Lecture 9:

Recovering scene representations
using gradient-based optimization

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026



Review of last class
(Light and reflectance)
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Review: irradiance

m Irradiance: flux (energy per unit time=power) per unit area

[\

A

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

®
A
Irradiance (E) is given by taking the limit of area at a single point on the sensor:

.. A®(p)  do(p) [W
Blp) = tm =4 = a4 ‘m2

Units = Watts per area
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Review: radiance

m Radiance (L) is power along an infinitesimally small beam

m The solid angle density of irradiance (irradiance per unit direction)
where the differential surface area is oriented to face in the direction (U

W

PQ dw

®

dA

In other words, radiance is energy along a ray defined by origin point p and direction (U

- A®(p,w)  d*®(p,w)
L — 1 p—
(pyw) = lim — = dA dw
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The reflection equation

Gives radiance reflected from point p in direction direction wo due to light incident on

the surface at p. *
v A
n
W, W;
Lo(p,wo) = fr(p,w; = wo) Li(p,w;) cos b; dw;

QQ I | |
BRDF lHllumination
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Bidirectional reflectance distribution function (BRDF)

Gives fraction of light arriving at surface point p from incoming direction* w; is reflected
in the direction w, (outgoing direction)

f(p7 Wi WO)

Wi N
Wo

P

* (Convention: w; is oriented out from the surface “towards the incoming direction”)
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What is this material?

Light is scattered equally in all directions
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Today:

a small diversion before we dive deeper into reflection and materials next class

So far in class, our primary tasks of interest have been simulation
Simulating what a scene would look like (rendering)

Computing geometric relationships between objects
(e.q, inside/outside, distance to)
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A longstanding challenge in computer graphics...

m Acquiring high-quality 3D content for rendering
m  Consider making a high-quality 3D model and texture maps depicting Josephine the graphics cat...

|
3

M-~
A—

Stanford (5248A, Winter 2026



Google Street View

Palm Dr X

N 7
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An interesting task

m Given a collection of photographs (from known camera viewpoints)
m Recover arepresentation of the 3D scene (surface locations + color at each point on surface) that you could
use for rendering the scene from novel viewpoints

.-= “lg'f I

' il
|
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Mini intro to gradient-based optimization
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Imagine we have a function f(z)

How can we find the minimum of the function?

f(z)
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Descent methods
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Gradient descent (1D)

m Basicidea: follow the gradient “downhill” until it’s zero

' ((0)) fim ()

{— 00

m Do we always end up at a (global) minimum?

m How do we compute gradient descent in practice?
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Gradient descent algorithm (1D)

m “Walk downhill”

m Onesimple way: forward Euler:
/
L+l — Lk — Tf (:Ifk)

/ X

new estimate step size

m Q: How do we pick the step size?

m [f we're not careful, we'll go zipping all : . , :
over the place; won't make any progress. p i ;

L2 To L3 Iq

m Basicidea: use “step control” to determine step size based on
value of function and its derivatives

m For now we will do something simple: make t small!
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Gradient descent algorithm (n-D)

m Q: How do we write gradient descent equation in general? _ .
df  df df
d e _d_xo dx; " dxny-_1 |

“x(t) =~V f{(1)

m Q: What's the corresponding discrete update?

Xpa1 = X — TV f(Xk)

m Basicchallenge in nD:
- solution can “oscillate”
- takes many, many small steps

- very slow to converge >
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Using gradient descent to recover scenes

I B '
!‘
i
+ 3
i ' -
L
»
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But first let’s consider a simpler toy problem

m Let’s try recovering the pixels of a texture map such that sampling the texture using
bilinear interpolation approximates a 2D signal depicting a scene

m Given a 2D function we can measure (sample): scene(u, v) T

m Let texture(x, u,v) be the result of sampling from NxN
texture x using bilinear interpolation

m In the formulation of the previous slides:
- X is an array of N2 pixel values (unknown N x N texture map)

1

For a collection of samples (Uz » Vs ) We seek to minimize the sum of squared differences of
textured result and function we are taking

But how do we compute V f(x) ? measurements of.
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Computing derivatives using the chain rule

flx,y,2) = (x +y)z = az

df da da
50, by the derivative chain rule:
ﬁ - df da

de dadr ©

X 3()()
df/dx>df/da =5

Where: a = o + ¥

+

4(y
Y [dt/dy=df/da=5

5(z

Red = output of node

Blue = df/dnode

7 (a)
df/da=

df/dz=7

35 (f(x,y,2))
—
df/df =1
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Backpropagation (a form of reverse mode autodiff)

Red = output of node Recall: ﬁ _ df dg
Blue = df/dnode “a dr ~ dgdax
Y 15
dfax=-dt/d
TQ. ¥ ﬂg(x,y)) glx,y) =x+y @ =1, @ — 1 “Sum copies gradients”
L df/dg dz dy
Y [at/dy=di/dg
X g 15 (gy) dg  1ifx>y
df/dx= ’ - ag _ b “Max routes gradient”
12— dr/dg g(x,y) =max(@,y)  — = 0 owise
Y [df/dy=0
X 15 d d
jm‘“ﬂ % 1_80>(g(x,y)) g(x,y) = zy Yy Yy, “Multiply scales gradient by
12— df/dg dz dy opposite term”
Y [af/dy=15(df/dg)
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Backpropagation with multiple uses of an input variable

Sum gradients from each use of variable:

29 Here:
x df/dg '
) d
df/d —11(df/d9)4/v + ["df/db = df/dg ﬁ _ df dg
y [ di/dg dr dgdx
df/dy = df/dg _df (dgda  dg db
g(r,y) =(r+y)+txxx=a+b " dg \dadz ' dbdzx
da db _ 4
& 9. —(1x2x+1x1)
dx Y fi?
=1, — 1 9
da " db B df(ll)
"~ dg
dg _dgda  dgdb _, 7
—_— I p— T
dr dadx  dbdx
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Differentiating our loss function

f(x) = Z(Scene(ui, v;) — texture(x, u;, v;))°

1

= Zg(ui, v;)°  where g(u,v) = scene(u,v) — texture(x, u, v)

dg dg  dtexture d texture

dx  dtexture dx dx

S0...

d texture(u;, v;)

d
vf(X) — zzg(uz’u”)d_i — _zzg(uzvvz) dx
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Recall: bilinear filtering

o ® ® ®
texture(x, u, v) _
. Lol . xy .

Let x00, x10, x01, x11 be the samples of texture X surrounding (u,v) R * *
Let (s, t) be the x and y fractional offsets t1 ;

. Veo---in-@ e i o

Loo <> 10
wod = (1.0 - s) x (1.0 - t): s S .................
wled = s x (1.0 - t); e i e e e
wol = (1.0 - s) x t; 5
result = wl0 x x00 + wl@ x x01 + wOl * x10 + wll * x11
S0 what i d texture(x, u, v) ?

dx
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Simple gradient descent algorithm for recovering
texture values

Let X = random texture values
while (loss too high): # f(X) 1s too large
Let UV = vector of (u_ 1, v_1) sample positions

grad = f_grad(UV) Gradient of the L2 difference between the value of the bilinearly filtered
texture X, and the target signal we are trying to recover

(When measured at the given array of sample points)

X += —-grad x step_size;

f(x) = Z(Scene(ui, v;) — texture(x, u;, v;))?

1

dg d texture(u;, v;)

Vf(x) = ng(ui,vi)d—x — —QZQ(W,%) dx
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Using Slang to automatically compute derivatives

The Slang compiler provides auto-differentiation services (hackward autodial example below)

[Differentiable]

o o i ”,
float foo(float a, float b) Example of calling foo() in a “forward pass”:
{

return a x b x b: float a = 1.0;

} float b = 2.4;
float result = foo(a, b);
float loss = 100 - result;

: . printf(“result is %f, loss was %f”, result, loss);
Example use of foo in a backwards pass to compute gradients:

DifferentialPair<float> dp_a
DifferentialPair<float> dp_b

diffPair(1.0);
diffPair(2.4);

// Derivative of scalar L w.r.t the function foo’s output
float2 dL_dfoo = float2(1.0);

// compiler generates code for computing dFoo/da and dFoo/db
// and uses the input dL_dfoo to compute dL/da and dL/db

// dL/da=(dL/dfoo) (dfoo/da), dL/db=(dL/dfoo) (dfoo/db)

bwd _diff(foo)(dp_a, dp_b, dL dfoo);

float dL_da
float dL_db

dp_a.d;
dp_b.d;

printf("If dL/dOutput = 1.0, then (dL/da, dL/db) at (1.0, 2.4) = (%f, %f)", dL_da, dL_db);
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Example: optimization to recover texture values

Texture at Epoch 0
H B l

.....

Loss Convergence

Epoch

Target signal: scene(u, v)
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Okay, finally back to our original problem of recovering scenes...
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Estimating mesh geometry is tricky

Reconstructed Mesh

Credit: Mildenhall 2019 Stanford (S248A, Winter 2026



Renewed interest in volume rendering (circa 2018)

The idea: if the task we care about is scene reconstruction from photos (not efficient scene rendering)...

Let’s move away from triangle-based representations. It is simpler (and more versatile when it’s unclear
what the surface geometry is anyway) to recover a volumetric representation

A “reasonable” volume representing the scene is the one that, when volume
rendered from the viewpoint of the photograph, produces a picture that looks
like the photograph.

Credit: Lombardi 2019 Stanford (S248A, Winter 2026



Last time: simple volume rendering

Consider representing a scene as a volume Volume density and “reflectance” at all points in space

—
o(p)

c(p,w) = c(z,y,2,¢,0)

"

Think: radiance reflected off
volume material at point p
in direction w. (Or radiance
emitted by volume)

Volume rendered CT scan Volume rendered scene

Credit: Taubmann et al., Siemens Healthineers Stanford €5248A, Winter 2026



Last time: rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

And continuous volume with density and directional radiance.

O (p) <— Volume density at all points in space.

C (p : w) <4——— Radiance leaving volume point p in direction w
(Due to light reflection off volume or emission)

Step through the volume to compute radiance along the ray.

Attenuation of radiance along r between r(t) and Color, opacity of the volume at the current point
the ray original due to light being absorbed or (More precisely: radiance along -w at point r(t))

scattered by the volume /

/tf

;g P ot o (— /]t t a(r(s))ds)
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Last time: rendering volumes

Given “camera ray” from point o in direction w....
r(t) = o+ tw
And volume with density and directional radiance

o(p) c(p,w)

Step through the volume and accumulate radiance along the ray:

L =0.0 // total radiance accumulated

thickness = 0.0 // total density traversed

num_steps (t. f - t n) / step_size

for 1=0 to num_steps:
p=o0o+ (tn+ 1% step size) x w // current point along ray . : :
density = sample_density(p) // tri-lerp Computing gradients with
refl = sample_color(p, -w) // tri-lerp respect to volume parameters
thickness += density * step _size
transmittance = exp(-thickness)

// accumulate radiance contributed from current point
// (accounting for attenuation)
L += transmittance * density * refl
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Recovering a volume that yields acquired images

Given a set of images of a subject with known camera positions...
And a volume renderer that can render an image given a camera position and a volume

Recover the parameters of a 3D volume: *

o(i,J,k), c(i,7, k) Compute radiance along Compare to
ray through volume actual image
. O, Ray 1 , /\ }
i€ Yo g | || M-ct
» 2

e

/

2

Y ‘o
: ’ '::‘ :
"loﬂ;' . )
iy - i $
Dy > Y
’l
M "/,Ji O'A Ray 2 m”

>

«

- g.1.

2

Ray Distance

/=

* In this simple example, assume that c(p,w) = c(p) (No directional dependence of radiance reflected off volume)
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Recovering density and color of volume

Volume - Batch 0 View from one Dataset Camera - Batch 0 Loss Convergence
0.10 -
0.08 -
» 0.06 -
v
S
0.04 -
0.02 -
0 10 20 30 40 50 60 70
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Visualization of gradient of loss

m Volumeinitialized to low density value everywhere
m Thisis avisualization of the gradient of the loss

m Positive gradient occurs in what should be empty space
- Stepping in direction of negative gradient will reduce
volume density.

m Negative gradient occurs in the view frustum where
geometry should be present. Density should increase
there
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Reqular 3D grid representation of a volume

m Dense3D grid
- volumeli,j,k] =rgba

m Note, this representation treats surface as
diffuse, since: c(p,w) = c(p)

m Would need ofi,j, k] and c[i,j,k,phi,theta] to
represent directional distribution of
radiance

Credit: Voxel Ville NFT (voxelville.io)




Reqular 3D grid representation of a volume

Consider storage requirements:
40963 cells

Ignore directional dependency: rgho 4 bytes/cell
~ 128 GB

Now consider directional dependency of color
on (¢, 0) ... muchworse storage cost

Typical challenge: :

limited resolution | Credit: Voxel Ville NFT (voxelville.io)




Recall quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t have to choose
partition planes)

Has greater ability to adapt to location of scene geometry
than uniform grid.
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Recall quad-tree / octree

Now store samples of occupancy or density field in the tree structure, not triangles

I

Empty Full

CHEm

Empty
Empty

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes

Interior nodes with no children — same “value” for all children in subtree

Value stored at nodes could be: binary occupancy, or value like: o, (x,y, 2) or O (a:‘, Y, 2 )
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Ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

™~
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OpenVDB

m Popular tree-structure for representing sparse volumetric data

m Inspired by B+ trees used in databases
2D Y

1D Dense representation !
N DODDONDOONNNEINDOEOER ,

VDB topology

Root node B

| E : : B | 00 00 Active bit-mask
E— ) I N - - - - - - - - - - ------------ W e Rk e O T N R
Internal nodes : i
| 00 00 00
—I_ 11 01 10 """""""""""""
ooommoOon 0001 1000 0001 1000
Leaf nodes N

Sparse representation |
100 . . 1 1111
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OpenVDB node visualization

m Popular tree-structure for representing sparse volumetric data
m Inspired by B+ trees used in databases

Internal nodes
first level

Leaf nodes

'Surface“.
Node voxel span: W 2048° m 178 m 8’ Active voxel span: 7897 x 1504 x 5774
Fig. 4. High-resolution VDB created by converting polygonal model from How To Train Your Dragon to a narrow-band level set. The bounding resolution of
the 228 million active voxels i1s 7897 x 1504 x 5774 and the memory footprint of the VDB 1s 1GB, versus the % TB for a corresponding dense volume. This
VDB is configured with LeafNodes (blue) of size 83 and two levels of InternalNodes (green/orange) of size 163. The index extents of the various nodes
are shown as colored wireframes, and a polygonal mesh representation of the zero level set 1s shaded red. Images are courtesy of DreamWorks Animation.
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Example usage of volumetric data

|

Fig. 1. Top: Shot from the animated feature Puss in Boots, showing high-resolution animated clouds generated using VDB [Miller et al. 2012]. Left: The
clouds are initially modelled as polygonal surfaces, then scan-converted into narrow-band level sets, after which procedural noise is applied to create the
puffy volumetric look. Right: The final animated sparse volumes typically have bounding voxel resolutions of 15, 000 x 900 x 500 and are rendered using a
proprietary renderer that exploits VDB’s hierarchical tree structure. Images are courtesy of DreamWorks Animation.
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Can you think of challenges of using sparse structures when
attempting to recover a 3D scene representation?




Recurring theme in this course:
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity field that
represents a complex 3D scene

o(p)
c(p,w)

And that recovery process is optimization via gradient descent.
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Learning (compressed) representations

Rather than store an entire dense volume, let’s just learn an approximation to the
continuous function that matches observations from different viewpoints?

Let’s represent that approximation using a deep neural network.

o(p)
c(p,w)

o ____l
-
128-d

vector

(x,y,2) (6,9)

(p,(ﬂ) — Fg(p,w) —
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Recovering neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views

:«g

~’-e~3--f '6&&‘&""
SO E GRS
® B2 B Ag h e WA
B I S R

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
ﬁ(xyz@qﬁ —>|]|][|—> RGBo)

/ F@ Ray 2

A

o Ray 1 /\ 2
| 4 | B -c.t.
2

2

- g.t.

2

; > U| Ray 2 /-"\

Ray Distance

Key idea: differentiable volume renderer to compute dL/d(color)d(opacity)
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Great visual results!

L .y W

o ",

.

Credit: Mildenhall 2023



What just happened?

m Continuous coordinate-based representation vs reqular grid: DNN is optimized so its weights to produce
high-resolution output where needed to match input image data

m Extremely compact representation: trades-off storage for expensive rendering
- Good: a few MBs = effectively very high-resolution dense grid

- Bad: must evaluate DNN every step during ray marching L
- And the DNNis a ”big” MLP (8-Iayer X 256) 44— MLP must do real work to associate

weights with 5D locations

- Bad: must step densely (because we don't know where the surface is... we can only query the DNN
for opacity)

m Compact representation: DNN can interpolate views despite complexity of volume density and radiance
function

- Only prior is the separation into positional O and directional rgb
- Training time: hours to a day to optimize a good NeRF
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Is NeRF a“good” representation?

m Ask yourself: what was the task?
- Optimization (to recover DNN weights) and then rendering high-quality images

- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-based
representations would be very complex!

m Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes with
viewpoint dependent surfaces possible (scene parameters fit on single GPU)

- Amount of compression possible while retaining high fidelity was generally surprising to many
- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter capacity as
needed to maintain high quality

m NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a
differentiable volume renderer to recover a model of a scene.
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Improving rendering performance

m But from a performance perspective, NeRF was not so good of a representation.

m So let’s use our graphics knowledge to move to representations that offer different points in the
compression-compute trade-off space

m Mainideas:

- Most of a scene is empty space, let’s avoid stepping densely through empty space when
unnecessary (aka. It’s costly to evaluate the DNN during ray marching to find density = 0)

- Shrink the size of the DNN
- Avoid evaluating the DNN altogether when you can
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Recall: ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

™~
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Let’s just run NeRF optimization for a bit like before...

Without sparsity loss With sparsity loss

=

m Optimization will push some opacity values to 0
m DNN tells us where the empty space is!

AT
SR ki

r':t\t (
*’1
N 3/,

m Then convert dense opacity grid to an octree representation that's more efficient to render from...

m  With the octree structure *fixed*, we can continue to optimize a color/density representation at leaves

2
2

Use the initial MLP to densely sample volume
(Identify the empty space, use it to build a simple octre .

This implementation uses 2-level octreee

Credit: Yu 2021 Stanford (S248A, Winter 2026



What just happened?

m We performed initial training... a la original NeRF

m Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to
replace the “big” DNN. Can use little DNNs at the leaves.

m That structure speeds up rendering (a lot), and it also speeds up “fine tuning” training, since the initial
“big” DNN need not be trained to convergence

29

2.8

v 27-
b
A, 26 1
= NeRF
24 - NeRF-SH
- PlenOctree
Credit: Yu 2021
0 10 20 30 40 50 60

Training Time (hours)

m Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP
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Another idea: use spherical harmonic representation of radiance

m Useful basis for representing functions that varying smoothly w.r.t direction.
m Analogy: cosine basis on the sphere

' | m Represent c(p, w) compactly by
< & & wie projecting into basis of SH.

{w f ...,,; :(.'.‘\ "(..': '\""’, \"':" Q.;, &‘:I \ : \._-' “——- ».I;. \‘i'{, ;‘; \(\:E i"‘: t,""?‘} ""I" 1' ,’ {3 w
G O U W N B RT N W W o O O W OB W W W l
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Light probe locations in a game

Here: spherical harmonic probes sampled on a uniform grid

(game compactly stores a few SH coefficients at each point to represent indirect illumination)
"!EHEEGHB@H{}}
B

. Empty Actor

' Empty Character

3 Empty Pawn

- Plane

'] Box Trigger
Omm

- Sphere Trigger
—_—

NSEer

| JLIV IR

EEIS © EED G GE3 €D -
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Finally...back to where we began

Plenoxels [CVPR 22] o
m Start with a dense 3D grid of SH coefficients, optimize those o
coefficients at low resolution
m  Now move to a sparse higher resolution representation &
(octree) T +«
Z

m Directly optimize for opacities and SH coefficients using
differentiable volume rendering

m No neural networks. Just optimizing the octree
representation of “baked spherical harmonic light” lighting

m Takeaway: often-used computer graphics representations are
efficient representations to learn/optimize on

- Plenoxel
- NeRF

0 10 20 30 40 50 60
Training Time (minutes)
2026



Neural codes... better than a DNN at the leaves

m Rather than store a “per-leaf” DNN or per leaf SH coefficients, store a “code” z; per leaf node J

m Ray march through the octree like normal

- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample
point, or evaluating SH coeffients to get radiance... retrieve the neural code z;

- Use a DNN to “decode” the code into a radiance or opacity

m Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color,
it doesn’t have to represent all spatial occupancy information
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Hashing: a parallel friendly approach to storing and retrieving sparse voxels

m Voxel hashingis a fast GPU data structure for supporting sparse voxel representations
- “Give me data for voxel containing (x,y,z)"
- Compactin space and “GPU friendly” for fast parallel lookup and update
m TL;DR — use hashing instead of trees
m Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

H(z,y,z) =(x-p1®y-p2® 2-p3) modn

-

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13] Stanford CS248A, Winter 2026



Advanced topic: NVIDIA's instant neural graphics primitives (NGP)

m Combines two ideas: Given position P:
) Hierarchy of regu| ar grids Compute indices of cell containing P on a bunch of different resolution grids (L grids)
At each grid resolution, turn indices into a hash code.
- Irreqgular hash data structures Use hash code to get F components of neural code Z
Concatenate all the codes to get Z (neural code of length L x F)
=2 osls * At T, - e Send Z through an MLP to decode final value
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What is cool:

1. Implementation elegance: no two-step process to find empty space, build structure, then proceed optimizing on another data structure
2. Sparse hash structure is fast. .. ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.
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Summarizing it all: the “template”

m Train a DNN to gain understanding of 3D occupancy (where the surface is)
o(p)

- Little to no geometric priors (so need full bag of DNN optimization tricks, etc) , ) » F(p.w) » ¢(p, w)

m Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
- Now the “topology” of the irregular data structure is fixed

- Representation of surface/appearance/etcis stored at the nodes of this structure (spherical harmonics,
neural code, etc.)

- Most of the heavy lifting is now performed by the traditional spatial data structure

4p
P # lookup(p) +
>
: e : " p
m Continue optimization on the fixed, sparse representation Traditional data structure ¢ (W)
P
- Leverages differential volume rendering on sparse structure
SH), (w)

- What we're now learning is how to represent/compress the local details
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Implicit representations like volumes and DNNs make it hard to know where the
“empty space is” (hard to enumerate points on the surface)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Explicit representations are much better at the task of enumerating points on the
surface (or equivalently, identifying where the empty space is)

Let’s consider one explicit representation that can accurately represent the contents of real world scenes...
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D

Gaussians is differentiable!
(The color at a pixel due to a Gaussian blob is just an

exponential)
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Optimization to recover parameters of 3D Gaussians, not voxel
parameters, DNN weights, or neural codes

Compute radiance along Compare to
ray through scene actual image
m Earlier in lecture: optimization /\
produces color and opacity at each e Rayl, I - ’
voxel, or DNN parameters, etc.. \*%“ } ol
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m Now:same idea, but optimization ‘/ :
chooses color, position, and radius o ﬁ
the Gaussians \

- Now: also need to decide on the
number of Gaussians (a bit tricker)

2

Key idea: differentiable Gaussian splatting rendering to compute dL/d(color)d(radius)d(position)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]
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Summary

m Volumes (continuous color/opacity fields) and 3D Gaussian points are representations of
geometry and materials that lend themselves to simple differential rendering algorithms

m Modern high-performance optimization techniques are amazingly effective at recovering the
parameters of these representations.

m Together, these two observations have led to rapid progress in reconstructing scenes from
(potentially sparse) set of photos

m Some of these solutions employ interesting combinations of neural structures (learned DNN
weights, or neural “codes”) and “traditional” graphics representations like spatial accelerations
structures or compact bases for radiance.

- Takeaway for graphics students in 2026: need to be a master of both domains!
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What about triangles and textures?

m  What are the parameters of a mesh? (Vertex positions,
number of vertices, connectivity, etc.)

m Computing the gradient of a rendering subject to these
parameters is challenging.

- Consider simple case of fixed vertex count and fixed
topology: change in rendering output at a single
sample point is discontinuous at object silhouettes as
a function of vertex position changes (might see
object A, then see object B if object A moves!)

- Butintegral of radiance over a pixel (post resolve
output) is not discontinuous. .. (fraction of pixel
covered)
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Example uses of differential rasterizers/ray tracers
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Example uses of differential rasterizers/ray tracers

m Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the best
low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

Example alpha
texture for a leaf

Initial guess (6.5k tris) Optimized parameters Our (6.5k tris) Reference (1.7M tris)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification] Stanford CS248A, Winter 2026



Example uses of differential rasterizers/ray tracers

Optimize vertex positions so surface refracts light to make given image on a receiving plane.

Steps of optimization
Starting result (Adjust vertex positions of glass plane)
(flat plane)

o O T

Final result

Optimized geometry  Projected caustic

5

Directional area light

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer] Stanford (S248A, Winter 2026



Summary

m Renderers are “world simulators” that can use a variety of representations to model
surfaces, materials, light, etc.

m Making those simulators differentiable opens up the possibility to invoke the amazing
effectiveness of large-scale optimization to recover “good representations” by minimizing

loss from a reference

m Depending on (1) task at hand (high-quality rendering, parameter recovery, scene
editing, etc.) and (2) the properties of the scene you are trying to work with (complex
foliage, smooth curves, fine scale hair/fur, flat walls) and (3) your storage/performance

needs, different representations will be preferred.
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