
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 2:

Sampling and Anti-aliasing

Stanford CS248A, Winter 2026

Last time
A very simple notion of digital image representation (that we are about to challenge!)

▪ An image = a 2D array of color values

Stanford CS248A, Winter 2026

Last time: displaying an image

Stanford CS248A, Winter 2026

Last time: what pixels should we color in to draw a line?

One possible heuristic: light up all pixels intersected by the line?

Stanford CS248A, Winter 2026

Input:
2D position of triangle vertices: P0, P1, P2

Last time: drawing a triangle in 2D

Output:
set of pixels “covered” by the triangle

(Converting a representation of a triangle into an image)

P0

P1

P2

Stanford CS248A, Winter 2026

Last time: when drawing triangles we filled pixels if the pixel
center was inside the triangle

1

2

3

4

= triangle covers center point, should color in pixel

= triangle does not cover center point, do not color in pixel

Boundary of a pixel

Pixel center

Stanford CS248A, Winter 2026

Last time: drawing a 3D triangle: rasterization perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Simple pseudocode:
tri_projected = project_triangle_verts(tri)
 for each image pixel p:
 if (center of p is inside tri_projected)
 color pixel p the color of tri

Think: “What pixels does the projected triangle cover?”

Stanford CS248A, Winter 2026

Last time: drawing a 3D triangle: ray casting perspective

2D image

camera

P0=(x0, y0, z0)

P1=(x1, y1, z1)P2=(x2, y2, z2)

Think: “Is the triangle visible along the ray from a pixel through the pinhole?”
Aka. Does a ray originating at the pixel center and leaving the camera “hit” the triangle?

Simple pseudocode:
for each image pixel p:
 let r = ray from center of p leaving camera through pinhole
 if (r hits tri)
 color pixel p the color of tri

Stanford CS248A, Winter 2026

Not everyone was happy with our renderings
Students mentioned “jaggy edges”
Commented on how they desired something “more smooth”, etc.

One option floated by the class: compute fraction of pixel area covered by triangle,
then color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red?

Stanford CS248A, Winter 2026

Analytical coverage schemes get tricky when considering scenes with

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

Stanford CS248A, Winter 2026

In Lecture 1 we drew triangles using a simple method:
point sampling

Which we implemented by testing whether specific points were inside
the triangle (or if rays in specific directions hit a triangle)

Before talking about sampling in 2D or 3D,
let’s consider sampling in 1D first…

Stanford CS248A, Winter 2026

Consider a 1D signal: f (x)

x

f (x)

Stanford CS248A, Winter 2026

Sampling: taking measurements of a signal

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of f(x)

A discrete representation of f(x) is given by the samples f(x0), f(x1), f(x2), f(x3), f(x4)

Stanford CS248A, Winter 2026

Audio file: stores samples of a 1D signal

time

Amplitude

Audio is often sampled at 44.1 KHz

Stanford CS248A, Winter 2026

Sampling a function
Evaluating a function at a point is sampling the function’s value

We can discretize a function by periodic sampling

Sampling is a core idea in graphics. In this class we’ll sample signals parameterized by:
time (1D), area (2D), angle (2D), volume (3D), paths through a scene (infinite-D) etc …

for(int x = 0; x < xmax; x++)
 output[x] = f(x);

Stanford CS248A, Winter 2026

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

f (x)

Stanford CS248A, Winter 2026

x1x0 x2 x3 x4

f(x0) f(x1) f(x2) f(x3)

f(x4)

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

Stanford CS248A, Winter 2026

Piecewise constant approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)

Stanford CS248A, Winter 2026

Piecewise linear approximation

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation

Stanford CS248A, Winter 2026

How can we represent the signal more accurately?

Answer: sample signal more densely (increase sampling rate)

x1x0 x2 x3 x4

frecon (x)

f (x)

Stanford CS248A, Winter 2026

Reconstruction from sparse sampling

x1x0 x2 x3 x4

frecon (x)

= reconstruction via linear interpolation

(5 samples)
f (x)

Stanford CS248A, Winter 2026

More accurate reconstructions result from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation

frecon (x)

(9 samples)
f (x)

Stanford CS248A, Winter 2026

More accurate reconstructions result from denser sampling

x2x0 x4 x6 x8 x10 x12 x14 x16

= reconstruction via linear interpolation

x1 x3 x5 x7 x9 x11 x13 x15

f (x)

frecon (x)

(17 samples)

Stanford CS248A, Winter 2026

Drawing a triangle by sampling 2D points

Stanford CS248A, Winter 2026

Image as a 2D matrix of pixels

(0,0) (1,0)

(0,1)

(0,4) (9,4)

(9,0)

(1,1)

Here I’m showing a 10 x 5 pixel image
Identify pixel by its integer (x,y) coordinates

Stanford CS248A, Winter 2026

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Stanford CS248A, Winter 2026

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

(1,1)

(0.5, 0.5)

(9.5, 4.5)

Ok, now forget about pixels!
(I removed pixel boundaries from the figure to encourage you to forget about pixels!)

Stanford CS248A, Winter 2026

Define binary function: inside(t,x,y)

inside(t,x,y) =
1

0

(x,y) in triangle t

otherwise

Stanford CS248A, Winter 2026

Sampling the binary function: inside(t,x,y)

Pixel (x,y)

1

2

3

4

Here I chose the sample position to be
the pixel center.

= triangle covers sample, should color in pixel

= triangle does not cover sample, do not color in pixel

(x + 0.5, y + 0.5)

Boundary of a pixel

Stanford CS248A, Winter 2026

Sample coverage at pixel centers

Stanford CS248A, Winter 2026

Sample coverage at pixel centers
I only want you to think about evaluating triangle-point coverage!
NOT TRIANGLE-PIXEL OVERLAP!

Stanford CS248A, Winter 2026

Rendering = sampling a 2D binary function

The basic top-level rendering loop for sampling visibility
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 image[x][y] = f(x + 0.5, y + 0.5);

For a rasterizer: f(x,y) = pointInsideTriangle(ProjectVerts(t), x, y)

For a ray caster: f(x,y) = rayTriangleIsect(t, RayFromScreenCoord(x,y))

We have the ability to determine if any point in the image is inside or outside the triangle

Stanford CS248A, Winter 2026

Where are we now

▪ How to we interpret these results as an image to display?
(Recall, there’s no pixels above, just samples)

Stanford CS248A, Winter 2026

Recall: pixels on a screen

Laptop display pixel

Each image sample sent to the display is converted into
a little square of light of the appropriate color:
(a pixel = picture element)

* Thinking of each screen pixel as emitting a square of uniform intensity
light of a single color is an approximation to how real displays work, but
it will do for now.

Stanford CS248A, Winter 2026

So, if we send the display this sampled signal…

…and each value determines the light emitted from a pixel…

Stanford CS248A, Winter 2026

The display physically emits this signal

Given our simplified “square pixel” display assumption, the emitted
light is a piecewise constant reconstruction of the samples

Stanford CS248A, Winter 2026

Compare: the continuous triangle function
(This is the function we sampled)

Stanford CS248A, Winter 2026

What’s wrong with this picture?

Jaggies!

(This is the reconstruction emitted by the display)

Stanford CS248A, Winter 2026

Jaggies (staircase pattern)

Is this the best we can do?

Stanford CS248A, Winter 2026

Reminder: how can we represent a signal more accurately?
Sample signal more densely! (increase sampling rate)

VS.

Stanford CS248A, Winter 2026

One solution: increase image resolution
Increase number of pixels in image —> denser sampling of signal

5x5 image 25x25 image 100x100 image 400x400 image

Stanford CS248A, Winter 2026

Increasing resolution of displays can be costly
iPhone 12

2532 x 1170 pixels
(2.9 megapixels)

About 460 pixels per inch

8K TV
7680 x 4320 pixels
(32.7 megapixels)

About $3000 at Best Buy in Jan 2026

I don’t think you can buy a 16K TV in 2026, although Sony
demo’ed on in 2019 for a few million $$$

Stanford CS248A, Winter 2026

Let’s say we want to render a high-quality image for
a given display.

(We have to accept a given number of pixels)

Stanford CS248A, Winter 2026

Sampling using one sample per pixel

Stanford CS248A, Winter 2026

Supersampling: step 1

2x2 supersampling

Sample the input signal more densely in the image plane
In this example: take four samples in the area spanned by a pixel

But how do we use these samples to drive a display, since there are four times more samples than display pixels? !

Extent of one
display pixel

Stanford CS248A, Winter 2026

Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel

Stanford CS248A, Winter 2026

Supersampling: step 2

Averaging down

Average the N x N samples “inside” each pixel

Stanford CS248A, Winter 2026

Supersampling: step 2
Average the N x N samples “inside” each pixel

Averaging down

Stanford CS248A, Winter 2026

Displayed result
This is the corresponding signal emitted by the display
(The value provided to each display pixel is the average of the values sampled in that region)

75%

100% 100% 50%

50%50%50%25%

Stanford CS248A, Winter 2026

Images rendered using one sample per pixel

Stanford CS248A, Winter 2026

4x4 supersampling + downsampling

The images above contain same number of pixels as the images on the prior slide.
But now each pixel’s value is the average of the 16 samples taken per pixel.

(16 samples per pixel)

Stanford CS248A, Winter 2026

Let’s understand what just happened
in a more principled way

Stanford CS248A, Winter 2026

More examples of sampling artifacts in computer graphics

Stanford CS248A, Winter 2026

Jaggies (staircase pattern)

Stanford CS248A, Winter 2026

Moiré patterns in imaging

lystit.com

Full resolution image 1/2 resolution image:
skip pixel odd rows and columns

Stanford CS248A, Winter 2026

Wagon wheel illusion (false motion)

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU

Stanford CS248A, Winter 2026

Sampling artifacts in computer graphics
Artifacts due to sampling - “Aliasing”
- Jaggies – sampling to sparsely in space
- Wagon wheel effect – sampling to sparsely in time
- Moire – undersampling images (and texture maps)
- [Many more] …

We notice this in fast-changing signals, when we sample the signal too sparsely

Stanford CS248A, Winter 2026

Sines and cosines

cos 2⇡x

sin 2⇡x

Stanford CS248A, Winter 2026

Frequencies

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T

Stanford CS248A, Winter 2026

Representing sound wave as a superposition
(linear combination) of frequencies

f1(x) = sin(𝜋x)

f2(x) = sin(2𝜋x)

f4(x) = sin(4𝜋x)

f(x) = 1.0 f1(x) + 0.75 f2(x) + 0.5 f4(x)

Stanford CS248A, Winter 2026

Audio spectrum analyzer: representing sound as a sum of its
constituent frequencies

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

Stanford CS248A, Winter 2026

Images as a superposition of cosines

i=0
j=0

= x

8x8 images

Stanford CS248A, Winter 2026

Images as a superposition of cosines

8x8 image

-415 x +

=

-30 x +

-61 x +

…

 4 x +

-22 x +

…

 1 x +

 2 x

8x8 basis images

Stanford CS248A, Winter 2026

How to compute frequency-domain
representation of a signal?

Stanford CS248A, Winter 2026

Fourier transform
Represent any function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

Stanford CS248A, Winter 2026

Fourier transform
Convert representation of signal from primal domain (spatial/temporal) to frequency
domain by projecting signal into its component frequencies

2D form:

F (!) =

Z 1

�1
f(x)e�2⇡ix!dx

=

Z 1

�1
f(x)(cos(2⇡!x)� isin(2⇡!x))dx

F (u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

eix = cosx+ i sinx

Recall:

Stanford CS248A, Winter 2026

The Fourier transform decomposes a signal into its
constituent frequencies

spatial
domain

frequency
domain

F (ω) =
∞∫

−∞

f(x)e−iωxdx F (ω) =
∞∫

−∞

f(x)e−iωxdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx

Stanford CS248A, Winter 2026

Visualizing the frequency content of images

SpectrumSpatial domain result

The visualization below is the 2D frequency
domain equivalent of the 1D audio spectrum
I showed you earlier *

Stanford CS248A, Winter 2026

Constant signal (in primal domain)

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Max signal freq =1/32

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

 — frequency 1/16; 16 pixels per cyclesin(2⇡/16)x

Max signal freq =1/16

(0,0)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

sin(2⇡/32)x⇥ sin(2⇡/16)y

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

exp(�r2/162)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

exp(�r2/322)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

Question:

exp(�r2/162)

Frequency domainSpatial domain

exp(�r2/322)

Why does a “smoother” exponential
function in the spatial domain look
“more compact” in the frequency domain?

Stanford CS248A, Winter 2026

exp(�x2/322)⇥ exp(�y2/162)

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

Image filtering
(in the frequency domain)

Stanford CS248A, Winter 2026

Manipulating the frequency content of images

Frequency domainSpatial domain

The visualization below is the 2D
frequency domain equivalent of the 1D
audio spectrum I showed you earlier *

Stanford CS248A, Winter 2026

Low frequencies only (smooth gradients)

(after low-pass filter)
All frequencies above cutoff have 0 magnitude

Frequency domainSpatial domain

Stanford CS248A, Winter 2026

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)

Stanford CS248A, Winter 2026

Mid-range frequencies

Frequency domainSpatial domain
(after band-pass filter)

Stanford CS248A, Winter 2026

High frequencies (edges)

(strongest edges)
Frequency domainSpatial domain

(after high-pass filter)
All frequencies below threshold have 0

magnitude

Stanford CS248A, Winter 2026

An image as a sum of its frequency components

+ + +

=

Stanford CS248A, Winter 2026

Back to our problem of artifacts in images

Jaggies!

Stanford CS248A, Winter 2026

Higher frequencies need denser sampling

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal: sampled
adequately for reasonable
reconstruction

High-frequency signal is insufficiently
sampled: reconstruction incorrectly
appears to be from a low frequency signal

Stanford CS248A, Winter 2026

Undersampling creates frequency “aliases”

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a
low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”

Stanford CS248A, Winter 2026

Example: sampling rate vs signal frequency

Max signal freq =1/32

 — frequency 1/32; 32 pixels per cyclesin(2⇡/32)x

Spatial domain Frequency domain
Sampling at twice the frequency of the signal: no aliasing! *

sampling = every 16 pixels

* Technically in this example there is no “pre-aliasing”. There is “post-aliasing” if reconstruction from these measurements is not perfect

Stanford CS248A, Winter 2026

 — frequency 1/16; 16 pixels per cycle

Example: sampling rate vs signal frequency
sin(2⇡/16)x

Max signal freq =1/16

Sampling at same frequency as signal: dramatic aliasing! (due to undersampling)

sampling = every 16 pixels

Stanford CS248A, Winter 2026

Anti-aliasing idea:
remove high frequency information from

a signal before sampling it

Stanford CS248A, Winter 2026

Video: point vs antialiased sampling

Single point in time Motion blurred

Stanford CS248A, Winter 2026

Video: point sampling in time

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.

Stanford CS248A, Winter 2026

Video: motion-blurred sampling

Cr
ed

it:
 A

ris
 &

 c
am

s
yo

ut
ub

e,
 h

tt
ps

://
yo

ut
u.

be
/N

oW
w

xT
kt

oF
s

 30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.

Stanford CS248A, Winter 2026

Drawing a triangle is sampling the triangle coverage signal

Sample

Note jaggies in rasterized triangle
(pixel values are either red or white: sample is in or out of triangle)

Stanford CS248A, Winter 2026

Anti-aliasing by pre-filtering the signal

Pre-filter
(remove high frequency detail)

Sample

Note anti-aliased edges of rasterized triangle:
pixel values take intermediate values

Stanford CS248A, Winter 2026

Pre-filtering by “supersampling” then “blurring” (averaging)

Coarsely sampled signal (e.g., once per pixel,
to store in image, or send to display)

Reconstructed signal with high frequencies reduced
(Blurring via averaging over pixel, etc)

Dense sampling of signal
(supersampling)

Original signal
(with high frequency edge)

Reconstruction on display

Stanford CS248A, Winter 2026

Images rendered using one sample per pixel

Stanford CS248A, Winter 2026

Anti-aliased results (multiple samples per pixel)
(Images below contain same number of pixels as images on prior slide)

Stanford CS248A, Winter 2026

Benefits of anti-aliasing

Jaggies Pre-filtered

Stanford CS248A, Winter 2026

Filtering = convolution

Stanford CS248A, Winter 2026

1D convolution (“weighted average over a window”)

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Stanford CS248A, Winter 2026

1D convolution (“weighted average over a window”)

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

1x1 + 3x2 + 5x1 = 12

12Result

Stanford CS248A, Winter 2026

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

12 16

3x1 + 5x2 + 3x1 = 16

Result

Stanford CS248A, Winter 2026

1D convolution

1 3 5 3 7 1 3 8 6 4Signal

Filter 1 2 1

Result

5x1 + 3x2 + 7x1 = 18

12 16 18

Stanford CS248A, Winter 2026

Box filter (common filter used in a 2D convolution)

1 1 1

1 1 1

1 1 1

Example: 3x3 box filter

1

9

Stanford CS248A, Winter 2026

2D convolution with box filter blurs the image

Original image Blurred
(convolve with box filter)

Hmm… this reminds me of a low-pass filter…

Stanford CS248A, Winter 2026

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider that is non-zero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “filter kernel”)

Stanford CS248A, Winter 2026

Convolution theorem

* =

x =

Spatial
Domain

Frequency
Domain

Fourier
Transform

Inv. Fourier
Transform

Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

convolve

Stanford CS248A, Winter 2026

Convolution theorem
Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

Pre-filtering option 1:
- Filter by convolution in the spatial domain

Pre-filtering option 2:
- Transform to frequency domain (Fourier transform)
- Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Stanford CS248A, Winter 2026

Box function = “low pass” filter

Spatial domain Frequency domain

Stanford CS248A, Winter 2026

Wider filter kernel = retain only lower frequencies

Spatial domain Frequency domain

Stanford CS248A, Winter 2026

Wider filter kernel = lower frequencies
As a filter is localized in the spatial domain,
it spreads out in frequency domain

Conversely, as a filter is localized in frequency domain, it spreads out in the
spatial domain

Stanford CS248A, Winter 2026

How can we reduce aliasing error?
Increase sampling rate
- Higher resolution displays, sensors, framebuffers…
- But: costly and may need very high resolution to sufficiently reduce aliasing

Anti-aliasing
- Simple idea: remove (or reduce) high frequencies before sampling
- How to filter out high frequencies before sampling?

Stanford CS248A, Winter 2026

Anti-aliasing by averaging values in pixel area
Convince yourself the following are the same:

Option 1:
- Convolve f(x,y) by a 1-pixel box-blur
- Then sample the resulting signal at the center of every pixel

Option 2:
- Compute the average value of f(x,y) in the pixel

Stanford CS248A, Winter 2026

Anti-aliasing by computing average pixel value
When rendering one triangle, the value of f(x,y) = inside(tri,x,y) averaged over the area of a
pixel is equal to the amount of the pixel covered by the triangle.

Original

Filtered

1 pixel width

Stanford CS248A, Winter 2026

Summary
Drawing a triangle = sampling triangle-screen coverage signal
Pitfall of sampling: aliasing
Reduce aliasing by prefiltering signal
- Supersample
- Reconstruct via convolution (average coverage over pixel)

- Higher frequencies removed
- Sample reconstructed signal once per pixel

There is much, much more to sampling theory and practice…
- If interested see: Stanford EE261 - The Fourier Transform and its Applications

Stanford CS248A, Winter 2026

Consider this task:
viewing a low-resolution image on
a high-resolution display

Say we have an image:

(Which is just a collection of color samples)

Stanford CS248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

Let’s say this is a 12x16 image.
Which means we have 192 samples of a 2D signal.
(The white dots are the sample locations in image space.)

But I’m showing it to you nearly full-slide size on your high-
resolution display:
Let’s say its taking up 600x800 pixels on screen.

So to render the image in this “zoomed in” view, we have to
perform “upsampling”: converting a 192-sample representation
of a signal to a 480,000-sample representation.

Stanford CS248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

Visualization of the 192
samples in the image

Stanford CS248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

Displaying a new high
resolution 600x800 image
(480,000 samples) that was
created from the original
192 samples

Stanford CS248A, Winter 2026

Let’s consider the region
highlighted in the orange box.

Stanford CS248A, Winter 2026

Let’s consider the region
highlighted in the orange box.

Stanford CS248A, Winter 2026

These are the samples from the 12x16 source image.

Stanford CS248A, Winter 2026

But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)

Stanford CS248A, Winter 2026

Recall piecewise-constant reconstruction

x1x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

f (x)

= reconstruction via piece-wise constant interpolation (nearest neighbor)

Stanford CS248A, Winter 2026

But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)

Let’s say we want to
reconstruct the signal =

f(x,y) at this point p.

Given the sampled values
at known sample points.

<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3

Stanford CS248A, Winter 2026

What is the piecewise-constant reconstruction of the signal at the
orange dot?

<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

Answer: white

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3

Stanford CS248A, Winter 2026

So if these are the input sample
locations and values.

Stanford CS248A, Winter 2026

This is the piecewise constant
(closest sample) reconstruction

Stanford CS248A, Winter 2026

Recall: piecewise linear reconstruction

x1x0 x2 x3 x4

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

f (x)

= reconstruction via linear interpolation

Stanford CS248A, Winter 2026

Bilinar interpolation

<latexit sha1_base64="uWioic9Sc3+uT7pr32g9YUpvtBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A4jeNAg==</latexit>s
<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
<latexit sha1_base64="+3FW4VkJVtbDaJas6PtVOCMxEqQ=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIkcKdBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwWWSsg==</latexit>

fp0

<latexit sha1_base64="mHLMofokBmgWIwedaWLXLNhMag4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+4B2HDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YTjm9zvPFKlWSzvzSShvsBDySJGsLHSQxT0BTYjJbIk8KZBperW3BnQMvEKUoUCzaDy1R/EJBVUGsKx1j3PTYyfYWUY4XRa7qeaJpiM8ZD2LJVYUO1ns9RTdGqVAYpiZZ80aKb+3siw0HoiQjuZZ9SLXi7+5/VSE135GZNJaqgk80NRypGJUV4BGjBFieETSzBRzGZFZIQVJsYWVbYleItfXibt85pXr9XvLqqN66KOEhzDCZyBB5fQgFtoQgsIKHiGV3hznpwX5935mI+uOMXOEfyB8/kDwuqSsw==</latexit>

fp1

<latexit sha1_base64="ufcCEDXvYu4jxqD8+WhBZFynupY=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9ox5JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD+GgL7AZK5HGg9psUK64VXcOtEq8nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6K/UTTWNMJnhEe5ZKLKj203nqGTqzyhCFkbJPGjRXf2+kWGg9FYGdzDLqZS8T//N6iQmv/JTJODFUksWhMOHIRCirAA2ZosTwqSWYKGazIjLGChNjiyrZErzlL6+Sdq3q1av1u4tK4zqvowgncArn4MElNOAWmtACAgqe4RXenCfnxXl3PhajBSffOYY/cD5/AMRvkrQ=</latexit>

fp2

<latexit sha1_base64="5uW0U0C+G1Bdo2FkEafzshtuq5Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJdFNy4r2Ae0Y8mkmTY0yQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x+0dJQoQpsk4pHqBFhTziRtGmY47cSKYhFw2g7GN5nffqRKs0jem0lMfYGHkoWMYGOlh7DfE9iMlEjj/vm0X664VXcGtEy8nFQgR6Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6LfUSTWNMxnhIu5ZKLKj201nqKTqxygCFkbJPGjRTf2+kWGg9EYGdzDLqRS8T//O6iQmv/JTJODFUkvmhMOHIRCirAA2YosTwiSWYKGazIjLCChNjiyrZErzFLy+T1lnVq1VrdxeV+nVeRxGO4BhOwYNLqMMtNKAJBBQ8wyu8OU/Oi/PufMxHC06+cwh/4Hz+AMX0krU=</latexit>

fp3

<latexit sha1_base64="W07UKlxCXDCvqzFk+N+AaAabwfQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUW/cX9aaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AF+ORNg==</latexit>p

<latexit sha1_base64="I364ZYBhMhSc4Vk5sq3kbic8KjE=">AAACOHicdVDLSsNAFJ3UV62vqEs3g0VwY0lEqhuh6MadFewD2hAm00k7dCYJMxOxhHyWGz/DnbhxoYhbv8BJG6G2emDg3HPuZe49XsSoVJb1bBQWFpeWV4qrpbX1jc0tc3unKcNYYNLAIQtF20OSMBqQhqKKkXYkCOIeIy1veJn5rTsiJA2DWzWKiMNRP6A+xUhpyTWvJTyHXV8gnHQ5UgPBk8i9T+ER/Cl1baVaSpMpxU7/aXLNslWxxoDzxM5JGeSou+ZTtxfimJNAYYak7NhWpJwECUUxI2mpG0sSITxEfdLRNECcSCcZH57CA630oB8K/QIFx+r0RIK4lCPu6c5sUTnrZeJfXidW/pmT0CCKFQnw5CM/ZlCFMEsR9qggWLGRJggLqneFeIB0ikpnXdIh2LMnz5PmccWuVqo3J+XaRR5HEeyBfXAIbHAKauAK1EEDYPAAXsAbeDcejVfjw/ictBaMfGYX/ILx9Q1jb66k</latexit>

s =
px → p0x
p1x → p0x

<latexit sha1_base64="eFYOToJ/c07E1YG9qBjVCaw0cE0=">AAACOHicdVDLSsNAFJ3UV62vqEs3g0VwY0lUqhuh6MadFewDmhAm00k7dPJgZiKEkM9y42e4EzcuFHHrFzhpI9RWDwyce869zL3HjRgV0jCetdLC4tLySnm1sra+sbmlb++0RRhzTFo4ZCHvukgQRgPSklQy0o04Qb7LSMcdXeV+555wQcPgTiYRsX00CKhHMZJKcvQbCS+g5XGEU8tHcsj9NHKSDB7Bn1LVRqakLJ1STrJ/mhy9atSMMeA8MQtSBQWajv5k9UMc+ySQmCEheqYRSTtFXFLMSFaxYkEihEdoQHqKBsgnwk7Hh2fwQCl96IVcvUDCsTo9kSJfiMR3VWe+qJj1cvEvrxdL79xOaRDFkgR48pEXMyhDmKcI+5QTLFmiCMKcql0hHiKVolRZV1QI5uzJ86R9XDPrtfrtabVxWcRRBntgHxwCE5yBBrgGTdACGDyAF/AG3rVH7VX70D4nrSWtmNkFv6B9fQNvAa6r</latexit>

t =
py → p0y
p3y → p0y

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Recall linear interpolation (1D)

Compute fractional offsets (between samples)

Two helper lerps (horizontal):

Final vertical lerp, to get result:

<latexit sha1_base64="isaB+vK0f6KGau+PoVdTdOTwXWk=">AAACV3ichVFNSwMxEM2uX7V+VT16CRZFQcpulepFEL14VLAqdMuSTWc1NJtdklmxLPsnxYt/xYumtQfbCg4EXt6bx0xeokwKg5734bhz8wuLS5Xl6srq2vpGbXPr3qS55tDmqUz1Y8QMSKGgjQIlPGYaWBJJeIj6V0P94QW0Eam6w0EG3YQ9KRELztBSYU0xun9OA4RX1EkhQWflgTmicRgkDJ8tlYVeOXn3y0MaBNXoX+PxlLFZHoa1utfwRkVngT8GdTKum7D2FvRSniegkEtmTMf3MuwWTKPgEspqkBvIGO+zJ+hYqFgCpluMcinpnmV6NE61PQrpiP3tKFhizCCJbOdwSTOtDcm/tE6O8Vm3ECrLERT/GRTnkmJKhyHTntDAUQ4sYFwLuyvlz0wzjvYrqjYEf/rJs+C+2fBbjdbtSf3ichxHheyQXXJAfHJKLsg1uSFtwsk7+XTmnHnnw/lyF93KT6vrjD3bZKLczW890bOK</latexit>

a = lerp(s, fp0 , fp1)

b = lerp(s, fp3 , fp2)

<latexit sha1_base64="X1bsHYbm8RW+I9+we0EEMJn4ZZo=">AAACDnicbVDJSgNBEO2JW4xb1KOXxhCIEMKMSPQiBL14jGAWSELo6dQkTXoWumvEMOQLvPgrXjwo4tWzN//GznLQxAcNr9+roqqeG0mh0ba/rdTK6tr6Rnozs7W9s7uX3T+o6zBWHGo8lKFqukyDFAHUUKCEZqSA+a6Ehju8nviNe1BahMEdjiLo+KwfCE9whkbqZvNet+0zHCg/icb0krYRHtB8JKhoXMAiZUXqnnSzObtkT0GXiTMnOTJHtZv9avdCHvsQIJdM65ZjR9hJmELBJYwz7VhDxPiQ9aFlaMB80J1kes6Y5o3So16ozAuQTtXfHQnztR75rqmcrK4XvYn4n9eK0bvoJCKIYoSAzwZ5saQY0kk2tCcUcJQjQxhXwuxK+YApxtEkmDEhOIsnL5P6ackpl8q3Z7nK1TyONDkix6RAHHJOKuSGVEmNcPJInskrebOerBfr3fqYlaasec8h+QPr8wci9ZuC</latexit>

fp = lerp(t, a, b)

Stanford CS248A, Winter 2026

So if these are the input sample
locations and values.

Stanford CS248A, Winter 2026

This is the reconstruction from
bilinear interpolation

Stanford CS248A, Winter 2026

This is the reconstruction from
bicubic interpolation
(even higher order interpolation)

Stanford CS248A, Winter 2026

Consider this task:
Downsampling a high-resolution
image to a low-resolution one

Stanford CS248A, Winter 2026

Assume these are the input sample
locations and values in the high-
resolution source image…

We need to resample f(x,y) at the sample
locations for the low-resolution image
(orange dots)

To avoid aliasing due to coarse sampling, we need to pre
filter the source image prior to sampling.
(Remember: convolution!)
Orange shaded regions figure shows convolution filter
window sizes needed.

Stanford CS248A, Winter 2026

Summary: resampling a signal
Resampling = converting one set of samples of a signal to another

Requires reconstructing approximation of value of signal at new points in the domain

Upsampling: requires interpolation of input samples

Downsampling: requires filtering of reconstructed signal prior to resampling to avoid
aliasing

Stanford CS248A, Winter 2026

Acknowledgements
Thanks to Ren Ng, Pat Hanrahan, Keenan Crane for slide materials

