Stanford CS248A: Computer Graphics
Written Assignment 1

Chaining Transforms

Problem 1: (Graded on Effort Only - 20 pts)

A. Consider a normalized coordinate system (post-projection) where the bottom-left of the screen cor-
responds to (x,y) = (-1,-1) and the top-right of the screen corresponds to (x,y) = (1,1). Give a 4x4
matrix S that describes a transform that takes points in this normalized space to screen space where
the bottom-left corner of the screen is (0,0) and the top-right is (1000, 500). Note we’re asking for a

4 x 4 matrix, so assume that the transform leaves the “z” component and “w” components of a 3D
homogeneous input point unchanged.

Page 1

B. Consider a point p on an object (p = [:r y z 1] T), which is represented in homogeneous form in
an “object-space” coordinate system where the object is centered at the origin.

Imagine that you are also given the following transforms, all represented as 4 x4 matrices.

* O - which transforms points in the object-local coordinate system to world space.

¢ C - which transforms points in a world-space coordinate system to a “camera space” coordinate
system where the camera is at the origin and looking down -Z.

¢ P - which performs perspective projection on points in the camera space, yielding points in the
“normalized space” defined in part A.

Given the transforms above, along with your transform S from part A, please give an expression
for computing (x,y), the screen space point of projection corresponding to p. Recall that the screen
is the same setup as in part A, where (0,0) is the bottom-left of the screen, and (1000, 500) is the
top-right. Hint: don’t forget, we are asking for a 2D screen-space point, not a point represented
in homogeneous space. (This answer does not depend on a correct answer to A. Just assume you
have a correct solution to A, and the matrix is called S.)

Page 2

Practice With Transforms

Problem 2: (Graded on Effort Only - 20 pts)

A. Please describe a sequence of basic transforms needed to transform the rectangular object on the
left (a rectangle of width 1.0 and height 1.5, and centered at the point (1.5, 1.5)) into its position
in (A). Also describe the transformations needed to take its position on the left into its position in
(B). (These are separate questions). You may assume that basic transforms available to you include:
rotate(X), translate(X,Y), scale(X,Y), shear(X,Y). Be careful, rotations and reflections can sometimes
look similar, so we placed a dot on the object to help to disambiguate!

Page 3

B. When he brought a new cat home from the animal shelter, Prof. Kayvon took a photo of the cat
sitting on a cat tree. As you can see in Figure A below, the cat is 2 units tall, and its base is at
coordinate (2,2). A year later, Kayvon’s cat has grown by 50%, and he takes a second photo (photo
B) of his cat sitting on a taller cat tree. Also notice that in Figure B the cat is mirrored in its position.
Please provide a sequence of transformations that moves the cat from its position in image (A)
to its position in image (B). (You only need to consider the cat, not the cat trees.) The catch is that
you can ONLY USE two transforms: translate(x,y) and scale(x,y). Please keep in mind that
the arguments to these functions can be negative. For convenience, the left-most part of the figure
illustrates the cat image from Figure A with its base at the origin.

Page 4

Mapping Pixel Centers to Screen Coordinates

Problem 3: (Graded on Effort Only - 15 pts)

A. Assume you are rendering an image to a screen that is 5000 pixels wide and 2000 pixels tall. In
lecture 2 we talked about 2D screen coordinates where (0,0) was the top left of the image, and
(5000,2000) was the bottom-right corner of the image. In this coordinate system, what are the coor-
dinates for the center of the top-left pixel of the screen?

B. Now image the screen is the same size (in pixels) as in part A, but now we are going to define the
top-left of the image to be at the coordinate (1000,1000) and the bottom-right of the image to be at

(2000, 3000). In this new coordinate system what are the coordinates for the center of the top-left
pixel of the screen?

Page 5

C. (This one is a little trickier.) Just like in the previous problem, assume you are rendering an image
to a screen that is 5000 pixels wide and 2000 pixels tall. We change the coordinate system so that
the top-left corner of the image is at coordinate (0,0) and the bottom-right corner of the image is at
coordinate (1000,1000). Assume that the 5000x2000 image is displayed on a monitor that has pixels
that are actually 1 mmx1 mm in size in the real world. (Each pixel is a square in the real-world.)
Consider a quadrilaterial that is a square (X x X) in image space. What does this square look like
when displayed on this monitor? Is it square? Is it a rectangle? Does it taller than it is wide? Why?

Page 6

Trace Everything!

Problem 4: (Graded on Effort Only - 20 pts)

A. Throughout the quarter we’ve talked about intersection of a ray with an axis-aligned bounding
box (AABB). For example, it was a key primitive needed to implement ray-BVH traversal, since
each sub-tree of a BVH was represented by an AABB. But there’s nothing preventing a BVH from
representing its nodes using oriented bounding boxes. Below is a definition of an oriented bounding
box. The box is centered at the point center and oriented with a principle axis along the vector
given by axisC as shown below. axisA and axisB are orthogonal axes of the OBB.
struct 0BB {

Vec3 center; // position of center point
float extentA, extentB, extentC; // length of bbox along axes
Vec3 axisA;

Vec3 axisB;
Vec3 axisC;

Question is on the next page...

Page7

Given the definition above, assume that you have a ray struct Ray and the following method, which
intersects a ray with a standard AABB.

struct Ray {

Vec3 o; // origin

Vec3 d; // direction

b

// returns distance along ray to first intersection if there is a hit,
// returns INFINITY if no intersection

// bmin and bmax store the min and max values of the AABB on each axis.
float rayBoxIsect(Ray r, Vec3 bmin, Vec3 bmax);

Given the structures above, please write high-level sketch of an algorithm for intersecting a ray r
with an OBB obb. You can assume you have a regular math library where you can construct 3 x 3
matrices representing transforms and perform matrix-vector math. In your algorithm please define
any matrices you use by giving their coefficients.

Page 8

B. Consider the ray below tracing through the given BVH.

‘\D\Q H vm§D
52 O N/

0. ‘O

7
t__/
-

Imagine a ray traversal algorithm that ALWAYS traverses to the “left child” first (if it hits the left
child) irregardless of the direction of the ray. (e.g, the “left child” is the child listed to the left in
the tree illustration of the BVH... so D is the left child of B and F is the left child of E.)

Please give the ordered sequence of BVH nodes that ray must visit when determining the closest
intersection along the ray. (We say a ray “visits” a node during traversal if it is determined that
the node might contain the primitives resulting in the closest hit, and thus we must recurse into
the node.) Assume that if a ray has already found an intersection that is closer than one of the child
bounding boxes of the current node, it will skip visiting that node.

C. Now assume the same setup as the prior problem, but assume that the BVH first visits the "closer"
of the two child nodes (instead of the left child); "closer" means closer to the ray’s origin. Please give
the ordered sequence of BVH nodes that ray must visit when determining the closest intersection
along the ray, and also describe why this strategy is more efficient than the first “left child first”
strategy.

Page 9

Making Sure You Understand the Image Basis

Problem 5: (Graded on Effort Only - 10 pts)

In class we talked about how all images can be represented in the 2D cosine basis. Now consider a very
different image representation scheme that represents 6 x 6 pixel patches in terms of a linear combination
of the five 6 x6 basis images given below:

h==m

A. Consider representing the following 6 x 6 image in terms of the base patches above. What are the
coefficients of the image under this representation? Explain why, for the specific case of this image,
we have devised a very efficient image compression scheme. (Hint: what is the size of the 6 x 6
image in the pixel basis? What about the size of the representation in terms of the image patches
above?)

Page 10

B. Although the scene in part A can be a very efficient encoding for some 6 x6 images (only 5 numbers
to represent an image!), the problem with the scheme is that is cannot accurately represent all 6 x 6

images. Draw one example of an image that cannot be represented as a combination of the provided
“basis” images.

Page 11

Sampling

Problem 6: (Graded on Effort Only - 10 pts)

A. Say you wanted to sample the intensity of a 2D signal f(z,y) that is given by a sign wave with a
period 64 units in z, f(x,y) = sin(27(z/64)). Assume that we sample the signal at evenly spaced
intervals of 32 units in and y, and then attempt to reconstruct the signal with piecewise constant
interpolation (also called nearest-neighbor interpolation). Please describe what your reconstruction
looks like? Now consider the case were the signal is sampled every 64 pixels! (not shown in the
picture). What will the result reconstructed image look like in this case?

©O 0O 0O OO OO O 0O O O O O 00O 0 O©0 OO0 0O OO O
© 0O 0O OO OO O OO OO OO©OZ®©OOOOOO OO O
© 0O 0O OO 0O O O 0O O O O O 0 © 0 0 00 OO0 © 0 O
© 0O 0O OO OO O 0O OO O 0O 00O O0OOOUOOOO
© 0 0 0 0O 0O 0O O 0O O O 0O 0O 0O 0 0 06 0 0 0 0 0 O
© © 0 0 0O 0 0 © 0O 0O O 0O 0 00 0 0 © 0 0 0 0 0 O
O 0 0 0 0O 0O 0O 0O 00O 0O 0 0 00 0 O© O O©0O0 00 00

© 0O 0O OO OO O O O O O O 0O OO0OOOOOO O
© 0O 0O OO OO O 0O O O O O 0O OO0 OO0 OO0 O© 0 O
© 0 0O OO O 0O O 0O OO OOZ®©OO0O0O0OOOOCO O
© 0O 0O OO O O O 0O O O O O 00 O 0 OO0 OO OO O
© 0O 0O OO 0O OO O O O O O 00 0O 00 0 OO OGO O
© 0O 0O OO 0O O O O O O O O 00O O 0 O OO OOO O

Page 12

Ray Tracing With BVH
PRACTICE PROBLEM 1:

A. Consider the scene below organized into a BVH. The structure of the BVH is shown in the top-right.
Please give the ordered sequence of BVH nodes that ray R1 must visit when determining the closest
intersection along the ray. (We say a ray “visits” a node if during traversal it is determined that
the node might contain the primitives resulting in the closest hit, and thus we must recurse into
the node.) You should assume that: (1) when a ray hits both child bounding boxes of the current
node, the ray will visit the node with the closest bounding box first, (2) If a ray has already found
an intersection that is closer than one of the child bounding boxes of the current node, it will skip
visiting that node.

A
N A N
~N ! 5t W
\
G

=
D N
W

l__/
7

N LT

R e G0
0 FO (K

B. Consider the scene geometry (8 white triangles) and corresponding BVH shown below. The dotted
boxes on the right indicate the bounding boxes of interior nodes NO-N4. Now imagine that triangle
E moves so that it is now located at the position indicated by the shaded triangle. Assume that the
BVH structure is not changed (the topology stays the same and so do the boundign boxes of interior
nodes.) Precisely describe a ray-scene intersection test error that could occur as a result. In your
answer describe or draw a ray that would trigger the error and describe what tracing this ray could
not yield a correct hit result.

BVH Structure: NO
N2

NO

N1 N2 NA1\ @
B \ v\
VAN e <Q

N3 N4

CcD EFG

Page 13

Ray-Primitive Intersection Practice

PRACTICE PROBLEM 2:

The implicit form of an ellipsoid centered at point (zo, o, z0) can be given by:

(x—x0)* (y—wo)* | (2—2)?

2 o e

Recall that the equation for all points on an array with origin o and direction d is given by o + td. Please
give an espression for the values of ¢ that correspond to the ray-ellisoid intersection points (Hint: set up a
quadratic equation and solve for ¢ using the quadratic formula.) After giving an expression for t, please
describe how many unique solutions for ¢ there can be. Why is this the case?

Page 14

Cherry Picking

PRACTICE PROBLEM 3:

After a raining winter week, you find yourself craving some fresh air and sunlight. Therefore, you've
decided to go cherry picking with your CS248A friends. However, instead of the traditional method of
picking cherries by hand, you'll be shooting light rays at a box of cherries.

Each cherry is represented by two spheres: a large sphere for the fruit, and a smaller internal sphere for
the cherry pit. Assume the light rays can travel through the flesh of all cherries and continue to intersect
with primitives behind them, but stops if it hits the box or any cherry pit. Each time the ray hits any part
of a cherry, you get to keep it!

You are given two subroutines below to use. Both functions will return true when an intersection occurs
(and false if not), and populate the ray’s t-values with information for up to two points of impact. In cases
where there’s only one point of intersection, like when the ray just grazes the shape, you can consider
both t-values to be identical. If there is no intersection, then it's assumed that the t-values are assigned a
significantly large number.

// intersect ray with the box
bool rayBoxIsect(Box b, Ray r, floatx tl, floatx t2);

// intersect ray with a sphere centered at the origin
bool raySpherelsect(Ray r, float radius, floatx tl, floatx t2);

Question continues onto the next page...

Page 15

You can assume that you have the following information for each cherry.

Cherry {
vec3 cherry_center;
float cherry_radius;
CherryPit cherry_pit;
}

CherryPit {
vec3 pit_center;
float pit_radius;

}
Warning!: Notice that raySphereIsect() assumes that the sphere is centered at the origin.
Given that you get to keep all cherries that your ray hits, please give an algorithm for finding the number

of cherries you get to take home given an input ray r, Box b, and list of Cherrys cherry_list. Remember
that the ray stops if/when it hits the Box or a CherryPit. Psuedocode is fine!

// TODO: Implement the function below...

int getNumCherries(Ray r, Box b, std::vector<Cherry> cherry_list) {

Page 16

Refitting a BVH

PRACTICE PROBLEM 4:

One of the nice properties of a bounding volume hierarchy (BVH) is that it can be efficiently updated
(“refit”) when a single primitive contained in the hierarchy is moved. Refitting modifies the BVH so that
the BVH property is maintained: the bounding box of a node is a bound containing the primitives in all child
nodes. Refitting does not modify the structure of the BVH — it only updates bounding boxes for some of
the tree’s nodes based on the new bounds of leaf nodes.

Below you're given a definition of a BVHNode and interfaces for getting the bounding box of a primitive.
Please implement the function refitBVH(node) which should update bounding boxes of the necessary
nodes in the BVH so that the BVH property holds. You should assume that only primitives in the spec-
ified leaf node (node) have moved. To keep things simple, all BVH nodes hold a pointer to their parent
in the BVH. NOTE THAT EVEN THOUGH WE GAVE YOU VALID C STRUCTS IN THE PROBLEM
FOR CLARITY, YOU ONLY NEED TO SKETCH OUT AN APPROACH TO A SOLUTION. VALID C
CODE IS NOT REQUIRED. A DESCRIPTION OF AN APPROACH IS FINE.

struct BBox {
void clear(); // resets bbox to empty
void union(const BBox& b); // enlarges bbox to include volume in b

i

struct Primitive {
BBox getBBox() const; // returns primitive’s world-space axis-aligned bbox
I

struct BVHNode {
BVHNodex left, *right, *parent // parent is NULL if root node, left/right NULL if leaf

BBox bbox; // node'’s bbox, you need to update this!
int numPrims; // 0 if node is interior node, non-zero otherwise
Primitivex prims; // prims[i]->getBBox() returns bbox of i’th prim in node

s

// Refit the entire BVH assuming that the contents of the leaf node ‘node‘ have changed.
void refitBVH(BVHNodex node) {

Page 17

Ray-Primitive Intersection Practice (Two Boxes)

PRACTICE PROBLEM 5:

You wish to intersect a ray with a shape defined by two axis aligned boxes B; and Bs. The shape is defined
by the volume given by B; — Bs. In other words, By cuts volume out of B;. Depending on the size and
shapes of the two boxes, you can get some interesting shapes. Two examples are given below. By need
not intersect with B, and when this is the case, the resulting shape is just B;. (B; — B2 = By).

Assume you are given code for computing the closest point of intersection with a box:

// Returns true if ray r hits box b, fills in t with distance to closest hit.

// IMPORTANT: If r originates inside the box, or if ray R originates on the

// surface of the box and points towards the inside of the box, then the closest
// hit will be the point where r leaves the box, not the origin of r.

bool rayBoxIsect(Ray r, Box b, floatx t);

Please use rayBoxIsect as a subroutine in an algorithm for computing the closest intersection between
a ray R and the shape defined by B; and B,. To make things easier, you can assume that the ray R
originates “outside” both boxes, and you can ignore the case where the ray grazes any box.

You can assume that Ray.o and Ray.d give the origin and direction of a ray. Pseudocode is fine (it need
not compile), but be precise enough for the grader to understand how to perform key steps. Hint: first
give pseudocode for how to find the point where the ray r enters each box AND the point where the
ray leaves each box. Then what do you with this information to solve the problem?

Please provide your answer on the next page.

Page 18

// returns true if ray hits shape
// fills in t to give the position of
bool hitsShape(Ray r,

float bl_t1
float bl_t2
float b2_t1l
float b2_t2

INF;
INF;
INF;
INF;

Box bl, Box b2,

// distance
// distance
// distance
// distance

to
to
to
to

the closest hit
floatx t) {

first hit with Bl (if applicable)
second hit with Bl (if applicable)
first hit with B2 (if applicable)
second hit with B2 (if applicable)

Page 19

Ray-Cat Intersection

PRACTICE PROBLEM 6:

One way of modeling a cat head is with a union of a sphere centered at C' with radius r and two cones of
height h).

| Apex/Vertex of cone
¢/ Angle of cone

]j Direction axis of cone
h Height of cone

v (' Center of sphere
- r Radius of sphere

Assume you have access to the following:

(1) an InfiniteCone struct (a cone with a height of infinity) that stores A, D and 6
(2) a Sphere struct that stores sphere center point C' and radius

(3) a rayInfiniteConeIsect() function

(4) and a raySpherelIsect() function

Questions are on the next page...

Page 20

A. Give an algorithm for finding the closest intersection of a ray with the cat above. Your solution can
be described in words, but make sure it’s clear what your algorithm is. Be precise how you use
rayInfiniteConeIsect() to determine ray-cone intersection with a cone of height h.

struct InfiniteCone {

Vec3D A; // apex position
Vec3D D; // direction of axis
float theta; // cone angle

+i

struct Sphere {
vec3D C; // center of sphere
float r; // radius

+

// in the functions below tl is the ’'’'closer hit’’: tl <= t2
void rayInfiniteConelsect(InfiniteCone b, Ray r, floatx tl, floatx t2);
void raySpherelsect(Sphere c, Ray r, floatx tl, floatx t2);

Page 21

B. Ah, you thought you got off easy without having to solve a ray-primitive intersection problem!
Consider a simpler problem where you need to intersect a ray with a cone that has an apex at the
origin, is oriented along the z axis (D=(0,0,1)), and has half angle 6. An implicit form of this infinite
cone is 22 + y? = (2 tan §)2. (Convince yourself this is true!)

Please give an equation for the ¢ value of the intersection point between the infinite cone and a ray
with origin o and ray direction d. You do not need to apply the quadratic formula to solve for ¢ (just
give us an equality involving ¢ and components of o and d).

C. Now imagine you want to compute the intersection of a ray with an infinite cone has apex at point
A and is oriented in the direction D (just like in part A). How would you modify the ray’s origin
and direction to reduce this problem to intersection with the cone from the previous problem that
has apex at the origin and is oriented along (0,0, 1)? A description (in words) that involves rotations
and translations is fine. But in what direction do you translate, and how do you define the rotation?

Page 22

Ray-Grid Intersection

PRACTICE PROBLEM 7:

We are interested in casting rays onto a uniform 3D grid shown below. The grid is 4x4x4 and each grid
cell is a cube with side length 1. The origin of the grid (O) is located at the origin of the coordinate system:
0 = (0,0,0).

Index [0, 3, 3] /' y

v

’ Index [3, 2, 1]

Index [0, 0, 0] 7
(0}

Recall that a ray can be represented as r(t) = o+ td. Assume that the origin of the ray is ALWAYS outside
of the grid and recall that a plane can be represented as N”7x = c.

Hint: A plane parallel to the XY plane has N = (0,0, 1), a plane parallel to the XZ plane has N = (0,1,0) and a
plane parallel to the YZ plane has N = (1,0, 0).

Assume that you have access to the following:

(1) Struct Plane that stores normal N and offset c

(2) Struct Ray that stores origin o and direction d

(3) Function bool rayPlaneIsect(Plane plane, Ray r, float* t) thattakes asinputa plane and a
ray and set t to be the intersection. A boolean is returned to indicate if an intersection is found.

THE QUESTIONS BEGIN ON THE NEXT PAGE

Page 23

A. Give an algorithm for finding the index of the first cell getting hit by the ray. The index of a cell
should be represented as a 3D vector (a,b, c) corresponding to the indices in x, y, and z axis, as
shown in the figure above. The complexity of your algorithm SHOULD NOT scale as the number
of cells in the grid increases. Your solution can be described in words or rough pseudocode, but
make sure it’s clear what your algorithm is. Be precise about how you initialize the given structs
and how you use rayPlaneIsect() to determine the ray-grid intersection. Hint: figure out where
the ray first hits the volume of the grid, then turn that into an index.

struct Plane {

vec3 N; // unit normal
float c; // offset
+
struct Ray {
vec3 o; // ray origin
vec3 d; // ray direction
};

bool rayPlanelsect(Plane plane, Ray r, floatx t);

Page 24

B. Now we want to remove some cells from the grid. Given a collection of cell indices that are removed
removedCellIndices, give an algorithm for finding the index of the first cell hit by the ray. Now,
the complexity of your algorithm CAN scale linearly with the number of grid cells. Your solution
can be described in words.

vec3[M] removedCelllndices = [vec3(0,1,0), vec3(1,2,1), ...]

Page 25

C. Now consider the case where the grid is translated and rotated such that the grid origin O is lo-
cated at position p and the three sides next to O now have unit directional vector u, v and w. An
illustration is provided below:

4

o

We want to find the index of the first grid cell hit by a ray. Assume that you can access your solution
to part B via function getCellIndex(Ray r). Please implement the function:

getCellIndex(Ray r, vec3 p, vec3 u, vec3 v, vec3 w).

Be precise about how to construct arguments to getCellIndex(). Specifically, please be precise
about how you construct and use transformation matrices.

vec3 getCellIndex(Ray r, vec3 p, vec3 u, vec3 v, vec3 w) {

// implement your solution here...

Solution:

Create a transform:

Page 26

Ray Tracing A Funky Scene

PRACTICE PROBLEM 8:

Consider a scene contain 15 rectangular-boxes as shown below. The scene is formed by starting with a
box of length=1.0, with it’s center-bottom at the origin, and extending down the Y axis (the width and
depth of the box do not matter in this problem). The next box begins at the end of the first box (at point
(0,1,0)), but it has a length that is 0.9 times the first box, and rotated with an angle 6 relative to the first
box. Note that the rotation is about the Z axis, in the clockwise direction as viewed when looking down the
-Z axis. This pattern of starting the next rectangle at the end of the previous, rotating by 6, and shrinking
length by a factor of 0.9 repeats for a total of 15 boxes.

—— / I
2,/ (0,0) x

You are given a function void ray_rect_isect(Ray r, float rect_length) that computes the first
hit of a ray r, with a box aligned with the Y axis of length rect_length (see code on next page) For
example, the call ray_rect_isect(r, 1.0) would compute the intersection of a ray with the first box.
Upon return r.min_t would reflect the distance to the closest hit. If the original r.min_t of the ray passed
into the function is smaller than the t computed from the intersection, then r.min_t is unchanged.

You are also given a function rotatez that takes a 3-vector v and rotates it § degrees about the Z axis
in the counter-clockwise direction.. Using only these routines, on the next page, please implement the
function isect_funky_scene(Ray& r), which will fill in r.min_t to contain the closest point on the ray.
You should make no assumptions about the origin or direction of the ray in 3D, except that it does not
originate from inside any of the boxes.

Hint: be careful about the direction of your rotations. The geometry rotations in the figure are clockwise,
and the function rotatez() specifies a rotation in the counter-clockwise direction as was typical in class.

Page 27

// students are free to assume that useful constructors, or common ops like
// addition, multiplication on vectors is available..
struct vec3 {
float x, vy, z;
I

struct Ray {

vec3 o;

vec3 d;

float min_t; // assume this is initialized to INFINITY
}s

// rotate counter-clockwise about Z axis (counter clockwise defined when looking down -z)
vec3 rotatez(float theta, vec3 v);

// fills in r.min_t if intersection with rectangular box is closer than current r.min_t
void ray_rect_isect(Ray r, float rect_length);

// assume r.min_t is INFINITY at the start of the call

// result: fill in r.min_t as a result of intersecting r with the 15 segments
void isect_funky_scene(Ray& r) {

Page 28

Intersecting Solids

PRACTICE PROBLEM 9:

Consider the 2D shape given below, which is made up of the intersection of volumes contained by two
circles and a rectangle.

Assume you are given two functions for ray-shape intersection as given below. Both functions return true
if there is an intersection (false otherwise), and fill in ray t values for up to two hits. If there is a single
intersection point, such as when the ray grazes the shape, just assume that both t values are the same. If
there is no intersection, assume the t’s are set to a very large number.

bool rayBoxIsect(Box b, Ray r, floatx tl, floatx t2);
bool rayCircleIsect(Circle c, Ray r, floatx tl, floatx t2);

A. Assuming we call the circles ¢; and ¢z, and the box b, give an algorithm for finding the closest
intersection of a ray with the shape above.

Page 29

B. Now consider a new kind of shape, which is formed by subtracting the region inside one circle from the
region inside one box. (a few cases are given to help your understanding.)

S

Give an algorithm for finding the closest intersection of a ray with this new type of shape. Note,
please make sure you handle the case where the shape is actually two disjoint pieces, and the case where there
is no intersection! However, to make things simpler, you can assume the ray origin is outside the area of the
box or the circle.

Page 30

