
Computer Graphics: Rendering, Geometry, and Image Manipulation 
Stanford CS248A, Winter 2026

Lecture 9:

Recovering scene representations 
using gradient-based optimization
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Review of last class 
(Light and reflectance)



Stanford CS248A, Winter 2026

Review: irradiance
Irradiance: flux (energy per unit time=power) per unit area

Given a sensor of with area A, we can consider the average flux over the entire sensor area:
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Irradiance (E) is given by taking the limit of area at a single point on the sensor:

E(p) = lim
�!0

��(p)

�A
=

d�(p)

dA


W

m2

�

A

Units = Watts per area
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Review: radiance
Radiance (L) is power along an infinitesimally small beam 
The solid angle density of irradiance (irradiance per unit direction) 
where the differential surface area is oriented to face in the direction

In other words, radiance is energy along a ray defined by origin point p and direction  
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The reflection equation

n
ωo

ωi

BRDF Illumination

<latexit sha1_base64="EDcIQ11UzAyEi+TLJYQXaOH955k="></latexit>

Lo(p,!o) =

Z

⌦2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

Gives radiance reflected from point p in direction direction ω0 due to light incident on 
the surface at p.
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Bidirectional reflectance distribution function (BRDF)
Gives fraction of light arriving at surface point p from incoming direction* ωi is reflected 
in the direction ω0 (outgoing direction)

f(p,!i,!o)

N

p

* (Convention: ωi is oriented out from the surface “towards the incoming direction”)
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What is this material?

Light is scattered equally in all directions
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Today: 
a small diversion before we dive deeper into reflection and materials next class 

So far in class, our primary tasks of interest have been simulation 

Simulating what a scene would look like (rendering) 
Computing geometric relationships between objects 

(e.g, inside/outside, distance to) 
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A longstanding challenge in computer graphics…
Acquiring high-quality 3D content for rendering 
Consider making a high-quality 3D model and texture maps depicting Josephine the graphics cat…
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Google Street View
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An interesting task
Given a collection of photographs (from known camera viewpoints) 
Recover a representation of the 3D scene (surface locations + color at each point on surface) that you could 
use for rendering the scene from novel viewpoints

Credit: Mildenhall 2019
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Mini intro to gradient-based optimization
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Imagine we have a function
How can we find the minimum of the function?

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>
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Descent methods
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Gradient descent (1D)
Basic idea: follow the gradient “downhill” until it’s zero

Do we always end up at a (global) minimum? 
How do we compute gradient descent in practice?

d

dt
x(t) = �f 0(x(t))

<latexit sha1_base64="eLmkq8XucFztpRtMeC+2scEfDyE=">AAACF3icbZC7SgNBFIZnvcZ4i1raDAYxKVx2JaKNELSxjGAukIQwO5lNhsxemDkrhmXfwsZXsbFQxFY738bZZIuY+MPAx3/OYc75nVBwBZb1Yywtr6yurec28ptb2zu7hb39hgoiSVmdBiKQLYcoJrjP6sBBsFYoGfEcwZrO6CatNx+YVDzw72Ecsq5HBj53OSWgrV7B7LiS0LjjERhKL+4nyQxD8liCMr7Cp+5JKcVyr1C0TGsivAh2BkWUqdYrfHf6AY085gMVRKm2bYXQjYkETgVL8p1IsZDQERmwtkafeEx148ldCT7WTh+7gdTPBzxxZydi4ik19hzdme6s5mup+V+tHYF72Y25H0bAfDr9yI0EhgCnIeE+l4yCGGsgVHK9K6ZDooMCHWVeh2DPn7wIjTPTrpjnd5Vi9TqLI4cO0REqIRtdoCq6RTVURxQ9oRf0ht6NZ+PV+DA+p61LRjZzgP7I+PoFavyfXw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>

f 0(x(0))

<latexit sha1_base64="cXPRKBPN2FYmQPLnlE52x32FrW0=">AAAB73icbVBNSwMxEJ31s9avqkcvwSK2l7IrFT0WvXisYD+gXUo2zbahSXZNsmJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDP1W49UaRbJezOOqS/wQLKQEWys1A7PSk8lt1zuFYpuxZ0BLRMvI0XIUO8Vvrr9iCSCSkM41rrjubHxU6wMI5xO8t1E0xiTER7QjqUSC6r9dHbvBJ1apY/CSNmSBs3U3xMpFlqPRWA7BTZDvehNxf+8TmLCKz9lMk4MlWS+KEw4MhGaPo/6TFFi+NgSTBSztyIyxAoTYyPK2xC8xZeXSfO84lUrF3fVYu06iyMHx3ACJfDgEmpwC3VoAAEOz/AKb86D8+K8Ox/z1hUnmzmCP3A+fwAGzI6p</latexit>
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Gradient descent algorithm (1D)
“Walk downhill” 
One simple way: forward Euler:

Q: How do we pick the step size?

If we’re not careful, we’ll go zipping all 
over the place; won’t make any progress.

Basic idea: use “step control” to determine step size based on 
value of function and its derivatives 
For now we will do something simple: make τ small!

step sizenew estimate

xk+1 = xk � ⌧f 0(xk)

<latexit sha1_base64="luDgn6zkoj9FgHSWY4zjhtrcQok=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBaxIpZEKroRim5cVrAPaEOYTCftkMkkzEykJXTjxl9x40IRt/6DO//GaZuFth64cOace5l7jxczKpVlfRu5hcWl5ZX8amFtfWNzy9zeacgoEZjUccQi0fKQJIxyUldUMdKKBUGhx0jTC27GfvOBCEkjfq+GMXFC1OPUpxgpLbnm/sBNgxN7BK/gwA3gKewolED/qKRfx65ZtMrWBHCe2Bkpggw11/zqdCOchIQrzJCUbduKlZMioShmZFToJJLECAeoR9qachQS6aSTK0bwUCtd6EdCF1dwov6eSFEo5TD0dGeIVF/OemPxP6+dKP/SSSmPE0U4nn7kJwyqCI4jgV0qCFZsqAnCgupdIe4jgbDSwRV0CPbsyfOkcVa2K+Xzu0qxep3FkQd74ACUgA0uQBXcghqoAwwewTN4BW/Gk/FivBsf09ackc3sgj8wPn8AKyCWcw==</latexit>

f(x)

<latexit sha1_base64="W7v81WIMIV3u4qtO7X4q6tOO6Gk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh59drlfb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHbveN2Q==</latexit>
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Gradient descent algorithm (n-D)
Q: How do we write gradient descent equation in general?

Q: What’s the corresponding discrete update?

Basic challenge in nD: 
- solution can “oscillate” 
- takes many, many small steps 
- very slow to converge

d

dt
x(t) = �rf(x(t))

<latexit sha1_base64="2wqao5rV71OLW2Ov8wcQO0x319s=">AAACMHicbZDNSsNAFIUn/lv/qi7dDBahXVgSqehGEF3osoK1hSaUyXTSDk4mYeZGLCGP5MZH0Y2CIm59CidtF7b1wsDHOfcy9x4/FlyDbb9bc/MLi0vLK6uFtfWNza3i9s6djhJFWYNGIlItn2gmuGQN4CBYK1aMhL5gTf/+MvebD0xpHslbGMTMC0lP8oBTAkbqFK/cQBGauiGBvgrTbpb9YciG7AfpY1aGCj7Dh9iVxBcEB+UJq9IpluyqPSw8C84YSmhc9U7xxe1GNAmZBCqI1m3HjsFLiQJOBcsKbqJZTOg96bG2QUlCpr10eHCGD4zSxUGkzJOAh+rfiZSEWg9C33TmW+ppLxf/89oJBKdeymWcAJN09FGQCAwRztPDXa4YBTEwQKjiZldM+8QkCCbjggnBmT55Fu6Oqk6tenxTK51fjONYQXtoH5WRg07QObpGddRAFD2hV/SBPq1n6836sr5HrXPWeGYXTZT18wt6FapY</latexit>

xk+1 = xk � ⌧rf(xk)

<latexit sha1_base64="jjNyHXaJSWMTDFVG1MN6HGsgtBo=">AAACJnicbVDLSgNBEJyNrxhfqx69DAYhIoZdieglEPTiMYJ5QDaE3slsMmR2dpmZFcOSr/Hir3jxEBHx5qc4eRxitKChqOqmu8uPOVPacb6szMrq2vpGdjO3tb2zu2fvH9RVlEhCayTikWz6oChngtY005w2Y0kh9Dlt+IPbid94pFKxSDzoYUzbIfQECxgBbaSOXfZC0H0/SJ9GnXRw5o5wGS9IA3yOPQ0J9gT4HHBQWDRPO3beKTpT4L/EnZM8mqPascdeNyJJSIUmHJRquU6s2ylIzQino5yXKBoDGUCPtgwVEFLVTqdvjvCJUbo4iKQpofFUXZxIIVRqGPqmc3KkWvYm4n9eK9HBdTtlIk40FWS2KEg41hGeZIa7TFKi+dAQIJKZWzHpgwSiTbI5E4K7/PJfUr8ouqXi5X0pX7mZx5FFR+gYFZCLrlAF3aEqqiGCntErGqN368V6sz6sz1lrxprPHKJfsL5/ANUupWI=</latexit>

h
df
dx0

df
dx1

... df
dxN�1

iT

<latexit sha1_base64="PejEmPusecfufM4h/kGCPvfxgt4="></latexit>
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Using gradient descent to recover scenes
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But first let’s consider a simpler toy problem

Given a 2D function we can measure (sample):  
Let               be the result of sampling from NxN 
texture x using bilinear interpolation  

In the formulation of the previous slides: 
-      is an array of N2 pixel values (unknown N x N texture map) 
-

Let’s try recovering the pixels of a texture map such that sampling the texture using 
bilinear interpolation approximates a 2D signal depicting a scene

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x

<latexit sha1_base64="pp3dQHVOJy6eU87K5ZxdxaXE60k=">AAAB+nicbVDLSgNBEJz1GeMr0aOXxSBEkLArEj0GvXiMYB6QLGF20psMmZ1dZnqjYc2nePGgiFe/xJt/4+Rx0MSChqKqm+4uPxZco+N8Wyura+sbm5mt7PbO7t5+Ln9Q11GiGNRYJCLV9KkGwSXUkKOAZqyAhr6Ahj+4mfiNISjNI3mPoxi8kPYkDzijaKROLt9GeMRUM5AwLiZnw9NOruCUnCnsZeLOSYHMUe3kvtrdiCUhSGSCat1ynRi9lCrkTMA42040xJQNaA9ahkoagvbS6elj+8QoXTuIlCmJ9lT9PZHSUOtR6JvOkGJfL3oT8T+vlWBw5aVcxgmCZLNFQSJsjOxJDnaXK2AoRoZQpri51WZ9qihDk1bWhOAuvrxM6uclt1wq310UKtfzODLkiByTInHJJamQW1IlNcLIA3kmr+TNerJerHfrY9a6Ys1nDskfWJ8/JS+T7w==</latexit>

scene(u, v)
<latexit sha1_base64="VzlUQ1QBKo5rKmpwM1/QP/SfYyM=">AAACB3icbVDLSgNBEJz1GeNr1aMgi0GIEMKuSPQY9OIxgnlAEsLspDcZMvtgpjckLLl58Ve8eFDEq7/gzb9xNslBEwtmKKq66e5yI8EV2va3sbK6tr6xmdnKbu/s7u2bB4c1FcaSQZWFIpQNlyoQPIAqchTQiCRQ3xVQdwe3qV8fglQ8DB5wHEHbp72Ae5xR1FLHPGkhjDBJv1jCJN/yKfZdLxlNCnFheN4xc3bRnsJaJs6c5MgclY751eqGLPYhQCaoUk3HjrCdUImcCZhkW7GCiLIB7UFT04D6oNrJ9I6JdaaVruWFUr8Aran6uyOhvlJj39WV6Zpq0UvF/7xmjN51O+FBFCMEbDbIi4WFoZWGYnW5BIZirAllkutdLdankjLU0WV1CM7iycukdlF0SsXS/WWufDOPI0OOySnJE4dckTK5IxVSJYw8kmfySt6MJ+PFeDc+ZqUrxrzniPyB8fkDwGGZ3g==</latexit>

texture(x, u, v)

For a collection of samples

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg="></latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="Ed13iQdG3evwjWCPvjYOnAuJRPk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpRdkeqx6MVjBfsh7bJk02wbmmSXJFsopb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fw7uZ3xpRpVksH804ob7AfckiRrCx0lM5DdjFKGDnQbHkVtw50CrxMlKCDPWg+NXtxSQVVBrCsdYdz02MP8HKMMLptNBNNU0wGeI+7VgqsaDan8wPnqIzq/RQFCtb0qC5+ntigoXWYxHaToHNQC97M/E/r5Oa6MafMJmkhkqyWBSlHJkYzb5HPaYoMXxsCSaK2VsRGWCFibEZFWwI3vLLq6R5WfGqlerDVal2m8WRhxM4hTJ4cA01uIc6NICAgGd4hTdHOS/Ou/OxaM052cwx/IHz+QPnYY/X</latexit>

(ui, vi)

But how do we compute 
<latexit sha1_base64="ypbGDjfeVfyNrATchn2x3kpuQcE=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0Wom5KIVJdFNy4r2Ac0pdxMJ+3QySTMTMQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6Z48ecKe0439bS8srq2npho7i5tb2za+/tN1WUSEIbJOKRbPugKGeCNjTTnLZjSSH0OW35o+vMb91TqVgk7vQ4pt0QBoIFjIA2Us8+9AT4HHBQ9kLQQz9IHyanPbvkVJwp8CJxc1JCOeo9+8vrRyQJqdCEg1Id14l1NwWpGeF0UvQSRWMgIxjQjqECQqq66TT9BJ8YpY+DSJonNJ6qvzdSCJUah76ZzCKqeS8T//M6iQ4uuykTcaKpILNDQcKxjnBWBe4zSYnmY0OASGayYjIECUSbwoqmBHf+y4ukeVZxq5Xq7XmpdpXXUUBH6BiVkYsuUA3doDpqIIIe0TN6RW/Wk/VivVsfs9ElK985QH9gff4A9N+U7Q==</latexit>

→f(x) ?

We seek to minimize the sum of squared differences of 
textured result and function we are taking 
measurements of.
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Computing derivatives using the chain rule
f(x, y, z) = (x+ y)z = az a = x+ yWhere:

df

da
= z

df

dx
=

df

da

da

dx
= z

da

dx
= 1

So, by the derivative chain rule: x

y

z

+

*

3 (x)

4 (y)

5 (z)

7 (a)
df/da=5

df/dx = df/da = 5

df/dy=df/da=5

df/dz = 7

35 (f(x,y,z)) 

da

dy
= 1

df/df = 1

Red = output of node
Blue = df/dnode
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Backpropagation (a form of reverse mode autodiff)

x

y
+

df/dg
df/dy=df/dg

df/dx = df/dg dg

dx
= 1 ,

dg

dy
= 1g(x, y) = x+ y

df

dx
=

df

dg

dg

dx
Red = output of node
Blue = df/dnode Recall:

15

12
27 (g(x,y)) “Sum copies gradients”

x

y
max df/dg

df/dy = 0

df/dx=df/dg
15

12 g(x, y) = max(x, y)
dg

dx
=

1, if x > y
0, otherwise

15 (g(x,y)) “Max routes gradient”

x

y
df/dg

df/dy=15(df/dg)

df/dx=12(df/dg)
15

12 * g(x, y) = xy
dg

dx
= y ,

dg

dy
= x180 (g(x,y)) “Multiply scales gradient by 

opposite term”
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Backpropagation with multiple uses of an input variable

x
+

df/dg

y

*
+

5(df/dg)

5(df/dg)

5
5
5

g(x, y) = (x+ y) + x ⇤ x = a+ b

dg

dx
=

dg

da

da

dx
+

dg

db

db

dx
= 2x+ 1

Sum gradients from each use of variable: 

Here:

25 (a)

4

9 (b)

34 (g)

df/db = df/dg

df/da=df/dg

df/dg

df/dg

<latexit sha1_base64="wn64QMLFq4GPuYHazjoKYXlBjeA=">AAACF3icbVDLSsNAFJ3UV42vqEs3g0VwUUJSpLoRim5cVrAPaEOZTCbt0MmDmYm0hPyFG3/FjQtF3OrOv3HSRtDWA/dyOOdeZu5xY0aFtKwvrbSyura+Ud7Ut7Z3dveM/YO2iBKOSQtHLOJdFwnCaEhakkpGujEnKHAZ6bjj69zv3BMuaBTeyWlMnAANQ+pTjKSSBoap932OcOqhLPUmGbyEtQnsV2E1b4Xl/li2PjAqlmnNAJeJXZAKKNAcGJ99L8JJQEKJGRKiZ1uxdFLEJcWMZHo/ESRGeIyGpKdoiAIinHR2VwZPlOJBP+KqQgln6u+NFAVCTANXTQZIjsSil4v/eb1E+hdOSsM4kSTE84f8hEEZwTwk6FFOsGRTRRDmVP0V4hFSYUgVZR6CvXjyMmnXTLtu1m/PKo2rIo4yOALH4BTY4Bw0wA1oghbA4AE8gRfwqj1qz9qb9j4fLWnFziH4A+3jG9r+nTo=</latexit>

da

dx
= 2x ,

db

dx
= 1

<latexit sha1_base64="hmFEFdOy7YYsC9vBW58U1OobbiE=">AAACFXicbZDLSsNAFIYn9VbrLerSzWApuCglEaluhKIblxXsBZpQJpNJO3QyCTMToYS8hBtfxY0LRdwK7nwbJ20WtfWHgZ/vzOGc83sxo1JZ1o9RWlvf2Nwqb1d2dvf2D8zDo66MEoFJB0csEn0PScIoJx1FFSP9WBAUeoz0vMltXu89EiFpxB/UNCZuiEacBhQjpdHQrDuBQDj1R1nqowxeQxs6dViHC9grsFMZmlWrYc0EV41dmCoo1B6a344f4SQkXGGGpBzYVqzcFAlFMSNZxUkkiRGeoBEZaMtRSKSbzq7KYE0THwaR0I8rOKOLHSkKpZyGer1aiNRYLtdy+F9tkKjgyk0pjxNFOJ4PChIGVQTziKBPBcGKTbVBWFC9K8RjpPNQOsg8BHv55FXTPW/YzUbz/qLauiniKIMTcArOgA0uQQvcgTboAAyewAt4A+/Gs/FqfBif868lo+g5Bn9kfP0CzwWcsQ==</latexit>

dg

da
= 1 ,

dg

db
= 1

<latexit sha1_base64="StbK7+vhhXRRir4UmIahAX7OdPw="></latexit>

df

dx
=

df

dg

dg

dx

=
df

dg

(
dg

da

da

dx
+

dg

db

db

dx

)

=
df

dg
(1→ 2x+ 1→ 1)

=
df

dg
(2x+ 1)

=
df

dg
(11)

df/dx = 11(df/dg)

df/dy = df/dg
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Differentiating our loss function

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg="></latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="QnUmarK9MSlRkrjmQyhFQrbGHqo=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZKVLdCEU3LivYB7TjkEkzbWiSGZJMoQx146+4caGIW//CnX9j2s5CqwcuHM65l3vvCWJGlXacLyu3tLyyupZfL2xsbm3v2Lt7TRUlEpMGjlgk2wFShFFBGppqRtqxJIgHjLSC4fXUb42IVDQSd3ocE4+jvqAhxUgbybcPLmFXJdxP6QT2S4lPT+HIpyf3Fd8uOmVnBviXuBkpggx13/7s9iKccCI0ZkipjuvE2kuR1BQzMil0E0VihIeoTzqGCsSJ8tLZBxN4bJQeDCNpSmg4U39OpIgrNeaB6eRID9SiNxX/8zqJDi+8lIo40UTg+aIwYVBHcBoH7FFJsGZjQxCW1NwK8QBJhLUJrWBCcBdf/kualbJbLVdvz4q1qyyOPDgER6AEXHAOauAG1EEDYPAAnsALeLUerWfrzXqft+asbGYf/IL18Q16r5Wj</latexit>

=
∑

i

g(ui, vi)
2 where

<latexit sha1_base64="l8vREKPa5igOs9hKd67Djo7OEWY=">AAACJnicbZBNSwMxEIazflu/qh69BIugUMuuSPUiiF48KlgV2lKy6WwNZrNLMimWpb/Gi3/FiwdFxJs/xWy7B78GEl6emWFm3jCVwqDvf3gTk1PTM7Nz86WFxaXllfLq2pVJrObQ4IlM9E3IDEihoIECJdykGlgcSrgO707z/HUftBGJusRBCu2Y9ZSIBGfoUKd81Nu21f4OPaIthHvMDAcFwzHbLVj+We1oK2Z4G0bZ/bBKbZX2dzrlil/zR0H/iqAQFVLEeaf80uom3MagkEtmTDPwU2xnTKPgEoalljWQMn7HetB0UrEYTDsbnTmkW450aZRo9xTSEf3ekbHYmEEcusp8UfM7l8P/ck2L0WE7Eyq1CIqPB0VWUkxo7hntCg0c5cAJxrVwu1J+yzTj6JwtOROC3yf/FVd7taBeq1/sV45PCjvmyAbZJNskIAfkmJyRc9IgnDyQJ/JCXr1H79l7897HpRNe0bNOfoT3+QV/IKSc</latexit>

g(u, v) = scene(u, v)→ texture(x, u, v)
<latexit sha1_base64="5g/mdXmuB6Ef7qeUojBlmASYQ8U="></latexit>

dg

dx
=

dg

d texture

d texture

dx
= →d texture

dx

So…
<latexit sha1_base64="Ob0wJ7Qs2I4dze2SWc+6FRfet+s="></latexit>

→f(x) = 2
∑

i

g(ui, vi)
dg

dx
= ↑2

∑

i

g(ui, vi)
d texture(ui, vi)

dx
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Recall: bilinear filtering
<latexit sha1_base64="eGg+yH5fx/z9pdPViGvVoxfIX3c=">AAACCnicbVDLSgNBEJz1GeNr1aOX0SBECGFXJHoMevEYwTwgCWF20psMmX0w0xsSlpy9+CtePCji1S/w5t+4m+SgiQUzFFXddHc5oRQaLevbWFldW9/YzGxlt3d29/bNg8OaDiLFocoDGaiGwzRI4UMVBUpohAqY50ioO4Pb1K8PQWkR+A84DqHtsZ4vXMEZJlLHPGkhjDBOv0jBJN/yGPYdNx5NCjQq0OF5tmPmrKI1BV0m9pzkyByVjvnV6gY88sBHLpnWTdsKsR0zhYJLmGRbkYaQ8QHrQTOhPvNAt+PpKRN6lihd6gYqeT7Sqfq7I2ae1mPPSSrTTfWil4r/ec0I3et2LPwwQvD5bJAbSYoBTXOhXaGAoxwnhHElkl0p7zPFOCbppSHYiycvk9pF0S4VS/eXufLNPI4MOSanJE9sckXK5I5USJVw8kieySt5M56MF+Pd+JiVrhjzniPyB8bnD8OKmkY=</latexit>

texture(x, u, v) :
Let x00, x10, x01, x11 be the samples of texture        surrounding (u,v) 

Let (s, t) be the x and y fractional offsets  

w00 = (1.0 - s) * (1.0 - t); 
w10 = s * (1.0 - t); 
w01 = (1.0 - s) * t; 
w11 = s * t; 

result = w00 * x00 + w10 * x01 + w01 * x10 + w11 * x11 

t

s
<latexit sha1_base64="zYivnsfRXa8rGYi8t3cR7tbawrw=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4KlmR6rHoxWMF+wHtUrJpto3NJkuSFcvS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGYvztrayurW9sFraK2zu7e/ulg8OmUammrEGVULodEsMEl6xhuRWsnWhG4lCwVji6mfqtR6YNV/LejhMWxGQgecQpsU5qPvUyjCe9UhlX8Axomfg5KUOOeq/01e0rmsZMWiqIMR0fJzbIiLacCjYpdlPDEkJHZMA6jkoSMxNks2sn6NQpfRQp7UpaNFN/T2QkNmYch64zJnZoFr2p+J/XSW10FWRcJqllks4XRalAVqHp66jPNaNWjB0hVHN3K6JDogm1LqCiC8FffHmZNM8rfrVSvbso167zOApwDCdwBj5cQg1uoQ4NoPAAz/AKb57yXrx372PeuuLlM0fwB97nD0HAjvA=</latexit>x00

<latexit sha1_base64="jIi6k48BeFuGtRJDAEAdu5RPc1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp14W+JNeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUNGjvE=</latexit>x10

<latexit sha1_base64="CGWJgeVt1CSxERUrkfXYtnnzqWc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp14WBJNeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUTLjvI=</latexit>x11
<latexit sha1_base64="/x6IMHjtwehNzmlfdwWmHWOZ7Ag=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV2R6DHoxWME84BkCbOT2WTMPJaZWTEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7rkWrDlLy344SGAg8kixnB1knNp17mB5NeqexX/BnQMglyUoYc9V7pq9tXJBVUWsKxMZ3AT2yYYW0Z4XRS7KaGJpiM8IB2HJVYUBNms2sn6NQpfRQr7UpaNFN/T2RYGDMWkesU2A7NojcV//M6qY2vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVR0IQSLLy+T5nklqFaqdxfl2nUeRwGO4QTOIIBLqMEt1KEBBB7gGV7hzVPei/fufcxbV7x85gj+wPv8AUNFjvE=</latexit>x01

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x

<latexit sha1_base64="QTtruESf2pPSgImIEQq6shtYiC8="></latexit>

d texture(x, u, v)

dx
So what is ?
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Simple gradient descent algorithm for recovering 
texture values 
Let X = random texture values 

while (loss too high):  # f(X) is too large 

   Let UV = vector of (u_i, v_i) sample positions 
        
   grad = f_grad(UV) 
      
   X += -grad * step_size;

<latexit sha1_base64="uX3TFSDZisJAV9Hlxlc2MhggtWg="></latexit>

f(x) =
∑

i

(scene(ui, vi)→ texture(x, ui, vi))
2

<latexit sha1_base64="Ob0wJ7Qs2I4dze2SWc+6FRfet+s="></latexit>

→f(x) = 2
∑

i

g(ui, vi)
dg

dx
= ↑2

∑

i

g(ui, vi)
d texture(ui, vi)

dx

Gradient of the L2 difference between the value of the bilinearly filtered 
texture X, and the target signal we are trying to recover  
(When measured at the given array of sample points)
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Using Slang to automatically compute derivatives
The Slang compiler provides auto-differentiation services (backward autodial example below)

[Differentiable]  
float foo(float a, float b)  
{  
    return a * b * b; 
}

DifferentialPair<float> dp_a = diffPair(1.0); 
DifferentialPair<float> dp_b = diffPair(2.4); 

// Derivative of scalar L w.r.t the function foo’s output 
float2 dL_dfoo = float2(1.0); 

// compiler generates code for computing dFoo/da and dFoo/db 
// and uses the input dL_dfoo to compute dL/da and dL/db 
// dL/da=(dL/dfoo)(dfoo/da), dL/db=(dL/dfoo)(dfoo/db)  
bwd_diff(foo)(dp_a, dp_b, dL_dfoo); 

float dL_da = dp_a.d; 
float dL_db = dp_b.d; 

printf("If dL/dOutput = 1.0, then (dL/da, dL/db) at (1.0, 2.4) = (%f, %f)", dL_da, dL_db);

Example use of foo in a backwards pass to compute gradients:

Example of calling foo() in a “forward pass”: 
float a = 1.0; 
float b = 2.4; 
float result = foo(a, b); 
float loss = 100 - result; 

printf(“result is %f, loss was %f”, result, loss); 
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Example: optimization to recover texture values

Target signal:
<latexit sha1_base64="pp3dQHVOJy6eU87K5ZxdxaXE60k=">AAAB+nicbVDLSgNBEJz1GeMr0aOXxSBEkLArEj0GvXiMYB6QLGF20psMmZ1dZnqjYc2nePGgiFe/xJt/4+Rx0MSChqKqm+4uPxZco+N8Wyura+sbm5mt7PbO7t5+Ln9Q11GiGNRYJCLV9KkGwSXUkKOAZqyAhr6Ahj+4mfiNISjNI3mPoxi8kPYkDzijaKROLt9GeMRUM5AwLiZnw9NOruCUnCnsZeLOSYHMUe3kvtrdiCUhSGSCat1ynRi9lCrkTMA42040xJQNaA9ahkoagvbS6elj+8QoXTuIlCmJ9lT9PZHSUOtR6JvOkGJfL3oT8T+vlWBw5aVcxgmCZLNFQSJsjOxJDnaXK2AoRoZQpri51WZ9qihDk1bWhOAuvrxM6uclt1wq310UKtfzODLkiByTInHJJamQW1IlNcLIA3kmr+TNerJerHfrY9a6Ys1nDskfWJ8/JS+T7w==</latexit>

scene(u, v)

<latexit sha1_base64="FGxh4OzYwn2DCpnjFMkcdRbsJBc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRmR6rLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpnle8aqV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDANqRJw==</latexit>x
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Okay, finally back to our original problem of recovering scenes…
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Estimating mesh geometry is tricky

Credit: Mildenhall 2019
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Renewed interest in volume rendering (circa 2018)
The idea: if the task we care about is scene reconstruction from photos (not efficient scene rendering)…  
Let’s move away from triangle-based representations. It is simpler (and more versatile when it’s unclear 
what the surface geometry is anyway) to recover a volumetric representation

Credit: Lombardi 2019

A “reasonable” volume representing the scene is the one that, when volume 
rendered from the viewpoint of the photograph, produces a picture that looks 
like the photograph.
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Last time: simple volume rendering

Credit: Taubmann et al. , Siemens Healthineers 

Volume rendered CT scan Volume rendered scene

Consider representing a scene as a volume

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density and “reflectance” at all points in space

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

Think: radiance reflected off 
volume material at point p 
in direction ω. (Or radiance 
emitted by volume)



Stanford CS248A, Winter 2026

Last time: rendering volumes

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density at all points in space.

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

And continuous volume with density and directional radiance.

Step through the volume to compute radiance along the ray.
Color, opacity of the volume at the current point 
(More precisely: radiance along  -w at point r(t))

Attenuation of radiance along r between r(t) and 
the ray original due to light being absorbed or 
scattered by the volume 

<latexit sha1_base64="XbhNmHdsrx0Yf9/Bklcyc+huCbI=">AAACU3icbVHLSgMxFM2M9VVfVZdugkVoQcuMiLoRRDcuXCj0IXTqkEkzNTbJDMkdoQzzjyK48EfcuNC0VvB1IeHknHPJzUmUCm7A814cd6Y0Oze/sFheWl5ZXausb7RNkmnKWjQRib6JiGGCK9YCDoLdpJoRGQnWiYbnY73zwLThiWrCKGU9SQaKx5wSsFRYub+sBZLAXRTnuqjjExxwBWEOoSpu7R4XuFmDemD4QJJvTsvV8deRFj+VXbwXJJINyJdHy7xfQFipeg1vUvgv8KegiqZ1FVaegn5CM8kUUEGM6fpeCr2caOBUsKIcZIalhA7JgHUtVEQy08snmRR4xzJ9HCfaLgV4wn7vyIk0ZiQj6xyPaH5rY/I/rZtBfNzLuUozYIp+XhRnAkOCxwHjPteMghhZQKjmdlZM74gmFOw3lG0I/u8n/wXt/YZ/2Di8Pqienk3jWEBbaBvVkI+O0Cm6QFeohSh6RK/o3UHOs/Pmum7p0+o6055N9KPclQ/kO7Nl</latexit>

L(r) =

∫ tf

tn

T (t)ω(r(t))c(r(t),→ε))dt

Radiance leaving volume point p in direction w 
(Due to light reflection off volume or emission)

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

tn

tf

<latexit sha1_base64="muzUIeYxUeBoMDCCLI2QqUEOOxU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1ekrQIe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPk8OPJg==</latexit>ω
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Last time: rendering volumes

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

And volume with density and directional radiance

Step through the volume and accumulate radiance along the ray:

L = 0.0             // total radiance accumulated 
thickness = 0.0     // total density traversed 
num_steps = (t_f - t_n) / step_size 
for i=0 to num_steps: 
  p = o + (t_n + i * step_size) * w   // current point along ray 
  density = sample_density(p)         // tri-lerp 
  refl = sample_color(p, -w)          // tri-lerp 
  thickness += density * step_size 
  transmittance = exp(-thickness) 

  // accumulate radiance contributed from current point 
  // (accounting for attenuation) 
  L += transmittance * density * refl  

tn

tf

<latexit sha1_base64="qunK0jYxSgxEXJtxEQOzFN0jX4A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2Q8mkmTY0kwxJRihD/8KNC0Xc+jfu/Bsz01lo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT28zvPlGlmRQPZhZTP8JjwUJGsLHS4yDCZhKEqZwPqzW37uZAq8QrSA0KtIbVr8FIkiSiwhCOte57bmz8FCvDCKfzyiDRNMZkise0b6nAEdV+mieeozOrjFAolX3CoFz9vZHiSOtZFNjJLKFe9jLxP6+fmPDaT5mIE0MFWXwUJhwZibLz0YgpSgyfWYKJYjYrIhOsMDG2pIotwVs+eZV0Lupeo964v6w1b4o6ynACp3AOHlxBE+6gBW0gIOAZXuHN0c6L8+58LEZLTrFzDH/gfP4A8x6RHg==</latexit>o

<latexit sha1_base64="muzUIeYxUeBoMDCCLI2QqUEOOxU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1ekrQIe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPk8OPJg==</latexit>ω

Computing gradients with 
respect to volume parameters
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Recovering a volume that yields acquired images

Compute radiance along 
ray through volume

Compare to 
actual image

Given a set of images of a subject with known camera positions…
And a volume renderer that can render an image given a camera position and a volume

Recover the parameters of a 3D volume: *
<latexit sha1_base64="HF3cMKvGI8gTDRoJdeXeSb8p55c=">AAACDHicbVDLSgMxFL1TX7W+qi7dBItQoZQZkeqy6MZlBfuATimZNNPGZjJDkhHK0A9w46+4caGIWz/AnX9jpp2Ftl4SOJxzLvfe40WcKW3b31ZuZXVtfSO/Wdja3tndK+4ftFQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47Ttja9Tvf1ApWKhuNOTiPYCPBTMZwRrQ/WLJVexYYDLrHJfGZ9WkGtegPXI8xMyzVjjsqv2rNAycDJQgqwa/eKXOwhJHFChCcdKdR070r0ES80Ip9OCGysaYTLGQ9o1UOCAql4yO2aKTgwzQH4ozRcazdjfHQkOlJoEnnGmi6pFLSX/07qx9i97CRNRrKkg80F+zJEOUZoMGjBJieYTAzCRzOyKyAhLTLTJr2BCcBZPXgats6pTq9Zuz0v1qyyOPBzBMZTBgQuoww00oAkEHuEZXuHNerJerHfrY27NWVnPIfwp6/MHjnGZbA==</latexit>

ω(i, j, k), c(i, j, k)

* In this simple example, assume that 
<latexit sha1_base64="SwIvZQzLFUp8xjNopM6eyma8g2I=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0VoQUoi0roRim5cVrAPaEKZTCft0JkkzEyEEvIpbvwVNy4U0Z1+jZO0C217YOBwzrnMvceLGJXKsr6Nwtr6xuZWcbu0s7u3f2AeHnVkGAtM2jhkoeh5SBJGA9JWVDHSiwRB3GOk601uM7/7SISkYfCgphFxORoF1KcYKS0NzIbDkRp7foLTSk4FT6L0HDohJyNUhddwZaA6MMtWzcoBl4k9J2UwR2tgfjnDEMecBAozJGXftiLlJkgoihlJS04sSYTwBI1IX9MAcSLdJD8whWdaGUI/FPoFCubq34kEcSmn3NPJbEW56GXiKq8fK//KTWgQxYoEePaRHzOoQpi1BYdUEKzYVBOEBdW7QjxGAmGlOy3pEuzFk5dJ56Jm12v1+8ty82ZeRxGcgFNQATZogCa4Ay3QBhg8gRfwBt6NZ+PV+DA+Z9GCMZ85Bv9g/PwCJcqjmA==</latexit>

c(p,ω) = c(p) (No directional dependence of radiance reflected off volume)
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Recovering density and color of volume
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Visualization of gradient of loss
Volume initialized to low density value everywhere 

This is a visualization of the gradient of the loss 

Positive gradient occurs in what should be empty space 
- Stepping in direction of negative gradient will reduce 

volume density. 

Negative gradient occurs in the view frustum where 
geometry should be present. Density should increase 
there 
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Regular 3D grid representation of a volume
Dense 3D grid 
- volume[i,j,k] = rgba 

Note, this representation treats surface as 
diffuse, since: 

Would need σ[i,j,k] and c[i,j,k,phi,theta] to 
represent directional distribution of 
radiance

Credit: Voxel Ville NFT (voxelville.io) 

c(p,!) = c(p)

<latexit sha1_base64="iPFxnucawQI81Uo6+5/oph5A5qw=">AAACDnicbVDLSgMxFM3UV62vUZdugqXQgpQZqehGKLpxWcE+oFNKJs20oUlmSDJCGfoFbvwVNy4UcevanX9jpp1FbT1w4XDOvdx7jx8xqrTj/Fi5tfWNza38dmFnd2//wD48aqkwlpg0cchC2fGRIowK0tRUM9KJJEHcZ6Ttj29Tv/1IpKKheNCTiPQ4GgoaUIy0kfp2CZc9jvRI8iSankEv5GSIKvAaLuqVvl10qs4McJW4GSmCDI2+/e0NQhxzIjRmSKmu60S6lyCpKWZkWvBiRSKEx2hIuoYKxInqJbN3prBklAEMQmlKaDhTFycSxJWacN90pieqZS8V//O6sQ6uegkVUayJwPNFQcygDmGaDRxQSbBmE0MQltTcCvEISYS1SbBgQnCXX14lrfOqW6te3NeK9Zssjjw4AaegDFxwCergDjRAE2DwBF7AG3i3nq1X68P6nLfmrGzmGPyB9fULzj+bVQ==</latexit>
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Regular 3D grid representation of a volume

Credit: Voxel Ville NFT (voxelville.io) 

Consider storage requirements: 
40963 cells

Ignore directional dependency: rgbσ 4 bytes/cell 
~ 128 GB

Now consider directional dependency of color 
on (�, ✓)

<latexit sha1_base64="FANx3/kS5T1KQQSpkjHNFSSCIO0=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBahgpREKnosevFYwX5AE8tmu2mWbjZhd6KU0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+YngGmz72yqsrK6tbxQ3S1vbO7t75f2Dto5TRVmLxiJWXZ9oJrhkLeAgWDdRjES+YB1/dDP1O49MaR7LexgnzIvIUPKAUwJGeqi6ScjPsAshA3LaL1fsmj0DXiZOTiooR7Nf/nIHMU0jJoEKonXPsRPwMqKAU8EmJTfVLCF0RIasZ6gkEdNeNrt6gk+MMsBBrExJwDP190RGIq3HkW86IwKhXvSm4n9eL4Xgysu4TFJgks4XBanAEONpBHjAFaMgxoYQqri5FdOQKELBBFUyITiLLy+T9nnNqdcu7uqVxnUeRxEdoWNURQ66RA10i5qohShS6Bm9ojfryXqx3q2PeWvBymcO0R9Ynz9GBZG6</latexit>

… much worse storage cost

Typical challenge: 
limited resolution
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Recall quad-tree / octree
Quad-tree: nodes have 4 children (partitions 2D space) 

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t have to choose 
partition planes) 

Has greater ability to adapt to location of scene geometry 
than uniform grid.
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Recall quad-tree / octree
Now store samples of occupancy or density field in the tree structure, not triangles

Full
Fu

ll

Effective resolution in this example is 8x8:  but structure only must store 20 leaf nodes 
Interior nodes with no children → same “value” for all children in subtree  
Value stored at nodes could be: binary occupancy, or value like:                                  or    �a(x, y, z)

<latexit sha1_base64="EdJktxkEMA+gjcigeiqxD3Ulup8=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoUEoiFV0W3bisYB/QhjCZTtqhM5MwMxHT0C9x40IRt36KO//GaZuFth64cDjnXu69J4gZVdpxvq219Y3Nre3CTnF3b/+gZB8etVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxrczv/NIpKKReNBpTDyOhoKGFCNtJN8u9RUdcuSjylM1rU7Ofbvs1Jw54Cpxc1IGOZq+/dUfRDjhRGjMkFI914m1lyGpKWZkWuwnisQIj9GQ9AwViBPlZfPDp/DMKAMYRtKU0HCu/p7IEFcq5YHp5EiP1LI3E//zeokOr72MijjRRODFojBhUEdwlgIcUEmwZqkhCEtqboV4hCTC2mRVNCG4yy+vkvZFza3XLu/r5cZNHkcBnIBTUAEuuAINcAeaoAUwSMAzeAVv1sR6sd6tj0XrmpXPHIM/sD5/AM6lkoo=</latexit>

�s(x, y, z)

<latexit sha1_base64="MoUj1WLTCRpmzcv8TqViepLOGCY=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoUEoiFV0W3bisYB/QhjCZTtqhM5MwMxHT0C9x40IRt36KO//GaZuFth64cDjnXu69J4gZVdpxvq219Y3Nre3CTnF3b/+gZB8etVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxrczv/NIpKKReNBpTDyOhoKGFCNtJN8u9RUdcuSrylM1rU7Ofbvs1Jw54Cpxc1IGOZq+/dUfRDjhRGjMkFI914m1lyGpKWZkWuwnisQIj9GQ9AwViBPlZfPDp/DMKAMYRtKU0HCu/p7IEFcq5YHp5EiP1LI3E//zeokOr72MijjRRODFojBhUEdwlgIcUEmwZqkhCEtqboV4hCTC2mRVNCG4yy+vkvZFza3XLu/r5cZNHkcBnIBTUAEuuAINcAeaoAUwSMAzeAVv1sR6sd6tj0XrmpXPHIM/sD5/AOprkpw=</latexit>

Empty

Em
pt

y

Em
pt

y
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Ray marching a sparse voxel grid
Ray can now “skip” through empty space 

Ray marching is much more efficient when it’s easy to determine where the “empty space” is  
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OpenVDB
Popular tree-structure for representing sparse volumetric data 
Inspired by B+ trees used in databases
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OpenVDB node visualization
Popular tree-structure for representing sparse volumetric data 
Inspired by B+ trees used in databases
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Example usage of volumetric data 
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Can you think of challenges of using sparse structures when 
attempting to recover a 3D scene representation?
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Recurring theme in this course: 
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity field that 
represents a complex 3D scene 

And that recovery process is optimization via gradient descent.

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>
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Learning (compressed) representations
Rather than store an entire dense volume, let’s just learn an approximation to the 
continuous function that matches observations from different viewpoints? 

Let’s represent that approximation using a deep neural network.
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Recovering neural radiance fields (NeRF)

Key idea: differentiable volume renderer to compute dL/d(color)d(opacity)
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Great visual results!

Credit: Mildenhall 2023
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What just happened?
Continuous coordinate-based representation vs regular grid:  DNN is optimized so its weights to produce 
high-resolution output where needed to match input image data 

Extremely compact representation: trades-off storage for expensive rendering 
- Good: a few MBs = effectively very high-resolution dense grid 
- Bad: must evaluate DNN every step during ray marching 

- And the DNN is a “big” MLP (8-layer x 256) 
- Bad: must step densely (because we don’t know where the surface is… we can only query the DNN 

for opacity) 

Compact representation: DNN can interpolate views despite complexity of volume density and radiance 
function 
- Only prior is the separation into positional       and directional rgb 
- Training time: hours to a day to optimize a good NeRF

�
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MLP must do real work to associate 
weights with 5D locations 
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Is NeRF a “good” representation?
Ask yourself: what was the task? 
- Optimization (to recover DNN weights) and then rendering high-quality images 
- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-based 

representations would be very complex! 

Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes with 
viewpoint dependent surfaces possible (scene parameters fit on single GPU) 
- Amount of compression possible while retaining high fidelity was generally surprising to many 
- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter capacity as 

needed to maintain high quality 

NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a 
differentiable volume renderer to recover a model of a scene.   
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Improving rendering performance
But from a performance perspective, NeRF was not so good of a representation. 
So let’s use our graphics knowledge to move to representations that offer different points in the 
compression-compute trade-off space 

Main ideas: 
- Most of a scene is empty space, let’s avoid stepping densely through empty space when 

unnecessary (aka. It’s costly to evaluate the DNN during ray marching to find density = 0) 
- Shrink the size of the DNN 
- Avoid evaluating the DNN altogether when you can
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Recall: ray marching a sparse voxel grid
Ray can now “skip” through empty space 

Ray marching is much more efficient when it’s easy to determine where the “empty space” is  
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Let’s just run NeRF optimization for a bit like before…

Use the initial MLP to densely sample volume 
(Identify the empty space, use it to build a simple octree)

Note: 
This implementation uses 2-level octreee

Optimization will push some opacity values to 0 
DNN tells us where the empty space is! 

Then convert dense opacity grid to an octree representation that’s more efficient to render from… 
With the octree structure *fixed*, we can continue to optimize a color/density representation at leaves

Credit: Yu 2021
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What just happened?
We performed initial training… a la original NeRF 
Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to 
replace the “big” DNN.  Can use little DNNs at the leaves.  
That structure speeds up rendering (a lot), and it also speeds up “fine tuning” training, since the initial 
“big” DNN need not be trained to convergence

Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP

Credit: Yu 2021
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Another idea: use spherical harmonic representation of radiance
Useful basis for representing functions that varying smoothly w.r.t direction. 
Analogy: cosine basis on the sphere

Represent                           compactly by 
projecting into basis of SH. 

c(p,!) = c(x, y, z,�, ✓)
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Light probe locations in a game
Here: spherical harmonic probes sampled on a uniform grid 
(game compactly stores a few SH coefficients at each point to represent indirect illumination)



Stanford CS248A, Winter 2026

Finally…back to where we began
Start with a dense 3D grid of SH coefficients, optimize those 
coefficients at low resolution 
Now move to a sparse higher resolution representation 
(octree) 
Directly optimize for opacities and SH coefficients using 
differentiable volume rendering 
No neural networks. Just optimizing the octree 
representation of “baked spherical harmonic light” lighting 

Takeaway: often-used computer graphics representations are 
efficient representations to learn/optimize on

Plenoxels [CVPR 22]
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Neural codes… better than a DNN at the leaves

Rather than store a “per-leaf” DNN or per leaf SH coefficients, store a “code” zi per leaf node i 

Ray march through the octree like normal 
- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample 

point, or evaluating SH coeffients to get radiance… retrieve the neural code zi  
- Use a DNN to “decode” the code into a radiance or opacity  

Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color, 
it doesn’t have to represent all spatial occupancy information
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Hashing: a parallel friendly approach to storing and retrieving sparse voxels
Voxel hashing is a fast GPU data structure for supporting sparse voxel representations 
- “Give me data for voxel containing (x,y,z)” 
- Compact in space and “GPU friendly” for fast parallel lookup and update 
TL;DR — use hashing instead of trees 
Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13]
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Advanced topic: NVIDIA’s instant neural graphics primitives (NGP)
Combines two ideas: 

- Hierarchy of regular grids 

- Irregular hash data structures

Given position P: 
Compute indices of cell containing P on a bunch of different resolution grids (L grids) 
At each grid resolution, turn indices into a hash code. 
Use hash code to get F components of neural code Z 
Concatenate all the codes to get Z (neural code of length L x F) 
Send Z through an MLP to decode final value 

What is cool:   
1. Implementation elegance: no two-step process to find empty space, build structure, then proceed optimizing on another data structure 
2. Sparse hash structure is fast… ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.
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Summarizing it all: the “template”
Train a DNN to gain understanding of 3D occupancy (where the surface is) 
- Little to no geometric priors (so need full bag of DNN optimization tricks, etc) 

Then move to a traditional sparse encoding of occupancy (sparse volumetric structure) 
- Now the “topology” of the irregular data structure is fixed 
- Representation of surface/appearance/etc is stored at the nodes of this structure (spherical harmonics, 

neural code, etc.) 
- Most of the heavy lifting is now performed by the traditional spatial data structure 

Continue optimization on the fixed, sparse representation 
- Leverages differential volume rendering on sparse structure 
- What we’re now learning is how to represent/compress the local details
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<latexit sha1_base64="mBuowOC0mcNilZgs7/7mrudg6/k=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxC3ZQZqeiy6MZlBfuAzjBk0kwbmmSGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uWenDBhVGnH+bZKK6tr6xvlzcrW9s7unr1/0FFxKjFp45jFshciRRgVpK2pZqSXSIJ4yEg3HN/kfveBSEVjca8nCfE5GgoaUYy0kQL7yONIjyTPcJBMa17MyRCdBXbVqTszwGXiFqQKCrQC+8sbxDjlRGjMkFJ910m0nyGpKWZkWvFSRRKEx2hI+oYKxInys1n6KTw1ygBGsTRPaDhTf29kiCs14aGZzLOqRS8X//P6qY6u/IyKJNVE4PmhKGVQxzCvAg6oJFiziSEIS2qyQjxCEmFtCquYEtzFLy+TznndbdQv7hrV5nVRRxkcgxNQAy64BE1wC1qgDTB4BM/gFbxZT9aL9W59zEdLVrFzCP7A+vwBfhSVQA==</latexit>

SHp(!)

<latexit sha1_base64="XJJ7JE8U09Z9alG8DegGegCSqH0=">AAAB/HicbVDLSgNBEJyNrxhfqzl6WQxCvIRdiegx6CXHiOYB2RBmJ51kyOyDmV5xWeKvePGgiFc/xJt/4yTZgyYWNBRV3XR3eZHgCm3728itrW9sbuW3Czu7e/sH5uFRS4WxZNBkoQhlx6MKBA+giRwFdCIJ1PcEtL3JzcxvP4BUPAzuMYmg59NRwIecUdRS3yy6CI+Y3tWn/ajshj6M6FnfLNkVew5rlTgZKZEMjb755Q5CFvsQIBNUqa5jR9hLqUTOBEwLbqwgomxCR9DVNKA+qF46P35qnWplYA1DqStAa67+nkipr1Tie7rTpzhWy95M/M/rxji86qU8iGKEgC0WDWNhYWjNkrAGXAJDkWhCmeT6VouNqaQMdV4FHYKz/PIqaZ1XnGrl4rZaql1nceTJMTkhZeKQS1IjddIgTcJIQp7JK3kznowX4934WLTmjGymSP7A+PwBe9+Uqg==</latexit>
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But there are many scene representations

3D triangle mesh + texture map

3D volume (voxels)

Point cloud (list of points)

Oriented 3D Gaussians

Sparse voxels

DNN (MLP)
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Implicit representations like volumes and DNNs make it hard to know where the 
“empty space is” (hard to enumerate points on the surface)

Explicit representations are much better at the task of enumerating points on the 
surface (or equivalently, identifying where the empty space is)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Let’s consider one explicit representation that can accurately represent the contents of real world scenes… 
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D 
Gaussians is differentiable! 
(The color at a pixel due to a Gaussian blob is just an 
exponential)
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Optimization to recover parameters of 3D Gaussians, not voxel 
parameters, DNN weights, or neural codes Compute radiance along 

ray through scene
Compare to 

actual image
Earlier in lecture: optimization 
produces color and opacity at each 
voxel, or DNN parameters, etc.. 

Now: same idea, but optimization 
chooses color, position, and radius of 
the Gaussians 
- Now: also need to decide on the 

number of Gaussians (a bit tricker)

Key idea: differentiable Gaussian splatting rendering to compute dL/d(color)d(radius)d(position)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]
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Summary
Volumes (continuous color/opacity fields) and 3D Gaussian points are representations of 
geometry and materials that lend themselves to simple differential rendering algorithms  

Modern high-performance optimization techniques are amazingly effective at recovering the 
parameters of these representations. 

Together, these two observations have led to rapid progress in reconstructing scenes from 
(potentially sparse) set of photos 

Some of these solutions employ interesting combinations of neural structures (learned DNN 
weights, or neural “codes”) and “traditional” graphics representations like spatial accelerations 
structures or compact bases for radiance.  
- Takeaway for graphics students in 2026: need to be a master of both domains!
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What about triangles and textures?
What are the parameters of a mesh? (Vertex positions, 
number of vertices, connectivity,  etc.) 
Computing the gradient of a rendering subject to these 
parameters is challenging. 
- Consider simple case of fixed vertex count and fixed 

topology: change in rendering output at a single 
sample point is discontinuous at object silhouettes as 
a function of vertex position changes (might see 
object A, then see object B if object A moves!) 

- But integral of radiance over a pixel (post resolve 
output) is not discontinuous… (fraction of pixel 
covered)  
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Example uses of differential rasterizers/ray tracers
Optimize parameters of SVG file to get a certain look

Optimize “bold” parameter of SVG text to match 
image to right… 

Optimize curve control points to match images of numbers.

[Li et al. 2020 Differentiable Vector Graphics Rasterization for Editing and Learning]
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Example uses of differential rasterizers/ray tracers
Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the best 
low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification]

Example alpha 
texture for a leaf
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Example uses of differential rasterizers/ray tracers
Optimize vertex positions so surface refracts light to make given image on a receiving plane.

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer]

Starting result 
(flat plane) Final result

Steps of optimization 
(Adjust vertex positions of glass plane)



Stanford CS248A, Winter 2026

Summary
Renderers are “world simulators” that can use a variety of representations to model 
surfaces, materials, light, etc. 

Making those simulators differentiable opens up the possibility to invoke the amazing 
effectiveness of large-scale optimization to recover “good representations” by minimizing 
loss from a reference 

Depending on (1) task at hand (high-quality rendering, parameter recovery, scene 
editing, etc.) and (2) the properties of the scene you are trying to work with (complex 
foliage, smooth curves, fine scale hair/fur, flat walls) and (3) your storage/performance 
needs, different representations will be preferred. 


