Lecture 9:

Recovering scene representations
using gradient-based optimization

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026

Review of last class
(Light and reflectance)

Stanford (5248A, Winter 2026

Review: irradiance

m Irradiance: flux (energy per unit time=power) per unit area

[\

A

Given a sensor of with area A, we can consider the average flux over the entire sensor area:

®
A
Irradiance (E) is given by taking the limit of area at a single point on the sensor:

.. A®(p) do(p) [W
Blp) = tm =4 = a4 ‘m2

Units = Watts per area

Stanford (5248A, Winter 2026

Review: radiance

m Radiance (L) is power along an infinitesimally small beam

m The solid angle density of irradiance (irradiance per unit direction)
where the differential surface area is oriented to face in the direction (U

W

PQ dw

®

dA

In other words, radiance is energy along a ray defined by origin point p and direction (U

- A®(p,w) d*®(p,w)
L — 1 p—
(pyw) = lim — = dA dw

Stanford (5248A, Winter 2026

The reflection equation

Gives radiance reflected from point p in direction direction wo due to light incident on

the surface at p. *
v A
n
W, W;
Lo(p,wo) = fr(p,w; = wo) Li(p,w;) cos b; dw;

QQ I | |
BRDF lHllumination

Stanford (5248A, Winter 2026

Bidirectional reflectance distribution function (BRDF)

Gives fraction of light arriving at surface point p from incoming direction* w; is reflected
in the direction w, (outgoing direction)

f(p7 Wi WO)

Wi N
Wo

P

* (Convention: w; is oriented out from the surface “towards the incoming direction”)
Stanford (5248A, Winter 2026

What is this material?

Light is scattered equally in all directions

Stanford (5248A, Winter 2026

Today:

a small diversion before we dive deeper into reflection and materials next class

So far in class, our primary tasks of interest have been simulation
Simulating what a scene would look like (rendering)

Computing geometric relationships between objects
(e.q, inside/outside, distance to)

Stanford (5248A, Winter 2026

A longstanding challenge in computer graphics...

m Acquiring high-quality 3D content for rendering
m Consider making a high-quality 3D model and texture maps depicting Josephine the graphics cat...

|
3

M-~
A—

Stanford (5248A, Winter 2026

Google Street View

Palm Dr X

N 7

Stanford (S248A, Winter 2026

Credit: Tancik et al. 2022 ‘ Stanford (5248A, Winter 2026

An interesting task

m Given a collection of photographs (from known camera viewpoints)
m Recover arepresentation of the 3D scene (surface locations + color at each point on surface) that you could
use for rendering the scene from novel viewpoints

.-= “lg'f I

' il
|

Credit: Mildenhall 2019 Stanford (5248A, Winter 2026

Mini intro to gradient-based optimization

Stanford (5248A, Winter 2025

Imagine we have a function f(z)

How can we find the minimum of the function?

f(z)

Stanford (S248A, Winter 2026

Descent methods

ELLDORA

MOUNTAIN RESORT

o e L P

240

A portion of the Eldora Mountain

Resort is located in the Roos
National Forest and is under
from the Forest Service, U.S.

evelt
Bermit
A

. . — ‘.

g Se $ T : \ | LA
NI OH]
(COEN Gy At L:‘.:i,;'u
»

o Pl A |
PIPELINE

=3

Trail Map Legend
—@— Easiest —liftiline
— M — More Difficult Area Boundary
—¢—¢¢ Most Difficult « «» Snowshoe Trail
Easier Way Down Slow Skiing Area
Easiest Way Down First Aid

Stanford (S248A, Winter 2026

Gradient descent (1D)

m Basicidea: follow the gradient “downhill” until it’s zero

' ((0)) fim ()

{— 00

m Do we always end up at a (global) minimum?

m How do we compute gradient descent in practice?

Stanford (5248A, Winter 2026

Gradient descent algorithm (1D)

m “Walk downhill”

m Onesimple way: forward Euler:
/
L+l — Lk — Tf (:Ifk)

/ X

new estimate step size

m Q: How do we pick the step size?

m [f we're not careful, we'll go zipping all : . , :
over the place; won't make any progress. p i ;

L2 To L3 Iq

m Basicidea: use “step control” to determine step size based on
value of function and its derivatives

m For now we will do something simple: make t small!

Stanford (5248A, Winter 2026

Gradient descent algorithm (n-D)

m Q: How do we write gradient descent equation in general? _ .
df df df
d e _d_xo dx; " dxny-_1 |

“x(t) =~V f{(1)

m Q: What's the corresponding discrete update?

Xpa1 = X — TV f(Xk)

m Basicchallenge in nD:
- solution can “oscillate”
- takes many, many small steps

- very slow to converge >

Stanford (5248A, Winter 2026

Using gradient descent to recover scenes

I B '
!‘
i
+ 3
i ' -
L
»

Stanford (S248A, Winter 2026

But first let’s consider a simpler toy problem

m Let’s try recovering the pixels of a texture map such that sampling the texture using
bilinear interpolation approximates a 2D signal depicting a scene

m Given a 2D function we can measure (sample): scene(u, v) T

m Let texture(x, u,v) be the result of sampling from NxN
texture x using bilinear interpolation

m In the formulation of the previous slides:
- X is an array of N2 pixel values (unknown N x N texture map)

1

For a collection of samples (Uz » Vs) We seek to minimize the sum of squared differences of
textured result and function we are taking

But how do we compute V f(x) ? measurements of.

Stanford (5248A, Winter 2026

Computing derivatives using the chain rule

flx,y,2) = (x +y)z = az

df da da
50, by the derivative chain rule:
ﬁ - df da

de dadr ©

X 3()()
df/dx>df/da =5

Where: a = o + ¥

+

4(y
Y [dt/dy=df/da=5

5(z

Red = output of node

Blue = df/dnode

7 (a)
df/da=

df/dz=7

35 (f(x,y,2))
—
df/df =1

Stanford (5248A, Winter 2026

Backpropagation (a form of reverse mode autodiff)

Red = output of node Recall: ﬁ _ df dg
Blue = df/dnode “a dr ~ dgdax
Y 15
dfax=-dt/d
TQ. ¥ ﬂg(x,y)) glx,y) =x+y @ =1, @ — 1 “Sum copies gradients”
L df/dg dz dy
Y [at/dy=di/dg
X g 15 (gy) dg 1ifx>y
df/dx= ’ - ag _ b “Max routes gradient”
12— dr/dg g(x,y) =max(@,y) — = 0 owise
Y [df/dy=0
X 15 d d
jm‘“ﬂ % 1_80>(g(x,y)) g(x,y) = zy Yy Yy, “Multiply scales gradient by
12— df/dg dz dy opposite term”
Y [af/dy=15(df/dg)

Stanford (5248A, Winter 2026

Backpropagation with multiple uses of an input variable

Sum gradients from each use of variable:

29 Here:
x df/dg '
) d
df/d —11(df/d9)4/v + ["df/db = df/dg ﬁ _ df dg
y [di/dg dr dgdx
df/dy = df/dg _df (dgda dg db
g(r,y) =(r+y)+txxx=a+b " dg \dadz ' dbdzx
da db _ 4
& 9. —(1x2x+1x1)
dx Y fi?
=1, — 1 9
da " db B df(ll)
"~ dg
dg _dgda dgdb _, 7
—_— I p— T
dr dadx dbdx

Stanford (5248A, Winter 2026

Differentiating our loss function

f(x) = Z(Scene(ui, v;) — texture(x, u;, v;))°

1

= Zg(ui, v;)° where g(u,v) = scene(u,v) — texture(x, u, v)

dg dg dtexture d texture

dx dtexture dx dx

S0...

d texture(u;, v;)

d
vf(X) — zzg(uz’u”)d_i — _zzg(uzvvz) dx

Stanford (5248A, Winter 2026

Recall: bilinear filtering

o ® ® ®
texture(x, u, v) _
. Lol . xy .

Let x00, x10, x01, x11 be the samples of texture X surrounding (u,v) R * *
Let (s, t) be the x and y fractional offsets t1 ;

. Veo---in-@ e i o

Loo <> 10
wod = (1.0 - s) x (1.0 - t): s S
wled = s x (1.0 - t); e i e e e
wol = (1.0 - s) x t; 5
result = wl0 x x00 + wl@ x x01 + wOl * x10 + wll * x11
S0 what i d texture(x, u, v) ?

dx

Stanford (5248A, Winter 2026

Simple gradient descent algorithm for recovering
texture values

Let X = random texture values
while (loss too high): # f(X) 1s too large
Let UV = vector of (u_ 1, v_1) sample positions

grad = f_grad(UV) Gradient of the L2 difference between the value of the bilinearly filtered
texture X, and the target signal we are trying to recover

(When measured at the given array of sample points)

X += —-grad x step_size;

f(x) = Z(Scene(ui, v;) — texture(x, u;, v;))?

1

dg d texture(u;, v;)

Vf(x) = ng(ui,vi)d—x — —QZQ(W,%) dx

Stanford (5248A, Winter 2026

Using Slang to automatically compute derivatives

The Slang compiler provides auto-differentiation services (hackward autodial example below)

[Differentiable]

o o i ”,
float foo(float a, float b) Example of calling foo() in a “forward pass”:
{

return a x b x b: float a = 1.0;

} float b = 2.4;
float result = foo(a, b);
float loss = 100 - result;

: . printf(“result is %f, loss was %f”, result, loss);
Example use of foo in a backwards pass to compute gradients:

DifferentialPair<float> dp_a
DifferentialPair<float> dp_b

diffPair(1.0);
diffPair(2.4);

// Derivative of scalar L w.r.t the function foo’s output
float2 dL_dfoo = float2(1.0);

// compiler generates code for computing dFoo/da and dFoo/db
// and uses the input dL_dfoo to compute dL/da and dL/db

// dL/da=(dL/dfoo) (dfoo/da), dL/db=(dL/dfoo) (dfoo/db)

bwd _diff(foo)(dp_a, dp_b, dL dfoo);

float dL_da
float dL_db

dp_a.d;
dp_b.d;

printf("If dL/dOutput = 1.0, then (dL/da, dL/db) at (1.0, 2.4) = (%f, %f)", dL_da, dL_db);
Stanford (5248A, Winter 2026

Example: optimization to recover texture values

Texture at Epoch 0
H B l

.....

Loss Convergence

Epoch

Target signal: scene(u, v)

Stanford (S248A, Winter 2026

Okay, finally back to our original problem of recovering scenes...

Stanford (S248A, Winter 2026

Estimating mesh geometry is tricky

Reconstructed Mesh

Credit: Mildenhall 2019 Stanford (S248A, Winter 2026

Renewed interest in volume rendering (circa 2018)

The idea: if the task we care about is scene reconstruction from photos (not efficient scene rendering)...

Let’s move away from triangle-based representations. It is simpler (and more versatile when it’s unclear
what the surface geometry is anyway) to recover a volumetric representation

A “reasonable” volume representing the scene is the one that, when volume
rendered from the viewpoint of the photograph, produces a picture that looks
like the photograph.

Credit: Lombardi 2019 Stanford (S248A, Winter 2026

Last time: simple volume rendering

Consider representing a scene as a volume Volume density and “reflectance” at all points in space

—
o(p)

c(p,w) = c(z,y,2,¢,0)

"

Think: radiance reflected off
volume material at point p
in direction w. (Or radiance
emitted by volume)

Volume rendered CT scan Volume rendered scene

Credit: Taubmann et al., Siemens Healthineers Stanford €5248A, Winter 2026

Last time: rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

And continuous volume with density and directional radiance.

O (p) <— Volume density at all points in space.

C (p : w) <4——— Radiance leaving volume point p in direction w
(Due to light reflection off volume or emission)

Step through the volume to compute radiance along the ray.

Attenuation of radiance along r between r(t) and Color, opacity of the volume at the current point
the ray original due to light being absorbed or (More precisely: radiance along -w at point r(t))

scattered by the volume /

/tf

;g P ot o (— /]t t a(r(s))ds)

Stanford (5248A, Winter 2026

Last time: rendering volumes

Given “camera ray” from point o in direction w....
r(t) = o+ tw
And volume with density and directional radiance

o(p) c(p,w)

Step through the volume and accumulate radiance along the ray:

L =0.0 // total radiance accumulated

thickness = 0.0 // total density traversed

num_steps (t. f - t n) / step_size

for 1=0 to num_steps:
p=o0o+ (tn+ 1% step size) x w // current point along ray . : :
density = sample_density(p) // tri-lerp Computing gradients with
refl = sample_color(p, -w) // tri-lerp respect to volume parameters
thickness += density * step _size
transmittance = exp(-thickness)

// accumulate radiance contributed from current point
// (accounting for attenuation)
L += transmittance * density * refl

Stanford (5248A, Winter 2026

Recovering a volume that yields acquired images

Given a set of images of a subject with known camera positions...
And a volume renderer that can render an image given a camera position and a volume

Recover the parameters of a 3D volume: *

o(i,J,k), c(i,7, k) Compute radiance along Compare to
ray through volume actual image
. O, Ray 1 , /\ }
i€ Yo g | || M-ct
» 2

e

/

2

Y ‘o
: ’ '::‘ :
"loﬂ;' .)
iy - i $
Dy > Y
’l
M "/,Ji O'A Ray 2 m”

>

«

- g.1.

2

Ray Distance

/=

* In this simple example, assume that c(p,w) = c(p) (No directional dependence of radiance reflected off volume)
Stanford (5248A, Winter 2026

Recovering density and color of volume

Volume - Batch 0 View from one Dataset Camera - Batch 0 Loss Convergence
0.10 -
0.08 -
» 0.06 -
v
S
0.04 -
0.02 -
0 10 20 30 40 50 60 70

Stanford (S248A, Winter 2026

Visualization of gradient of loss

m Volumeinitialized to low density value everywhere
m Thisis avisualization of the gradient of the loss

m Positive gradient occurs in what should be empty space
- Stepping in direction of negative gradient will reduce
volume density.

m Negative gradient occurs in the view frustum where
geometry should be present. Density should increase
there

Stanford (S248A, Winter 2026

Reqular 3D grid representation of a volume

m Dense3D grid
- volumeli,j,k] =rgba

m Note, this representation treats surface as
diffuse, since: c(p,w) = c(p)

m Would need ofi,j, k] and c[i,j,k,phi,theta] to
represent directional distribution of
radiance

Credit: Voxel Ville NFT (voxelville.io)

Reqular 3D grid representation of a volume

Consider storage requirements:
40963 cells

Ignore directional dependency: rgho 4 bytes/cell
~ 128 GB

Now consider directional dependency of color
on (¢, 0) ... muchworse storage cost

Typical challenge: :

limited resolution | Credit: Voxel Ville NFT (voxelville.io)

Recall quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space)

Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t have to choose
partition planes)

Has greater ability to adapt to location of scene geometry
than uniform grid.

Stanford (5248A, Winter 2026

Recall quad-tree / octree

Now store samples of occupancy or density field in the tree structure, not triangles

I

Empty Full

CHEm

Empty
Empty

Effective resolution in this example is 8x8: but structure only must store 20 leaf nodes

Interior nodes with no children — same “value” for all children in subtree

Value stored at nodes could be: binary occupancy, or value like: o, (x,y, 2) or O (a:‘, Y, 2)
Stanford C5248A, Winter 2026

Ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

™~

Stanford (5248A, Winter 2026

OpenVDB

m Popular tree-structure for representing sparse volumetric data

m Inspired by B+ trees used in databases
2D Y

1D Dense representation !
N DODDONDOONNNEINDOEOER ,

VDB topology

Root node B

| E : : B | 00 00 Active bit-mask
E—) I N - - - - - - - - - - ------------ W e Rk e O T N R
Internal nodes : i
| 00 00 00
—I_ 11 01 10 """""""""""""
ooommoOon 0001 1000 0001 1000
Leaf nodes N

Sparse representation |
100 . . 1 1111

Stanford (S248A, Winter 2026

OpenVDB node visualization

m Popular tree-structure for representing sparse volumetric data
m Inspired by B+ trees used in databases

Internal nodes
first level

Leaf nodes

'Surface“.
Node voxel span: W 2048° m 178 m 8’ Active voxel span: 7897 x 1504 x 5774
Fig. 4. High-resolution VDB created by converting polygonal model from How To Train Your Dragon to a narrow-band level set. The bounding resolution of
the 228 million active voxels i1s 7897 x 1504 x 5774 and the memory footprint of the VDB 1s 1GB, versus the % TB for a corresponding dense volume. This
VDB is configured with LeafNodes (blue) of size 83 and two levels of InternalNodes (green/orange) of size 163. The index extents of the various nodes
are shown as colored wireframes, and a polygonal mesh representation of the zero level set 1s shaded red. Images are courtesy of DreamWorks Animation.

Stanford (S248A, Winter 2026

Example usage of volumetric data

|

Fig. 1. Top: Shot from the animated feature Puss in Boots, showing high-resolution animated clouds generated using VDB [Miller et al. 2012]. Left: The
clouds are initially modelled as polygonal surfaces, then scan-converted into narrow-band level sets, after which procedural noise is applied to create the
puffy volumetric look. Right: The final animated sparse volumes typically have bounding voxel resolutions of 15, 000 x 900 x 500 and are rendered using a
proprietary renderer that exploits VDB’s hierarchical tree structure. Images are courtesy of DreamWorks Animation.

Stanford (S248A, Winter 2026

Can you think of challenges of using sparse structures when
attempting to recover a 3D scene representation?

Recurring theme in this course:
Choose the right representation for the task at hand

Now the task is recovering a continuous color and opacity field that
represents a complex 3D scene

o(p)
c(p,w)

And that recovery process is optimization via gradient descent.

Stanford (5248A, Winter 2026

Learning (compressed) representations

Rather than store an entire dense volume, let’s just learn an approximation to the
continuous function that matches observations from different viewpoints?

Let’s represent that approximation using a deep neural network.

o(p)
c(p,w)

o ____l
-
128-d

vector

(x,y,2) (6,9)

(p,(ﬂ) — Fg(p,w) —

Stanford (5248A, Winter 2026

Recovering neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views

:«g

~’-e~3--f '6&&‘&""
SO E GRS
® B2 B Ag h e WA
B I S R

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
ﬁ(xyz@qﬁ —>|]|][|—> RGBo)

/ F@ Ray 2

A

o Ray 1 /\ 2
| 4 | B -c.t.
2

2

- g.t.

2

; > U| Ray 2 /-"\

Ray Distance

Key idea: differentiable volume renderer to compute dL/d(color)d(opacity)

Stanford (5248A, Winter 2026

Great visual results!

L .y W

o ",

.

Credit: Mildenhall 2023

What just happened?

m Continuous coordinate-based representation vs reqular grid: DNN is optimized so its weights to produce
high-resolution output where needed to match input image data

m Extremely compact representation: trades-off storage for expensive rendering
- Good: a few MBs = effectively very high-resolution dense grid

- Bad: must evaluate DNN every step during ray marching L
- And the DNNis a ”big” MLP (8-Iayer X 256) 44— MLP must do real work to associate

weights with 5D locations

- Bad: must step densely (because we don't know where the surface is... we can only query the DNN
for opacity)

m Compact representation: DNN can interpolate views despite complexity of volume density and radiance
function

- Only prior is the separation into positional O and directional rgb
- Training time: hours to a day to optimize a good NeRF

Stanford (5248A, Winter 2026

Is NeRF a“good” representation?

m Ask yourself: what was the task?
- Optimization (to recover DNN weights) and then rendering high-quality images

- And doing so on “real world” complexity scenes (not simple surfaces) for which accurate mesh-based
representations would be very complex!

m Extreme compactness of DNN representation (MLP) made optimization of high-resolution scenes with
viewpoint dependent surfaces possible (scene parameters fit on single GPU)

- Amount of compression possible while retaining high fidelity was generally surprising to many
- Flexibility of MLP (fully connected DNN layers) allows optimization to “allocate” parameter capacity as
needed to maintain high quality

m NeRF was a great success is showing that IT WAS POSSIBLE to use brute force optimization + a
differentiable volume renderer to recover a model of a scene.

Stanford (5248A, Winter 2026

Improving rendering performance

m But from a performance perspective, NeRF was not so good of a representation.

m So let’s use our graphics knowledge to move to representations that offer different points in the
compression-compute trade-off space

m Mainideas:

- Most of a scene is empty space, let’s avoid stepping densely through empty space when
unnecessary (aka. It’s costly to evaluate the DNN during ray marching to find density = 0)

- Shrink the size of the DNN
- Avoid evaluating the DNN altogether when you can

Stanford (5248A, Winter 2026

Recall: ray marching a sparse voxel grid

Ray can now “skip” through empty space

Ray marching is much more efficient when it’s easy to determine where the “empty space” is

™~

Stanford (5248A, Winter 2026

Let’s just run NeRF optimization for a bit like before...

Without sparsity loss With sparsity loss

=

m Optimization will push some opacity values to 0
m DNN tells us where the empty space is!

AT
SR ki

r':t\t (
*’1
N 3/,

m Then convert dense opacity grid to an octree representation that's more efficient to render from...

m With the octree structure *fixed*, we can continue to optimize a color/density representation at leaves

2
2

Use the initial MLP to densely sample volume
(Identify the empty space, use it to build a simple octre .

This implementation uses 2-level octreee

Credit: Yu 2021 Stanford (S248A, Winter 2026

What just happened?

m We performed initial training... a la original NeRF

m Once we get a sense of where the empty space is, we add a traditional spatial acceleration structure to
replace the “big” DNN. Can use little DNNs at the leaves.

m That structure speeds up rendering (a lot), and it also speeds up “fine tuning” training, since the initial
“big” DNN need not be trained to convergence

29

2.8

v 27-
b
A, 26 1
= NeRF
24 - NeRF-SH
- PlenOctree
Credit: Yu 2021
0 10 20 30 40 50 60

Training Time (hours)

m Cost? Octree structure now 100’s of MBs instead of a few MBs for MLP

Stanford (5248A, Winter 2026

Another idea: use spherical harmonic representation of radiance

m Useful basis for representing functions that varying smoothly w.r.t direction.
m Analogy: cosine basis on the sphere

' | m Represent c(p, w) compactly by
< & & wie projecting into basis of SH.

{w f ...,,; :(.'.‘\ "(..': '\""’, \"':" Q.;, &‘:I \ : \._-' “——- ».I;. \‘i'{, ;‘; \(\:E i"‘: t,""?‘} ""I" 1' ,’ {3 w
G O U W N B RT N W W o O O W OB W W W l
Stanford (S248A, Winter 2026

Light probe locations in a game

Here: spherical harmonic probes sampled on a uniform grid

(game compactly stores a few SH coefficients at each point to represent indirect illumination)
"!EHEEGHB@H{}}
B

. Empty Actor

' Empty Character

3 Empty Pawn

- Plane

'] Box Trigger
Omm

- Sphere Trigger
—_—

NSEer

| JLIV IR

EEIS © EED G GE3 €D -

S 4'J4 Attic (Editor)
4@ Lighting
‘_J DDGIVolumel
¥ DirectionalLight
‘-~ ExponentialHeightFog
%7 PostProcessVolume
%7 SkyLight
% Attic_benchmark
§y attic_converted_Section4_1
§y attic_objects_ball_star
i} attic_objects_ball_star2
i} attic_objects_ball_tennis
&Y attic obiects blanket bear

190 actors (1 selected)

CEEEEEEEEECE

@) Details @ world Settin
B DDGIVolumel

4+ Add Com

SR A L TR A Ll

A S R P T o e R

(J DDGIVolumel(instance)

& DDGIVolumeComponent (Inherited)

o

]

,ﬁ{
Sl

4 Transform

=
Rotation v)] 0.0° = j] 00°

Scale v bq 13.20. f4 23.10
4Gl
4 DDGIVolume Compone
406l
Rays Per Probe 720 v e

P Probe Counts X112 N

Update Priority 1.0 At

MR LEVETEVENE 100000.0 N

Finally...back to where we began

Plenoxels [CVPR 22] o
m Start with a dense 3D grid of SH coefficients, optimize those o
coefficients at low resolution
m Now move to a sparse higher resolution representation &
(octree) T +«
Z

m Directly optimize for opacities and SH coefficients using
differentiable volume rendering

m No neural networks. Just optimizing the octree
representation of “baked spherical harmonic light” lighting

m Takeaway: often-used computer graphics representations are
efficient representations to learn/optimize on

- Plenoxel
- NeRF

0 10 20 30 40 50 60
Training Time (minutes)
2026

Neural codes... better than a DNN at the leaves

m Rather than store a “per-leaf” DNN or per leaf SH coefficients, store a “code” z; per leaf node J

m Ray march through the octree like normal

- Instead of evaluating DNNi(x,y,z,phi,theta) for node i corresponding to the current sample
point, or evaluating SH coeffients to get radiance... retrieve the neural code z;

- Use a DNN to “decode” the code into a radiance or opacity

m Decoder DNN is “small” (cheap to evaluate) since it is only decoding a code into an opacity/color,
it doesn’t have to represent all spatial occupancy information

Stanford (5248A, Winter 2026

Hashing: a parallel friendly approach to storing and retrieving sparse voxels

m Voxel hashingis a fast GPU data structure for supporting sparse voxel representations
- “Give me data for voxel containing (x,y,z)"
- Compactin space and “GPU friendly” for fast parallel lookup and update
m TL;DR — use hashing instead of trees
m Developed by the 3D reconstruction community for interactive GPU-accelerated 3D reconstruction

H(z,y,z) =(x-p1®y-p2® 2-p3) modn

-

Real-time 3D Reconstruction at Scale using Voxel Hashing [TOG 13] Stanford CS248A, Winter 2026

Advanced topic: NVIDIA's instant neural graphics primitives (NGP)

m Combines two ideas: Given position P:
) Hierarchy of regu| ar grids Compute indices of cell containing P on a bunch of different resolution grids (L grids)
At each grid resolution, turn indices into a hash code.
- Irreqgular hash data structures Use hash code to get F components of neural code Z
Concatenate all the codes to get Z (neural code of length L x F)
=2 osls * At T, - e Send Z through an MLP to decode final value
,
T Z o
2 0 g o o‘\ Y
7 »
1/Ny 0 4) 0 F : b iF
3 6 2 E
3 1
é 1
. 6
1 7 Z] 5= ’
What is cool:

1. Implementation elegance: no two-step process to find empty space, build structure, then proceed optimizing on another data structure
2. Sparse hash structure is fast. .. ignore collisions, if collisions happen, just let SGD sort out what the neural code should be.

Stanford (5248A, Winter 2026

Summarizing it all: the “template”

m Train a DNN to gain understanding of 3D occupancy (where the surface is)
o(p)

- Little to no geometric priors (so need full bag of DNN optimization tricks, etc) ,) » F(p.w) » ¢(p, w)

m Then move to a traditional sparse encoding of occupancy (sparse volumetric structure)
- Now the “topology” of the irregular data structure is fixed

- Representation of surface/appearance/etcis stored at the nodes of this structure (spherical harmonics,
neural code, etc.)

- Most of the heavy lifting is now performed by the traditional spatial data structure

4p
P # lookup(p) +
>
: e : " p
m Continue optimization on the fixed, sparse representation Traditional data structure ¢ (W)
P
- Leverages differential volume rendering on sparse structure
SH), (w)

- What we're now learning is how to represent/compress the local details

Stanford (5248A, Winter 2026

»
3

3D volume (voxels)

1 OO000000 OOOODVDVU

Sparse voxels

DNN (MLP)

Oriented 3D Gaussians

Point cloud (list of points) Stanford 5248, Winter 2026

Implicit representations like volumes and DNNs make it hard to know where the
“empty space is” (hard to enumerate points on the surface)

So we had to “add in” extra support through spatial data structures like octrees, hash grids, etc.

Explicit representations are much better at the task of enumerating points on the
surface (or equivalently, identifying where the empty space is)

Let’s consider one explicit representation that can accurately represent the contents of real world scenes...
A list of 3D Gaussians

And conveniently, a simple rasterizer or a ray caster of 3D

Gaussians is differentiable!
(The color at a pixel due to a Gaussian blob is just an

exponential)

Stanford (5248A, Winter 2026

Optimization to recover parameters of 3D Gaussians, not voxel
parameters, DNN weights, or neural codes

Compute radiance along Compare to
ray through scene actual image
m Earlier in lecture: optimization /\
produces color and opacity at each e Rayl, I - ’
voxel, or DNN parameters, etc.. *%“ } ol

2

- g.1.

. ’
Iy, i
e al
-' ‘ o
l,‘ ‘ ,:,‘
’ -
7 O, R
7 ay
>

Ray Distance

=

m Now:same idea, but optimization ‘/ :
chooses color, position, and radius o ﬁ
the Gaussians \

- Now: also need to decide on the
number of Gaussians (a bit tricker)

2

Key idea: differentiable Gaussian splatting rendering to compute dL/d(color)d(radius)d(position)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]

Stanford (5248A, Winter 2026

Summary

m Volumes (continuous color/opacity fields) and 3D Gaussian points are representations of
geometry and materials that lend themselves to simple differential rendering algorithms

m Modern high-performance optimization techniques are amazingly effective at recovering the
parameters of these representations.

m Together, these two observations have led to rapid progress in reconstructing scenes from
(potentially sparse) set of photos

m Some of these solutions employ interesting combinations of neural structures (learned DNN
weights, or neural “codes”) and “traditional” graphics representations like spatial accelerations
structures or compact bases for radiance.

- Takeaway for graphics students in 2026: need to be a master of both domains!

Stanford (5248A, Winter 2026

What about triangles and textures?

m What are the parameters of a mesh? (Vertex positions,
number of vertices, connectivity, etc.)

m Computing the gradient of a rendering subject to these
parameters is challenging.

- Consider simple case of fixed vertex count and fixed
topology: change in rendering output at a single
sample point is discontinuous at object silhouettes as
a function of vertex position changes (might see
object A, then see object B if object A moves!)

- Butintegral of radiance over a pixel (post resolve
output) is not discontinuous. .. (fraction of pixel
covered)

Stanford (5248A, Winter 2026

Example uses of differential rasterizers/ray tracers

of togetherness across techniques, cultures, and people. You can look forward to experience some of Korea's expertise in gaming and game
development, along with lots of exciting and intriguing new and returning programs at SIGGRAPH Asia 2020 in Daegu. Join me and my
team in making this edition an amazing one!” "South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of
a high-tech, skilled industry, and a close-knitted community of artists, creators, and scientists. SIGGRAPH Asia 2020's theme — DRIVING
DIVERSITY - is all about creating a sense of togetherness across techniques, cultures, and people. You can look forward to experience some
of Korea's expertise in gaming and game development, along with lots of exciting and intriguing new and returning programs at
SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!” "South Korea's Computer Graphics and
Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a dose-knitted community of artists, creators, and
scientists. SIGGRAPH Asia 2020's theme — DRIMING DIVERSITY - is all about areating a sense of togetherness across techniques, cultures, and
people. You can look forward to experience some of Korea's expertise in gaming and game development, along with lots of exciting and
intriguing new and returning programs at SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!”
"South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a
close-knitted community of artists, areators, and scientists. SIGGRAPH Asia 2020's theme — DRIVING DIVERSITY - is all about creating a sense
of togetherness across techniques, cultures, and people. You can look forward to experience some of Korea's expertise in gaming and game
development, along with lots of exciting and intriguing new and retuming programs at SIGGRAPH Asia 2020 in Daegu. Join me and my
team in making this edition an amazing one!”"South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of
a high-tech, skilled industry, and a close-knitted community of artists, creators, and scientists. SKGGRAPH Asia 2020's theme — DRIVING
DIVERSITY - is all about creating a sense of togethemess across techniques, cultures, and people. You can look forward to experience some
of Korea's expertise in gaming and game development, along with lots of exciting and intriguing new and returning programs at
SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!” "South Korea's Computer Graphics and
Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a close-knitted community of artists, creators, and
scientists. SIGGRAPH Asia 2020's theme — DRIVING DIVERSITY - is all about creating a sense of togethemess across techniques, cultures, and
people. You can look forward to experience some of Korea's expertise in gaming and game development, along with lots of exciting and
intriguing new and retuming programs at SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!”
"South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a
close-knitted community of artists, creators, and scientists. SIGGRAPH Asia 2020's theme —DRIVING DIVERSITY -is all about creating a sense
of togetherness across techniques, cultures, and people. You can look forward to experience some of Korea's expertise in gaming and game
development, along with lots of exciting and intriguing new and returning programs at SIGGRAPH Asia 2020 in Daegu. Join me and my
team in making this edition an amazing one!” "South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of
a high-tech, skilled industry, and a close-knitted community of artists, creators, and scientists. SKGGRAPH Asia 2020's theme — DRIVING
DIVERSITY - is all about creating a sense of togetherness across techniques, cultures, and people. You can look forward to experience some
of Korea's expertise in gaming and game development, along with lots of exciting and intriguing new and returning programs at
SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!” "South Korea's Computer Graphics and
Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a dose-knitted community of artists, creators, and
scientists. SIGGRAPH Asia 2020's theme — DRIMING DIVERSITY - is all about creating a sense of togetherness across techniques, cultures, and
people. You can look forward to experience some of Korea's expertise in gaming and game development, along with lots of exciting and
intriguing new and returning programs at SIGGRAPH Asia 2020 in Daegu. Join me and my team in making this edition an amazing one!”
"South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of a high-tech, skilled industry, and a

close-knitted community of artists, creators, and scientists. IGGRAPH Asia 2020's theme — DRIVING DIVERSITY - is all about creating a sense

look
Optimize “bold” parameter of SVG text to match
image toright...

° ° ° °
0 tl m Ize cu rve co ntrol o I nts to match I ma es of n u m be rs development, along with lots of exciting and intriguing new and returning programs at SIGGRAPH Asia 2020 in Daegu. Join me and my
p p g ° team in making this edition an amazing one!” "South Korea's Computer Graphics and Interactive Techniques landscape is a great blend of
a high-tech, skilled industry, and a close-knitted community of artists, creators, and scientists. SIGGRAPH Asia 2020's theme — DRIVING

DIVERSITY - is all about creating a sense of togetherness across techniques, cultures, and people. You can look forward to experience some
of Korea's expertise in gaming and game development, along with lots of exciting and intriguing new and returning programs at

02798 24913 2798 242
CT¥7&498 |O71 v 887995
¢ 9~/ £ 59 § 92/ &8 5 9

[Li et al. 2020 Differentiable Vector Graphics Rasterization for Editing and Learning] Stanford CS248A, Winter 2026

Example uses of differential rasterizers/ray tracers

m Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the best
low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

Example alpha
texture for a leaf

Initial guess (6.5k tris) Optimized parameters Our (6.5k tris) Reference (1.7M tris)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification] Stanford CS248A, Winter 2026

Example uses of differential rasterizers/ray tracers

Optimize vertex positions so surface refracts light to make given image on a receiving plane.

Steps of optimization
Starting result (Adjust vertex positions of glass plane)
(flat plane)

o O T

Final result

Optimized geometry Projected caustic

5

Directional area light

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer] Stanford (S248A, Winter 2026

Summary

m Renderers are “world simulators” that can use a variety of representations to model
surfaces, materials, light, etc.

m Making those simulators differentiable opens up the possibility to invoke the amazing
effectiveness of large-scale optimization to recover “good representations” by minimizing

loss from a reference

m Depending on (1) task at hand (high-quality rendering, parameter recovery, scene
editing, etc.) and (2) the properties of the scene you are trying to work with (complex
foliage, smooth curves, fine scale hair/fur, flat walls) and (3) your storage/performance

needs, different representations will be preferred.

Stanford (5248A, Winter 2026

