
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2026

Lecture 2:

Sampling and Anti-aliasing
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Last time
A very simple notion of digital image representation (that we are about to challenge!) 

▪ An image = a 2D array of color values
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Last time: displaying an image
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Last time: what pixels should we color in to draw a line?

One possible heuristic: light up all pixels intersected by the line?
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Input: 
2D position of triangle vertices: P0, P1, P2

Last time: drawing a triangle in 2D

Output: 
set of pixels “covered” by the triangle

(Converting a representation of a triangle into an image)

P0

P1

P2
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Last time: when drawing triangles we filled pixels if the pixel 
center was inside the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center
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Last time: drawing a 3D triangle: rasterization perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Simple pseudocode: 
tri_projected = project_triangle_verts(tri) 
  for each image pixel p: 
     if (center of p is inside tri_projected) 
       color pixel p the color of tri

Think: “What pixels does the projected triangle cover?”
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Last time: drawing a 3D triangle: ray casting perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Think: “Is the triangle visible along the ray from a pixel through the pinhole?” 
Aka. Does a ray originating at the pixel center and leaving the camera “hit” the triangle?

Simple pseudocode: 
for each image pixel p: 
   let r = ray from center of p leaving camera through pinhole 
   if (r hits tri) 
     color pixel p the color of tri
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Not everyone was happy with our renderings
Students mentioned “jaggy edges” 
Commented on how they desired something “more smooth”, etc.



One option floated by the class: compute fraction of pixel area covered by triangle, 
then color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10% 
of pixel, then pixel should be 
10% red?
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Analytical coverage schemes get tricky when considering scenes with 

Two regions of triangle 1 contribute to pixel.  
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other 
half covered by triangle 2
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In Lecture 1 we drew triangles using a simple method: 
point sampling 

Which we implemented by testing whether specific points were inside 
the triangle (or if rays in specific directions hit a triangle) 

Before talking about sampling in 2D or 3D, 
let’s consider sampling in 1D first…
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Consider a 1D signal: f (x)

x

f (x)
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Sampling: taking measurements of a signal

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of  f(x)

A discrete representation of f(x) is given by the samples f(x0), f(x1), f(x2), f(x3), f(x4)



Stanford CS248A, Winter 2026

Audio file: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz
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Sampling a function
Evaluating a function at a point is sampling the function’s value 

We can discretize a function by periodic sampling 

Sampling is a core idea in graphics. In this class we’ll sample signals parameterized by:  
time (1D), area (2D), angle (2D), volume (3D), paths through a scene (infinite-D) etc …

for(int x = 0; x < xmax; x++)
    output[x] = f(x);
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Reconstruction: given a set of samples, how might we attempt to 
reconstruct the original (continuous) signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)
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x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

Reconstruction: given a set of samples, how might we attempt to 
reconstruct the original (continuous) signal f(x)?



Stanford CS248A, Winter 2026

Piecewise constant approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)
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Piecewise linear approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation
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How can we represent the signal more accurately?

Answer: sample signal more densely (increase sampling rate)

x1x0 x2 x3 x4

frecon (x)

f (x)
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Reconstruction from sparse sampling 

x1x0 x2 x3 x4

frecon (x)

= reconstruction via linear interpolation

(5 samples)
f (x)
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More accurate reconstructions result from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation

frecon (x)

(9 samples)
f (x)
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More accurate reconstructions result from denser sampling

x2x0 x4 x6 x8 x10 x12 x14 x16

= reconstruction via linear interpolation

x1 x3 x5 x7 x9 x11 x13 x15

f (x)

frecon (x)

(17 samples)
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Drawing a triangle by sampling 2D points
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Image as a 2D matrix of pixels

(0,0) (1,0)

(0,1)

(0,4) (9,4)

(9,0)

(1,1)

Here I’m showing a 10 x 5 pixel image 
Identify pixel by its integer (x,y) coordinates 
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Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)



Stanford CS248A, Winter 2026

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels! 
(I removed pixel boundaries from the figure to encourage you to forget about pixels!)
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Define binary function: inside(t,x,y) 

inside(t,x,y) = 
1 

0 

(x,y) in triangle t 

otherwise
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Sampling the binary function: inside(t,x,y)

Pixel (x,y)

1

2

3

4

Here I chose the sample position to be 
the pixel center.

= triangle covers sample, should color in pixel

= triangle does not cover sample, do not color in pixel

(x + 0.5, y + 0.5)

Boundary of a pixel
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Sample coverage at pixel centers
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Sample coverage at pixel centers
I only want you to think about evaluating triangle-point coverage! 
NOT TRIANGLE-PIXEL OVERLAP!
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Rendering = sampling a 2D binary function

The basic top-level rendering loop for sampling visibility
for (int x = 0; x < xmax; x++) 
  for (int y = 0; y < ymax; y++) 
    image[x][y] = f(x + 0.5, y + 0.5);

For a rasterizer:  f(x,y) = pointInsideTriangle(ProjectVerts(t), x, y) 

For a ray caster:  f(x,y) = rayTriangleIsect(t, RayFromScreenCoord(x,y))



We have the ability to determine if any point in the image is inside or outside the triangle
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Where are we now

▪ How to we interpret these results as an image to display? 
(Recall, there’s no pixels above, just samples)
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Recall: pixels on a screen

Laptop display pixel

Each image sample sent to the display is converted into 
a little square of light of the appropriate color: 
(a pixel = picture element) 

* Thinking of each screen pixel as emitting a square of uniform intensity 
light of a single color is an approximation to how real displays work, but 
it will do for now.
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So, if we send the display this sampled signal…

…and each value determines the light emitted from a pixel… 
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The display physically emits this signal

Given our simplified “square pixel” display assumption, the emitted 
light is a piecewise constant reconstruction of the samples
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Compare: the continuous triangle function 
(This is the function we sampled)
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What’s wrong with this picture? 

Jaggies!

(This is the reconstruction emitted by the display)
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Jaggies (staircase pattern)

Is this the best we can do?
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Reminder: how can we represent a signal more accurately?
Sample signal more densely! (increase sampling rate)

VS.
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One solution: increase image resolution
Increase number of pixels in image —> denser sampling of signal

5x5 image 25x25 image 100x100 image 400x400 image
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Increasing resolution of displays can be costly
iPhone 12 

2532 x 1170 pixels 
(2.9 megapixels) 

About 460 pixels per inch

8K TV 
7680 x 4320 pixels 
(32.7 megapixels) 

About $3000 at Best Buy in Jan 2026 

I don’t think you can buy a 16K TV in 2026, although Sony 
demo’ed on in 2019 for a few million $$$ 
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Let’s say we want to render a high-quality image for 
a given display. 

(We have to accept a given number of pixels)
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Sampling using one sample per pixel
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Supersampling: step 1

2x2 supersampling

Sample the input signal more densely in the image plane 
In this example: take four samples in the area spanned by a pixel

But how do we use these samples to drive a display, since there are four times more samples than display pixels? !

Extent of one 
display pixel
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Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel
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Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel
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Supersampling: step 2
Average the N x N samples “inside” each pixel

Averaging down
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Displayed result
This is the corresponding signal emitted by the display 
(The value provided to each display pixel is the average of the values sampled in that region) 

75%

100% 100% 50%

50%50%50%25%
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Images rendered using one sample per pixel
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4x4 supersampling + downsampling

The images above contain same number of pixels as the images on the prior slide. 
But now each pixel’s value is the average of the 16 samples taken per pixel.

(16 samples per pixel)
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Let’s understand what just happened 
in a more principled way
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More examples of sampling artifacts in computer graphics
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Jaggies (staircase pattern)
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Moiré patterns in imaging

lystit.com

Full resolution image 1/2 resolution image: 
skip pixel odd rows and columns
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Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU
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Sampling artifacts in computer graphics
Artifacts due to sampling - “Aliasing” 
- Jaggies – sampling to sparsely in space 
- Wagon wheel effect – sampling to sparsely in time 
- Moire – undersampling images (and texture maps) 
- [Many more] … 

We notice this in fast-changing signals, when we sample the signal too sparsely
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Sines and cosines

cos 2⇡x

sin 2⇡x
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Frequencies 

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T
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Representing sound wave as a superposition 
(linear combination) of frequencies

f1(x) = sin(𝜋x)

f2(x) = sin(2𝜋x)

f4(x) = sin(4𝜋x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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Audio spectrum analyzer: representing sound as a sum of its 
constituent frequencies

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies
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Images as a superposition of cosines

i=0
j=0

= x

8x8 images
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Images as a superposition of cosines

8x8 image

-415 x     +

=

-30  x     +

-61  x     +

…

 4   x     +

-22  x     +

…

 1   x     +

 2   x    

8x8 basis images
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How to compute frequency-domain 
representation of a signal?
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Fourier transform
Represent any function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830
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Fourier transform
Convert representation of signal from primal domain (spatial/temporal) to frequency 
domain by projecting signal into its component frequencies

2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:
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The Fourier transform decomposes a signal into its 
constituent frequencies

spatial 
domain

frequency 
domain

F (ω) =
∞∫

−∞

f(x)e−iωxdx F (ω) =
∞∫

−∞

f(x)e−iωxdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx
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Visualizing the frequency content of images

SpectrumSpatial domain result

The visualization below is the 2D frequency 
domain equivalent of the 1D audio spectrum 
I showed you earlier *
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Constant signal (in primal domain) 

(0,0)

Frequency domainSpatial domain



Stanford CS248A, Winter 2026

                                — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain
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                              — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain
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sin(2⇡/16)y

Frequency domainSpatial domain
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sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain
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exp(�r2/162)

Frequency domainSpatial domain
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exp(�r2/322)

Frequency domainSpatial domain
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Question:

exp(�r2/162)

Frequency domainSpatial domain

exp(�r2/322)

Why does a “smoother” exponential 
function in the spatial domain look 
“more compact” in the frequency domain?
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exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain
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Image filtering 
(in the frequency domain)
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Manipulating the frequency content of images

Frequency domainSpatial domain

The visualization below is the 2D 
frequency domain equivalent of the 1D 
audio spectrum I showed you earlier *
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Low frequencies only (smooth gradients)

(after low-pass filter) 
All frequencies above cutoff have 0 magnitude

Frequency domainSpatial domain
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)
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Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)
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High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass filter) 
All frequencies below threshold have 0 

magnitude
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An image as a sum of its frequency components

+ + +

=
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Back to our problem of artifacts in images

Jaggies!
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Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal: sampled 
adequately for reasonable 
reconstruction

High-frequency signal is insufficiently 
sampled: reconstruction incorrectly 
appears to be from a low frequency signal
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Undersampling creates frequency “aliases”

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a 
low-frequency signal 

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”
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Example: sampling rate vs signal frequency

Max signal freq =1/32

                              — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
Sampling at twice the frequency of the signal: no aliasing! *

sampling = every 16 pixels

* Technically in this example there is no “pre-aliasing”.  There is “post-aliasing” if reconstruction from these measurements is not perfect
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                              — frequency 1/16; 16 pixels per cycle

Example: sampling rate vs signal frequency
sin(2⇡/16)x

Max signal freq =1/16

Sampling at same frequency as signal: dramatic aliasing! (due to undersampling)

sampling = every 16 pixels
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Anti-aliasing idea: 
remove high frequency information from 

a signal before sampling it
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Video: point vs antialiased sampling

Single point in time Motion blurred
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Video: point sampling in time
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 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.
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Video: motion-blurred sampling
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 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.
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Drawing a triangle is sampling the triangle coverage signal

Sample

Note jaggies in rasterized triangle  
(pixel values are either red or white: sample is in or out of triangle)
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Anti-aliasing by pre-filtering the signal

Pre-filter 
(remove high frequency detail)

Sample

Note anti-aliased edges of rasterized triangle: 
pixel values take intermediate values 
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Pre-filtering by “supersampling” then “blurring” (averaging)

Coarsely sampled signal (e.g., once per pixel, 
to store in image, or send to display)

Reconstructed signal with high frequencies reduced 
(Blurring via averaging over pixel, etc)

Dense sampling of signal 
(supersampling)

Original signal 
(with high frequency edge)

Reconstruction on display
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Images rendered using one sample per pixel
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Anti-aliased results (multiple samples per pixel)
(Images below contain same number of pixels as images on prior slide)
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Benefits of anti-aliasing

Jaggies Pre-filtered
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Filtering = convolution
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1D convolution (“weighted average over a window”)

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1
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1D convolution (“weighted average over a window”)

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

1x1 + 3x2 + 5x1 = 12  

12Result
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16

3x1 + 5x2 + 3x1 = 16  

Result
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1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Result

5x1 + 3x2 + 7x1 = 18  

12 16 18
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Box filter (common filter used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box filter

1

9
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2D convolution with box filter blurs the image

Original image Blurred 
(convolve with box filter)

Hmm… this reminds me of a low-pass filter…
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Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider                         that is non-zero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “filter weights”, “filter kernel”)
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Convolution theorem

* =

x =

Spatial 
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

Convolution in the spatial domain is equal to multiplication in the frequency domain, 
and vice versa

convolve
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Convolution theorem
Convolution in the spatial domain is equal to multiplication in the frequency domain, 
and vice versa 

Pre-filtering option 1:  
- Filter by convolution in the spatial domain 

Pre-filtering option 2:  
- Transform to frequency domain (Fourier transform) 
- Multiply by Fourier transform of convolution kernel 
- Transform back to spatial domain (inverse Fourier)
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Box function = “low pass” filter

Spatial domain Frequency domain
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Wider filter kernel = retain only lower frequencies

Spatial domain Frequency domain
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Wider filter kernel = lower frequencies
As a filter is localized in the spatial domain,  
it spreads out in frequency domain 

Conversely, as a filter is localized in frequency domain, it spreads out in the 
spatial domain
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How can we reduce aliasing error?
Increase sampling rate 
- Higher resolution displays, sensors, framebuffers… 
- But: costly and may need very high resolution to sufficiently reduce aliasing 

Anti-aliasing 
- Simple idea: remove (or reduce) high frequencies before sampling 
- How to filter out high frequencies before sampling?
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Anti-aliasing by averaging values in pixel area
Convince yourself the following are the same: 

Option 1: 
- Convolve f(x,y) by a 1-pixel box-blur 
- Then sample the resulting signal at the center of every pixel  

Option 2: 
- Compute the average value of f(x,y) in the pixel
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Anti-aliasing by computing average pixel value
When rendering one triangle, the value of f(x,y) = inside(tri,x,y) averaged over the area of a 
pixel is equal to the amount of the pixel covered by the triangle. 

Original 

Filtered

1 pixel width
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Summary
Drawing a triangle = sampling triangle-screen coverage signal 
Pitfall of sampling: aliasing 
Reduce aliasing by prefiltering signal 
- Supersample 
- Reconstruct via convolution (average coverage over pixel)  

- Higher frequencies removed 
- Sample reconstructed signal once per pixel 

There is much, much more to sampling theory and practice… 
- If interested see: Stanford EE261 - The Fourier Transform and its Applications
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Consider this task: 
viewing a low-resolution image on 
a high-resolution display

Say we have an image: 

(Which is just a collection of color samples)
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Consider this task: 
viewing a low-resolution image 
on a high-resolution display

Let’s say this is a 12x16 image. 
Which means we have 192 samples of a 2D signal. 
(The white dots are the sample locations in image space.)

But I’m showing it to you nearly full-slide size on your high-
resolution display: 
Let’s say its taking up 600x800 pixels on screen.

So to render the image in this “zoomed in” view, we have to 
perform “upsampling”: converting a 192-sample representation 
of a signal to a 480,000-sample representation. 
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Consider this task: 
viewing a low-resolution image 
on a high-resolution display

Visualization of the 192 
samples in the image
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Consider this task: 
viewing a low-resolution image 
on a high-resolution display

Displaying a new high 
resolution 600x800 image 
(480,000 samples) that was 
created from the original 
192 samples
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Let’s consider the region 
highlighted in the orange box.
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Let’s consider the region 
highlighted in the orange box.
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These are the samples from the 12x16 source image.
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But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)



Stanford CS248A, Winter 2026

Recall piecewise-constant reconstruction

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)



Stanford CS248A, Winter 2026

But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)

Let’s say we want to 
reconstruct the signal = 

f(x,y) at this point p. 

Given the sampled values 
at known sample points.

<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3



Stanford CS248A, Winter 2026

What is the piecewise-constant reconstruction of the signal at the 
orange dot?

<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

Answer: white

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3
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So if these are the input sample 
locations and values.



Stanford CS248A, Winter 2026

This is the piecewise constant 
(closest sample) reconstruction 



Stanford CS248A, Winter 2026

Recall: piecewise linear reconstruction

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation



Stanford CS248A, Winter 2026

Bilinar interpolation

<latexit sha1_base64="uWioic9Sc3+uT7pr32g9YUpvtBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A4jeNAg==</latexit>s
<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="I364ZYBhMhSc4Vk5sq3kbic8KjE=">AAACOHicdVDLSsNAFJ3UV62vqEs3g0VwY0lEqhuh6MadFewD2hAm00k7dCYJMxOxhHyWGz/DnbhxoYhbv8BJG6G2emDg3HPuZe49XsSoVJb1bBQWFpeWV4qrpbX1jc0tc3unKcNYYNLAIQtF20OSMBqQhqKKkXYkCOIeIy1veJn5rTsiJA2DWzWKiMNRP6A+xUhpyTWvJTyHXV8gnHQ5UgPBk8i9T+ER/Cl1baVaSpMpxU7/aXLNslWxxoDzxM5JGeSou+ZTtxfimJNAYYak7NhWpJwECUUxI2mpG0sSITxEfdLRNECcSCcZH57CA630oB8K/QIFx+r0RIK4lCPu6c5sUTnrZeJfXidW/pmT0CCKFQnw5CM/ZlCFMEsR9qggWLGRJggLqneFeIB0ikpnXdIh2LMnz5PmccWuVqo3J+XaRR5HEeyBfXAIbHAKauAK1EEDYPAAXsAbeDcejVfjw/ictBaMfGYX/ILx9Q1jb66k</latexit>

s =
px → p0x
p1x → p0x

<latexit sha1_base64="eFYOToJ/c07E1YG9qBjVCaw0cE0=">AAACOHicdVDLSsNAFJ3UV62vqEs3g0VwY0lUqhuh6MadFewDmhAm00k7dPJgZiKEkM9y42e4EzcuFHHrFzhpI9RWDwyce869zL3HjRgV0jCetdLC4tLySnm1sra+sbmlb++0RRhzTFo4ZCHvukgQRgPSklQy0o04Qb7LSMcdXeV+555wQcPgTiYRsX00CKhHMZJKcvQbCS+g5XGEU8tHcsj9NHKSDB7Bn1LVRqakLJ1STrJ/mhy9atSMMeA8MQtSBQWajv5k9UMc+ySQmCEheqYRSTtFXFLMSFaxYkEihEdoQHqKBsgnwk7Hh2fwQCl96IVcvUDCsTo9kSJfiMR3VWe+qJj1cvEvrxdL79xOaRDFkgR48pEXMyhDmKcI+5QTLFmiCMKcql0hHiKVolRZV1QI5uzJ86R9XDPrtfrtabVxWcRRBntgHxwCE5yBBrgGTdACGDyAF/AG3rVH7VX70D4nrSWtmNkFv6B9fQNvAa6r</latexit>

t =
py → p0y
p3y → p0y

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Recall linear interpolation (1D)

Compute fractional offsets (between samples)

Two helper lerps (horizontal):

Final vertical lerp, to get result:

<latexit sha1_base64="isaB+vK0f6KGau+PoVdTdOTwXWk=">AAACV3ichVFNSwMxEM2uX7V+VT16CRZFQcpulepFEL14VLAqdMuSTWc1NJtdklmxLPsnxYt/xYumtQfbCg4EXt6bx0xeokwKg5734bhz8wuLS5Xl6srq2vpGbXPr3qS55tDmqUz1Y8QMSKGgjQIlPGYaWBJJeIj6V0P94QW0Eam6w0EG3YQ9KRELztBSYU0xun9OA4RX1EkhQWflgTmicRgkDJ8tlYVeOXn3y0MaBNXoX+PxlLFZHoa1utfwRkVngT8GdTKum7D2FvRSniegkEtmTMf3MuwWTKPgEspqkBvIGO+zJ+hYqFgCpluMcinpnmV6NE61PQrpiP3tKFhizCCJbOdwSTOtDcm/tE6O8Vm3ECrLERT/GRTnkmJKhyHTntDAUQ4sYFwLuyvlz0wzjvYrqjYEf/rJs+C+2fBbjdbtSf3ichxHheyQXXJAfHJKLsg1uSFtwsk7+XTmnHnnw/lyF93KT6vrjD3bZKLczW890bOK</latexit>

a = lerp(s, fp0 , fp1)

b = lerp(s, fp3 , fp2)

<latexit sha1_base64="X1bsHYbm8RW+I9+we0EEMJn4ZZo=">AAACDnicbVDJSgNBEO2JW4xb1KOXxhCIEMKMSPQiBL14jGAWSELo6dQkTXoWumvEMOQLvPgrXjwo4tWzN//GznLQxAcNr9+roqqeG0mh0ba/rdTK6tr6Rnozs7W9s7uX3T+o6zBWHGo8lKFqukyDFAHUUKCEZqSA+a6Ehju8nviNe1BahMEdjiLo+KwfCE9whkbqZvNet+0zHCg/icb0krYRHtB8JKhoXMAiZUXqnnSzObtkT0GXiTMnOTJHtZv9avdCHvsQIJdM65ZjR9hJmELBJYwz7VhDxPiQ9aFlaMB80J1kes6Y5o3So16ozAuQTtXfHQnztR75rqmcrK4XvYn4n9eK0bvoJCKIYoSAzwZ5saQY0kk2tCcUcJQjQxhXwuxK+YApxtEkmDEhOIsnL5P6ackpl8q3Z7nK1TyONDkix6RAHHJOKuSGVEmNcPJInskrebOerBfr3fqYlaasec8h+QPr8wci9ZuC</latexit>

fp = lerp(t, a, b)
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So if these are the input sample 
locations and values.
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This is the reconstruction from 
bilinear interpolation 
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This is the reconstruction from 
bicubic interpolation 
(even higher order interpolation)
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Consider this task: 
Downsampling a high-resolution 
image to a low-resolution one
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Assume these are the input sample 
locations and values in the high-
resolution source image…

We need to resample f(x,y) at the sample 
locations for the low-resolution image 
(orange dots) 

To avoid aliasing due to coarse sampling, we need to pre 
filter the source image prior to sampling. 
(Remember: convolution!) 
Orange shaded regions figure shows convolution filter 
window sizes needed. 
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Summary: resampling a signal
Resampling = converting one set of samples of a signal to another 

Requires reconstructing approximation of value of signal at new points in the domain 

Upsampling: requires interpolation of input samples 

Downsampling: requires filtering of reconstructed signal prior to resampling to avoid 
aliasing
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