBio21QVhQ/VeIB0ggrHR+BR2Cs3jyX9M8LTuV8tltxapeZXHkwQE4BCXggHNQBTegDhoAgwfwBF7Aq/FoPBtvxvu8NWdkM/vgl4yPby/fmIc=</latexit>

E(x) =

Z

H2

Li(x,!) cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="kn9Hd4TnB27GuPgzDKdmJLYuWac="></latexit>

Reparameterize integral over solid angle to integral over area of light source.
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Review: the reflection equation

n
ωo

ωi

BRDF Illumination

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k="></latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

Li(p,!i)
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More About Materials
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Last time: diffuse materials
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What is this material?
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Glossy material (BRDF)

Copper Aluminum

[Mitsuba renderer, Wenzel Jakob, 2010]
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What is this material?
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Perfect specular reflection

[Zátonyi Sándor]
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Perfect specular reflection

Image credit: PBRT
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Calculating direction of specular reflection

~n
!i !o

✓i ✓o
�i �o

!o + !i = 2 cos ✓ ~n = 2(!i · ~n)~n

!o = �!i + 2(!i · ~n)~n

�o = (�i + ⇡)mod 2⇡✓ = ✓o = ✓i

Top-down view 
(looking straight down on surface)
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Hemispherical incident radiance

Consider view of hemisphere from this point

Image credit Matt Pharr
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Hemispherical incident radiance
At any point on any surface in the scene, 
there’s an incident radiance field that gives 
the directional distribution of incoming 
illumination at the point

(0,0)

Image credit Matt Pharr
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Diffuse reflection

Incident radiance Exitant radiance

Exitant radiance is the same in all directions

Image credit Matt Pharr
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Ideal specular reflection

Incident radiance Exitant radiance

Image credit Matt Pharr
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How might you render a specular surface
Compute direction from surface point p to camera = ωo 
Given normal at p, compute reflection direction ωi 
Light reflected in direction ωo is light arriving from direction ωi 
How do you measure light arriving from ωi?

(�, ✓)

Pixel (x,y) stores radiance L from direction

One idea… 
look up amount in environment map! 
(more on this later)
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Plastic

Incident radiance Exitant radiance

Image credit Matt Pharr
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Copper

Incident radiance Exitant radiance

Image credit Matt Pharr
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Some basic reflection functions
Ideal specular 

Ideal diffuse 

Glossy specular 

Retro-reflective

Diagrams illustrate how incoming light energy from a 
given direction is reflected in various directions.

Perfect mirror

Uniform reflection in all directions

Reflects light back toward source

Majority of light distributed in reflection direction
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More complex materials
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Isotropic / anisotropic materials (BRDFs)
Key: directionality of underlying surface

Isotropic

Anisotropic

Surface (normals) BRDF (fix wi, vary wo)
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Reflection depends on azimuthal angle �

Results from oriented microstructure of 
surface, e.g., brushed metal 

Anisotropic BRDFs

fr(✓i,�i; ✓r,�r) = fr(✓i, ✓r,�r � �i)/
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Anisotropic reflection due to grooved surfaces

http://i270.photobucket.com/albums/jj108/Charliebrown775/LowAngle_AnisotropicRidgeReflections.jpg
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Anisotropic BRDF: Nylon

[Westin et al. 1992]
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Anisotropic BRDF: Velvet

[Westin et al. 1992]
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Anisotropic BRDF: Velvet

[Westin et al. 1992]
[https://www.youtube.com/watch?v=2hjoW8TYTd4]
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What is this material?
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Ideal reflective / refractive 
material (BxDF *)

Air <-> water interface Air <-> glass interface  
(with absorption)

[Mitsuba renderer, Wenzel Jakob, 2010]
* X stands in for reflectance “r” off surface, transmission “t” through surface, scattering “s” within surface, etc.
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Transmission
In addition to reflecting off surface, light may be 
transmitted through the surface. 

Light refracts when it enters a new medium.
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Snell’s Law

~n!i

!t

⌘i sin ✓i = ⌘t sin ✓t

Transmitted angle depends on index of refraction of medium incident ray is in and index of 
refraction of medium light is entering.

Vacuum 
Air (sea level) 
Water (20°C) 
Glass 
Diamond

1.0 
1.00029 
1.333 
1.5-1.6 
2.42

⌘Medium *

* index of refraction is wavelength dependent 
(these are averages)
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Fresnel reflection
For many real materials, reflectance 
increases w/ viewing angle

[Lafortune et al. 1997]
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Snell + Fresnel: example

Transmittance is dominant: 
see effects of refraction (Snell’s Law)

Reflection is dominant (Fresnel)
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Subsurface scattering
Visual characteristics of many surfaces caused by 
light entering at different points than it exits 
- Violates a fundamental assumption of the BRDF 
- Need to generalize scattering model (BSSRDF)

[Jensen et al 2001]

[Donner et al 2008]
* BSSRDF = bidirectional subsurface scatting reflectance distribution function
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Translucent materials: skin
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BRDF
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BSSRDF 
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Parameters to Disney BRDF

• specularTint - a concession for artistic control that tints incident specular towards the base color.
Grazing specular is still achromatic.

• roughness - surface roughness, controls both di↵use and specular response.

• anisotropic - degree of anisotropy. This controls the aspect ratio of the specular highlight. (0 =
isotropic, 1 = maximally anisotropic).

• sheen - an additional grazing component, primarily intended for cloth.

• sheenTint - amount to tint sheen towards base color.

• clearcoat - a second, special-purpose specular lobe.

• clearcoatGloss - controls clearcoat glossiness (0 = a “satin” appearance, 1 = a “gloss” appearance).

Rendered examples of the e↵ect of each of our parameters are shown in Figure 16.

subsurface

metallic

specular

roughness

anisotropic

specularTint

sheen

sheenTint

clearcoat

clearcoatGloss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 16: Examples of the e↵ect of our BRDF parameters. Each parameter is varied across the row
from zero to one with the other parameters held constant.

13
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Pattern generation vs. BRDF
In practice, it is convenient to separate computation of spatially varying BRDF parameters (like albedo, shininess, etc.) from 
the reflectance function itself 

* +

Example 1: albedo value at surface point is given 
by expression combining multiple textures

Example 2: 
Different textures defining different spatially varying 

BRDF input parameters 
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Unity’s shader graph
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Numerical Integration
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So far in this lecture, we’ve seen examples of needing to 
compute integrals

A!
x!

x

θ
θ "

E(x) =

Z

H2

L cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="6h8j7h2DNL4uth2Z5U24+y6E4/g="></latexit>

Example: computing incident irradiance at x due to a single area light source.
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Review: fundamental theorem of calculus

Z x

a
f(t)dt = F (x)� F (a)

Z b

a
f(x)dx = F (b)� F (a)

f(x) =
d

dx
F (x)

x� F (x)� F (a)

x� F (x)� F (a)

x� F (x)� F (a)� x = a

x� F (x)� F (a)

x� F (x)� F (a)
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Definite integral as “area under curve”

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)
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Simple case: constant function 

f(x)

x = a

x = b

x = a

x = b

Z b

a
Cdx = (b� a)C

Z b

a
Cdx = (b� a)C

C



Stanford CS248A, Winter 2026

Affine function:

f(x)

x = a

x = b

x = a

x = b

f(x) = cx+ d
Z b

a
f(x)dx =

1

2
(f(a) + f(b))(b� a)

f(a)� f(b)

f(a)� f(b)

1

2
(f(a) + f(b))
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Piecewise affine function

f(x)

Sum of integrals of individual affine components

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Z b

a
f(x)dx =

1

2

n�1X

i=0

(xi+1 � xi)(f(xi) + f(xi+1))
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Piecewise affine function

f(x)

If N-1 segments are of equal length:

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1

Z b

a
f(x)dx =

h

2

n�1X

i=0

(f(xi) + f(xi+1)

= h

 
n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!

=
nX

i=0

Aif(xi)
Weighted combination 
of measurements.
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Arbitrary function f(x)?

f(x)

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b
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Trapezoidal rule

f(x)

Approximate integral of f(x) by assuming function is piecewise linear

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx = h

 
n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!
For equal length segments:
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Trapezoidal rule

f(x)

h ⇠ 1

n

Consider cost and accuracy of estimate as                           (or                 )  n ! 1 h ! 0

Work:
Error can be shown to be: O(h2) = O(

1

n2
)

O(n)

(for f(x) with continuous second derivative)
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Integration in 2D
Consider integrating                   using the trapezoidal rule 
(apply rule twice: when integrating in x and in y)  

f(x, y)

First application of rule

Second application

Errors add, so error still: 

Z by

ay

Z bx

ax

f(x, y)dxdy =

Z by

ay

 
O(h2) +

nX

i=0

Aif(xi, y)

!
dy

= O(h2) +
nX

i=0

Ai

Z by

ay

f(xi, y)dy

= O(h2) +
nX

i=0

Ai

0

@O(h2) +
nX

j=0

Ajf(xi, yj)

1

A

= O(h2) +
nX

i=0

nX

j=0

AiAjf(xi, yj)

O(h2)

But work is now: O(n2)

Must perform much more work in 2D to get same error bound on integral!

(n x n set of measurements)
In K-D, let N = nk

Error goes as:  O
✓

1

N2/k

◆
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Monte Carlo integration 
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Monte Carlo numerical integration
▪ Estimate value of integral using random sampling of function 

- Value of estimate depends on random samples used 

- But algorithm gives the correct value of integral “on average” 

▪ Only requires function to be evaluated at random points on its domain 

- Applicable to functions with discontinuities, functions that are impossible to integrate directly 

▪ Error of estimate is independent of the dimensionality of the integrand 

- Depends on the number of random samples used: O(n1/2)
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Monte Carlo algorithms
Advantages 
- Easy to implement 
- Easy to think about (but be careful of subtleties) 
- Robust when used with complex integrands (lights, BRDFs) and domains (shapes) 
- Efficient for high-dimensional integrals 
- Efficient when only need solution at a few points 

Disadvantages 
- Noisy 
- Slow (many samples needed for convergence)
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Review: random variables
X random variable. Represents a distribution of potential values

probability density function (PDF). Describes relative probability of a 
random process choosing value 

X ⇠ p(x)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

X takes on values 1,2,3,4,5,6

X ⇠ p(x)

Uniform PDF: all values over a domain are equally likely 

e.g., for an unbiased die
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Think:        is the probability that a random measurement of        will yield the value  

Discrete probability distributions

xi

xi

pi pi

pi � 0

pi =
1

6

n discrete values

With probability

Requirements of a PDF:

Six-sided die example:

nX

i=1

pi = 1

pi X xi

X takes on the value        with probabilityxi pi
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Cumulative distribution function (CDF)

0  Pi  1

Pn = 1

Pj

0

1

Cumulative PDF:

where:
xi

pi

Pj =
jX

i=1

pi

(For a discrete probability distribution)
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Sampling from discrete probability distributions

⇠

Pi�1 < ⇠  Pi

To randomly select an event, select       ifxi

2 [0, 1)Uniform random variable

x2

Pj

0

1

How do we generate samples of a discrete random 
variable (with a known PDF)? 
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Continuous probability distributions
PDF p(x)

p(x) � 0

P (x)

P (x) =

Z x

0
p(x) dx

P (x) = Pr(X < x)

P (1) = 1

= P (b)� P (a)

CDF

Pr(a  X  b) =

Z b

a
p(x) dx

Uniform distribution: p(x) = c 
(for random variable        defined on [0,1] domain)

1

0 1

0 1

X

CDF P(x)
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Sampling continuous random variables using the 
inversion method

Cumulative probability distribution function
P (x) = Pr(X < x)

Construction of samples: 
Solve for x = P�1(⇠)

0

1

⇠

x

Must know the formula for: 
1. The integral of 
2. The inverse function

p(x)

P�1(x) 1

CDF P(x)
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Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Compute PDF from f(x):

1 =

Z 2

0
c f(x) dx

= c(F (2)� F (0))

= c
1

3
23

=
8c

3
c =

3

8
, p(x) =

3

8
x2

Relative density of probability 
of random variable taking on 
value x over [0,2] domain

Probability density function 
(integrates to 1)

F (x) =
1

3
x3

<latexit sha1_base64="vpbYoGZkWxBYUhLbrimVPUtvdPg=">AAAB/nicbVDJSgNBEK2JW4zbqHjy0hiEeAkzJqIXISiIxwhmgWQMPZ2epEnPQnePJAwD/ooXD4p49Tu8+Td2loMmPih4vFdFVT034kwqy/o2MkvLK6tr2fXcxubW9o65u1eXYSwIrZGQh6LpYkk5C2hNMcVpMxIU+y6nDXdwPfYbj1RIFgb3ahRRx8e9gHmMYKWljnlwUxieoEvU9gQmiZ0mpXT4UOqYeatoTYAWiT0jeZih2jG/2t2QxD4NFOFYypZtRcpJsFCMcJrm2rGkESYD3KMtTQPsU+kkk/NTdKyVLvJCoStQaKL+nkiwL+XId3Wnj1Vfzntj8T+vFSvvwklYEMWKBmS6yIs5UiEaZ4G6TFCi+EgTTATTtyLSxzoIpRPL6RDs+ZcXSf20aJeLZ3flfOVqFkcWDuEICmDDOVTgFqpQAwIJPMMrvBlPxovxbnxMWzPGbGYf/sD4/AE7IpRm</latexit>
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Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Compute CDF:

p(x) =
3

8
x2

P (x) =

Z x

0
p(x) dx

=
x3

8
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Example: applying the inversion method

f(x) = x2 x 2 [0, 2]

Given:

Sample from 

p(x) =
3

8
x2

p(x)

P (x) =
x3

8

⇠ = P (x) =
x3

8

x = 3
p

8⇠
x

⇠
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How do we uniformly sample the area of a unit circle? 
(Choose any point P=(px, py) in circle with equal probability) 
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Uniformly sampling the area of a unit circle: first try
     = uniform random angle between 0 and 
     = uniform random radius between 0 and 1 
Return point: 

2⇡

(r cos ✓, r sin ✓)

This algorithm does not produce the desired uniform sampling of the area of a circle. 
Why?

(r cos ✓, r sin ✓)
(r cos ✓, r sin ✓)
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Because sampling is not uniform in area!

✓ = 2⇡⇠1 r = ⇠2

rdrd✓

Points farther from center of circle are less likely to be chosen

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r
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Uniform area sampling of a circle
WRONG 

Not Equi-areal
RIGHT 

Equi-areal

✓ = 2⇡⇠1

r =
p

⇠2

✓ = 2⇡⇠1

r = ⇠2
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Sampling a circle (via inversion in 2D)
A =

Z 2⇡

0

Z 1

0
r dr d✓ =

Z 1

0
r dr

Z 2⇡

0
d✓ =

✓
r2

2

◆ ���
1

0
✓
���
2⇡

0
= ⇡

p(r, ✓) dr d✓ =
1

⇡
r dr d✓ ! p(r, ✓) =

r

⇡

p(r, ✓) = p(r)p(✓)

p(✓) =
1

2⇡

P (✓) =
1

2⇡
✓ ✓ = 2⇡⇠1

p(r) = 2r

P (r) = r2 r =
p

⇠2

rdrd✓
independent r, ✓
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Shirley’s mapping

r = ⇠1

✓ =
⇡⇠2
4r

Distinct cases for eight octants
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Uniform sampling via rejection sampling

do { 
  x = uniform(-1,1); 
  y = uniform(-1,1); 
} while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square

Generate random point within unit circle
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Rejection sampling to generate 2D directions

x = uniform(-1,1); 
y = uniform(-1,1); 

r = sqrt(x*x+y*y); 
x_dir = x/r; 
y_dir = y/r;

Goal: generate random directions in 2D with 
uniform probability

This algorithm is not correct! What is wrong? 
What’s a better algorithm?
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Now back to Monte Carlo integration… 
(Remember the whole point was to approximate the value of integrals numerically on a computer)

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k="></latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

E(x) =

Z

H2

Li(x,!) cos ✓ d! =

Z

A0
L
cos ✓ cos ✓0

|x� x0|2 dA0

<latexit sha1_base64="kn9Hd4TnB27GuPgzDKdmJLYuWac="></latexit>
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Monte Carlo integration
Definite integral 

Random variables  

Expectation of a random variable 

Monte Carlo estimator of the integral

        is the value of a random sample drawn from the 
distribution      
        is also a random variable because its a function of 

Xi ⇠ p(x)

Yi = f(Xi)

Xi ⇠ p(x)
Xi ⇠ p(x)

Yi = f(Xi)

Z b

a
f(x)dx

E[Yi] = E[f(Xi)] =

Z b

a
f(x) p(x) dx

FN =
b� a

N

NX

i=1

Yi

Monte Carlo estimate of  

Assuming samples         drawn from uniform pdf. 
I will provide estimator for arbitrary PDFs later.

f(x)�Xi

Z b

a
f(x)dx

The integral we seek to estimate

Xi ⇠ p(x)
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Basic unbiased Monte Carlo estimator

Assume uniform 
probability density for now

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY ] =aE[Y ]

Xi ⇠ U(a, b)

p(x) =
1

b� a

E[FN ] =E

"
b� a

N

NX

i=1

Yi

#

=
b� a

N

NX

i=1

E[Yi] =
b� a

N

NX

i=1

E[f(Xi)]

=
b� a

N

NX

i=1

Z b

a
f(x) p(x)dx

=
1

N

NX

i=1

Z b

a
f(x) dx

=

Z b

a
f(x) dx

Unbiased estimator: 
Expected value of estimator is 
the integral we wish to evaluate.
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Monte Carlo estimator:

Yi = f(Xi)

FN =
2⇡

N

NX

i=1

Yi

We want to estimate this integral 
(total incident irradiance at surface point x)

We sample directions (aka rays) uniformly from 
the hemisphere of directions 
(a ray direction is a random variable)

For each ray we compute the incident 
irradiance on surface at x.

We average all these samples, and scale 
by the size of the domain we are 
sampling from. 
(The hemisphere has 2∏ steradians)

Then the expected value of the 
estimator is the value of the 
integral.

Xi ⇠ p(!) =
1

2⇡

<latexit sha1_base64="mqN7xuH+7L5wTI7YOy7Reanfszk=">AAACDHicbVDLSgMxFM34rPVVdekmWIS6KTOlohuh6MZlBfuAzlAyaaYNzWNIMkIZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPGDOqjet+Oyura+sbm4Wt4vbO7t5+6eCwrWWiMGlhyaTqhkgTRgVpGWoY6caKIB4y0gnHN1O/80CUplLcm0lMAo6GgkYUI2Olfqnc7VPoa8phXPElJ0N0Bq+gHymEUy9La35MM5tyq+4McJl4OSmDHM1+6csfSJxwIgxmSOue58YmSJEyFDOSFf1EkxjhMRqSnqUCcaKDdHZMBk+tMoCRVPYJA2fq74kUca0nPLRJjsxIL3pT8T+vl5joMkipiBNDBJ4vihIGjYTTZuCAKoINm1iCsKL2rxCPkC3C2P6KtgRv8eRl0q5VvXr1/K5eblzndRTAMTgBFeCBC9AAt6AJWgCDR/AMXsGb8+S8OO/Oxzy64uQzR+APnM8fzduaOQ==</latexit>

✓

d!

dA

E(x) =

Z

H2

Li(x,!) cos ✓ d!

<latexit sha1_base64="DijS1oD2DgruGiYpOXIDFEI3iE4="></latexit>

Li(x,!)

<latexit sha1_base64="zsIoPCk1PWVh3fOmfe2QGXT2o38=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BItQQcquVPRY9OLBQwX7Ae1SsulsG5ps1iRbLKW/w4sHRbz6Y7z5b0zbPWjrg4HHezPMzAtizrRx3W8ns7K6tr6R3cxtbe/s7uX3D+paJopCjUouVTMgGjiLoGaY4dCMFRARcGgEg5up3xiC0kxGD2YUgy9IL2Iho8RYyb/rsOLTWVsK6JHTTr7gltwZ8DLxUlJAKaqd/Fe7K2kiIDKUE61bnhsbf0yUYZTDJNdONMSEDkgPWpZGRID2x7OjJ/jEKl0cSmUrMnim/p4YE6H1SAS2UxDT14veVPzPayUmvPLHLIoTAxGdLwoTjo3E0wRwlymgho8sIVQxeyumfaIINTannA3BW3x5mdTPS165dHFfLlSu0ziy6AgdoyLy0CWqoFtURTVE0SN6Rq/ozRk6L8678zFvzTjpzCH6A+fzB7/VkXI=</latexit>

x
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Yi = Li(x,!i) cos ✓i

<latexit sha1_base64="uYh4OvQpEUCHHClLWbaNUNC5Oys=">AAACDHicbVDLSgMxFM3UV62vqks3wSJUkDIjim4E0Y0LFxWsDzplyKR32mBmMiR3xFL8ADf+ihsXirj1A9z5N6Z1Ftp6IHByzrkk94SpFAZd98spTExOTc8UZ0tz8wuLS+XllQujMs2hwZVU+ipkBqRIoIECJVylGlgcSrgMb44H/uUtaCNUco69FFox6yQiEpyhlYJy5ToQ9ICeBqJ6t+WrGDosEJvU58pQH7uA9mpTbs0dgo4TLycVkqMelD/9tuJZDAlyyYxpem6KrT7TKLiE+5KfGUgZv2EdaFqasBhMqz9c5p5uWKVNI6XtSZAO1d8TfRYb04tDm4wZds2oNxD/85oZRvutvkjSDCHhPw9FmaSo6KAZ2hYaOMqeJYxrYf9KeZdpxtH2V7IleKMrj5OL7Zq3U9s926kcHuV1FMkaWSdV4pE9ckhOSJ00CCcP5Im8kFfn0Xl23pz3n2jByWdWyR84H99vQ5oA</latexit>

Direct lighting estimate
Estimate incident irradiance by uniformly-sampling hemisphere of directions with respect to solid angle
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Direct lighting estimate

Given surface point x 

For each of N samples: 

Generate random direction: 

Compute incoming radiance arriving          at x from direction:   

Compute incident irradiance due to ray:  

Accumulate                      into estimator

Uniformly-sample hemisphere of directions with respect to solid angle

2⇡

N
dEi

dEi = Licos ✓i

Li

!i

!i

A ray tracer evaluates radiance along a ray

E(x) =

Z

H2

Li(x,!) cos ✓ d!

<latexit sha1_base64="DijS1oD2DgruGiYpOXIDFEI3iE4="></latexit>
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Uniform hemisphere sampling

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Generate random direction on hemisphere (all directions equally likely)

p(!) =
1

2⇡
Direction computed from uniformly distributed point on 2D plane:

Exercise to students: derive from the inversion method

(⇠1, ⇠2) = (
q

1� ⇠21 cos(2⇡⇠2),
q

1� ⇠21 sin(2⇡⇠2), ⇠1)
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Example scene with an “area light”

Light source

Occluder 
(blocks light)
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Direct lighting estimate: uniform hemisphere sampling

16 samples to estimate incoming irradiance

Light source

Occluder 
(blocks light)
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Direct lighting: uniform hemisphere sampling

16 samples to estimate incoming irradiance 
(Uniformly sampled from hemisphere)

Incident lighting estimator uses random directions 
when computing incident lighting for different points. 
Some of those directions hit the light (and contribute 
illumination, some do not) 

(The estimator is a random variable!)
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Variance of a random variable
Definition 

Variance decreases linearly with number of samples

V [Y ] = E[(Y � E[Y ])2]

= E[Y 2]� E[Y ]2

V

"
1

N

NX

i=1

Yi

#
=

1

N2

NX

i=1

V [Yi] =
1

N2
N V [Y ] =

1

N
V [Y ]

V [aY ] = a2 V [Y ]

Properties of variance:

V

"
NX

i=1

Yi

#
=

NX

i=1

V [Yi]
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Direct lighting estimate: uniform hemisphere sampling

Light source

Occluder 
(blocks light)

1000’s of samples 
(Uniformly sampled from hemisphere)
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Direct lighting: only sample center of light

1 light sample, always sample center of light 
(Notice “hard shadow”… what you’d expect from a point light source, not an area light source)

Light source

Occluder 
(blocks light)

Q. Why is there no “noise”?
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Summary: Monte Carlo integration
Monte Carlo estimator 
- Estimate integral of function by evaluating function at N random sample points in its domain 
- For the special case of uniform sampling a N-dimensional domain 

The estimator is computed by a ray tracer! 

Useful in rendering due to need to estimate high dimensional integrals 
- Faster convergence in estimating high dimensional integrals than non-randomized methods 
- But it is still slow… 
- Suffers from noise due to variance in estimate (need many samples to produce good quality images) 

Coming soon: importance sampling = picking good samples to reduce variance

E[FN ] = E

"
D

N

NX

i=1

f(Xi)

#
=

Z

⌦
f(x) dx
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Let D be the size of the 
integration domain

⌦
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