Lecture 6: . l.
Iexture Mapping ‘:

Computer Graphics: Rendering, | ' LA in A

Geometry, and Image Manipulation . wranriariang

Stanford (5248A, Winter 2026 _ b 2 ".':}‘:"5 rlgrt\ m

) . -

N\

%\
¢
b

T -

Many uses of texture mapping

Define variation in surface reflectance

Pattern on ball

Wood grain on floor

Stanford (5248A, Winter 2026

Describe surface material properties

AR MAD

Stanford (5248A, Winter 2026

Layered material

Stanford (S248A, Winter 2026

Normal and displacement mapping

normal mapping

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface
(note smooth silhouette/shadow reveals that
surface geometry is not actually bumpy!)

displacement mapping

Dice up surface geometry into tiny triangles &
offset vertex positions according to texture values
(note bumpy silhouette and shadow boundary)

Stanford (5248A, Winter 2026

Represent precomputed lighting and shadows

Original model With ambient occlusion Extracted ambient occlusion map

Grace Cathedral environment map

Environment map used in a rendering Stanford (5248, Winter 2026

Perspective and texture

‘ \ - 4 . 5 - ’ - ; |
P R EVI 0 U S LY. | [. | ‘. . '..- ‘ " ““l ‘“ .'
. y 4, p " » -’\ : ' -
. ° £ | A ¥
- ' VA

- o] P | ;
- transformations (how to manipulate geometry in space) N O S
- rasterization/raytracings (how to sample goemetry into N \ Vi
colored pixels)

m TODAY:
- see Where these two ideas come crashing together!

- talk about how to map texture onto a surface to get
more detail

Why is it hard to render
an image like this?

Stanford (5248A, Winter 2026

Recall the function coverage(x,y) from lecture 2

In lecture 2 we discussed how to sample
coverage given the 2D position of the C
triangle’s vertices.

Stanford (5248A, Winter 2026

Consider sampling a different signal: color(x,y)

C
blue [0,0,1]

b
green [0,1,0]

A
red[1,0,0]

What is the triangle’s color at the point X, given its colors at points a, b, c?

Stanford (5248A, Winter 2026

Review: interpolation in 1D

[recon(x) =linear interpolation between values of two closest samples to x

t f(x)

Between: X2 and x3:

frecon(t) — (1 — t)f(xQ) -+ tf(:l?g)

where:

(x — x2)
L3 — X2

—

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

Review: consider similar behavior on triangle

C
blue [0,0,1]

Color depends on distance from b — a

Color= (1—¢)[0 0 O|+¢t[0 O 1]

distancefromx to b — a
[= —
distancefromCto b — a

b
black[0,0,0]

A
black[0,0,0]

How can we interpolate in 2D between three values?

Stanford (5248A, Winter 2026

Review: linear interpolation of quantities over triangle

C blue[0,0,1]

b — a and ¢ — a form a non-orthogonal
basis for points in triangle (origin at &)

x =a+ f(b—a)+v(c—a)
=(1—-8—v)a+ b+ ~c
= aa+ Bb +~vc

a+pf+v=1

Color value at X is linear combination of
color value at three triangle vertices.

Xcolor — GdAcolor + 6 bcolor + YCcolor

b
green [0,1,0]

a
red [1,0,0]

What is the triangle’s color at the point X , given its color at points a, b, c ?

Stanford (5248A, Winter 2026

Another way: barycentric coordinates as ratio of areas

;:I 0011 Also ratio of signed areas:
ueiv,v, o — AA/A
5 =Ag/A
v =Ac/A

Why must coordinates sum to one?
A \ Why must coordinates be between 0 and 1?
e
‘ >~ A :
— 7
7 AC \/

b
/ green [0,1,0]
a b — a

red[1,0,0]

Stanford (5248A, Winter 2026

Yet another way: barycentric coordinates as scaled distances

C 3 proportional to distance from X toedge C — a
blue [0,0,1]

Compute distance of X fromline C — a
Divide by distance of b fromline C — & (“height” of triangle)

(Similarly for other two barycentric coordinates)

*
L 4
L 4
L 4
*
a
L 4
L 4
L 4
L 4
L 4
L 4
L 4
.0
L 4

L 4
*
L 4
L 4
L 4
L 4
.0
L

green [0,1,0]
a b—a
red [1,0,0]

Stanford (5248A, Winter 2026

You can can linearly interpolate any values (defined at vertices)
over the triangle this way

Here, I'm interpolating position (x,y,z), color (r,g,b), and extra values (u,v)
C(=(x2,y2,22,r2,q2,b2,u2,v2)

B=(x1,y1,121,r1, 491, b1, ul, vl)

A = (x0, y0, z0, r0, g0, b0, u0, v0)

Stanford (5248A, Winter 2026

Texture coordinates

“Texture coordinates” define a mapping from surface coordinates (e.g., points on triangle) to points in the domain of a

texture iImage Texture function Rendered image of texture

Surface (one face of cube) (represented by an image) mapped onto surface

(0.0, 1.0) (0.5,1.0) (1.0,1.0)
¢

(0.0, 0.5)

) texture(u,v) is a function Final rendered result (entire cube shown).
(0.0,0.0) (0.5,0.0) (1.0,0.0) defined on the [0,1]2 domain
(represented by 2048x2048 image) Location of triangle after projection onto
Eight triangles (one face of cube) with screen shown in red.
surface parameterization provided as per- Location of highlighted triangle
vertex texture coordinates (u,v) in texture space shown in red.

Today we'll assume surface-to-texture space mapping is provided as per vertex attribute

(Not discussing methods for generating surface texture parameterizations) |
Stanford C5248A, Winter 2026

Many different mappings of surface position to texture space

User Persp

471

: ‘
. l'.z r . "
. s 41 - -
- v -)

“ - 0 < was

e pL
| h 1
Ye

o

.~

Example: mercator projection onto sphere

https://blender.stackexchange.com/questions/3315/how-to-get-perfect-uv-sphere-mercator-projection

Stanford (5248A, Winter 2026

Texture “atlas”

https://www.creativebloq.com/3d/how-create-killer-3d-robot-21410645 Stanford (S248A, Winter 2026

Visualization of texture coordinates

Texture coordinates linearly interpolated over triangle

(0.0,1.0) (green)

(0.0, 0.0) (1.0,0.0) (red)
(black)

Stanford (5248A, Winter 2026

Texture coordinate values provided at triangle vertices

(Just like 3D positions are provided at vertices)

Visualization of texture coordinate value on mesh Visualization of location of triangle vertices
(texture coordinate = color) in texture space

21, u1-0.4,v1=0.7)

/)
\ X st \‘(~
; /H/
] [\Vr
/ ""7/‘._’
‘41 _/’"
MRS -

"“{u2=0.2 ,v2=0.15)

Mesh inputs: for e
- Per-vertex pos | X,y,2] .
- Per-vertex texture inates in 2D texture space [u,v] (0,0)

Stanford (S248A, Winter 2026

Texture mapping adds detail

Sample texture map at specified location in texture coordinate space to
determine the surface’s color at the corresponding point on surface.

vV

Cva

‘Ef-n v

AN

fORRa et
CAVANAY)

[~

%
-

e
FATATAYY
‘Y‘VA'AV
PATATANYS
s

N Y
T S RS
AT, . ;'e}!ﬂﬂ;“i‘i S
S NS

v\"ﬁ\

Stanford (S248A, Winter 2026

Texture mapping adds detail

rendering without texture rendering with texture texture image

>

—

~

%1

> '

*
e

“;

B

A& \
-\.

Zoom

Each triangle “copies” a piece of the image back to the surface. |
Stanford C5248A, Winter 2026

Texture sampling 101

m Basicalgorithm for mapping texture to surface:
- For each color sample location (X,Y)
- Interpolate U and V coordinates across triangle to get value at (X,Y)
- Sample (evaluate) texture at location given by (U,V)

- Set color of surface point to sampled texture value

Stanford (5248A, Winter 2026

Texture coordinate visualization

Defines mapping from point on surface to point (uv) in texture domain

(1:1)

Texture map

Red channel = u, Green channel =v
So uv=(0,0) is black, uv=(1,1) is yellow Stanford (S248A, Winter 2026

(1:1)

Rendered result %

Texture map

U

T ~
s / —11':—3-: -—= === == -:--':_\
7/ — s :'IIL- &&- X-\\V \}\ \‘\\\\

Stanford (5248A, Winter 2026

Visualization of texture coordinates

Notice texture coordinates repeat over surface.

Stanford (S248A, Winter 2026

Example textured scene

Stanford (S248A, Winter 2026

Example textures used in previous scene

—~ ———r

= C—— —— - - - . e - —~———

— -
o= - - T —
|
i
|
- PR S -~ — —— .l — e e oy
- . . - ——- —
- —~ -y B ——
|
£ i - o ..._) i

Stanford (5248A, Winter 2026

Texture mapping: basic algorithm (ray

m Basicalgorithm for mapping texture image onto a surface:

- For each camera ray, find surface intersection point P with triangle
- Interpolate U and V texture coordinates across triangle to get texture coordinate value at P
- Sample texture map at location (U,V)

- Set output image sample color to sampled texture value

Stanford (5248A, Winter 2026

Demo (by Katie Detkar) https://katie.su.domains/webgl/index.html

Image warp through texturing and projection

Below are two images. The first is is a 3D rendering of a textured model, and the second is a 2D visualization of texture space. You ¢
the first compared to the second during the transformations that take it from object space to screen space.

i 111111 ! 11

.‘
l'.l.mm ‘ ‘] | ‘ ’
{11411 i

r 2222
A S S S S -
YZZ X2 237
g g - W Y
et L A L L L& & F F ¥ J
(2 2 L L 2 2 7 7 737 7 3
A B Ay AW AW Ay S A 2N
AW Ay & 55 4V AN & BN = 8y &
L L 2 F 2 2 X 7T 7 ¥ ¥ 3
e L L A L2 2 X X 7 F ¥
AV AV AV v 5 A &N B IR Yy
L L L 2 L i X7 7T ¥ ¥
e L L L 4 8 7 7 ¥]
e L L L L LT T ¥

AV AV &Y &N A A & & =
L L T I I T
r L L L 7 L1 = -
NSNEREEYNEnE
NN

—Object —Base texture Texture mapping —Sonification
Model type |Squarev Base |Gradient v Nearest Listen to the Sonification base
Rotation around neighbor texture
horizontal eassmm——g Clear
Sonify 3D sonity 2D
Rotation around

vertical —2" %
Object scale o=

Stanford (S248A, Winter 2026

Thought experiment

Imagine rendering a texture-mapped quadrilateral onto a 1000x1000 pixel output image

1000 pixels

These red dots are your
screen sample locations.

1000 pixels

Let’s also say the texture image
is 1000x1000 as well.

Stanford (5248A, Winter 2026

object zoomed out

The entire 1000x1000 texture is rendered

Sampling rate on screen vs in texture

into a small region of the screen.

-
T
-7
-
WJ
W
P—
o

=
T

=
=

§=

N
@
-
=

i
D

=

© 0o o oo o 0 o©
ogf © °° o go
© 0o o oo o 0 o©
© 0o o oo o 0 o©
oooooooo
oooooooo
oooooooo
oooooooo
o.ooooo”o
oooooooo
oooooooo
oooooooo
© 0o o o o o 0o o©
© 0o o oo o 0 o©
o@ ©o o o o @ o
© 0o o oo o 0 o©
© 0o o oo o 0 o©
© 0o o oo o 0 o©
© 0o o oo o 0 o©
© 0o o oo o 0 o©
o.ooooo”o
© 0o o oo o 0 o©

0O O O o o o o o o o

0O O o o O O O o o 0o o o o o o o o o 0O O o o

0O 0O o 0o o o o o o 0 o o o o o o o o 0O O o o

o O
o]
o]
@
o]
o]
o]
o]
o]
@
o]

o O

o o0 o o O o o o

Texture space (u,v

o]

o]

Red dots = sample positions on screen

p—

White dots = texture map samples in texture space

Stanford (5248A, Winter 2026

ingin...

Zoom

o]
o]
o]
o]
o]
o]
o]
o]
o]
o]
o]
o]

®° °0° °@° °@° °@

‘o 0.0

0O 0O o 0o o o o o o 0o o o o o o o o o o O O

0 @ 0o @ 06 @ 0 Do Wo

0.0.0'O

Do o@o o@o o0@oc o @

o % o.o
© o o o
© 0 o_o
@ O
© o o o
© 0o o_o
@ O
© o o o
© o o o
@ O
© 0o o o
© o o o
o .o o.o
o o o o
@ O
o o o o
© o o o
o ’ o.o
© o o o
o® 0@
© o o o
o@® o@o
© o o o
o@ o@o
© o o o

(o) (o]
° &
(o] (o] (o]
(o] (o] (o]
O O
O O (o]
O O (o]
O O
O O (o]
O O (o]
O O
O O (o)
O O (o]
o, 9®
O O (o]
o, 9
O O (o]
L., 0O
O O (o]
Do O
O O (o]
@o O
O O (o]
@° @
(o]

o O

Red dots = sample positions on screen

o]
@

o]
o]

o]

Do @0 0@o 0@,

@ o

o o o o o o o o o o o o o o o o o o 0O O o o

0O 0O 0O 0O o o o o o o o o o o o o o o

0.0.0’O’O

White dots = texture map samples in texture space

Texture space (u,v)

Gray square = area of a screen pixel

Stanford (5248A, Winter 2026

Zooming IN%A.

® o o
@ o o
@ o o
® o o
. e 6y
N
® o 5.
® o oF
@O DDDPDVDVDPDe 9@ @°e°e°e°0°0°0°0@°
cC 00 0000 @D VOV DV O °O °® °® °® °@ °@°@°
@ o6 o N EEEEEEEEELEEEE
c 990 99999900000 .0.,0,0,0,0,0,0,0,
c ©0 0999909900090 0.,0.,0.,0,0,0,0,0,
(o) . . O. O. O. O. O. O. O. 0.0. O. O. 0.0.0.0.0.0.0.0
0000000000000 ee’'e’e’e’e
° 90 D PDPDPPP VOOV V°O@°0°0°09°09°0°0°@°
- 0O O OO OO D DWWV D WV O °®°®°®°® °@°@°@°
Red dots = sample positions ONSGteen SsesssssasasanTneet
. . 0900000000000 00000000
— alac . 0 .0.0.0.0,0. 000,
White dots = texture map samplesjin texture space - 298858533 385548 880000000

Gray square = area of a screen pixel Texture space (u,v)

Stanford (5248A, Winter 2026

O O O 0O 0 0O 0 0o o o o o o %
(=]
~
n n O O O 0O 0 0O 0 0o o o o o o ._nrh
(o)) D O 0 0O OO 0O O OO O O OO W
v @ o
(-)
“ “ O O O O 0 0O O 0O 0o o o o o m
\J
n n O O O O 0 0O O 0O 0o o o o o m
o o 0000000000000000 gl -
6 0 0 00Q00Q000000Q00000 o o > | E
s @ sesssssssggsssee | 2
" m— °© 0 0 00808900000800600 © ° m3 |V
Qo = geggssscessssese @ —
| O O O O O O
@ -
= v 0000000066000000 @
= 0O 0 0 0000G000000Q0000Q o o W
s S | sessssssesssssss @ ° @
- : o o o o3338388338888888 o o o
QP00 000 W
(g=] ey o o o 03833808050808808 © © g
m ﬂr\ © 0 0o 0o o 0o 0 00 O O0 0 0 g
” u OOOOOOOOOOOOO“
d ' whd
o“ x pe ooooooooooooox
m m ‘ OOOOOOOOOOOOO-e
0O O O O 0 0O 0 0o o o o o o
— ! 3
t o) 0O O O O 0 0O 0 0o o o o o o
>< -
Om 0O O O O 0 0O 0 0o o o o o o
e . 0O O O O 0 0O 0 0o o o o o o
“ | 0O O O O 0 0O 0 0o o o o o o
||
(¢ o
= ® . | ®
(V]
(¢
—_N e @
| |
[e
S o) @)
O
O O O
@) @ O
@) @) @)

nap samples in texture space

o A
—
- E=RE

)Sitions on screen

a
—
- R W Wk

—:/-
g
AN
pu ([]
reajofiaistreen pixel

—
— S
-—

—
—

\"“ A p
SJCIIIE

d‘rﬁ A w

Red dots
White dot
Gray square

© 0 0 00 0O 9go © 0 0 0 ©

O 0 0 0 0o 0o 0o o@ o o o o

o o o oo @o o o ®o o o

o o o oo o o® o o o@ o
O Q@

o 0o 0o o ©O 0 0 0O 0 0 O ©

O @)
©o 0 0 0 0 0 O “o o o fo
@)
O 0O O 0 0.0 O O O@m0 O O O
@) @
o o‘o © 0o ogg ©0o o @ ©° o
© 0o o go o o @o o o o @o

o@o0 o 0o o@ o o0 o @ o o o

Texture spate (u,V) .

o 0@ 0600 @060 0o Po o
n .oooo.n o.oooo.o
o.ooo ‘oooo.ooo
LSS
= o [t e T s
© o 0 0o 0 0 0@ o0 O 00O
O N
vd ® © @ © °©©° q@©° o o o@o o o
a @ |o o c@ 0o 0o o@® o o 0o 0o
t ® o o o @ o0 o o o o o o
0 () o Do 00 0@ o0 0 0 0 0 0
. — o 0 o® 060 0®@06 00 0o
@
vd O 0 00O 0O OO O O 0O OO
@ @
c © © 0o g0 0000000000
e © 0 0 00gd 0 0O OO 00O
.j
== > °
® O '®) '®)

Sampling rate on screen vs in texture
White dots = texture map samples in texture space

Red dots = sample positions on screen
Gray square = area of a screen pixel

Stanfoed C5248A, Winter 2026

Equally spaced samples on screen != equally spaced samples in texture space

Sample positions in XY screen space Sample positions in texture space

Sample positions are uniformly distributed in screen space Texture sample positions in texture space
(renderer samples triangle’s appearance at these locations) (texture function is sampled at these locations)

Stanford (5248A, Winter 2026

Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford (5248A, Winter 2026

Screen pixel footprint in texture space

oaly

Upsampling Downsampling
(Magnification) (Minification)
Camera zoomed in Camera far away

close to object from object
Stanford (5248A, Winter 2026

Screen pixel area vs texel area

m Atoptimal viewing size:

- 1:1 mapping between pixel sampling rate and
texel sampling rate

- Dependent on screen and texture resolution!

m When pixel area is larger than texel area (texture minification)
- Think: zoom far out from object
- One pixel sample per multiple texel samples

m When pixel area is smaller than texel area (texture magnification)
- Think: zoom in on an object
- Multiple pixel samples per texel sample

Stanford (5248A, Winter 2026

What is the color of the texture

at these red dots?

Texture magnification

oonnuuouo

o

o

o

...............
V000000 FD000000 ©
0000000000000000

o O GP0Q00LOAPOQR0HO o

o]

o]

o]

o]

o]

Texture space (u,v)

Stanford (5248A, Winter 2026

Review: piecewise constant approximation

frecon(x) = value of sample closest to x
[recon(x) approximates f (x)

‘ J(x)

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

| ™ |

lexture magnification (nearest)

Texture magnification (nearest)

Texture magnification (nearest)

Texture magnification

m Generally dont want this situation — it means we have insufficient texture resolution

m Magnification involves interpolation of values in texture map (below: three different interpolation
kernel functions)

Nearest sample Bilinear Bicubic

Stanford (5248A, Winter 2026

Review: piecewise linear approximation

[recon(x) = linear interpolation between values of two closest samples to x

‘ J(x)

*
L 2
*
*
.
.
*
L 2
.
*
* .
*
® .
A4 .
.
.
*
*
.
.
*
*
“
*

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

lexture magnification (bilinear)

—

v 7

1NNy —aW,
. . -

5

-

o

k-

-
:

lexture magnification (bilinear)

Texture magnification (bilinear)

Bilinear interpolation

iIIIIIIIIIIIIIIIIIIIIIIIIII.‘IIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII

Want to sample texture value f(x,y)

at red point
@ ® @ ®
.......................... Black points indicate texture
E E sample locations
@ @ @ ®

--

Stanford (5248A, Winter 2026

Bilinear interpolation

iIIIIIIIIIIIIIIIIIIIIIIIIII.‘IIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIII lllllllllllllllllllllllllll

_ ; Take 4 nearest sample
.......................... Iocations, with texture
E | | 5 : values as labeled.

--

--

Stanford (5248A, Winter 2026

Bilinear interpolation

;IIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIII lllllllllllllllllllllllllll

Ly @4 Andfractional offsets,
{ I (s,t) as shown

--

Stanford (5248A, Winter 2026

Bilinear interpolation

o o e ° Linear interpolation (1D)
' lerp(x, vo, v1) = vo + x(v1 — Vo)

;IIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIII lllllllllllllllllllllllllll

--

Stanford (5248A, Winter 2026

Bilinear interpolation

U7
Linear interpolation (1D)
lerp(x, vo,v1) = vo + x(v1 — Vo)
....... .‘.- .
Two helper lerps (horizontal)
up = lerp(s, uoo, u10)
"""" - up = lerp(s, uo1, u11)

Stanford (5248A, Winter 2026

Bilinear interpolation

Linear interpolation (1D)
lerp(z, vo, v1) = vo + x(v1 — Vo)

Two helper lerps
up = lerp(s, uoo, u10)

U1 = lefp(Sa Uo1, u11)

Final vertical lerp, to get result:
f(z,y) = lerp(¢, uo, us)

Stanford (5248A, Winter 2026

Texture minification

o O

p—
—
iy,
o
) —
(<))
S
2o O
(V)
(<))
-
o
wd
D
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Stanford (5248A, Winter 2026

By now | hope you've realized:

Applying textures is a form of sampling!
t(u,v)

Minification of Josephine

Imagine the texture map is 9x9

And is applied to a quad that
spans a 3x3 pixel region of screen.

AT

o]
Bz

Red dots = samples needed to render
White dots = samples existing in texture map

When a texture is minimized, the texture map is sampled sparsely!

Stanford (5248A, Winter 2026

ali

Recall

lasing

jasing

Undersampling a high-frequency signal can result in al

|
1
|
.
|
|
)
)
.
.
.
.

)

|

)

|

.

.

N

N

N

n

n

n

N
N
x
x
a
x
n
a
x
.
.
.
)
)
.
.
|
.

.

.

|

)

.

L

n

"

N

N

n

|

N

n

"
"
N
»
N
N
N ¥
S~ -

2D examples

, jaggies

iré patterns

Mo

. \.

. -

J‘:. -.

.i.. -"M\

\ \\\.\\

ARSIy
i (317
\\\a L T

\ss\..\ AR Iay s

s Ly,
w\...s Lrdidihedags
\ \}. «\\ss\\s\s\ss\\s

\s R A L P

SISy
154 ..\.m..t.:\ saix \\ 7
ss..\\\ LA
....\

\\\

Stanford (S248A, Winter 2026

1a$

Al

ing due to undersampling texture

One texture sample per pixel Anti-aliased texture sampling
(aliasing!)

Stanford (5248A, Winter 2026

Aliasing due to undersampling (zoom)

One texture sample per pixel Anti-aliased texture sampling
(aliasing!)

Stanford (S248A, Winter 2026

Another example

o |
2> nl __ |
A
"y

e
..s.u ‘

,f,,_.
,,,,, \
)

A

,i:
1
\

i

|
|
1A

il
i

\ /,
\\\
L) _
,,,,/,, , ;i
,,,,, /,, |
I\ \l
| |
1| |
,,,.,,/ | ‘

,

1
,_,.f
Ak
, 4,,, ,_,._. _.fd
,,,,:,__
:,,.,_,._.,..
LA
1]
|
|
|
|
|

1IN
WL

| ..
i | *. .
il ! ..
(R .'. .'

|
(i

J

]
i

_.___;

|
%_____
 :_ ...
\ ...
....
i
....
| ..
|

|

..
|
|

i

|

||

Ui _...
............. .
Yy
i \ '

e

il

' \

s 4
_____________———

256x256 pixels

Rendered image

Anti-aliased result

Stanford (5248A, Winter 2026

Texture minification - hard case

m Challenge:

- Many texels contribute to color of an output image pixel
(sampling only one of them could yield aliasing)

- Shape of pixel footprint can be complex

Shaded region = pixel area
Red lines = screen pixel boundaries
Red dots = texture space sample
points for adjacent pixels

Stanford (5248A, Winter 2026

Texture minification - hard case

m Challenge:

- Many texels contribute to color of an output image pixel
(sampling only one of them could yield aliasing)

- Shape of pixel footprint can be complex

m One solution that you already know: supersampling

- Averaging many texture samples per pixel can approximate
result of convolving texture map with pixel-area sized filter

- Problem?

Alternative solution: remove high frequency
from texture to reduce aliasing!

Shaded region = pixel area
Red lines = screen pixel boundaries
Red dots = texture space sample
points for adjacent pixels

Stanford (5248A, Winter 2026

Pre-filtering texture map reduces aliasing

One texture sample per pixel Pre-filtered texture map
(aliasing!) (high frequencies removed)

v

Stanford (5248A, Winter 2026

Pre-filtering texture map reduces aliasing

No pre-filtering of texture data Pre-filtered texture map
(resulting image exhibits aliasing) (high frequencies removed)

V V

Stanford (S248A, Winter 2026

But how much should we pre-filter?

m Amount of pre-filtering depends on how far away the O
objectis:

- minor minification: image pixel extreme
magnification: image pixel spans large region of
texture

m ldea:

- Low-pass filter and downsample texture file, and store
successively lower resolutions ® ®

- For each sample, use the texture file whose resolution
. . Shader region = pixel area
apmeImatES the screen Sampllng rate Red lines = screen pixel boundaries

Red dots = texture space sample
points for adjacent pixels

Stanford (5248A, Winter 2026

But how much should we pre-filter?

m Amount of pre-filtering necessary depends on how
far away the object is

m ldea: pre-compute and store different versions of the
texture with different amounts of prefiltering
- Low-pass filter and downsample texture file, and
store successively lower resolutions

- When sampling texture, use the texture file
whose prefiltering amount matches the desired

sampling rate

Stanford (5248A, Winter 2026

Mipmap (L. Williams 83)

Each mipmap level is downsampled (low-pass filtered) version of the previous

Level 0 =128x128 Level 1 = 64x64 Level 2 =32x32 Level 3 =16x16

Level 4 = 8x8 Level 5 =4x4 Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

Stanford (S248A, Winter 2026

Mipmap (L. Williams 83)

J_B . s /7
R G‘ | / /

G

Williams’ original proposed

mip-map layout “Mip hierarchy”

level=d

What is the storage overhead of a mipmap?

Slide credit: Akeley and Hanrahan Stanford (5248A, Winter 2026

Computing mipmap level (in a rasterizer) *

Compute differences between texture coordinate values of neighboring screen samples

Screen space Texture space

*In assignment 2, we'll teach you about how this is done with ray differentials in a ray tracer
Stanford (5248A, Winter 2026

Computing mipmap level (in a rasterizer) *

Compute differences between texture coordinate values of neighboring screen samples

du/dx =uqo-Uoo dv/dX = v10-Voo L = max /\/ (d_“)2 ' (@)2 \/(d_u)z ' (ﬂ)z |
du/ dy =Ug1-Ugo dv/ dy = Vo1-Voo \ dx dx) "\\dy dy /
mip-map d = log: L
*In assignment 2, we'll teach you about how this is done with ray differentials in a ray tracer Stanford 52484, Winter 2026

Bilinear resampling at level 0

Stanford (5248A, Winter 2026

Bilinear resampling at level 2

Stanford (S248A, Winter 2026

Bilinear resampling at level 4

Stanford (S248A, Winter 2026

Visualization of mipmap level
(bilinear filtering only: d clamped to nearest level)

Stanford (5248A, Winter 2026

”Tri 'I i nea rll .ﬁ Ite ri n g e S R

Linearly interpolate the bilinear interpolation results from two adjacent --------------- ---------------
levels of the mip map. L IREEERA
(SmOOthly transition between different levels of preﬁltering) ('u,V)"'-

illlllllllllllll:lllllllllllllllilIIIIIIIIIIIIII lllllllllllllllll

1-fd ' A S
‘fd ..

' -ﬁ E..;...;........;...‘....é...;...é...;..E...;..E...;...E....;..E

5lllllll‘lllllll‘lllllll‘lllllll'llllllIIlllllll'lllllll'lllllll:

- .

lerp(t,v1,v,) = + 1(v; = W) RIRAL I RRRARIRS

Bilineat resampling Trilinear resampling: KIRIEICIEICI LY
four texel reads eight texel reads oioioioieieioiel
3 |erp5 (3 mul + 6 add) 7Ierps (7 mul + 14 add) AR S S SRS TN S :

mip-map texels: level d

Figure credit: Akeley and Hanrahan Stanford C5248A, Winter 2026

Visualization of mipmap level
(trilinear filtering: visualization of continuous d)

Stanford (5248A, Winter 2026

Bilinear vs trilinear filtering cost

m Bilinear resampling:
- 4 texel reads
- 3lerps (3 mul + 6 add)

m Trilinear resampling:
- 8 texel reads
- 7 lerps (7 mul + 14 add)

Stanford (5248A, Winter 2026

Example: mipmap limitations

Supersampling: 512 texture samples per pixel
(desired answer)

Stanford (5248A, Winter 2026

Example: mipmap limitations

Overblurs
Why?

Mipmap trilinear sampling

Stanford (5248A, Winter 2026

Screen pixel footprint in texture space

Screen space Texture space

Texture sampling pattern not rectilinear or isotropic

Stanford (5248A, Winter 2026

Pixel area may not map to isotropic region in texture space

Proper filtering requires anisotropic filter footprint

Overblurring in
u direction

u=.25 u=.5

u=.75

Texture space: viewed from
camera with perspective

- l
Nl m ' om
of

-

Trilinear (Isotropic)
Filtering

i

|

Anisotropic Filtering

(Modern anisotropic texture filtering
solutions combine multiple mip map samples
to approximate integral of texture value over
arbitrary texture space regions)

Stanford (5248A, Winter 2026

Anisotropic filtering

- —
—

Elliptical weighted average (EWA) filtering
(uses multiple lookups into mip-map to approximate filter region)

Stanford (5248A, Winter 2026

Summary: texture filtering using the mip map

m Small storage overhead (33%)

- Mipmap is 4/3 the size of original texture image

m For each isotropically-filtered sampling operation
- Constant filtering cost (independent of mip map level)

- Constant number of texels accessed (independent of mip map level)

m Combat aliasing with prefiltering, rather than supersampling

- Recall: we used supersampling to address aliasing problem when sampling coverage

m Bilinear/trilinear filtering is isotropic and thus will “overblur” to avoid aliasing

- Anisotropic texture filtering provides higher image quality at higher compute and memory bandwidth cost (in practice:
multiple mip map samples?

Stanford (5248A, Winter 2026

A full texture sampling operation

. Compute u and v from screen sample x,y (in a ray caster, that’s a ray-triangle test)

. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

. Compute mip map level d

. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]
. Compute required texels in window of filter

Load required texels from memory (need eight texels for trilinear)

.\l.c\u'l-thd

Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel
lookup! It involves a significant amount of math.

For this reason, modern GPUs have dedicated fixed-function hardware
support for performing texture sampling operations.

Stanford (5248A, Winter 2026

Summary: texture mapping

m Texturing: used to add visual detail to surfaces that is not captured in geometry

m Texture coordinates: define mapping between points on triangle’s surface (object coordinate space) to
points in texture coordinate space

m Texture mapping is a sampling operation and is prone to aliasing

- Solution: precompute and store multiple multiple resampled versions of the texture image (each
with different amounts of low-pass filtering to remove increasing amounts of high frequency detail)

- During rendering: dynamically select how much low-pass filtering is required based on distance
between neighboring screen samples in texture space

- Goal is to retain as much high-frequency content (detail) in the texture as possible, while
avoiding aliasing

Stanford (5248A, Winter 2026

Bonus material (not covered in class)
Perspective correct interpolation in 2D

Stanford (5248A, Winter 2026

Not so fast... perspective incorrect interpolation

The value of an attribute at the 3D point P on a triangle is a linear combination of attribute values at vertices.

But due to perspective projection, barycentric interpolation of values on a triangle with vertices of different depths in
3D is not linear in 2D screen XY coordinates (vertex coordinates *after* projection)

P, (attribute value =A,)

Screen

l

® proj(P1)
~ proj(P) P=(Po+Pq)/2
— X ® P (attribute value = (Ao + A1) / 2)

=]
-
S.
p—
-
(=]
'

(@I [[[] @ |

0o (attribute value =Ay)

In this example, the 2D screen point proj(P) with attribute value (Ao + A1)/ 21s
not halfway between the 2D screen points proj(Po) and proj(P.).

Similarly, the attribute’s value at Pmia = (proj(Po) + proj(P1))/ 2 is not (Ao + A1) / 2.

Stanford (5248A, Winter 2026

Perspective correct interpolation

This is a plane (two triangles), tilted down and rendered under perspective.

2D screen-space 3D world-space
interpolation interpolation

Stanford (5248A, Winter 2026

Linear interpolation in screen space

C d
(0,1) o t————e (1,1) This is a plane in 3D (two triangles),
tilted down and rendered under
perspective.

NN The white lines are isolines — showing

where the x and y coordinate of the
d — b interpolated values is the same across
the triangle

1,0
* (0,0 b a p (10

Stanford (5248A, Winter 2026

Perspective correct interpolation on a projected triangle
(in 2D)

m Problem:

- Given some value f; at each of a 3D triangle’s vertices, that is linearly interpolated
across the trianglein 3D

- And the 2D screen coordinates Pi=(xi,yi) of each of a triangles vertices after projection
- As well as the homogenous coordinate w; for each vertex

Sample the value of f(x,y) for the projected triangle at a given 2D screen space location
(x,y)

Stanford (5248A, Winter 2026

Perspective-correct interpolation

Assume a triangle attribute varies linearly across the triangle (in 3D)
Attribute’s value at 3D point on triangle P = [z y 2| is given by:

f(x,y,2) = ax + by + cz

Perspective project P, get 2D homogeneous representation:

| 1 0 0 O
ToD—H N?j 01 0 0
Y2D-H 2 00 1 0
2
A

w \
projection of P Drop z to
in 2D-H move to 2D-H

perspectivé projection
of Pin 3D-H

Then plug back in to equation for fat top of slide...

f(rop_H,Y2D_H) = arap_g + byap_g + cw

Simple perspective
projection matrix *

ToD—_H, _ a b
f(op 1, Y2p 1) = —T2D-H + —Y2Db-H +C
W W W
f(xap,y2p) @ b

= —T9oD + —Y2Dp +C
W W W

1

N LR

|;oi|;t Pin 3D-H

So...

= s affine function of 2D screen coordinates: |z2p y2p

w

* Note: using a more general perspective projection
matrix only changes the coefficient in front of x2q and y2q .

(property that f/w is affine still holds)

}T

Stanford (S248A, Winter 2026

Direct evaluation of surface attributes from 2D-H vertices

For any surface attribute (with value defined at triangle vertices as: /., /3, f¢)

w coordinate of vertex a after
perspective projection transform

a/—\ value of attribute at vertex a
Ay ~— — _ ____— projected 2D position of

Jo _ Ab, 4+ Bb, +C vertexd
fe
C_ T AC:B —l_ ch _I_ C
b237t; 7bw 9
3 equations, solve for 3 unknowns (A, B, C) (ag,8,,ay), fa (bz; by, bu), fi

This is done as a per triangle “setup” computation prior to sampling, just like you computed edge equations for
evaluating coverage.

Stanford (5248A, Winter 2026

Efficient perspective-correct interpolation

Setup:
Given f;,, fy, fcand w,, wp, we... compute A, B, C for f/w(x,y) = Ax + By + (

Also compute equation for 7/w(x,y)

To evaluate surface attribute f(x,y) at every covered sample (x,y):

Evaluate /., (xy) (from precomputed equation for value /)
Reciprocate '/, (x,y) to get w(x,y)
For each triangle attribute:

Evaluate 7/, (x,y) (from precomputed equation for value 7,)

Multiply 7. (x,y) by w(x,y) to get f(x,y)

Works for any surface attribute f that varies linearly across triangle:
e.g., color, depth, texture coordinates

See Low: “Perspective-Correct Interpolation” Stanford (5248A, Winter 2026

Acknowledgements

m Thanks to Ren Ng, Pat Hanrahan, and Keenan Crane for slide materials

Stanford (5248A, Winter 2026

