
Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford CS248A, Winter 2026

Lecture 9:

Recovering scene representations
using gradient-based optimization

Stanford CS248A, Winter 2026

Review of last class
(Light and reflectance)

Stanford CS248A, Winter 2026

Review: irradiance
Irradiance: flux (energy per unit time=power) per unit area

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

�

A

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

E(p) = lim
�!0

��(p)

�A
=

d�(p)

dA


W

m2

�

A

Units = Watts per area

d!

<latexit sha1_base64="OJLTkP9RGlqpTHvYHvABjzDPXVc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRKp6LLoxmUF+4AmlMlk0g6dR5iZFEron7hxoYhb/8Sdf+OkzUJbDwwczrmXe+ZEKaPaeN63U9nY3Nreqe7W9vYPDo/c45OulpnCpIMlk6ofIU0YFaRjqGGknyqCeMRIL5rcF35vSpSmUjyZWUpCjkaCJhQjY6Wh6wYcmbHieTwPJCcjNHTrXsNbAK4TvyR1UKI9dL+CWOKME2EwQ1oPfC81YY6UoZiReS3INEkRnqARGVgqECc6zBfJ5/DCKjFMpLJPGLhQf2/kiGs945GdLHLqVa8Q//MGmUluw5yKNDNE4OWhJGPQSFjUAGOqCDZsZgnCitqsEI+RQtjYsmq2BH/1y+uke9Xwm43rx2a9dVfWUQVn4BxcAh/cgBZ4AG3QARhMwTN4BW9O7rw4787HcrTilDun4A+czx8bSJP5</latexit>

Stanford CS248A, Winter 2026

Review: radiance
Radiance (L) is power along an infinitesimally small beam
The solid angle density of irradiance (irradiance per unit direction)
where the differential surface area is oriented to face in the direction

In other words, radiance is energy along a ray defined by origin point p and direction

dA

!

!

P

!

L(p,!) = lim
�!0

��(p,!)

�A�!
=

d2�(p,!)

dA d!

<latexit sha1_base64="pgFkmTofNirpDnfyrq0YOY/PoCM=">AAACqXicfVFdb9MwFHXC1yhfBR55sahAQ6AqmYbgZdIGPPCwh06iXUVTqhv3prVmx5F9s6mK8t/4Dbzxb3DarIJt4kqWjs8599i+TgslHUXR7yC8dfvO3Xs79zsPHj56/KT79NnImdIKHAqjjB2n4FDJHIckSeG4sAg6VXiann1u9NNztE6a/ButCpxqWOQykwLIU7Puz+PdRAMtra6K+h1PjMYFvOEHPFFSz6rkCyoCnli5WBJYay54VCeZBbGVBkt5U0R9aTjil861UDfZm4C2aV7/2PtPytblgzy/3bZxs24v6kfr4tdB3IIea2sw6/5K5kaUGnMSCpybxFFB0wosSaGw7iSlwwLEGSxw4mEOGt20Wk+65q88M+eZsX7lxNfs3x0VaOdWOvXO5qLuqtaQN2mTkrKP00rmRUmYi81BWak4Gd58G59Li4LUygMQVvq7crEEP0byn9vxQ4ivPvk6GO314/3++5P93uGndhw77AV7yXZZzD6wQ/aVDdiQieB1cBwMg1H4NjwJx+H3jTUM2p7n7J8KxR9c89JC</latexit>

Stanford CS248A, Winter 2026

The reflection equation

n
ωo

ωi

BRDF Illumination

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k=">AAAC2HicfVJLaxRBEO4ZH4nra9Wjl8ZFiBCWmRCMFyHgJYeAEdwkuL0OPb01u036MXTXKMsw4EERr/40b/4K/4I9m1E22ZCChq/rq6+quqrzUkmPSfI7im/cvHV7Y/NO7+69+w8e9h89Pva2cgJGwirrTnPuQUkDI5So4LR0wHWu4CQ/e9PyJ5/AeWnNe1yUMNF8ZmQhBcfgyvp/DjOmOc6drm2z9Q+WzTZlVsOMr7Av6GvKpMGsZm9b6uNOQ4v/vLtWLRvKnJzNkTtnP1+Vm23Tw5Xw65Mtw5mwnjKcA16sE5juNm3WlFl/kAyTpdF1kHZgQDo7yvq/2NSKSoNBobj34zQpcVJzh1IoaHqs8lByccZnMA7QcA1+Ui8X09DnwTOlhXXhGKRL76qi5tr7hc5DZNuhv8y1zqu4cYXFq0ktTVkhGHFeqKgURUvbLdOpdCBQLQLgwsnQKxVz7rjA8Bd6YQjp5Sevg+OdYfpymL7bHewfdOPYJE/JM7JFUrJH9skBOSIjIqJRVEdfo2/xh/hL/D3+cR4aR53mCblg8c+/Xgzo1A==</latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

Gives radiance reflected from point p in direction direction ω0 due to light incident on
the surface at p.

Stanford CS248A, Winter 2026

Bidirectional reflectance distribution function (BRDF)
Gives fraction of light arriving at surface point p from incoming direction* ωi is reflected
in the direction ω0 (outgoing direction)

f(p,!i,!o)

N

p

* (Convention: ωi is oriented out from the surface “towards the incoming direction”)

Stanford CS248A, Winter 2026

What is this material?

Light is scattered equally in all directions

Stanford CS248A, Winter 2026

Today:
a small diversion before we dive deeper into reflection and materials next class

So far in class, our primary tasks of interest have been simulation

Simulating what a scene would look like (rendering)
Computing geometric relationships between objects

(e.g, inside/outside, distance to)

Stanford CS248A, Winter 2026

A longstanding challenge in computer graphics…
Acquiring high-quality 3D content for rendering
Consider making a high-quality 3D model and texture maps depicting Josephine the graphics cat…

Stanford CS248A, Winter 2026

Google Street View

Stanford CS248A, Winter 2026Credit: Tancik et al. 2022

Stanford CS248A, Winter 2026

An interesting task
Given a collection of photographs (from known camera viewpoints)
Recover a representation of the 3D scene (surface locations + color at each point on surface) that you could
use for rendering the scene from novel viewpoints

Credit: Mildenhall 2019

Stanford CS248A, Winter 2025

Mini intro to gradient-based optimization

Stanford CS248A, Winter 2026

Imagine we have a function
How can we find the minimum of the function?

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

Stanford CS248A, Winter 2026

Descent methods

Stanford CS248A, Winter 2026

Gradient descent (1D)
Basic idea: follow the gradient “downhill” until it’s zero

Do we always end up at a (global) minimum?
How do we compute gradient descent in practice?

d

dt
x(t) = �f 0(x(t))

<latexit sha1_base64="eLmkq8XucFztpRtMeC+2scEfDyE=">AAACF3icbZC7SgNBFIZnvcZ4i1raDAYxKVx2JaKNELSxjGAukIQwO5lNhsxemDkrhmXfwsZXsbFQxFY738bZZIuY+MPAx3/OYc75nVBwBZb1Yywtr6yurec28ptb2zu7hb39hgoiSVmdBiKQLYcoJrjP6sBBsFYoGfEcwZrO6CatNx+YVDzw72Ecsq5HBj53OSWgrV7B7LiS0LjjERhKL+4nyQxD8liCMr7Cp+5JKcVyr1C0TGsivAh2BkWUqdYrfHf6AY085gMVRKm2bYXQjYkETgVL8p1IsZDQERmwtkafeEx148ldCT7WTh+7gdTPBzxxZydi4ik19hzdme6s5mup+V+tHYF72Y25H0bAfDr9yI0EhgCnIeE+l4yCGGsgVHK9K6ZDooMCHWVeh2DPn7wIjTPTrpjnd5Vi9TqLI4cO0REqIRtdoCq6RTVURxQ9oRf0ht6NZ+PV+DA+p61LRjZzgP7I+PoFavyfXw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f 0(x(0))

<latexit sha1_base64="cXPRKBPN2FYmQPLnlE52x32FrW0=">AAAB73icbVBNSwMxEJ31s9avqkcvwSK2l7IrFT0WvXisYD+gXUo2zbahSXZNsmJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDP1W49UaRbJezOOqS/wQLKQEWys1A7PSk8lt1zuFYpuxZ0BLRMvI0XIUO8Vvrr9iCSCSkM41rrjubHxU6wMI5xO8t1E0xiTER7QjqUSC6r9dHbvBJ1apY/CSNmSBs3U3xMpFlqPRWA7BTZDvehNxf+8TmLCKz9lMk4MlWS+KEw4MhGaPo/6TFFi+NgSTBSztyIyxAoTYyPK2xC8xZeXSfO84lUrF3fVYu06iyMHx3ACJfDgEmpwC3VoAAEOz/AKb86D8+K8Ox/z1hUnmzmCP3A+fwAGzI6p</latexit>

Stanford CS248A, Winter 2026

Gradient descent algorithm (1D)
“Walk downhill”
One simple way: forward Euler:

Q: How do we pick the step size?

If we’re not careful, we’ll go zipping all
over the place; won’t make any progress.

Basic idea: use “step control” to determine step size based on
value of function and its derivatives
For now we will do something simple: make τ small!

step sizenew estimate

xk+1 = xk � ⌧f 0(xk)

<latexit sha1_base64="luDgn6zkoj9FgHSWY4zjhtrcQok=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBaxIpZEKroRim5cVrAPaEOYTCftkMkkzEykJXTjxl9x40IRt/6DO//GaZuFth64cOace5l7jxczKpVlfRu5hcWl5ZX8amFtfWNzy9zeacgoEZjUccQi0fKQJIxyUldUMdKKBUGhx0jTC27GfvOBCEkjfq+GMXFC1OPUpxgpLbnm/sBNgxN7BK/gwA3gKewolED/qKRfx65ZtMrWBHCe2Bkpggw11/zqdCOchIQrzJCUbduKlZMioShmZFToJJLECAeoR9qachQS6aSTK0bwUCtd6EdCF1dwov6eSFEo5TD0dGeIVF/OemPxP6+dKP/SSSmPE0U4nn7kJwyqCI4jgV0qCFZsqAnCgupdIe4jgbDSwRV0CPbsyfOkcVa2K+Xzu0qxep3FkQd74ACUgA0uQBXcghqoAwwewTN4BW/Gk/FivBsf09ackc3sgj8wPn8AKyCWcw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

Stanford CS248A, Winter 2026

Gradient descent algorithm (n-D)
Q: How do we write gradient descent equation in general?

Q: What’s the corresponding discrete update?

Basic challenge in nD:
- solution can “oscillate”
- takes many, many small steps
- very slow to converge

d

dt
x(t) = �rf(x(t))

<latexit sha1_base64="2wqao5rV71OLW2Ov8wcQO0x319s=">AAACMHicbZDNSsNAFIUn/lv/qi7dDBahXVgSqehGEF3osoK1hSaUyXTSDk4mYeZGLCGP5MZH0Y2CIm59CidtF7b1wsDHOfcy9x4/FlyDbb9bc/MLi0vLK6uFtfWNza3i9s6djhJFWYNGIlItn2gmuGQN4CBYK1aMhL5gTf/+MvebD0xpHslbGMTMC0lP8oBTAkbqFK/cQBGauiGBvgrTbpb9YciG7AfpY1aGCj7Dh9iVxBcEB+UJq9IpluyqPSw8C84YSmhc9U7xxe1GNAmZBCqI1m3HjsFLiQJOBcsKbqJZTOg96bG2QUlCpr10eHCGD4zSxUGkzJOAh+rfiZSEWg9C33TmW+ppLxf/89oJBKdeymWcAJN09FGQCAwRztPDXa4YBTEwQKjiZldM+8QkCCbjggnBmT55Fu6Oqk6tenxTK51fjONYQXtoH5WRg07QObpGddRAFD2hV/SBPq1n6836sr5HrXPWeGYXTZT18wt6FapY</latexit>

xk+1 = xk � ⌧rf(xk)

<latexit sha1_base64="jjNyHXaJSWMTDFVG1MN6HGsgtBo=">AAACJnicbVDLSgNBEJyNrxhfqx69DAYhIoZdieglEPTiMYJ5QDaE3slsMmR2dpmZFcOSr/Hir3jxEBHx5qc4eRxitKChqOqmu8uPOVPacb6szMrq2vpGdjO3tb2zu2fvH9RVlEhCayTikWz6oChngtY005w2Y0kh9Dlt+IPbid94pFKxSDzoYUzbIfQECxgBbaSOXfZC0H0/SJ9GnXRw5o5wGS9IA3yOPQ0J9gT4HHBQWDRPO3beKTpT4L/EnZM8mqPascdeNyJJSIUmHJRquU6s2ylIzQino5yXKBoDGUCPtgwVEFLVTqdvjvCJUbo4iKQpofFUXZxIIVRqGPqmc3KkWvYm4n9eK9HBdTtlIk40FWS2KEg41hGeZIa7TFKi+dAQIJKZWzHpgwSiTbI5E4K7/PJfUr8ouqXi5X0pX7mZx5FFR+gYFZCLrlAF3aEqqiGCntErGqN368V6sz6sz1lrxprPHKJfsL5/ANUupWI=</latexit>

h
df
dx0

df
dx1

... df
dxN�1

iT

<latexit sha1_base64="PejEmPusecfufM4h/kGCPvfxgt4=">AAACmHiclVFdb9MwFHUyYKOw0Q3tBV6sVUx7WZSgTUPipYIh4GXqpn5JTVc5zk1r1XEi20GtrPwm/gtv/BucthKl3cO4kqVzzz1XPj6Ocs6U9v3fjrvz5Omz3b3ntRcv9w9e1Q+PuiorJIUOzXgm+xFRwJmAjmaaQz+XQNKIQy+afq7mvR8gFctEW89zGKZkLFjCKNGWGtV/hhGMmTBRSrRksxKHiSTUhLadyNTEZVKuNQsUJWZWjvwSnz5aHFRiz/P+Y8XcnAeltQMi/mvuvj2qN3zPXxTeBsEKNNCqWqP6rzDOaJGC0JQTpQaBn+uhIVIzyqGshYWCnNApGcPAQkFSUEOzCLbE7ywT4yST9giNF+z6hiGpUvM0ssrKudqcVeRDs0Ghkw9Dw0ReaBB0eVFScKwzXP0SjpkEqvncAkIls14xnRCbnLZ/WbMhBJtP3gbd915w4V3eXjSan1Zx7KG36ASdoQBdoSb6hlqog6hz7Hx0rp0v7hu36X51vy+lrrPaeY3+KffuDzqBz34=</latexit>

Stanford CS248A, Winter 2026

Using gradient descent to recover scenes

Stanford CS248A, Winter 2026

But first let’s consider a simpler toy problem

Given a 2D function we can measure (sample):
Let be the result of sampling from NxN
texture x using bilinear interpolation

In the formulation of the previous slides:
- is an array of N2 pixel values (unknown N x N texture map)
-

Let’s try recovering the pixels of a texture map such that sampling the texture using
bilinear interpolation approximates a 2D signal depicting a scene

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x

<latexit sha1_base64="pp3dQHVOJy6eU87K5ZxdxaXE60k=">AAAB+nicbVDLSgNBEJz1GeMr0aOXxSBEkLArEj0GvXiMYB6QLGF20psMmZ1dZnqjYc2nePGgiFe/xJt/4+Rx0MSChqKqm+4uPxZco+N8Wyura+sbm5mt7PbO7t5+Ln9Q11GiGNRYJCLV9KkGwSXUkKOAZqyAhr6Ahj+4mfiNISjNI3mPoxi8kPYkDzijaKROLt9GeMRUM5AwLiZnw9NOruCUnCnsZeLOSYHMUe3kvtrdiCUhSGSCat1ynRi9lCrkTMA42040xJQNaA9ahkoagvbS6elj+8QoXTuIlCmJ9lT9PZHSUOtR6JvOkGJfL3oT8T+vlWBw5aVcxgmCZLNFQSJsjOxJDnaXK2AoRoZQpri51WZ9qihDk1bWhOAuvrxM6uclt1wq310UKtfzODLkiByTInHJJamQW1IlNcLIA3kmr+TNerJerHfrY9a6Ys1nDskfWJ8/JS+T7w==</latexit>

scene(u, v)
<latexit sha1_base64="VzlUQ1QBKo5rKmpwM1/QP/SfYyM=">AAACB3icbVDLSgNBEJz1GeNr1aMgi0GIEMKuSPQY9OIxgnlAEsLspDcZMvtgpjckLLl58Ve8eFDEq7/gzb9xNslBEwtmKKq66e5yI8EV2va3sbK6tr6xmdnKbu/s7u2bB4c1FcaSQZWFIpQNlyoQPIAqchTQiCRQ3xVQdwe3qV8fglQ8DB5wHEHbp72Ae5xR1FLHPGkhjDBJv1jCJN/yKfZdLxlNCnFheN4xc3bRnsJaJs6c5MgclY751eqGLPYhQCaoUk3HjrCdUImcCZhkW7GCiLIB7UFT04D6oNrJ9I6JdaaVruWFUr8Aran6uyOhvlJj39WV6Zpq0UvF/7xmjN51O+FBFCMEbDbIi4WFoZWGYnW5BIZirAllkutdLdankjLU0WV1CM7iycukdlF0SsXS/WWufDOPI0OOySnJE4dckTK5IxVSJYw8kmfySt6MJ+PFeDc+ZqUrxrzniPyB8fkDwGGZ3g==</latexit>

texture(x, u, v)

For a collection of samples

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg=">AAACQXicbVBNSyMxGM7ourpV17oe9xK2CC1omRFx9yKIXjwqWC106pBJ39FgJjMkb8QyzF/bi//Am3cvHpRlr17MtF3WrxcSHp4P8uaJcykM+v6tNzX9aebz7NyX2vzC4tel+vK3Y5NZzaHDM5npbswMSKGggwIldHMNLI0lnMQXe5V+cgnaiEwd4TCHfsrOlEgEZ+ioqN5NmmHK8DxOiquyRbdpaGwaFaKkzRDhCgvDQUHZtJFYu4xEi67TMV9dVjvlf3yN/nO1TjeiesNv+6Oh70EwAQ0ymYOofhMOMm5TUMglM6YX+Dn2C6ZRcAllLbQGcsYv2Bn0HFQsBdMvRg2UdNUxA5pk2h2FdMS+TBQsNWaYxs5ZrWveahX5kdazmPzqF0LlFkHx8UOJlRQzWtVJB0IDRzl0gHEt3K6UnzPNOLrSa66E4O2X34PjjXaw1d463Gzs7E7qmCPfyQ/SJAH5SXbIPjkgHcLJb3JHHsijd+3de3+8v2PrlDfJrJBX4z09A4rpsEI=</latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="Ed13iQdG3evwjWCPvjYOnAuJRPk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpRdkeqx6MVjBfsh7bJk02wbmmSXJFsopb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fw7uZ3xpRpVksH804ob7AfckiRrCx0lM5DdjFKGDnQbHkVtw50CrxMlKCDPWg+NXtxSQVVBrCsdYdz02MP8HKMMLptNBNNU0wGeI+7VgqsaDan8wPnqIzq/RQFCtb0qC5+ntigoXWYxHaToHNQC97M/E/r5Oa6MafMJmkhkqyWBSlHJkYzb5HPaYoMXxsCSaK2VsRGWCFibEZFWwI3vLLq6R5WfGqlerDVal2m8WRhxM4hTJ4cA01uIc6NICAgGd4hTdHOS/Ou/OxaM052cwx/IHz+QPnYY/X</latexit>

(ui, vi)

But how do we compute
<latexit sha1_base64="ypbGDjfeVfyNrATchn2x3kpuQcE=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0Wom5KIVJdFNy4r2Ac0pdxMJ+3QySTMTMQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6Z48ecKe0439bS8srq2npho7i5tb2za+/tN1WUSEIbJOKRbPugKGeCNjTTnLZjSSH0OW35o+vMb91TqVgk7vQ4pt0QBoIFjIA2Us8+9AT4HHBQ9kLQQz9IHyanPbvkVJwp8CJxc1JCOeo9+8vrRyQJqdCEg1Id14l1NwWpGeF0UvQSRWMgIxjQjqECQqq66TT9BJ8YpY+DSJonNJ6qvzdSCJUah76ZzCKqeS8T//M6iQ4uuykTcaKpILNDQcKxjnBWBe4zSYnmY0OASGayYjIECUSbwoqmBHf+y4ukeVZxq5Xq7XmpdpXXUUBH6BiVkYsuUA3doDpqIIIe0TN6RW/Wk/VivVsfs9ElK985QH9gff4A9N+U7Q==</latexit>

→f(x) ?

We seek to minimize the sum of squared differences of
textured result and function we are taking
measurements of.

Stanford CS248A, Winter 2026

Computing derivatives using the chain rule
f(x, y, z) = (x+ y)z = az a = x+ yWhere:

df

da
= z

df

dx
=

df

da

da

dx
= z

da

dx
= 1

So, by the derivative chain rule: x

y

z

+

*

3 (x)

4 (y)

5 (z)

7 (a)
df/da=5

df/dx = df/da = 5

df/dy=df/da=5

df/dz = 7

35 (f(x,y,z))

da

dy
= 1

df/df = 1

Red = output of node
Blue = df/dnode

Stanford CS248A, Winter 2026

Backpropagation (a form of reverse mode autodiff)

x

y
+

df/dg
df/dy=df/dg

df/dx = df/dg dg

dx
= 1 ,

dg

dy
= 1g(x, y) = x+ y

df

dx
=

df

dg

dg

dx
Red = output of node
Blue = df/dnode Recall:

15

12
27 (g(x,y)) “Sum copies gradients”

x

y
max df/dg

df/dy = 0

df/dx=df/dg
15

12 g(x, y) = max(x, y)
dg

dx
=

1, if x > y
0, otherwise

15 (g(x,y)) “Max routes gradient”

x

y
df/dg

df/dy=15(df/dg)

df/dx=12(df/dg)
15

12 * g(x, y) = xy
dg

dx
= y ,

dg

dy
= x180 (g(x,y)) “Multiply scales gradient by

opposite term”

Stanford CS248A, Winter 2026

Backpropagation with multiple uses of an input variable

x
+

df/dg

y

*
+

5(df/dg)

5(df/dg)

5
5
5

g(x, y) = (x+ y) + x ⇤ x = a+ b

dg

dx
=

dg

da

da

dx
+

dg

db

db

dx
= 2x+ 1

Sum gradients from each use of variable:

Here:

25 (a)

4

9 (b)

34 (g)

df/db = df/dg

df/da=df/dg

df/dg

df/dg

<latexit sha1_base64="wn64QMLFq4GPuYHazjoKYXlBjeA=">AAACF3icbVDLSsNAFJ3UV42vqEs3g0VwUUJSpLoRim5cVrAPaEOZTCbt0MmDmYm0hPyFG3/FjQtF3OrOv3HSRtDWA/dyOOdeZu5xY0aFtKwvrbSyura+Ud7Ut7Z3dveM/YO2iBKOSQtHLOJdFwnCaEhakkpGujEnKHAZ6bjj69zv3BMuaBTeyWlMnAANQ+pTjKSSBoap932OcOqhLPUmGbyEtQnsV2E1b4Xl/li2PjAqlmnNAJeJXZAKKNAcGJ99L8JJQEKJGRKiZ1uxdFLEJcWMZHo/ESRGeIyGpKdoiAIinHR2VwZPlOJBP+KqQgln6u+NFAVCTANXTQZIjsSil4v/eb1E+hdOSsM4kSTE84f8hEEZwTwk6FFOsGRTRRDmVP0V4hFSYUgVZR6CvXjyMmnXTLtu1m/PKo2rIo4yOALH4BTY4Bw0wA1oghbA4AE8gRfwqj1qz9qb9j4fLWnFziH4A+3jG9r+nTo=</latexit>

da

dx
= 2x ,

db

dx
= 1

<latexit sha1_base64="hmFEFdOy7YYsC9vBW58U1OobbiE=">AAACFXicbZDLSsNAFIYn9VbrLerSzWApuCglEaluhKIblxXsBZpQJpNJO3QyCTMToYS8hBtfxY0LRdwK7nwbJ20WtfWHgZ/vzOGc83sxo1JZ1o9RWlvf2Nwqb1d2dvf2D8zDo66MEoFJB0csEn0PScIoJx1FFSP9WBAUeoz0vMltXu89EiFpxB/UNCZuiEacBhQjpdHQrDuBQDj1R1nqowxeQxs6dViHC9grsFMZmlWrYc0EV41dmCoo1B6a344f4SQkXGGGpBzYVqzcFAlFMSNZxUkkiRGeoBEZaMtRSKSbzq7KYE0THwaR0I8rOKOLHSkKpZyGer1aiNRYLtdy+F9tkKjgyk0pjxNFOJ4PChIGVQTziKBPBcGKTbVBWFC9K8RjpPNQOsg8BHv55FXTPW/YzUbz/qLauiniKIMTcArOgA0uQQvcgTboAAyewAt4A+/Gs/FqfBif868lo+g5Bn9kfP0CzwWcsQ==</latexit>

dg

da
= 1 ,

dg

db
= 1

<latexit sha1_base64="StbK7+vhhXRRir4UmIahAX7OdPw=">AAAC33icdVJLb9NAEF6bQkt4pXDkMmoECkKK7Aq1vVSqyoVjkUhbKY6i8XrtrLp+aHdcNbJ84cIBVHHlb3Hjj3BmnTgopGEkS99+j/Hu7IaFkoY875fj3tu6/2B752Hn0eMnT591d5+fm7zUXAx5rnJ9GaIRSmZiSJKUuCy0wDRU4iK8et/oF9dCG5lnn2hWiHGKSSZjyZEsNen+DmKNvIriuopuanh9DCtEUreLZKEGQWfdAIESMfVXfLgM4SL0FlbEcCmGbUctkym92di5Dz4EJFNhYP/Gtvm78uF/gdbXyLCx4VKbdHvewJsX3AV+C3qsrbNJ92cQ5bxMRUZcoTEj3ytoXKEmyZWoO0FpRIH8ChMxsjBDu9FxNb+fGl5ZJoI41/bLCObsaqLC1JhZGlpnijQ161pDbtJGJcVH40pmRUki44sfxaUCyqG5bIikFpzUzALkWtq9Ap+inQnZJ9EMwV8/8l1wvj/wDwYHH9/1Tk7bceywl2yP9ZnPDtkJ+8DO2JBxJ3A+O1+dby66X9xb9/vC6jpt5gX7p9wffwDmUOGi</latexit>

df

dx
=

df

dg

dg

dx

=
df

dg

(
dg

da

da

dx
+

dg

db

db

dx

)

=
df

dg
(1→ 2x+ 1→ 1)

=
df

dg
(2x+ 1)

=
df

dg
(11)

df/dx = 11(df/dg)

df/dy = df/dg

Stanford CS248A, Winter 2026

Differentiating our loss function

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg=">AAACQXicbVBNSyMxGM7ourpV17oe9xK2CC1omRFx9yKIXjwqWC106pBJ39FgJjMkb8QyzF/bi//Am3cvHpRlr17MtF3WrxcSHp4P8uaJcykM+v6tNzX9aebz7NyX2vzC4tel+vK3Y5NZzaHDM5npbswMSKGggwIldHMNLI0lnMQXe5V+cgnaiEwd4TCHfsrOlEgEZ+ioqN5NmmHK8DxOiquyRbdpaGwaFaKkzRDhCgvDQUHZtJFYu4xEi67TMV9dVjvlf3yN/nO1TjeiesNv+6Oh70EwAQ0ymYOofhMOMm5TUMglM6YX+Dn2C6ZRcAllLbQGcsYv2Bn0HFQsBdMvRg2UdNUxA5pk2h2FdMS+TBQsNWaYxs5ZrWveahX5kdazmPzqF0LlFkHx8UOJlRQzWtVJB0IDRzl0gHEt3K6UnzPNOLrSa66E4O2X34PjjXaw1d463Gzs7E7qmCPfyQ/SJAH5SXbIPjkgHcLJb3JHHsijd+3de3+8v2PrlDfJrJBX4z09A4rpsEI=</latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="QnUmarK9MSlRkrjmQyhFQrbGHqo=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZKVLdCEU3LivYB7TjkEkzbWiSGZJMoQx146+4caGIW//CnX9j2s5CqwcuHM65l3vvCWJGlXacLyu3tLyyupZfL2xsbm3v2Lt7TRUlEpMGjlgk2wFShFFBGppqRtqxJIgHjLSC4fXUb42IVDQSd3ocE4+jvqAhxUgbybcPLmFXJdxP6QT2S4lPT+HIpyf3Fd8uOmVnBviXuBkpggx13/7s9iKccCI0ZkipjuvE2kuR1BQzMil0E0VihIeoTzqGCsSJ8tLZBxN4bJQeDCNpSmg4U39OpIgrNeaB6eRID9SiNxX/8zqJDi+8lIo40UTg+aIwYVBHcBoH7FFJsGZjQxCW1NwK8QBJhLUJrWBCcBdf/kualbJbLVdvz4q1qyyOPDgER6AEXHAOauAG1EEDYPAAnsALeLUerWfrzXqft+asbGYf/IL18Q16r5Wj</latexit>

=
∑

i

g(ui, vi)
2 where

<latexit sha1_base64="l8vREKPa5igOs9hKd67Djo7OEWY=">AAACJnicbZBNSwMxEIazflu/qh69BIugUMuuSPUiiF48KlgV2lKy6WwNZrNLMimWpb/Gi3/FiwdFxJs/xWy7B78GEl6emWFm3jCVwqDvf3gTk1PTM7Nz86WFxaXllfLq2pVJrObQ4IlM9E3IDEihoIECJdykGlgcSrgO707z/HUftBGJusRBCu2Y9ZSIBGfoUKd81Nu21f4OPaIthHvMDAcFwzHbLVj+We1oK2Z4G0bZ/bBKbZX2dzrlil/zR0H/iqAQFVLEeaf80uom3MagkEtmTDPwU2xnTKPgEoalljWQMn7HetB0UrEYTDsbnTmkW450aZRo9xTSEf3ekbHYmEEcusp8UfM7l8P/ck2L0WE7Eyq1CIqPB0VWUkxo7hntCg0c5cAJxrVwu1J+yzTj6JwtOROC3yf/FVd7taBeq1/sV45PCjvmyAbZJNskIAfkmJyRc9IgnDyQJ/JCXr1H79l7897HpRNe0bNOfoT3+QV/IKSc</latexit>

g(u, v) = scene(u, v)→ texture(x, u, v)
<latexit sha1_base64="5g/mdXmuB6Ef7qeUojBlmASYQ8U=">AAACv3icpVFLSwMxEM6u7/qqevQSLIIHLbsi1YOCj4tHBVuFbinZdLaGZrNLMisty/5JD4L/xmztoQ9vDiR8mfk+ZvJNmEph0PO+HXdpeWV1bX2jsrm1vbNb3dtvmSTTHJo8kYl+C5kBKRQ0UaCEt1QDi0MJr+Hgoay/foA2IlEvOEqhE7O+EpHgDG2qW/0KIs14HsQM33Wc94p+MfUYozDKh0VBb+g8lc5waXBKA4Qh5uWVabCaBcUiZ6Y60+7sH/JutebVvXHQReBPQI1M4qlb/Qx6Cc9iUMglM6bteyl2cqZRcAlFJcgMpIwPWB/aFioWg+nkY/8LemwzPRol2h6FdJydVuQsNmYUh5ZZjmjma2Xyr1o7w+iqkwuVZgiK/zaKMkkxoeUyaU9o4ChHFjCuhZ2V8ndmTUO78oo1wZ//8iJondf9Rr3xfFG7vZ/YsU4OyRE5IT65JLfkkTyRJuHOtRM6A0e6d27fVW76S3WdieaAzIQ7+gHH3eHo</latexit>

dg

dx
=

dg

d texture

d texture

dx
= →d texture

dx

So…
<latexit sha1_base64="Ob0wJ7Qs2I4dze2SWc+6FRfet+s=">AAACpnicjVHbbhMxEPUutxJuAR55GREhpVKJditUeEGq4AVeULmkqZSNFq8zm1q1vStfqkaWP42f4I2/wbuNKLQgMZKt4zNnjsfjqhXc2Cz7kaTXrt+4eWvr9uDO3Xv3HwwfPjo0jdMMp6wRjT6qqEHBFU4ttwKPWo1UVgJn1cnbLj87RW14o77YdYsLSVeK15xRG6ly+K1QtBIU6nEhqT2uan8WtuE17EJhnCw9D7Aau5LvnJZ8G4paU+Z7pZZ+GVbh1+GChAunEKLV8//zgmIHCotn1neb0xh6LXTi8A/7cjjKJlkfcBXkGzAimzgoh9+LZcOcRGWZoMbM86y1C0+15UxgGBTOYEvZCV3hPEJFJZqF78cc4FlkllA3Oi5loWd/r/BUGrOWVVR2LZrLuY78W27ubP1q4blqnUXFzi+qnQDbQPdnsOQamRXrCCjTPPYK7JjG8dn4s4M4hPzyk6+Cw91JvjfZ+/hitP9mM44t8oQ8JWOSk5dkn7wjB2RKWDJK3iefks/pOP2QTtPZuTRNNjWPyR+Rfv0Jx6bSWQ==</latexit>

→f(x) = 2
∑

i

g(ui, vi)
dg

dx
= ↑2

∑

i

g(ui, vi)
d texture(ui, vi)

dx

Stanford CS248A, Winter 2026

Recall: bilinear filtering
<latexit sha1_base64="eGg+yH5fx/z9pdPViGvVoxfIX3c=">AAACCnicbVDLSgNBEJz1GeNr1aOX0SBECGFXJHoMevEYwTwgCWF20psMmX0w0xsSlpy9+CtePCji1S/w5t+4m+SgiQUzFFXddHc5oRQaLevbWFldW9/YzGxlt3d29/bNg8OaDiLFocoDGaiGwzRI4UMVBUpohAqY50ioO4Pb1K8PQWkR+A84DqHtsZ4vXMEZJlLHPGkhjDBOv0jBJN/yGPYdNx5NCjQq0OF5tmPmrKI1BV0m9pzkyByVjvnV6gY88sBHLpnWTdsKsR0zhYJLmGRbkYaQ8QHrQTOhPvNAt+PpKRN6lihd6gYqeT7Sqfq7I2ae1mPPSSrTTfWil4r/ec0I3et2LPwwQvD5bJAbSYoBTXOhXaGAoxwnhHElkl0p7zPFOCbppSHYiycvk9pF0S4VS/eXufLNPI4MOSanJE9sckXK5I5USJVw8kieySt5M56MF+Pd+JiVrhjzniPyB8bnD8OKmkY=</latexit>

texture(x, u, v) :
Let x00, x10, x01, x11 be the samples of texture surrounding (u,v)

Let (s, t) be the x and y fractional offsets

w00 = (1.0 - s) * (1.0 - t);
w10 = s * (1.0 - t);
w01 = (1.0 - s) * t;
w11 = s * t;

result = w00 * x00 + w10 * x01 + w01 * x10 + w11 * x11

t

s
<latexit sha1_base64="zYivnsfRXa8rGYi8t3cR7tbawrw=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4KlmR6rHoxWMF+wHtUrJpto3NJkuSFcvS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGYvztrayurW9sFraK2zu7e/ulg8OmUammrEGVULodEsMEl6xhuRWsnWhG4lCwVji6mfqtR6YNV/LejhMWxGQgecQpsU5qPvUyjCe9UhlX8Axomfg5KUOOeq/01e0rmsZMWiqIMR0fJzbIiLacCjYpdlPDEkJHZMA6jkoSMxNks2sn6NQpfRQp7UpaNFN/T2QkNmYch64zJnZoFr2p+J/XSW10FWRcJqllks4XRalAVqHp66jPNaNWjB0hVHN3K6JDogm1LqCiC8FffHmZNM8rfrVSvbso167zOApwDCdwBj5cQg1uoQ4NoPAAz/AKb57yXrx372PeuuLlM0fwB97nD0HAjvA=</latexit>x00

<latexit sha1_base64="jIi6k48BeFuGtRJDAEAdu5RPc1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp14W+JNeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUNGjvE=</latexit>x10

<latexit sha1_base64="CGWJgeVt1CSxERUrkfXYtnnzqWc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp14WBJNeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUTLjvI=</latexit>x11
<latexit sha1_base64="/x6IMHjtwehNzmlfdwWmHWOZ7Ag=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp17mB5NeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUNFjvE=</latexit>x01

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x

<latexit sha1_base64="QTtruESf2pPSgImIEQq6shtYiC8=">AAACNXicbVDLSgNBEJz1bXxFPXoZDIJCCLsi0aPoxYMHBfOAbAizk944OPtgpjckLPtTXvwPT3rwoIhXf8HZGMQYG2Yoqqrp7vJiKTTa9rM1Mzs3v7C4tFxYWV1b3yhubtV1lCgONR7JSDU9pkGKEGooUEIzVsACT0LDuzvP9UYflBZReIPDGNoB64XCF5yhoTrFS9dXjKduwPBWBWk3o26ZuggDTPMvUZDtj0TPTwdZmSZl2j/IJvw/atYpluyKPSo6DZwxKJFxXXWKj2434kkAIXLJtG45doztlCkUXEJWcBMNMeN3rActA0MWgG6no6szumeYLvUjZV6IdMT+7khZoPUw8IwzX1H/1XLyP62VoH/STkUYJwgh/x7kJ5JiRPMIaVco4CiHBjCuhNmV8ltmYkQTdMGE4Pw9eRrUDytOtVK9Piqdno3jWCI7ZJfsE4cck1NyQa5IjXByT57IK3mzHqwX6936+LbOWOOebTJR1ucXGqOteg==</latexit>

d texture(x, u, v)

dx
So what is ?

Stanford CS248A, Winter 2026

Simple gradient descent algorithm for recovering
texture values
Let X = random texture values

while (loss too high): # f(X) is too large

 Let UV = vector of (u_i, v_i) sample positions

 grad = f_grad(UV)

 X += -grad * step_size;

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg=">AAACQXicbVBNSyMxGM7ourpV17oe9xK2CC1omRFx9yKIXjwqWC106pBJ39FgJjMkb8QyzF/bi//Am3cvHpRlr17MtF3WrxcSHp4P8uaJcykM+v6tNzX9aebz7NyX2vzC4tel+vK3Y5NZzaHDM5npbswMSKGggwIldHMNLI0lnMQXe5V+cgnaiEwd4TCHfsrOlEgEZ+ioqN5NmmHK8DxOiquyRbdpaGwaFaKkzRDhCgvDQUHZtJFYu4xEi67TMV9dVjvlf3yN/nO1TjeiesNv+6Oh70EwAQ0ymYOofhMOMm5TUMglM6YX+Dn2C6ZRcAllLbQGcsYv2Bn0HFQsBdMvRg2UdNUxA5pk2h2FdMS+TBQsNWaYxs5ZrWveahX5kdazmPzqF0LlFkHx8UOJlRQzWtVJB0IDRzl0gHEt3K6UnzPNOLrSa66E4O2X34PjjXaw1d463Gzs7E7qmCPfyQ/SJAH5SXbIPjkgHcLJb3JHHsijd+3de3+8v2PrlDfJrJBX4z09A4rpsEI=</latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="Ob0wJ7Qs2I4dze2SWc+6FRfet+s=">AAACpnicjVHbbhMxEPUutxJuAR55GREhpVKJditUeEGq4AVeULmkqZSNFq8zm1q1vStfqkaWP42f4I2/wbuNKLQgMZKt4zNnjsfjqhXc2Cz7kaTXrt+4eWvr9uDO3Xv3HwwfPjo0jdMMp6wRjT6qqEHBFU4ttwKPWo1UVgJn1cnbLj87RW14o77YdYsLSVeK15xRG6ly+K1QtBIU6nEhqT2uan8WtuE17EJhnCw9D7Aau5LvnJZ8G4paU+Z7pZZ+GVbh1+GChAunEKLV8//zgmIHCotn1neb0xh6LXTi8A/7cjjKJlkfcBXkGzAimzgoh9+LZcOcRGWZoMbM86y1C0+15UxgGBTOYEvZCV3hPEJFJZqF78cc4FlkllA3Oi5loWd/r/BUGrOWVVR2LZrLuY78W27ubP1q4blqnUXFzi+qnQDbQPdnsOQamRXrCCjTPPYK7JjG8dn4s4M4hPzyk6+Cw91JvjfZ+/hitP9mM44t8oQ8JWOSk5dkn7wjB2RKWDJK3iefks/pOP2QTtPZuTRNNjWPyR+Rfv0Jx6bSWQ==</latexit>

→f(x) = 2
∑

i

g(ui, vi)
dg

dx
= ↑2

∑

i

g(ui, vi)
d texture(ui, vi)

dx

Gradient of the L2 difference between the value of the bilinearly filtered
texture X, and the target signal we are trying to recover
(When measured at the given array of sample points)

Stanford CS248A, Winter 2026

Using Slang to automatically compute derivatives
The Slang compiler provides auto-differentiation services (backward autodial example below)

[Differentiable]
float foo(float a, float b)
{
 return a * b * b;
}

DifferentialPair<float> dp_a = diffPair(1.0);
DifferentialPair<float> dp_b = diffPair(2.4);

// Derivative of scalar L w.r.t the function foo’s output
float2 dL_dfoo = float2(1.0);

// compiler generates code for computing dFoo/da and dFoo/db
// and uses the input dL_dfoo to compute dL/da and dL/db
// dL/da=(dL/dfoo)(dfoo/da), dL/db=(dL/dfoo)(dfoo/db)
bwd_diff(foo)(dp_a, dp_b, dL_dfoo);

float dL_da = dp_a.d;
float dL_db = dp_b.d;

printf("If dL/dOutput = 1.0, then (dL/da, dL/db) at (1.0, 2.4) = (%f, %f)", dL_da, dL_db);

Example use of foo in a backwards pass to compute gradients:

Example of calling foo() in a “forward pass”:
float a = 1.0;
float b = 2.4;
float result = foo(a, b);
float loss = 100 - result;

printf(“result is %f, loss was %f”, result, loss);

Stanford CS248A, Winter 2026

Example: optimization to recover texture values

Target signal:
<latexit sha1_base64="pp3dQHVOJy6eU87K5ZxdxaXE60k=">AAAB+nicbVDLSgNBEJz1GeMr0aOXxSBEkLArEj0GvXiMYB6QLGF20psMmZ1dZnqjYc2nePGgiFe/xJt/4+Rx0MSChqKqm+4uPxZco+N8Wyura+sbm5mt7PbO7t5+Ln9Q11GiGNRYJCLV9KkGwSXUkKOAZqyAhr6Ahj+4mfiNISjNI3mPoxi8kPYkDzijaKROLt9GeMRUM5AwLiZnw9NOruCUnCnsZeLOSYHMUe3kvtrdiCUhSGSCat1ynRi9lCrkTMA42040xJQNaA9ahkoagvbS6elj+8QoXTuIlCmJ9lT9PZHSUOtR6JvOkGJfL3oT8T+vlWBw5aVcxgmCZLNFQSJsjOxJDnaXK2AoRoZQpri51WZ9qihDk1bWhOAuvrxM6uclt1wq310UKtfzODLkiByTInHJJamQW1IlNcLIA3kmr+TNerJerHfrY9a6Ys1nDskfWJ8/JS+T7w==</latexit>

scene(u, v)

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x

Stanford CS248A, Winter 2026

Okay, finally back to our original problem of recovering scenes…

Stanford CS248A, Winter 2026

Estimating mesh geometry is tricky

Credit: Mildenhall 2019

Stanford CS248A, Winter 2026

Renewed interest in volume rendering (circa 2018)
The idea: if the task we care about is scene reconstruction from photos (not efficient scene rendering)…
Let’s move away from triangle-based representations. It is simpler (and more versatile when it’s unclear
what the surface geometry is anyway) to recover a volumetric representation

Credit: Lombardi 2019

A “reasonable” volume representing the scene is the one that, when volume
rendered from the viewpoint of the photograph, produces a picture that looks
like the photograph.

Stanford CS248A, Winter 2026

Last time: simple volume rendering

Credit: Taubmann et al. , Siemens Healthineers

Volume rendered CT scan Volume rendered scene

Consider representing a scene as a volume

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density and “reflectance” at all points in space

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Think: radiance reflected off
volume material at point p
in direction ω. (Or radiance
emitted by volume)

Stanford CS248A, Winter 2026

Last time: rendering volumes

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density at all points in space.

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

And continuous volume with density and directional radiance.

Step through the volume to compute radiance along the ray.
Color, opacity of the volume at the current point
(More precisely: radiance along -w at point r(t))

Attenuation of radiance along r between r(t) and
the ray original due to light being absorbed or
scattered by the volume

<latexit sha1_base64="XbhNmHdsrx0Yf9/Bklcyc+huCbI=">AAACU3icbVHLSgMxFM2M9VVfVZdugkVoQcuMiLoRRDcuXCj0IXTqkEkzNTbJDMkdoQzzjyK48EfcuNC0VvB1IeHknHPJzUmUCm7A814cd6Y0Oze/sFheWl5ZXausb7RNkmnKWjQRib6JiGGCK9YCDoLdpJoRGQnWiYbnY73zwLThiWrCKGU9SQaKx5wSsFRYub+sBZLAXRTnuqjjExxwBWEOoSpu7R4XuFmDemD4QJJvTsvV8deRFj+VXbwXJJINyJdHy7xfQFipeg1vUvgv8KegiqZ1FVaegn5CM8kUUEGM6fpeCr2caOBUsKIcZIalhA7JgHUtVEQy08snmRR4xzJ9HCfaLgV4wn7vyIk0ZiQj6xyPaH5rY/I/rZtBfNzLuUozYIp+XhRnAkOCxwHjPteMghhZQKjmdlZM74gmFOw3lG0I/u8n/wXt/YZ/2Di8Pqienk3jWEBbaBvVkI+O0Cm6QFeohSh6RK/o3UHOs/Pmum7p0+o6055N9KPclQ/kO7Nl</latexit>

L(r) =

∫ tf

tn

T (t)ω(r(t))c(r(t),→ε))dt

Radiance leaving volume point p in direction w
(Due to light reflection off volume or emission)

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

tn

tf

<latexit sha1_base64="muzUIeYxUeBoMDCCLI2QqUEOOxU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1ekrQIe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPk8OPJg==</latexit>ω

Stanford CS248A, Winter 2026

Last time: rendering volumes

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

And volume with density and directional radiance

Step through the volume and accumulate radiance along the ray:

L = 0.0 // total radiance accumulated
thickness = 0.0 // total density traversed
num_steps = (t_f - t_n) / step_size
for i=0 to num_steps:
 p = o + (t_n + i * step_size) * w // current point along ray
 density = sample_density(p) // tri-lerp
 refl = sample_color(p, -w) // tri-lerp
 thickness += density * step_size
 transmittance = exp(-thickness)

 // accumulate radiance contributed from current point
 // (accounting for attenuation)
 L += transmittance * density * refl

tn

tf

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

<latexit sha1_base64="muzUIeYxUeBoMDCCLI2QqUEOOxU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1ekrQIe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPk8OPJg==</latexit>ω

Computing gradients with
respect to volume parameters

Stanford CS248A, Winter 2026

Recovering a volume that yields acquired images

Compute radiance along
ray through volume

Compare to
actual image

Given a set of images of a subject with known camera positions…
And a volume renderer that can render an image given a camera position and a volume

Recover the parameters of a 3D volume: *
<latexit sha1_base64="HF3cMKvGI8gTDRoJdeXeSb8p55c=">AAACDHicbVDLSgMxFL1TX7W+qi7dBItQoZQZkeqy6MZlBfuATimZNNPGZjJDkhHK0A9w46+4caGIWz/AnX9jpp2Ftl4SOJxzLvfe40WcKW3b31ZuZXVtfSO/Wdja3tndK+4ftFQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9Tvf1ApWKhuNOTiPYCPBTMZwRrQ/WLJVexYYDLrHJfGZ9WkGtegPXI8xMyzVjjsqv2rNAycDJQgqwa/eKXOwhJHFChCcdKdR070r0ES80Ip9OCGysaYTLGQ9o1UOCAql4yO2aKTgwzQH4ozRcazdjfHQkOlJoEnnGmi6pFLSX/07qx9i97CRNRrKkg80F+zJEOUZoMGjBJieYTAzCRzOyKyAhLTLTJr2BCcBZPXgats6pTq9Zuz0v1qyyOPBzBMZTBgQuoww00oAkEHuEZXuHNerJerHfrY27NWVnPIfwp6/MHjnGZbA==</latexit>

ω(i, j, k), c(i, j, k)

* In this simple example, assume that
<latexit sha1_base64="SwIvZQzLFUp8xjNopM6eyma8g2I=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0VoQUoi0roRim5cVrAPaEKZTCft0JkkzEyEEvIpbvwVNy4U0Z1+jZO0C217YOBwzrnMvceLGJXKsr6Nwtr6xuZWcbu0s7u3f2AeHnVkGAtM2jhkoeh5SBJGA9JWVDHSiwRB3GOk601uM7/7SISkYfCgphFxORoF1KcYKS0NzIbDkRp7foLTSk4FT6L0HDohJyNUhddwZaA6MMtWzcoBl4k9J2UwR2tgfjnDEMecBAozJGXftiLlJkgoihlJS04sSYTwBI1IX9MAcSLdJD8whWdaGUI/FPoFCubq34kEcSmn3NPJbEW56GXiKq8fK//KTWgQxYoEePaRHzOoQpi1BYdUEKzYVBOEBdW7QjxGAmGlOy3pEuzFk5dJ56Jm12v1+8ty82ZeRxGcgFNQATZogCa4Ay3QBhg8gRfwBt6NZ+PV+DA+Z9GCMZ85Bv9g/PwCJcqjmA==</latexit>

c(p,ω) = c(p) (No directional dependence of radiance reflected off volume)

Stanford CS248A, Winter 2026

Recovering density and color of volume

Stanford CS248A, Winter 2026

Visualization of gradient of loss
Volume initialized to low density value everywhere

This is a visualization of the gradient of the loss

Positive gradient occurs in what should be empty space
- Stepping in direction of negative gradient will reduce

volume density.

Negative gradient occurs in the view frustum where
geometry should be present. Density should increase
there

Stanford CS248A, Winter 2026

Regular 3D grid representation of a volume
Dense 3D grid
- volume[i,j,k] = rgba

Note, this representation treats surface as
diffuse, since:

Would need σ[i,j,k] and c[i,j,k,phi,theta] to
represent directional distribution of
radiance

Credit: Voxel Ville NFT (voxelville.io)

c(p,!) = c(p)

<latexit sha1_base64="iPFxnucawQI81Uo6+5/oph5A5qw=">AAACDnicbVDLSgMxFM3UV62vUZdugqXQgpQZqehGKLpxWcE+oFNKJs20oUlmSDJCGfoFbvwVNy4UcevanX9jpp1FbT1w4XDOvdx7jx8xqrTj/Fi5tfWNza38dmFnd2//wD48aqkwlpg0cchC2fGRIowK0tRUM9KJJEHcZ6Ttj29Tv/1IpKKheNCTiPQ4GgoaUIy0kfp2CZc9jvRI8iSankEv5GSIKvAaLuqVvl10qs4McJW4GSmCDI2+/e0NQhxzIjRmSKmu60S6lyCpKWZkWvBiRSKEx2hIuoYKxInqJbN3prBklAEMQmlKaDhTFycSxJWacN90pieqZS8V//O6sQ6uegkVUayJwPNFQcygDmGaDRxQSbBmE0MQltTcCvEISYS1SbBgQnCXX14lrfOqW6te3NeK9Zssjjw4AaegDFxwCergDjRAE2DwBF7AG3i3nq1X68P6nLfmrGzmGPyB9fULzj+bVQ==</latexit>

Stanford CS248A, Winter 2026

Regular 3D grid representation of a volume

Credit: Voxel Ville NFT (voxelville.io)

Consider storage requirements:
40963 cells

Ignore directional dependency: rgbσ 4 bytes/cell
~ 128 GB

Now consider directional dependency of color
on (�, ✓)

<latexit sha1_base64="FANx3/kS5T1KQQSpkjHNFSSCIO0=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBahgpREKnosevFYwX5AE8tmu2mWbjZhd6KU0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+YngGmz72yqsrK6tbxQ3S1vbO7t75f2Dto5TRVmLxiJWXZ9oJrhkLeAgWDdRjES+YB1/dDP1O49MaR7LexgnzIvIUPKAUwJGeqi6ScjPsAshA3LaL1fsmj0DXiZOTiooR7Nf/nIHMU0jJoEKonXPsRPwMqKAU8EmJTfVLCF0RIasZ6gkEdNeNrt6gk+MMsBBrExJwDP190RGIq3HkW86IwKhXvSm4n9eL4Xgysu4TFJgks4XBanAEONpBHjAFaMgxoYQqri5FdOQKELBBFUyITiLLy+T9nnNqdcu7uqVxnUeRxEdoWNURQ66RA10i5qohShS6Bm9ojfryXqx3q2PeWvBymcO0R9Ynz9GBZG6</latexit>

… much worse storage cost

Typical challenge:
limited resolution

Stanford CS248A, Winter 2026

Recall quad-tree / octree
Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t have to choose
partition planes)

Has greater ability to adapt to location of scene geometry
than uniform grid.

Stanford CS248A, Winter 2026

Recall quad-tree / octree
Now store samples of occupancy or density field in the tree structure, not triangles

Full
Fu

ll

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes
Interior nodes with no children → same “value” for all children in subtree
Value stored at nodes could be: binary occupancy, or value like: or �a(x, y, z)

<latexit sha1_base64="EdJktxkEMA+gjcigeiqxD3Ulup8=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoUEoiFV0W3bisYB/QhjCZTtqhM5MwMxHT0C9x40IRt36KO//GaZuFth64cDjnXu69J4gZVdpxvq219Y3Nre3CTnF3b/+gZB8etVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxrczv/NIpKKReNBpTDyOhoKGFCNtJN8u9RUdcuSjylM1rU7Ofbvs1Jw54Cpxc1IGOZq+/dUfRDjhRGjMkFI914m1lyGpKWZkWuwnisQIj9GQ9AwViBPlZfPDp/DMKAMYRtKU0HCu/p7IEFcq5YHp5EiP1LI3E//zeokOr72MijjRRODFojBhUEdwlgIcUEmwZqkhCEtqboV4hCTC2mRVNCG4yy+vkvZFza3XLu/r5cZNHkcBnIBTUAEuuAINcAeaoAUwSMAzeAVv1sR6sd6tj0XrmpXPHIM/sD5/AM6lkoo=</latexit>

�s(x, y, z)

<latexit sha1_base64="MoUj1WLTCRpmzcv8TqViepLOGCY=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoUEoiFV0W3bisYB/QhjCZTtqhM5MwMxHT0C9x40IRt36KO//GaZuFth64cDjnXu69J4gZVdpxvq219Y3Nre3CTnF3b/+gZB8etVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxrczv/NIpKKReNBpTDyOhoKGFCNtJN8u9RUdcuSrylM1rU7Ofbvs1Jw54Cpxc1IGOZq+/dUfRDjhRGjMkFI914m1lyGpKWZkWuwnisQIj9GQ9AwViBPlZfPDp/DMKAMYRtKU0HCu/p7IEFcq5YHp5EiP1LI3E//zeokOr72MijjRRODFojBhUEdwlgIcUEmwZqkhCEtqboV4hCTC2mRVNCG4yy+vkvZFza3XLu/r5cZNHkcBnIBTUAEuuAINcAeaoAUwSMAzeAVv1sR6sd6tj0XrmpXPHIM/sD5/AOprkpw=</latexit>

Empty

Em
pt

y

Em
pt

y

Stanford CS248A, Winter 2026

Ray marching a sparse voxel grid
Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

Stanford CS248A, Winter 2026

OpenVDB
Popular tree-structure for representing sparse volumetric data
Inspired by B+ trees used in databases

Stanford CS248A, Winter 2026

OpenVDB node visualization
Popular tree-structure for representing sparse volumetric data
Inspired by B+ trees used in databases

Stanford CS248A, Winter 2026

Example usage of volumetric data

Stanford CS248A, Winter 2026

Can you think of challenges of using sparse structures when
attempting to recover a 3D scene representation?

Stanford CS248A, Winter 2026

Recurring theme in this course:
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity field that
represents a complex 3D scene

And that recovery process is optimization via gradient descent.

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Stanford CS248A, Winter 2026

Learning (compressed) representations
Rather than store an entire dense volume, let’s just learn an approximation to the
continuous function that matches observations from different viewpoints?

Let’s represent that approximation using a deep neural network.

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

(p,!)

<latexit sha1_base64="FHD1wH/DYnTTGuRh2LCP/DUtF8o=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWoICWRii6LblxWsA9oQplMJ+3QeYSZiRBC/RU3LhRx64e482+ctFlo64GBwzn3cs+cMKZEadf9tkpr6xubW+Xtys7u3v6BfXjUVSKRCHeQoEL2Q6gwJRx3NNEU92OJIQsp7oXT29zvPWKpiOAPOo1xwOCYk4ggqI00tKt1n0E9kSyLZ+e+YHgMz4Z2zW24czirxCtIDRRoD+0vfyRQwjDXiEKlBp4b6yCDUhNE8aziJwrHEE3hGA8M5ZBhFWTz8DPn1CgjJxLSPK6dufp7I4NMqZSFZjJPqpa9XPzPGyQ6ug4ywuNEY44Wh6KEOlo4eRPOiEiMNE0NgUgSk9VBEygh0qaviinBW/7yKuleNLxm4/K+WWvdFHWUwTE4AXXggSvQAnegDToAgRQ8g1fwZj1ZL9a79bEYLVnFThX8gfX5A2m7lKA=</latexit>

F✓(p,!)

<latexit sha1_base64="wqM3KqgCR4whFeusuMYoe79JBhM=">AAACBHicbVDLSgNBEJyNrxhfqx5zWQxCBAm7EtFjUBCPEcwDsiHMTjrJkJndZaZXCEsOXvwVLx4U8epHePNvnDwOmljQUFR1090VxIJrdN1vK7Oyura+kd3MbW3v7O7Z+wd1HSWKQY1FIlLNgGoQPIQachTQjBVQGQhoBMPrid94AKV5FN7jKIa2pP2Q9zijaKSOnb/p+DgApEVfUhwomcbjUz+S0KcnHbvgltwpnGXizUmBzFHt2F9+N2KJhBCZoFq3PDfGdkoVciZgnPMTDTFlQ9qHlqEhlaDb6fSJsXNslK7Ti5SpEJ2p+nsipVLrkQxM5+RSvehNxP+8VoK9y3bKwzhBCNlsUS8RDkbOJBGnyxUwFCNDKFPc3OqwAVWUocktZ0LwFl9eJvWzklcund+VC5WreRxZkidHpEg8ckEq5JZUSY0w8kieySt5s56sF+vd+pi1Zqz5zCH5A+vzB4dMmAc=</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Stanford CS248A, Winter 2026

Recovering neural radiance fields (NeRF)

Key idea: differentiable volume renderer to compute dL/d(color)d(opacity)

Stanford CS248A, Winter 2026

Great visual results!

Credit: Mildenhall 2023

Stanford CS248A, Winter 2026

What just happened?
Continuous coordinate-based representation vs regular grid: DNN is optimized so its weights to produce
high-resolution output where needed to match input image data

Extremely compact representation: trades-off storage for expensive rendering
- Good: a few MBs = effectively very high-resolution dense grid
- Bad: must evaluate DNN every step during ray marching

- And the DNN is a “big” MLP (8-layer x 256)
- Bad: must step densely (because we don’t know where the surface is… we can only query the DNN

for opacity)

Compact representation: DNN can interpolate views despite complexity of volume density and radiance
function
- Only prior is the separation into positional and directional rgb
- Training time: hours to a day to optimize a good NeRF

�

<latexit sha1_base64="HRIQLMFYOCGIGwB9UAGNEgDm9D0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPnvePKw==</latexit>

MLP must do real work to associate
weights with 5D locations

Stanford CS248A, Winter 2026

Is NeRF a “good” representation?
Ask yourself: what was the task?
- Optimization (to recover DNN weights) and then rendering high-quality images
- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-based

representations would be very complex!

Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes with
viewpoint dependent surfaces possible (scene parameters fit on single GPU)
- Amount of compression possible while retaining high fidelity was generally surprising to many
- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter capacity as

needed to maintain high quality

NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a
differentiable volume renderer to recover a model of a scene.

Stanford CS248A, Winter 2026

Improving rendering performance
But from a performance perspective, NeRF was not so good of a representation.
So let’s use our graphics knowledge to move to representations that offer different points in the
compression-compute trade-off space

Main ideas:
- Most of a scene is empty space, let’s avoid stepping densely through empty space when

unnecessary (aka. It’s costly to evaluate the DNN during ray marching to find density = 0)
- Shrink the size of the DNN
- Avoid evaluating the DNN altogether when you can

Stanford CS248A, Winter 2026

Recall: ray marching a sparse voxel grid
Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

Stanford CS248A, Winter 2026

Let’s just run NeRF optimization for a bit like before…

Use the initial MLP to densely sample volume
(Identify the empty space, use it to build a simple octree)

Note:
This implementation uses 2-level octreee

Optimization will push some opacity values to 0
DNN tells us where the empty space is!

Then convert dense opacity grid to an octree representation that’s more efficient to render from…
With the octree structure *fixed*, we can continue to optimize a color/density representation at leaves

Credit: Yu 2021

Stanford CS248A, Winter 2026

What just happened?
We performed initial training… a la original NeRF
Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to
replace the “big” DNN. Can use little DNNs at the leaves.
That structure speeds up rendering (a lot), and it also speeds up “fine tuning” training, since the initial
“big” DNN need not be trained to convergence

Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP

Credit: Yu 2021

Stanford CS248A, Winter 2026

Another idea: use spherical harmonic representation of radiance
Useful basis for representing functions that varying smoothly w.r.t direction.
Analogy: cosine basis on the sphere

Represent compactly by
projecting into basis of SH.

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Ym
l (!) = Ym

l (✓,�)

<latexit sha1_base64="VHAc7TBcDQOxOotPHcY7mXUAD3E=">AAACJnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdUfQiBL14VDA+yMYwO+kkQ2Z2l5leISz7NV78FS8eFBFvfoqTmIMmKWgoqrrp7gpiKQy67peTm5tfWFzKLxdWVtfWN4qbWzcmSjSHOo9kpO8CZkCKEOooUMJdrIGpQMJt0D8f+rePoI2IwmscxNBUrBuKjuAMrdQqnvqKYU+r9D57SFXWSmVW9iMFXVahp3SWiT1Atk/9uCcqrWLJrboj0GnijUmJjHHZKr757YgnCkLkkhnT8NwYmynTKLiErOAnBmLG+6wLDUtDpsA009GbGd2zSpt2Im0rRDpS/06kTBkzUIHtHN5tJr2hOMtrJNg5aaYijBOEkP8u6iSSYkSHmdG20MBRDixhXAt7K+U9phlHm2zBhuBNvjxNbg6q3mH16OqwVDsbx5EnO2SXlIlHjkmNXJBLUiecPJEX8kbenWfn1flwPn9bc854Zpv8g/P9A5aMpmw=</latexit>

Stanford CS248A, Winter 2026

Light probe locations in a game
Here: spherical harmonic probes sampled on a uniform grid
(game compactly stores a few SH coefficients at each point to represent indirect illumination)

Stanford CS248A, Winter 2026

Finally…back to where we began
Start with a dense 3D grid of SH coefficients, optimize those
coefficients at low resolution
Now move to a sparse higher resolution representation
(octree)
Directly optimize for opacities and SH coefficients using
differentiable volume rendering
No neural networks. Just optimizing the octree
representation of “baked spherical harmonic light” lighting

Takeaway: often-used computer graphics representations are
efficient representations to learn/optimize on

Plenoxels [CVPR 22]

Stanford CS248A, Winter 2026

Neural codes… better than a DNN at the leaves

Rather than store a “per-leaf” DNN or per leaf SH coefficients, store a “code” zi per leaf node i

Ray march through the octree like normal
- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample

point, or evaluating SH coeffients to get radiance… retrieve the neural code zi
- Use a DNN to “decode” the code into a radiance or opacity

Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color,
it doesn’t have to represent all spatial occupancy information

Stanford CS248A, Winter 2026

Hashing: a parallel friendly approach to storing and retrieving sparse voxels
Voxel hashing is a fast GPU data structure for supporting sparse voxel representations
- “Give me data for voxel containing (x,y,z)”
- Compact in space and “GPU friendly” for fast parallel lookup and update
TL;DR — use hashing instead of trees
Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13]

Stanford CS248A, Winter 2026

Advanced topic: NVIDIA’s instant neural graphics primitives (NGP)
Combines two ideas:

- Hierarchy of regular grids

- Irregular hash data structures

Given position P:
Compute indices of cell containing P on a bunch of different resolution grids (L grids)
At each grid resolution, turn indices into a hash code.
Use hash code to get F components of neural code Z
Concatenate all the codes to get Z (neural code of length L x F)
Send Z through an MLP to decode final value

What is cool:
1. Implementation elegance: no two-step process to find empty space, build structure, then proceed optimizing on another data structure
2. Sparse hash structure is fast… ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.

Stanford CS248A, Winter 2026

Summarizing it all: the “template”
Train a DNN to gain understanding of 3D occupancy (where the surface is)
- Little to no geometric priors (so need full bag of DNN optimization tricks, etc)

Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
- Now the “topology” of the irregular data structure is fixed
- Representation of surface/appearance/etc is stored at the nodes of this structure (spherical harmonics,

neural code, etc.)
- Most of the heavy lifting is now performed by the traditional spatial data structure

Continue optimization on the fixed, sparse representation
- Leverages differential volume rendering on sparse structure
- What we’re now learning is how to represent/compress the local details

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

(p,!)

<latexit sha1_base64="FHD1wH/DYnTTGuRh2LCP/DUtF8o=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWoICWRii6LblxWsA9oQplMJ+3QeYSZiRBC/RU3LhRx64e482+ctFlo64GBwzn3cs+cMKZEadf9tkpr6xubW+Xtys7u3v6BfXjUVSKRCHeQoEL2Q6gwJRx3NNEU92OJIQsp7oXT29zvPWKpiOAPOo1xwOCYk4ggqI00tKt1n0E9kSyLZ+e+YHgMz4Z2zW24czirxCtIDRRoD+0vfyRQwjDXiEKlBp4b6yCDUhNE8aziJwrHEE3hGA8M5ZBhFWTz8DPn1CgjJxLSPK6dufp7I4NMqZSFZjJPqpa9XPzPGyQ6ug4ywuNEY44Wh6KEOlo4eRPOiEiMNE0NgUgSk9VBEygh0qaviinBW/7yKuleNLxm4/K+WWvdFHWUwTE4AXXggSvQAnegDToAgRQ8g1fwZj1ZL9a79bEYLVnFThX8gfX5A2m7lKA=</latexit>

F✓(p,!)

<latexit sha1_base64="wqM3KqgCR4whFeusuMYoe79JBhM=">AAACBHicbVDLSgNBEJyNrxhfqx5zWQxCBAm7EtFjUBCPEcwDsiHMTjrJkJndZaZXCEsOXvwVLx4U8epHePNvnDwOmljQUFR1090VxIJrdN1vK7Oyura+kd3MbW3v7O7Z+wd1HSWKQY1FIlLNgGoQPIQachTQjBVQGQhoBMPrid94AKV5FN7jKIa2pP2Q9zijaKSOnb/p+DgApEVfUhwomcbjUz+S0KcnHbvgltwpnGXizUmBzFHt2F9+N2KJhBCZoFq3PDfGdkoVciZgnPMTDTFlQ9qHlqEhlaDb6fSJsXNslK7Ti5SpEJ2p+nsipVLrkQxM5+RSvehNxP+8VoK9y3bKwzhBCNlsUS8RDkbOJBGnyxUwFCNDKFPc3OqwAVWUocktZ0LwFl9eJvWzklcund+VC5WreRxZkidHpEg8ckEq5JZUSY0w8kieySt5s56sF+vd+pi1Zqz5zCH5A+vzB4dMmAc=</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

p

<latexit sha1_base64="TNK+FS1iWyzsrH66WjItJLWtiCo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ae2Q8mkmTY0yQxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMbzO/+0SVZpF8MLOY+gKPJQsZwcZKjwOBzUSJNJ4PqzW37uZAq8QrSA0KtIbVr8EoIomg0hCOte57bmz8FCvDCKfzyiDRNMZkise0b6nEgmo/zRPP0ZlVRiiMlH3SoFz9vZFiofVMBHYyS6iXvUz8z+snJrz2UybjxFBJFh+FCUcmQtn5aMQUJYbPLMFEMZsVkQlWmBhbUsWW4C2fvEo6F3WvUb+8b9SaN0UdZTiBUzgHD66gCXfQgjYQkPAMr/DmaOfFeXc+FqMlp9g5hj9wPn8AFumRMw==</latexit>

zp

<latexit sha1_base64="roZxDqQ7IgJ9OLw0SPznt/Pg+vs=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ad0hpJJM21oJhOSjFCH/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnlJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJIqQtsk4YnqhVhTzgRtG2Y47UlFcRxy2g0nt7nffaRKs0Q8mKmkQYxHgkWMYGMl34+xGas4exrI2aBac+vuHGiVeAWpQYHWoPrlDxOSxlQYwrHWfc+VJsiwMoxwOqv4qaYSkwke0b6lAsdUB9k88wydWWWIokTZJwyaq783MhxrPY1DO5ln1MteLv7n9VMTXQcZEzI1VJDFoSjlyCQoLwANmaLE8KklmChmsyIyxgoTY2uq2BK85S+vks5F3WvUL+8bteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDmp8+K8Ox+L0ZJT7BzDHzifP7K2kiA=</latexit>

lookup(p)

<latexit sha1_base64="2G6XhtR4Vh2aLa7X8LyvcQv3K/8=">AAACAnicbVBNS8NAEN34WetX1JN4CRahXkoiFT0WvXisYD+gCWWz3bRLN9mwOxFLCF78K148KOLVX+HNf+OmzUFbHww83pthZp4fc6bAtr+NpeWV1bX10kZ5c2t7Z9fc228rkUhCW0RwIbs+VpSziLaAAafdWFIc+px2/PF17nfuqVRMRHcwiakX4mHEAkYwaKlvHrpAHyDlQoyTOKu6IYaRDNM4O+2bFbtmT2EtEqcgFVSg2Te/3IEgSUgjIBwr1XPsGLwUS2CE06zsJorGmIzxkPY0jXBIlZdOX8isE60MrEBIXRFYU/X3RIpDpSahrzvzE9W8l4v/eb0EgksvZVGcAI3IbFGQcAuEledhDZikBPhEE0wk07daZIQlJqBTK+sQnPmXF0n7rObUa+e39UrjqoijhI7QMaoiB12gBrpBTdRCBD2iZ/SK3own48V4Nz5mrUtGMXOA/sD4/AFFupf+</latexit>

Traditional data structure
�p

<latexit sha1_base64="5PXrrFqCsUyzQ90Oq1tftau/xUg=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVih6LXjxWsB/QLiWbZtvQJBuTrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61TJJqQpsk4YnuRNhQziRtWmY57ShNsYg4bUfj25nffqLasEQ+2ImiocBDyWJGsHVSp2fYUOC+6pcrftWfA62SICcVyNHol796g4SkgkpLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuoxIKaMJvfO0VnThmgONGupEVz9fdEhoUxExG5ToHtyCx7M/E/r5va+DrMmFSppZIsFsUpRzZBs+fRgGlKLJ84golm7lZERlhjYl1EJRdCsPzyKmldVINa9fK+Vqnf5HEU4QRO4RwCuII63EEDmkCAwzO8wpv36L14797HorXg5TPH8Afe5w8n6JAO</latexit>

cp(!)

<latexit sha1_base64="mBuowOC0mcNilZgs7/7mrudg6/k=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxC3ZQZqeiy6MZlBfuAzjBk0kwbmmSGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uWenDBhVGnH+bZKK6tr6xvlzcrW9s7unr1/0FFxKjFp45jFshciRRgVpK2pZqSXSIJ4yEg3HN/kfveBSEVjca8nCfE5GgoaUYy0kQL7yONIjyTPcJBMa17MyRCdBXbVqTszwGXiFqQKCrQC+8sbxDjlRGjMkFJ910m0nyGpKWZkWvFSRRKEx2hI+oYKxInys1n6KTw1ygBGsTRPaDhTf29kiCs14aGZzLOqRS8X//P6qY6u/IyKJNVE4PmhKGVQxzCvAg6oJFiziSEIS2qyQjxCEmFtCquYEtzFLy+TznndbdQv7hrV5nVRRxkcgxNQAy64BE1wC1qgDTB4BM/gFbxZT9aL9W59zEdLVrFzCP7A+vwBfhSVQA==</latexit>

SHp(!)

<latexit sha1_base64="XJJ7JE8U09Z9alG8DegGegCSqH0=">AAAB/HicbVDLSgNBEJyNrxhfqzl6WQxCvIRdiegx6CXHiOYB2RBmJ51kyOyDmV5xWeKvePGgiFc/xJt/4yTZgyYWNBRV3XR3eZHgCm3728itrW9sbuW3Czu7e/sH5uFRS4WxZNBkoQhlx6MKBA+giRwFdCIJ1PcEtL3JzcxvP4BUPAzuMYmg59NRwIecUdRS3yy6CI+Y3tWn/ajshj6M6FnfLNkVew5rlTgZKZEMjb755Q5CFvsQIBNUqa5jR9hLqUTOBEwLbqwgomxCR9DVNKA+qF46P35qnWplYA1DqStAa67+nkipr1Tie7rTpzhWy95M/M/rxji86qU8iGKEgC0WDWNhYWjNkrAGXAJDkWhCmeT6VouNqaQMdV4FHYKz/PIqaZ1XnGrl4rZaql1nceTJMTkhZeKQS1IjddIgTcJIQp7JK3kznowX4934WLTmjGymSP7A+PwBe9+Uqg==</latexit>

Stanford CS248A, Winter 2026

But there are many scene representations

3D triangle mesh + texture map

3D volume (voxels)

Point cloud (list of points)

Oriented 3D Gaussians

Sparse voxels

DNN (MLP)

Stanford CS248A, Winter 2026

Implicit representations like volumes and DNNs make it hard to know where the
“empty space is” (hard to enumerate points on the surface)

Explicit representations are much better at the task of enumerating points on the
surface (or equivalently, identifying where the empty space is)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Let’s consider one explicit representation that can accurately represent the contents of real world scenes…
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D
Gaussians is differentiable!
(The color at a pixel due to a Gaussian blob is just an
exponential)

Stanford CS248A, Winter 2026

Optimization to recover parameters of 3D Gaussians, not voxel
parameters, DNN weights, or neural codes Compute radiance along

ray through scene
Compare to

actual image
Earlier in lecture: optimization
produces color and opacity at each
voxel, or DNN parameters, etc..

Now: same idea, but optimization
chooses color, position, and radius of
the Gaussians
- Now: also need to decide on the

number of Gaussians (a bit tricker)

Key idea: differentiable Gaussian splatting rendering to compute dL/d(color)d(radius)d(position)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]

Stanford CS248A, Winter 2026

Summary
Volumes (continuous color/opacity fields) and 3D Gaussian points are representations of
geometry and materials that lend themselves to simple differential rendering algorithms

Modern high-performance optimization techniques are amazingly effective at recovering the
parameters of these representations.

Together, these two observations have led to rapid progress in reconstructing scenes from
(potentially sparse) set of photos

Some of these solutions employ interesting combinations of neural structures (learned DNN
weights, or neural “codes”) and “traditional” graphics representations like spatial accelerations
structures or compact bases for radiance.
- Takeaway for graphics students in 2026: need to be a master of both domains!

Stanford CS248A, Winter 2026

What about triangles and textures?
What are the parameters of a mesh? (Vertex positions,
number of vertices, connectivity, etc.)
Computing the gradient of a rendering subject to these
parameters is challenging.
- Consider simple case of fixed vertex count and fixed

topology: change in rendering output at a single
sample point is discontinuous at object silhouettes as
a function of vertex position changes (might see
object A, then see object B if object A moves!)

- But integral of radiance over a pixel (post resolve
output) is not discontinuous… (fraction of pixel
covered)

Stanford CS248A, Winter 2026

Example uses of differential rasterizers/ray tracers
Optimize parameters of SVG file to get a certain look

Optimize “bold” parameter of SVG text to match
image to right…

Optimize curve control points to match images of numbers.

[Li et al. 2020 Differentiable Vector Graphics Rasterization for Editing and Learning]

Stanford CS248A, Winter 2026

Example uses of differential rasterizers/ray tracers
Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the best
low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification]

Example alpha
texture for a leaf

Stanford CS248A, Winter 2026

Example uses of differential rasterizers/ray tracers
Optimize vertex positions so surface refracts light to make given image on a receiving plane.

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer]

Starting result
(flat plane) Final result

Steps of optimization
(Adjust vertex positions of glass plane)

Stanford CS248A, Winter 2026

Summary
Renderers are “world simulators” that can use a variety of representations to model
surfaces, materials, light, etc.

Making those simulators differentiable opens up the possibility to invoke the amazing
effectiveness of large-scale optimization to recover “good representations” by minimizing
loss from a reference

Depending on (1) task at hand (high-quality rendering, parameter recovery, scene
editing, etc.) and (2) the properties of the scene you are trying to work with (complex
foliage, smooth curves, fine scale hair/fur, flat walls) and (3) your storage/performance
needs, different representations will be preferred.

