Lecture 3:

Coordinate Spaces and
Transformations

Computer Graphics: Rendering, Geometry, and Image Manipulation
Stanford C5248A, Winter 2026

Review:
Summarizing what we learned last time

Stanford (5248A, Winter 2026

Sampling = taking measurements of a signal

A .o‘ 'S
f(x):
. ", f(x4)
[
f(x0) f(:l) KR f(XZ)“o’ ?' : f(x3)
. ’0 : mm ‘ .
: : : —>

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

Sampling: taking measurements of a signal

f(x4)

(x0) f(x1) f(x2) ‘ f(x3)

x0 x1 X2 X3 x4

Stanford (5248A, Winter 2026

Reconstruction: approximating continuous signal from
the discrete set of measurements

J(x)
o
f recon (x) “““““
............ ,‘..w‘
PP YT Q o
x0 X.1 Xé x'3 xé[

Stanford (5248A, Winter 2026

Sampling a signal too sparsely can result in aliasing

AT
ukibearifi

High-frequency signal is insufficiently sampled, so samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”

Stanford (5248A, Winter 2026

lasing

Sampling a signal too sparsely can result in al

©O 0 0O 0o 0O 0o 0 o0 0 o 06 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 O © O O

g o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ©0 0 0 0 0 0 0 0 0 0 0 0 0 0 O

c o6 0 0 0 0 0 0 0 0 0 0 0 ©0 ©0 ©0 O©0 O©0 O ©0 O O O O

0 ©0 0 0 0 0 0 0 0 .0 O

c o0 o0 o0 o0 o0 60 0 ©0 o0 0 o0 06 o0 0 0 o0 o0 o0 o0 0 O

2. 0 0 0 0 0 0 0 0 00 0 o0 0 0 0 0 ©0 0 0 0 0 0 0 0 0 ©0 O o0 0 0 0 0 O

c o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 ©0 o0 o0 o0 o0 o0 O O O O

o o0 O O O O

= every 16 pixels

ing

sampl

o O
o 060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 060 0 0 0 0 0 6 0 0 0 0 0 0 O O O O
2 ©0 0 ©0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O
5 6 0 0 0 0 0 0 0 0 60 060 0 0 0 0 60 0 0 0 0 0 0 0 0 0 O©0 O0 0 O

o 0 O

© © © © 0 0 0 © © © © 0 0 0 O 0 © 0 0 0 0 0 © O O O O O © © ©0 ©o o o

©O © © 0 0 0 0 0 © o © 0 0 0 ©0 © © © 0 0 O © © O ©0 O O O © © © ©o o o

© © © © 0 0 0 0o © o © 0 0 ©0O O © ©O 0O O O O © © ©0 O O O O © ©o © ©o ©o O

© © © 0 0 0 0 o © o © 0o 0 0O o ©o 0o 0 0 0 O © ©o o

= every 16 pixels

o)
=

sampl

©O © © 0o 0 0 0 o o o © 0 0 0 0 0 0o 0o 0 0 0 0 0 0o 0 0 0 ©o0 0o o ©

o
o
o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOT

sin(27/16)

sin(27/32)

16 pixels per cycle

°

frequency 1/16

32 pixels per cycle

°
|

frequency 1/32

Stanford (5248A, Winter 2026

Sampling a signal too sparsely can result in aliasing

Stanford (S248A, Winter 2026

Sampling a signal too sparsely can result in aliasing

Jaggies!

Stanford (S248A, Winter 2026

Sampling a triangle (1 sample/pixel)

Stanford (5248A, Winter 2026

Results of sampling (1 sample/pixel)

Stanford (5248A, Winter 2026

Displaying the results of sampling (square pixels on a display = nearest neighbor reconstruction)

Stanford (S248A, Winter 2026

Stanford (5248A, Winter 2026

Sampling a triangle (9 samples/pixel)

XYY
e® e %o
000 000 000 XY
%9 09%0 0 % o %
0% 0 0%0 0% 0 0% o
000 000 000 000 000 000 000 000
%0 090 090 0%0 0%°0 0% 0%¢ 0%
020 0%°¢0 0%¢(0%°¢ 0% ¢ 0% ¢ 0%¢ 0% ¢
©00 000 000000000 000 000 000

Results of sampling (9 samples/pixel)

Stanford (S248A, Winter 2026

Blurring (“filtering”) the densely sampled result (remove high frequencies)

Stanford (S248A, Winter 2026

Resample blurred signal at pixel centers (one sample per pixel)

® ® ® ® ®
o0

® ® ® o _Jo,
o 00

oo 09%e

® ® o % ¢%p

o0 099 0%

® ® oooo %% 0%
® 000 000 00O

o0 090 0% 0%

O 00, 49, %, %
® 000 000 000 OO

00 099 0% 0% 0 9%
0%9 0%¢ ¢0%¢ ¢%% ¢%e
000 000 000 000 0O
0©%0 099 0% 0% 0%

0 00, %y %y %

000 000 00

Stanford (5248A, Winter 2026

Displaying the results of sampling (square pixels on a display)

Stanford (S248A, Winter 2026

Example: anti-aliased results

= |
I
1
2
! |

11/////.

Stanford (S248A, Winter 2026

Transformations

Stanford (5248A, Winter 2026

A cube, centered at the origin, with faces of size 2 x 2

-1,1,1) (1,1,1)

('1111'1) (1111'1)

(11'111)

(-1,-1,-1) 1,-1,-1)

Stanford (5248A, Winter 2026

Consider drawing a cube person

Transformations in character rigging

=i = = « T

Channels Ob&'

Translate X -1.282
Transiate Y 0.371
Translate Z 6,533
Rotate X O
RotateY 0
RotateZ 0
Toe Roll O
| BaRd[
Front Foot Roll O
Front Foot Twast O
Back Foot Roll 0
IK_FK_Switch 0
SHAPES

Stanford (S248A, Winter 2026

ey . R .‘,/..JW&P.ra ..-...... ,.. v 3 .

\d -y
- . -v L \..r.. - . - »
g AN < g
.»». .li.u - - - ——— e (4
a\a. . . ¥) -
. ot -
. & L - 3 = &ﬂ 1 4
’ '
|$ > o~ - 3 v ..J _ g
TN R - M v l‘\ ~ y
. v’ x . v !
B g PO N\ J
- " l...m/ .‘ b 4 - -
» \ .Q - 4
/‘/ - - . —
- - 2 :
.
- ” .
- - o .
. - .r' - . ~ - >
: 3 3 > <
-~ ’ \ p " F ’ .
" e '
". -
. ol —
" A " a . - - M‘
- ~ O
< . NG f \

Dappe

Burak raan, and Ti

iep,

JanWaIter Schli

& Cred

Basicidea: f transforms x to f(x)

Linear transformations

B What does linear mean?

fx+y)=f(x)+ f(y)
flax) = af(x)

m Composition of linear transformations is linear
- Leads to uniform representation of many types of transformations
m Aswe will see... linear transformations are cheap to compute

Stanford (5248A, Winter 2026

Linear transformations
fx+y)=f(x)+ f(y)
f(ax) = af(x)

add first

e
e
+

154y J Ajdde
JAiddeuay) <«

In other words: if it doesn’t matter whether we

add the vectors and then apply the map, or apply
the map and then add the vectors

(and likewise for scaling) FX)+£(y)

F(x), fly) —2enaqd_ Ty

Stanford (5248A, Winter 2026

Linear transforms/maps—visualized

Key idea: linear maps take lines to lines

Stanford (S248A, Winter 2026

Scale transform

Uniform scale:

Sq(X) = ax

Non-uniform scale??

Stanford (S248A, Winter 2026

Is scale a linear transform?

Stanford (5248A, Winter 2026

Rotation transform

R =rotate counter-clockwise by ¢

Stanford (5248A, Winter 2026

Rotation as circular motion

R =rotate counter-clockwise by ¢

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: ‘RQ (X) \ — \X\

Stanford (5248A, Winter 2026

Is rotation linear?

Yes!

Stanford (S248A, Winter 2026

Translation transform

[y, — “translate by b”
Th(x) =x+Db

Stanford (5248A, Winter 2026

Is translation linear?

......... v®
To(x) e
.
b o e ve
X X+ yo Tp(x +y)
......... v®
.................. Ty (y)
............... v

No. Translation is affine.

Stanford (5248A, Winter 2026

Reflection transform

Re, (x2) Re,xs) f2€, =reflection about y

Rey (Xl) Rey (X())

Re.. =reflection about x

Re, (Xo) Re, (Xl)

Re, (XS) Re, (Xz)

Stanford (S248A, Winter 2026

Shear transform (shear in x direction)

Stanford (5248A, Winter 2026

Compose basic transformations to construct more
complicated ones

Note: order of composition matters

Top-right: scale, then translate
Bottom-right: translate, then scale

Stanford (5248A, Winter 2026

How would you perform these transformations?

Usually more than one way o do it!

Stanford (S248A, Winter 2026

Common task: rotate about a point x

X
o

ol

Step 1: translate by - x

X X
o o

Step 2: rotate Step 3: translate by x

Stanford (5248A, Winter 2026

Summary of basic transformations

Linear:
fx+y)=fx)+ f(y)
flax) = af(x)

Scale
Rotation
Reflection
Shear

Not linear:
Translation

Affine;

Composition of linear transform + translation
(all examples on previous two slides)

f(x)=g(x)+b
Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)
f(x)—fy)l=Ix—y
Translation

Rotation
Reflection

“Rigid body” transformations are distance-preserving motions
that also preserve orientation (i.e., does not include reflection)

Stanford (5248A, Winter 2026

Representing transformations in coordinates

Stanford (5248A, Winter 2026

Review: representing points in a coordinate space

It's the same point: x
But x is represented via different coordinates
in difference coordinate spaces!

® X

€2
eN\ : €3
—
€1

Consider coordinate space defined by orthogonal vectors ¢, and ¢,
X = 2e1 + 2e9

x =12 2]

x = [0.5 1| incoordinate space defined by €1 and €2, with origin at (1.5, 1)
x = [v/8 0] incoordinate space defined by €3 and e, with origin at (0, 0)

Stanford (5248A, Winter 2026

Another way to think about transformations: change of coordinates

Interpretation of transformations so far in this
lecture: transformations modify (move) points

Point x moved to new position f (%) so it has new
coordinates in same coordinate space.

of

Alternative interpretation:

Transformations induce of change of coordinate frame:
Representation of X changes since point is now expressed in
new coordinates

Stanford (5248A, Winter 2026

Review: 2D matrix multiplication

ally,

[aaz+by]

m Matrix multiplication is linear combination of columns
m Encodes a linear map!

Linear maps via matrices

m Example: suppose | have a linear map

m Encoding the map as a matrix:

f(u) =uja; +urapy | .

A :

Hn
d

- (ull 1/[2)
,'1

A1 x 02 x
611,]/ azly
1, U2z

vectors become matrix columns:

m Matrix-vector multiply computes same output as original map:

01 x
al,y
1z

U1 xU1 T adp xU?
aq,yU1 T adz,yuU2
U1 U1 T dp xU?

— U714dq -+ Uoran

Stanford (5248A, Winter 2026

Linear transformations in 2D can be represented as 2x2 matrices

Consider non-uniform scale: s, —

_Sx 0)
0 sy
SSX3 SSX2

Scaling amounts in each direction:

s=10.5 2]

Matrix representing scale transform:

0.5 0
- O 2_

Sg =

T

SSXO SSX1

Stanford (5248A, Winter 2026

Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by (?

Reminder: rotation moves points along circular trajectories.

(Recall that cos 6 and sin 6 are the coordinates of a point on the unit circle.)

(0,1)

(1,0)

Answer:

Rp(1,0) = (cos(6),sin(h))

Ry(0,1) = (cos(0 + 7/2),sin(0 + 7/2))

Which means the matrix must look like:

Ry

cos(f -

sin(f -

— sIn

(
(

-7/2)

) -
0)

-7/2)

Stanford (5248A, Winter 2026

Rotation matrix (2D): another way...

Ry

cos) —sind

sinf) cos@

Stanford (5248A, Winter 2026

Shear

Shearinx:

st —

X3 X2
X0 X1

Arbitrary shear: Sheariny:

1 s 1 0
HSt__t I ! HyS:_s L

Stanford (S248A, Winter 2026

How do we compose linear transformations?

Compose linear transformations via matrix multiplication.
This example: uniform scale, followed by rotation

f(x) = Rw/4S[1.5,1.5]X = Mx Where: V] — Rw/4S[1.5,1.5]

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication!

Stanford (5248A, Winter 2026

How do we deal with translation? (Not linear)

Th(x) =x+Db

Recall: translation is not a linear transform
— Qutput coefficients are not a linear combination of input coefficients
— Translation operation cannot be represented by a 2x2 matrix

Xouty = Xz + Dy

Translation math Stanford CS248A, Winter 2026

2D homogeneous coordinates (2D-H)

|dea: represent 2D points with THREE values (“homogeneous coordinates”)
So the point (,y) isrepresented as the 3-vector: [z y 1] g

And transformations are represented a 3x3 matrices that transform these vectors.

Recover final 2D coordinates by dividing by “extra” (third) coordinate

| T /U

y/w
(More on this later...)

Stanford (5248A, Winter 2026

Example: scale and rotation in 2D-H coords

m For transformations that are already linear, not much changes:

Ss

Notice that the last row/column doesn’t do anything interesting. E.g., for scaling:

S.x
S,y

Now we divide by the 3rd coordinate to get our final 2D coordinates (not too exciting!)

S, 0
0 S,
0 0

Ss

S.x

S,y
1

0
0
1_

—

Ry =

1

S.x/1

cos 0
sin 6

0

Syy/1 _

—sinfd 0
cosfd 0
0 1

S.x
Syy

(Will get more interesting when we talk about perspective...)

Stanford (5248A, Winter 2026

Translation in 2D homogeneous coordinates

Translation expressed as 3x3 matrix multiplication:

1 0 b,
T, = |0 1 b,
00 1
1 0 b,| [x, X.+ b,
Tyx= |0 1 by Xy | =[xy + by (remember: just a linear combination of columns!)
0 0 1 1 1

Cool: homogeneous coordinates let us encode translations as linear transformations!

Stanford (5248A, Winter 2026

Homogeneous coordinates: some intuition

Many points in 2D-H correspond to same pointin 2D
X and wX correspond to the same 2D point
(divide by 10 to convert 2D-H back to 2D)

Translation is a shear in x and y in 2D-H space

1 0 b,]| [wx, WX, + wb, |
Tpx= |0 1 by| |wx,| = |wx, + wb,
0 0 1] w I W

Stanford (5248A, Winter 2026

Translation = shear in homogeneous space

Translate by t=2: T =

butitis linearin 1D-H

For simplicity, consider 1D-H:

1
O 1

1D translation is affine in 1D (x + t),

1
0

Recall: this is a shear in homogeneous x.

.
1_

Stanford (5248A, Winter 2026

Homogeneous coordinates: points vs. vectors

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
’0
*

’0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

2D-H points with w =0 represent 2D vectors
Y (think: directions are points at infinity)

Unlike 2D, points and directions are
distinguishable by their representation in 2D-H

V:[VaU v, 0O

X Note: translation does not modify directions:

b,| [v, V. |
TbV — b

o O =
O = O

Y Vyl| = | Vy

1110 0

Stanford (5248A, Winter 2026

Visualizing 2D transformations in 2D-H

X

Original shape in 2D can be viewed as 2D rotation ~ rotate around w
many copies, uniformly scaled by w.

2D scale = scale x and y; preserve w
(Question: what happens to 2D shape

2D translate = shearin 2D-H
if you scale x, y, and w uniformly?) (LINEAR!)

Stanford (5248A, Winter 2026

Moving to 3D (and 3D-H)

Represent 3D transformations as 3x3 matrices and 3D-H transformations as 4x4 matrices

Scale:

0 p
8

o O

Shear (in x, based on y,z position):
1 d,

1

H, 4= |0
0
Translate:
B

0

Th = |,
0

3D

0
Sy
0

Q.

Yy

O =

d.

3D-H

0

1
0
0

0

0
1
0

o O

0
1_

o T T
N 8

ek

H:U,d

0p
8

oSO O

0

0
0

3D-H
0 0
S, 0
0 S,
0 0

1
0
0

Q.
N

S = O

_— O O O

= O O O

Stanford (5248A, Winter 2026

Commutativity of rotations—2D

m In 2D, order of rotations doesn’t matter:

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

Same result! (“2D rotations commute”)

Stanford (5248A, Winter 2026

Commutativity of rotations—3D

m Whataboutin3D?

m IN-CLASS ACTIVITY:
- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if
we're not careful about the order in which
we apply rotations!

Stanford (5248A, Winter 2026

Rotations

in3D

Rotation about x axis:

1

R.op= |0 cosf)l —sinb
0 sinf cosb |

Y

0 0

Rotation about y axis:

R, ¢ = 0

- cosf 0 sinf]

—sinf 0 cos6O

I 0

Rotation about z axis:

cos 0
R.yp= |sinf
0

—sinfd 0
cosf 0O
0 1

X coordinate is unchanged by
rotation about x

z coordinate is unchanged by

rotation about z

X

View looking down -x axis:

y

View looking down -y axis:
X

Stanford (5248A, Winter 2026

Representing rotations in 3D—euler angles

m How do we express rotations in 3D?

m Oneidea: we know how to do 2D rotations

m Why not simply apply rotations around the three axes? (X,Y,Z)

m Scheme s called Euler angles U

m PROBLEM: “Gimbal Lock” A ,

Stanford (5248A, Winter 2026

Alternative representations of 3D rotations

m Axis-angle rotations

m Quaternions (not today)

Stanford (5248A, Winter 2026

Let’s make that cube person...

Skeleton - hierarchical representation

torso
head
right arm
upper arm
lower arm

hand .
U
left arm 25
=B
upper arm =
lower arm E_
hand =8
: S
right leg =

upper leg Q

lower leg right
foot
left leg
upper leg
lower leg
foot

Stanford (5248A, Winter 2026

Hierarchical representation

m Grouped representation (tree)
- Each group contains subgroups and/or shapes
- Each group is associated with a transform relative to parent group

- Transform on leaf-node shape is concatenation of all transforms on path from root
node to leaf

- Changing a group’s transform affects all descendent parts
- Allows high level editing by changing only one node
- E.g. raising left arm requires changing only one transform for that group

Stanford (5248A, Winter 2026

Transform used for drawing:
10,10

10,10) T(0,5)
T'0,10) T(0,5) Rhead

10,10

L0,100T(—2,3)
10,1001 (=2,3)Rgno

10,100 T'(=2,3) Rgno 1 (0,—3)
10,1001 (=2,3) Rsho L' (0,—3)Reln

L0,10)L'(=2,3) Rsho L (0,—3)Reib T, —
T0,1001(-2,3) Rsho 1 (0,—3)Reib T(0,—3)R.,, rotate(wristRotation);

Skeleton - hierarchical representation

Sequence of commands (transformation and drawing commands):

translate(0, 10); // person centered at (0,10)

pushTransform(); // push a copy of transform onto stack

translate(O, 5);

// right-multiply onto current transform

rotate(headRotation); // right-multiply onto current transform

popTransform(); // pop current transform off stack

pushTransform();
translate(-2, 3);

rotate(rightShoulderRotation);

pushTransform();
-3);

translate(O,

rotate(elbowRotation);

pushTransform(); --------- ”9 ht
3) translate(0, -3); . lower
right arm
hand

popTransform();
popTransform();

popTransform();

right
arm

group | group

2
ju

Stanford (5248A, Winter 2026

Transform used for drawing:
10,10

10,10) T(0,5)
T'0,10) T(0,5) Rhead

10,10

L0,100T(—2,3)
10,1001 (=2,3)Reno

10,100 T'(=2,3) Rgno 1 (0,—3)
10,1001 (=2,3) Rsho L' (0,—3)Reln

T'0,10)1T(~2,3) Rsho 1 (0,—3)Reib T 0,

Skeleton - hierarchical representation

Sequence of commands (transformation and drawing commands):

translate(0, 10); // person centered at (0,10)

pushTransform(); // push a copy of transform onto stack

translate(O, 5);

rotate(headRotation); // right-multiply onto current transform

// right-multiply onto current transform

popTransform(); // pop current transform off stack

pushTransform();
translate(-2, 3);

rotate(rightShoulderRotation);

pushTransform(); -------------—-—-——————-

translate(O,

-3);

rotate(elbowRotation);

pushTransform(); ---------

3) translate(0, -3); ‘ah lower
10,1001 (=2,3)Rsho L'(0,—3)Reip 1'0,—3)R,,, rotate(wristRotation); I':llg C'it arm
an

popTransform(); ---------
popTransform(); ------------------------

popTransform();

Stanford (5248A, Winter 2026

Transforming points into camera-relative coordinates

Stanford (5248A, Winter 2026

Example: simple camera transform

Consider object positioned in world at (10, 2, 0)

Consider camera at (4, 2, 0), looking down x axis

y
2 EEY

<

What transform places in the object in a coordinate space where the camera is at the
origin and the camera is looking directly down the -z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera
® Rotation about y by 77 /2 gives position of object in new coordinate system
where camera’s view direction is aligned with the -z axis *

* The convenience of such a coordinate system will become clear when we talk about projection!

Stanford (5248A, Winter 2026

Camera looking in a different direction

Consider camera at origin looking in direction W
What transform places in the object in a coordinate space where the camera is at the origin and the camera is looking directly down the -z axis?

Z How do we invert?
. U, u, u, |
Form orthonormal basis around w: (see u and v) R-1_RT _
Consider orthogonal matrix: R - — | Ve Yy vz
Wz Wy T Wz
U; Vgy —Wg Why is that the inverse?
R = Uy Vy —Wy RTu::u-u V-u —W-H:T::l 0 O:T
Uz Vz TWz, RTV::H-V V-V —W-V:T::O 1 O:T

T

- T
R maps x-axis to u, y-axis to v, z axis to -w R'w=[uw v.w —w-w| =[0 0 —1]

Stanford (5248A, Winter 2026

Self-check exercise (for home)

m Given a camera position P

m And a camera orientation given by orthonormal basis u,v,w (camera looking in w)

m What is a transformation matrix that places the scene in a coordinate space where...
- The camera s at the origin
- The camera s looking down -z.

Stanford (5248A, Winter 2026

g e ,n" ®

LRAPEN

4

<
-
.
)

5:-’0‘

tive

="

Early painting: incorrect perspec

.]
1{ r ta '
-~ oY . et 4 _'2
‘.n d -l W - - - 7

e g

: :
A
|

r
. 4 #iA - '
R . f -
== L PN
pe Ll
by s 3 v
-
L]
:

.
)
‘t
>

X oo
S s :
:
- Y <
£ LTS .
AT
0
’ . -
Ak

L

Carolingian painting from the 8-9th century Stanford CS248A, Winter 2026

v

ve in ar

Perspect

e IO W T YT TR by P,

Giotto 1290

Stanford (S248A, Winter 2026

Evolution toward correct perspective

R First known perspective painting
anuncation, 1364 by Fillipo Brunelleshi

\:\ ¥y

e SEAGS TS

§ o2
LU X

- R
) sioh A e & R o

b " - gy el “

S ’ w(\

% g i

< ¢ SOk~ By
¢ A1 e !
. i

P A e : < A

S B S
‘;!
&/

B

Masaccio — The Tribute Money ¢.1426-27

1434-83, Florence Fresco, The Brancacci Chapel, Florence
Stanford (5248A, Winter 2026

Perspective in art

. OW ok G

elivery of the Keys (Sistine Chapel), Perugino, 1482

Stanford (S248A, Winter 2026

Ive projection

Later... rejection of proper perspect

Stanford (S248A, Winter 2026

Correct perspective in computer graphics

e

Stanford (5248A, Winter 2026

In computer graphics

jve

Rejection of perspect

ENE

o » R

\ ..,

| { _ 1..%\\“%\%&%%\ :

i/

/7
\

Gy
W g ...q\ 7y

»

\

I

R

.\bs\ﬁhu

LI

BEEE

CALIPSO

Stanford (5248A, Winter 2026

Basic perspective projection (in homogeneous coords)

Desired perspective projected result (2D point):

P2D — [Xa:/Xz Xy/Xz]T

X
£ 1 0 0 0
C 0 0 1 O
‘ Xz 0 0 1 0
Pinhole]]
Camera
0.0 Input: pointin 3D-H X = |Xg Xy Xz 1}
: 1T
After applying P: point in 3D-H Px = |x, Xy, X, X,
T
After homogeneous divide: Xy /X, Xy/x, 1

(throw out third component to get 2D)

Assumption:

Pinhole camera at (0,0) looking down z Stanford CS248A. Winter 2026

A good exercise:
Transforming points into screen-relative (pixel) coordinates

Stanford (5248A, Winter 2026

Screen transformation (in 2D) *

Convert 2D points in a normalized coordinate space to screen pixel coordinates
Example: all points within (-1,1) to (1,1) region are visible on screen

(1,1) in normalized space maps to (W,0) in screen space

(-1,-1) in normalized space maps to (0,H) in screen space

Normalized coordinate space: Screen (W x H output image) coordinate space:
(0,0) W

H (W,H)

* This slide adopts convention that top-left of screen is (0,0). But many 3D graphics systems place (0,0) in bottom-left. In this case what would the transform be?
Stanford C5248A, Winter 2026

Screen transformation

Example: all points within (-1,1) to (1,1) region are on screen
(1,1) in normalized space maps to (W,0) in screen space
(-1,-1) in normalized space maps to (0,H) in screen space

(1 1'1) (olo) (210)

"N @

Reflect(X)
“about X"

Translate(1,1)

(0,2) (2,2)

(0,0) (W,0)

oK

Scale(W/2, H/2)

WH
(O,H) (4) Stanford (S248A, Winter 2026

Transformations: from objects in 3D to their 2D screen positions
[VIEW COORDINATES]

[OBJECT COORDINATES] [WORLD COORI;g\TES] aka CAMERA COORDINATES]
wanstorn view
transform
@ # # L il
% Y
description of object geometry original description vertex positions now expressed relative to camera; camera
(in a per-object coord frame) of objects Is sitting at origin looking down -z direction

(Canonical frame of reference allows for use of canonical
projection matrix in rasterization, or camera-position
independent camera ray generation in a ray caster)

screen
transform

[SCREEN/WINDOW COORDINATES]

(w, h)

Coordinate system corresponds to unit-size pixels
(pixel centers at the half integer locations)

(0,0)

Stanford (5248A, Winter 2026

Transformations: from objects in 3D to their 2D screen positions

[VIEW COORDINATES]
[OBJECT COORDINATES] [WORLD COORIig\TES] aka CAMERA COORDINATES]
transform view
transform
@ # # 3
% Y
description of object geometry original description vertex positions now expressed relative to camera;
(in a per-object coord frame) of objects camera is sitting at origin looking down -z direction

(Canonical frame of reference allows for use of
canonical projection matrix in rasterization, or
simple camera ray generation in a ray caster)

[SCREEN/WINDOW COORDINATES] [NORMALIZED DEVICE COORDINATES]

(w, h) screen (1,1,1)
transform

g - 2

i

(0,0)

Coordinate system corresponds to unit-size pixels

(pixel centers at the half integer locations) (1:11)

projection
transform

Stanford (5248A, Winter 2026

Transformations summary

m Transformations can be interpreted as operations that move points in space
- e.g., for modeling, animation

m Orasa change of coordinate system
- e.g., screen and view transforms

m Construct complex transformations as compositions of basic transforms

m Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., translation,
perspective projection) as matrix operations (linear transforms) in higher-dimensional space

- Matrix representation affords simple implementation and efficient composition

Stanford (5248A, Winter 2026

