Lecture 2:

Sampling and Anti-aliasing

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026

Last time

m Averysimple notion of digital image representation (that we are about to challenge!)
B Animage = a 2D array of color values

Stanford (5248A, Winter 2026

AR LIRA LR LA L L L B LB

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ Ll
== |mn{am |an{me] wn) o]] sl) o] -) o=
e e e] e e e e e B e
HEREEEREEEEEES!
am|am|an{an [ue| an| anf an{ae) aef o) n] - o).
=] am) am| an (an| an (an|ae] an) o) an) an an) n) o])

e BRIRYING BRI

-m

Last time: what pixels should we color in to draw a line?

One possible heuristic: light up all pixels intersected by the line?

Stanford (5248A, Winter 2026

Last time: drawing a triangle in 2D

(Converting a representation of a triangle into an image)

Input: Output:
2D position of triangle vertices: Po, P, P; set of pixels “covered” by the triangle

P

Stanford (5248A, Winter 2026

Last time: when drawing triangles we filled pixels if the pixel
center was inside the triangle

A
7\
K \‘

B = triangle covers center point, should color in pixel

I\, =triangle does not cover center point, do not color in pixel

Stanford (5248A, Winter 2026

Last time: drawing a 3D triangle: rasterization perspective

Think: “What pixels does the projected triangle cover?”

P1=(x1, y1,21)

camera P2=(x2, y2,2>)

2D image

Po=(Xo, Yo, Zo)

Simple pseudocode:

tri_projected = project triangle verts(tri)
for each 1image pixel p:
i1f (center of p 1s inside tri_projected)

color pixel p the color of tri
Stanford C5248A, Winter 2026

Last time: drawing a 3D triangle: ray casting perspective

Think: “Is the triangle visible along the ray from a pixel through the pinhole?”
Aka. Does a ray originating at the pixel center and leaving the camera “hit” the triangle?

camera P2=(x2, Y2, 22) P1=(x1, y1,21)
2D image

Po=(Xo, Yo, Zo)

Simple pseudocode:

for each 1image pixel p:
let r = ray from center of p leaving camera through pinhole
1f (r hits tri)

color pixel p the color of tri
Stanford C5248A, Winter 2026

Not everyone was happy with our renderings

m Students mentioned “jaggy edges”
m Commented on how they desired something “more smooth’, etc.

Stanford (5248A, Winter 2026

One option floated by the class: compute fraction of pixel area covered by triangle,
then color pixel according to this fraction.

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red?

15%

Analytical coverage schemes get tricky when considering scenes with

Pixel covered by triangle 1, other
half covered by triangle 2

Two regions of triangle 1 contribute to pixel.

One of these regions is not even convex.
Interpenetration of triangles: even trickier

Stanford (5248A, Winter 2026

In Lecture 1 we drew triangles using a simple method:
point sampling

Which we implemented by testing whether specific points were inside
the triangle (or if rays in specific directions hit a triangle)

Before talking about sampling in 2D or 3D,
let’s consider sampling in 1D first...

Stanford (5248A, Winter 2026

Consider a 1D signal: f(x)

f(x)

Stanford (5248A, Winter 2026

Sampling: taking measurements of a signal

Below: five measurements (“samples”) of f(x)

A

f(x)
f(x4)
. * . : >
x0 X1 X2 X3 x4

A discrete representation of f(x) is given by the samples f(xo), f(x1), f(x2), f(x3), f(xa)

Stanford (5248A, Winter 2026

Audio file: stores samples of a 1D signal
Audio is often sampled at 44.1 KHz

Amplitude

time

Stanford (5248A, Winter 2026

Sampling a function

m Evaluating a function at a point is sampling the function’s value

m We can discretize a function by periodic sampling

for(int x = 0; x < xmax; x++)

output[x] = £(x);

m Sampling is a core idea in graphics. In this class we'll sample signals parameterized by:
time (1D), area (2D), angle (2D), volume (3D), paths through a scene (infinite-D) etc...

Stanford (5248A, Winter 2026

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

A
f(x):
. ", f(x4)
[
f(x0) f();l)‘ KR . f(XZ)"o’ ?" f(x3)
.‘ ’0 ; Yans ‘ .
: : : —>

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

Reconstruction: given a set of samples, how might we attempt to
reconstruct the original (continuous) signal f(x)?

A

f(x4)

(x0) f(x1) f(x2) ‘ f(x3)

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

Piecewise constant approximation

frecon(x) = value of sample closest to x
[recon(x) approximates f (x)

\ f(x)

f recon (x)

x0 x1 X2 X3 x4
= reconstruction via piece-wise constant interpolation (nearest neighbor)

Stanford (5248A, Winter 2026

Piecewise linear approximation

[recon(x) = linear interpolation between values of two closest samples to x

X f(x)

f recon (x)

x0 x1 X2 X3 x4
= reconstruction via linear interpolation

Stanford (5248A, Winter 2026

How can we represent the signal more accurately?

J(x)

f recon (x)

x0 x1 X2 X3 x4

Answer: sample signal more densely (increase sampling rate)

Stanford (5248A, Winter 2026

Reconstruction from sparse sampling

(5 samples)

J(x)

f recon (x)

x0 x1 X2 X3 x4
= reconstruction via linear interpolation

Stanford (5248A, Winter 2026

More accurate reconstructions result from denser sampling
(9 samples)

J(x)

f recon (x)

x0 x1 X2 X3 x4 X5 X6 X7 x8
= reconstruction via linear interpolation

Stanford (5248A, Winter 2026

More accurate reconstructions result from denser sampling
(17 samples)

J(x)

f recon (x)

: 2 : . : : : . : : : : : . . —
X0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
= reconstruction via linear interpolation

Stanford (5248A, Winter 2026

Drawing a triangle by sampling 2D points

Image as a 2D matrix of pixels

Here I'm showing a 10 x 5 pixel image
|dentify pixel by its integer (x,y) coordinates

Stanford (5248A, Winter 2026

Continuous coordinate space over image

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

Stanford (5248A, Winter 2026

Continuous coordinate space over image

Ok, now forget about pixels!
(I removed pixel boundaries from the figure to encourage you to forget about pixels!)

(0,0) (1,0) (10,0)

(0,1)

(0,5)
(10,5)

Stanford (5248A, Winter 2026

Define binary function: inside (t, x,y)

l (x,y) in triangle t
inside(t,x,y) =

O otherwise

Stanford (5248A, Winter 2026

Sampling the binary function: inside(t,x,y)

‘ ‘ Boundary of a pixel
\ Here | chose the sample position to be
the pixel center.

B = triangle covers sample, should color in pixel

I\, =triangle does not cover sample, do not color in pixel
Stanford (5248A, Winter 2026

Sample coverage at pixel centers

Stanford (5248A, Winter 2026

Sample coverage at pixel centers

| only want you to think about evaluating triangle-point coverage!
NOT TRIANGLE-PIXEL OVERLAP!

O O O O O O O O O O
O O O O O O @ O O O
O O O O O O @ O O O
O O O O O @ @ @ O O
O O O O O @ @ @ O O
O O O O @ @ @ @ @ O
O O O @ @ @ @ @ @ O
O O ®) @ @ @ @ @ @ @
O O @ @ @ @ O O O O
O @ O O O O O O O O

Stanford (5248A, Winter 2026

Rendering = sampling a 2D binary function

m The basic top-level rendering loop for sampling visibility

for (int x = 0; x < xmax; x++)
for (int y = 0; y < ymax; y++)
image[x] [y] = £(x + 0.5, y + 0.5);

m Forarasterizer: f(x,y)

pointInsideTriangle(ProjectVerts(t), x, y)

m Fora ray caster: f(x,y) = rayTriangleIsect(t, RayFromScreenCoord(x,y))

Stanford (5248A, Winter 2026

Where are we now

m We have the ability to determine if any point in the image is inside or outside the triangle

m How to we interpret these results as an image to display?
(Recall, there’s no pixels above, just samples)

Stanford (5248A, Winter 2026

Recall: pixels on a screen

Each image sample sent to the display is converted into
a little square of light of the appropriate color:
(a pixel = picture element)

/’EI

Laptop display pixel

* Thinking of each screen pixel as emitting a square of uniform intensity
light of a single color is an approximation to how real displays work, but
it will do for now.

Stanford (5248A, Winter 2026

So, if we send the display this sampled signal...

O O O O O O O O O O
O O O O O O @ O O O
O O O O O O @ O O O
O O O O O @ @ @ O O
O O O O @ @ @ @ O O
O O O O @ @ @ @ @ O
O O O @ @ @ @ @ @ O
O O O @ @ @ @ @ @ @
O O @ @ @ @ O O O O
O @ O O O O O O O O

...and each value determines the light emitted from a pixel...

Stanford (5248A, Winter 2026

The display physically emits this signal

Given our simplified “square pixel” display assumption, the emitted
light is a piecewise constant reconstruction of the samples

Stanford (S248A, Winter 2026

Compare: the continuous triangle function

(This is the function we sampled)

Stanford (S248A, Winter 2026

What'’s wrong with this picture?
(This is the reconstruction emitted by the display)

Jaggies!

Stanford (S248A, Winter 2026

Jaggies (staircase pattern)

11

Is this the best we can do?

Stanford (S248A, Winter 2026

Reminder: how can we represent a signal more accurately?

Sample signal more densely! (increase sampling rate)

VS.

y:
0’.
4

Stanford (5248A, Winter 2026

One solution: increase image resolution

Increase number of pixels in image —> denser sampling of signal

5x5 image 25x25 image 100x100 image 400x400 image

Stanford (5248A, Winter 2026

Increasing resolution of displays can be costly

iPhone 12 =
2532 x 1170 pixels
(2.9 megapixels)

About 460 pixels per inch

S8KTV
7680 x 4320 pixels
(32.7 megapixels)

About $3000 at Best Buy in Jan 2026

| don’t think you can buy a 16K TV in 2026, although Sony

demo’ed on in 2019 for a few million $$$
Stanford (5248A, Winter 2026

Let’s say we want to render a high-quality image for
a given display.

(We have to accept a given number of pixels)

Sampling using one sample per pixel

Stanford (5248A, Winter 2026

Supersampling: step 1
Sample the input signal more densely in the image plane
In this example: take four samples in the area spanned by a pixel

2x2 supersampling

Extent of one
display pixel

But how do we use these samples to drive a display, since there are four times more samples than display pixels? .

Stanford (5248A, Winter 2026

Supersampling: step 2

Average the N x N samples “inside” each pixel

Averaging down

Stanford (5248A, Winter 2026

Supersampling: step 2

Average the N x N samples “inside” each pixel

Averaging down

Stanford (5248A, Winter 2026

Supersampling: step 2

Average the N x N samples “inside” each pixel

Averaging down

Stanford (5248A, Winter 2026

Displayed result

This is the corresponding signal emitted by the display
(The value provided to each display pixel is the average of the values sampled in that region)

25%

50%

50%

50%

50%

Stanford (5248A, Winter 2026

Images rendered using one sample per pixel

i

Stanford (S248A, Winter 2026

4x4 supersampling + downsampling
(16 samples per pixel)

////ffﬁ

The images above contain same number of pixels as the images on the prior slide.
But now each pixel’s value is the average of the 16 samples taken per pixel.

Stanford (S248A, Winter 2026

Let’s understand what just happened
in a more principled way

More examples of sampling artifacts in computer graphics

Stanford (5248A, Winter 2026

Jaggies (staircase pattern)

Stanford (5248A, Winter 2026

lystit.com

A
"
y

AR s
AL LI

FL L LT
LI A N
FEIe i dry s
pERETII N s
{7t oy
WAL Le L dria
27X, \.\«»\ SriA s

e s
BAAE S
ey

7

G

ey

’.

S

e 3 N%c oy
- ’
A AL s e
v s “\
A b e -

s
, -

.s..".".. ..s ﬁ"ﬁ.. i

i

in imaging

‘\'1_0'- !
‘n
.

\\:. ,

...
A s
A _f_“

:...: .__m”. A AL ' . il ,

S eirilie
i

"
‘
'

..
\
W

-
A
N o.o...

Ay £
e

...

tterns

y 4

iré pa

Mo

Stanford (S248A, Winter 2026

ion image

| odd rows and columns

1/2 resolut
ip pixe

sk

ion image

Full resolut

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Created by Jesse Mason, https://www.youtube.com/watch?v=Q0wzkND_ooU
Stanford (5248A, Winter 2026

Sampling artifacts in computer graphics

m Artifacts due to sampling - “Aliasing”
- Jaggies — sampling to sparsely in space
- Wagon wheel effect — sampling to sparsely in time
- Moire — undersampling images (and texture maps)
- [Many more] ...

m We notice this in fast-changing signals, when we sample the signal too sparsely

Stanford (5248A, Winter 2026

Sines and cosines

\AAAAAAOOA/
UVVUUVUVUV

coswa

AAAAAAAAAA
VAVAVRVAYRVAVRVRVAY

sin 27

Frequencies cOSs I fx

1\AAAAAAOAA/
TUUVUVUUVVV

coswa

\ﬂﬂﬂﬂﬂﬂﬂﬂﬂ\ﬂﬂﬂﬂﬂﬂﬂﬂﬂ[
TV oy

cos A

Representing sound wave as a superposition
(linear combination) of frequencies

f1(x) = sin(7wx) \/\/\/\/\/\

f2(x) = sin(27x)

f4(x) = sin(47x)

fx) = 1.0 fi(x) + 075 f(x) + 0.5 fu(x) [S N AN vi :

Stanford (5248A, Winter 2026

Audio spectrum analyzer: representing sound as a sum of its
constituent frequencies

A
-18 |
-24 |
-30 -
-36 -
-42 |
-48 -
-54 -
-60 -
-66 -
S
-78 -
-84 -
-90

-96

U
L
0
A"
S’
-
Q.
)

-102
-108

31.5 16k

+ 1

Intensity of Intensity of
low-frequencies (bass) high frequencies

Image credit: ONYX Apps Stanford (5248A, Winter 2026

Images as a superposition of cosines

7 I1-><
cosz:v.Q_ gos

0

8x8 images

—415 —-30 —61 27 56 -20 -2 0]
4 -22 -61 10 13 -7 -9 5
47 7T T7T =25 =29 10 5 -6
-49 12 34 -15 -10 6 2 2
2 -7 -13 4 2 2 -3 3| X
-8 3 2 -6 -2 1 4 2
-1 0 0 -2 -1 -3 4 -l

0 0 -1 -4 -1 0 1 2|

1A R YR
TIIIII H H EEHE-

i =

Stanford (5248A, Winter 2026

Images as a superposition of cosines

8x8 basis images

-415 X

8x8 image

Stanford (5248A, Winter 2026

How to compute frequency-domain
representation of a signal?

Stanford (5248A, Winter 2026

Fourier transform

Represent any function as a weighted sum of sines and cosines

N
i
2

Joseph Fourier 1768 - 1830

Stanford (5248A, Winter 2026

Fourier transform

Convert representation of signal from primal domain (spatial/temporal) to frequency
domain by projecting signal into its component frequencies

Recall:

O
/ f(x)e—Qm'mwdx e'T = cos 1 + 72sIn &
— OO

F(w)

/_OO f(x)(cos(2rwx) — 1sin(2mwx))dx
2D form:

F(u,v) = / / P, y)e 2w How) gy

Stanford (5248A, Winter 2026

The Fourier transform decomposes a signal into its

constituent frequencies

f(z)

-

spatial
domain

Flw) = /_ O; F ()2 gy

— —| Fourier transform |=— >

<_—| Inverse transform < —

f@)= [Puemeds

F(w)

-

frequency
domain

Stanford (5248A, Winter 2026

Visualizing the frequency content of images

The visualization below is the 2D frequency
domain equivalent of the 1D audio spectrum
| showed you earlier *

5 250 500 1k 2k 4k 8k 16k

12

Spatial domain result Spectrum

Stanford (5248A, Winter 2026

Constant signal (in primal domain)

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

sin(27 /32)x — frequency 1/32; 32 pixels per cydle

Spatial domain Frequency domain

Max signal freq =1/32

A

Stanford (5248A, Winter 2026

Sin(QW / 16) xr — frequency 1/16; 16 pixels per cycle

Max signal freq =1/16

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

sin(27/16)y

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

sin(27/32)x x sin(27/16)y

Spatial domain Frequency domain

exp(—r~/16%)

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

exp(—r~/32)

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

Spatial domain Frequency domain

Question:

exp(—r*/16°)

Why does a “smoother” exponential
function in the spatial domain look
“more compact” in the frequency domain?

exp(—r*/32%)

Stanford (5248A, Winter 2026

exp(—x°/32%) x exp(—y~/167)

Spatial domain Frequency domain

Image filtering
(in the frequency domain)

Manipulating the frequency content of images

Spatial domain

The visualization below is the 2D
frequency domain equivalent of the 1D
audio spectrum | showed you earlier *

Frequency domain

125

250 500 1k 2k 4k 8k 16k

Stanford (5248A, Winter 2026

Low frequencies only (smooth gradients)

Spatial domain Frequency domain

(after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (5248A, Winter 2026

Mid-range frequencies

Spatial domain Frequency domain
(after band-pass filter)

Stanford (5248A, Winter 2026

Mid-range frequencies

Spatial domain Frequency domain
(after band-pass filter)

Stanford (5248A, Winter 2026

High frequencies (edges)

Spatial domain Frequency domain

(strongest edges) (after high-pass filter)
All frequencies below threshold have 0
magnitude Stanford (S248A, Winter 2026

An image as a sum of its frequency components

Stanford (5248A, Winter 2026

Back to our problem of artifacts in images

Jaggies!

Stanford (S248A, Winter 2026

Higher frequencies need denser sampling

Periodic sampling locations

oo

A

J1(x) Low-frequency signal: sampled

< adequately for reasonable
f2(x) reconstruction
‘m}.\/w
M
Mm High-frequency signal is insufficiently
< sampled: reconstruction incorrectly
\/\,/‘\/\N\’//\/\/\\/‘\\/\ appears to be from a low frequency signal

X

Stanford (5248A, Winter 2026

Undersampling creates frequency “aliases”

AT
ukipearifi

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a
low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”

Stanford (5248A, Winter 2026

Example: sampling rate vs signal frequency

S1n 27‘(‘/32 Qj — frequency 1/32; 32 pixels per cycle

| | samplmg = every 16 pxes | | |

Spatial domain Frequency domain
Sampling at twice the frequency of the signal: no aliasing! *

Max signal freq =1/32

l

* Technically in this example there is no “pre-aliasing”. There is “post-aliasing” if reconstruction from these measurements is not perfect Stanford (5248A, Winter 2026

te vs signal frequency

ing ra
27 /16

sampl

Example

)

(

S111

XL — frequency 1/16

16 pixels per cycle

°
r

— G

O
1
~
1
Il
q
()}
-
e
®
c
K2
(7))
X
©
=

©O 0 6 060 0O 0o 0 0o o o 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O ©0 ©0 O © © O

g © 0 ©0 O

. 0 0 0 0 0 0 0 0 o0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O0 O0 ©0 0 O0 O O O

2 0 ©0 0 0 0 0 0 0 0 0 0 ©0 0 0 0 0 0 0 ©0 0 0 0 0 0 ©0 O O O 0 0 0 0 O

2 60 0 0 0 0 0 0 0.0 60 0 0 0 0 60 60 0 0 0 0 60 60 60 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0.0 0 0 o0 o0 0 0 0 ©0 0 ©0 0 0 0 ©0 0 0 0 o0 0 0 0 0 0 O

=)) o 0 O

=
0
X

every 16 p

ing

sampli

o
o
o
o
o
o
o
o
o
o
o
o]
o
o]
o
o
o
o
(¢]
o

)

Stanford (5248A, Winter 2026

I (due to undersampl

jasing

ICad

dramati

Sampling at same frequency as signal

Anti-aliasing idea:
remove high frequency information from
a signal before sampling it

Video: point vs antialiased sampling

Single pointin time Motion blurred

Stanford (S248A, Winter 2026

Video: point sampling in time

30 fps video. 1/800 second exposure is sharp in time, causes time aliasing.

Credit: Aris & cams youtube, https://youtu.be/NoWwxTktoFs

Stanford (S248A, Winter 2026

Video: motion-blurred sampling

30 fps video. 1/30 second exposure is motion-blurred in time, reduces aliasing.

Credit: Aris & cams youtube, https://youtu.be/NoWwxTktoFs

Stanford (S248A, Winter 2026

Drawing a triangle is sampling the triangle coverage signal

—>
A Sample

Note jaggies in rasterized triangle
(pixel values are either red or white: sample is in or out of triangle)

Stanford (5248A, Winter 2026

Anti-aliasing by pre-filtering the signal

Pre-filter Sample

(remove high frequency detail)

Note anti-aliased edges of rasterized triangle:
pixel values take intermediate values

Stanford (5248A, Winter 2026

Pre-filtering by “supersampling” then “blurring” (averaging)

-

Original signal Dense sampling of signal
(with high frequency edge) (supersampling)

Reconstructed signal with high frequencies reduced
(Blurring via averaging over pixel, etc)

o ° ° 0 »

Coarsely sampled signal (e.g., once per pixel,

to store in image, or send to display) Reconstruction on display

Stanford (5248A, Winter 2026

Images rendered using one sample per pixel

i

Stanford (S248A, Winter 2026

Anti-aliased results (multiple samples per pixel)

(Images below contain same number of pixels as images on prior slide)

/

)f////ff;

Stanford (S248A, Winter 2026

Benefits of anti-aliasing

Jaggies Pre-filtered

Stanford (S248A, Winter 2026

Filtering = convolution

Stanford (5248A, Winter 2026

1D convolution (“weighted average over a window”)

Stanford (5248A, Winter 2026

1D convolution (“weighted average over a window”)

signal | 1]3[s]3]|7[1[3]8]6f4
Filter n

11 + 3x2 + 5x1 =12

Result

1D convolution

Signal Hnnn
Filter E

3x1 +5x2+3x1 =16

Result

1D convolution

Signal Hnnn
Filter n

5x1 + 3x2 +7x1 =18

Result

Box filter (common filter used in a 2D convolution)

Example: 3x3 box filter

Stanford (5248A, Winter 2026

2D convolution with box filter blurs the image

Original image Blurred
(convolve with box filter)

Hmm... this reminds me of a low-pass filter...

Stanford (S248A, Winter 2026

Discrete 2D convolution

T ST

output image filter input image

Consider f (7, 7) thatisnon-zeroonlywhen: —1 <, j <1

Then:

(fxg)(@y)= > [, 5)I(x—iy—j)

iaj =—1
And we can represent f(i,j) as a 3x3 matrix of values where:

f(2,7) =F;; (often called: “filter weights’, “filter kernel”)

Stanford (5248A, Winter 2026

Convolution theorem

Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

\
|

\ Al

\ \\\\)

Spatial
ch))main Ny x |
' ‘convolve ‘
Fourier Inv. Fourier T
Transform Transform
Frequency
Domain

Stanford (5248A, Winter 2026

Convolution theorem

m Convolution in the spatial domain is equal to multiplication in the frequency domain,
and vice versa

m Pre-filtering option 1:
- Filter by convolution in the spatial domain

m Pre-filtering option 2:
- Transform to frequency domain (Fourier transform)

- Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Stanford (5248A, Winter 2026

Box function ="“low pass” filter

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

Wider filter kernel = retain only lower frequencies

Spatial domain Frequency domain

Stanford (5248A, Winter 2026

Wider filter kernel = lower frequencies

m Asafilteris localized in the spatial domain,
it spreads out in frequency domain

m Conversely, as a filter is localized in frequency domain, it spreads out in the
spatial domain

Stanford (5248A, Winter 2026

How can we reduce aliasing error?

m Increase sampling rate
- Higher resolution displays, sensors, framebuffers...
- But: costly and may need very high resolution to sufficiently reduce aliasing

m Anti-aliasing

- Simple idea: remove (or reduce) high frequencies before sampling
- How to filter out high frequencies before sampling?

Stanford (5248A, Winter 2026

Anti-aliasing by averaging values in pixel area

m Convince yourself the following are the same:

m Option1:
- Convolve f(x,y) by a 1-pixel box-blur
- Then sample the resulting signal at the center of every pixel

m Option 2:
- Compute the average value of f(x,y) in the pixel

Stanford (5248A, Winter 2026

Original

Filtered

y

Anti-aliasing by computing average pixel value

When rendering one triangle, the value of f(x,y) = inside(tri,x,y) averaged over the area of a
pixel is equal to the amount of the pixel covered by the triangle.

y

+-—

1 pixel width

Stanford (5248A, Winter 2026

Summary

m Drawing a triangle = sampling triangle-screen coverage signal
m Pitfall of sampling: aliasing
m Reduce aliasing by prefiltering signal
- Supersample
- Reconstruct via convolution (average coverage over pixel)
- Higher frequencies removed
- Sample reconstructed signal once per pixel

m There is much, much more to sampling theory and practice...
- If interested see: Stanford EE261 - The Fourier Transform and its Applications

Stanford (5248A, Winter 2026

Consider this task:
viewing a low-resolution image on
a high-resolution display

Say we have an image:

(Which is just a collection of color samples)

Stanford (5248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

O
O
O
O
O

Let’s say this is a 12x16 image.
Which means we have 192 samples of a 2D signal. .
(The white dots are the sample locations in image space.)

But I'm showing it to you nearly full-slide size on your high-
resolution display:
Let’s say its taking up 600x800 pixels on screen.

So to render the image in this “zoomed in” view, we have to
perform “upsampling”: converting a 192-sample representation
of a signal to a 480,000-sample representation.

c o o o o o o o o o o o o o o o
o o o o O o o o o o o

o o0 o O o o o o o
o o0 o o O O o o o o

Stanford (5248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

Visualization of the 192
-

samples in the image

o o0 o o o o o o o o o o o o o o
o O O O O O O e e e oo o o o o o
® O O O e e &6 & o O O O o o o o
O O e o e o oo o o & e O O o o o
O O O O e O O O e o o o o & O o
O O O O e 6 o6 O e oo o o o & O o
c e e O e e e e e e e O O o o o
o O O O e e e & e & O O o o o o
o O O O O e O e e o6 6 e o o o o
o o0 o o 0O o O O o o 0o e e o o o
o o0 o o O O O O O e o e o o o o
o o0 o o O O O O O O e o o o o o

Stanford (5248A, Winter 2026

Consider this task:
viewing a low-resolution image
on a high-resolution display

Displayinganewhigh
resolution 600x800 image

(480,000 samples) that was

created from the original

192 samples

Stanford (5248A, Winter 2026

Let’s consider the region
highlighted in the orange box.

O
O O O O

O
O
O
O
O

c o o o o o o o o o o o o o o o
o o o o O o o o o o o

o o0 o O o o o o o
o o0 o o O O o o o o

Stanford (5248A, Winter 2026

Let’s consider the region
highlighted in the orange box.

Stanford (5248A, Winter 2026

These are the samples from the 12x16 source image.

Stanford (5248A, Winter 2026

But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)

Stanford (5248A, Winter 2026

Recall piecewise-constant reconstruction

frecon(x) = value of sample closest to x
[recon(x) approximates f (x)

\ f(x)

f recon (x)

x0 x1 X2 X3 x4
= reconstruction via piece-wise constant interpolation (nearest neighbor)

Stanford (5248A, Winter 2026

But to render it at high resolution, we need to sample the signal densely.
(At the positions shown by the orange dots)

O O O Let’s say we want to
reconstruct the signal =
f(x,y) at this point p.
f P3 f P2 .
o o ® Given the sampled values

at known sample points.

Stanford (5248A, Winter 2026

What is the piecewise-constant reconstruction of the signal at the
orange dot?

Answer: white

Stanford (5248A, Winter 2026

So if these are the input sample
locations and values.

o o0 o o o o o o o o o o o o o o
o O O O O O O e e e oo o o o o o
® O O O e e &6 & o O O O o o o o
O O e o e o oo o o & e O O o o o
O O O O e O O O e o o o o & O o
O O O O e 6 o6 O e oo o o o & O o
c e e O e e e e e e e O O o o o
o O O O e e e & e & O O o o o o
o O O O O e O e e o6 6 e o o o o
o o0 o o 0O o O O o o 0o e e o o o
o o0 o o O O O O O e o e o o o o
o o0 o o O O O O O O e o o o o o

Stanford (5248A, Winter 2026

This is the piecewise constant
(closest sample) reconstruction

Stanford (5248A, Winter 2026

Recall: piecewise linear reconstruction

[recon(x) = linear interpolation between values of two closest samples to x

X f(x)

f recon (x)

x0 x1 X2 X3 x4
= reconstruction via linear interpolation

Stanford (5248A, Winter 2026

Bilinar interpolation

Recall linear interpolation (1D)

, lerp(z, vo, v1) = vo + x(v1 — Vo)
Compute fractional offsets (hetween samples)

¢ — Px — Pox o o o Two helper lerps (horizontal):
- P1x — Pox a = lerp(s, fpq: fp:)
f f bzlerp(sﬁfpsafpz)
= Y Py : o o
© DP3e — Do Final vertical lerp, to get result:
’ ’ fp = lerp(t, a, b)
Pt
O oS o

Stanford (5248A, Winter 2026

So if these are the input sample
locations and values.

o o0 o o o o o o o o o o o o o o
o O O O O O O e e e oo o o o o o
® O O O e e &6 & o O O O o o o o
O O e o e o oo o o & e O O o o o
O O O O e O O O e o o o o & O o
O O O O e 6 o6 O e oo o o o & O o
c e e O e e e e e e e O O o o o
o O O O e e e & e & O O o o o o
o O O O O e O e e o6 6 e o o o o
o o0 o o 0O o O O o o 0o e e o o o
o o0 o o O O O O O e o e o o o o
o o0 o o O O O O O O e o o o o o

Stanford (5248A, Winter 2026

This is the reconstruction from
bilinear interpolation

Stanford (S248A, Winter 2026

This is the reconstruction from

bicubicinterpolation
(even higher order interpolation)

Stanford (5248A, Winter 2026

Consider this task:
Downsampling a high-resolution
image to a low-resolution one

Stanford (5248A, Winter 2026

Assume these are the input sample
locations and values in the high-
resolution source image...

We need to resample f(x,y) at the sample
locations for the low-resolution image
(orange dots)

To avoid aliasing due to coarse sampling, we need to pre
filter the source image prior to sampling.

(Remember: convolution!)

Orange shaded regions figure shows convolution filter
window sizes needed.

O O O O O

Q

O

O O O O

@) O O O O

o O O O O /O O

o O o0, 0 O O

C

® O OO0 e, 6 0o o o

@ o6 o o e e O O O o o

[/

O O e ©

o e e e e e e O O

O O O O /@ O O

® € o O O

O

O O O O, e o6 o

@ & & O\ O O O o

o e e e @

O e ©

O O O

Q

O O O/0 e e e e e e O o

O O e O e e o6 o6 e O yo o o

O C

O

o o0 o O O O O O O o o e e o o o

o o0 o O O O O O O e o e o o o o

o o0 O O O O O O O O e O o o o o

Stanford (5248A, Winter 2026

Summary: resampling a signal

m Resampling = converting one set of samples of a signal to another
m Requires reconstructing approximation of value of signal at new points in the domain
m Upsampling: requires interpolation of input samples

m Downsampling: requires filtering of reconstructed signal prior to resampling to avoid
aliasing

Stanford (5248A, Winter 2026

Acknowledgements

m Thanks to Ren Ng, Pat Hanrahan, Keenan Crane for slide materials

Stanford (5248A, Winter 2026

