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Today

￭ Discussion of many practical realities of ray tracing 

￭ Building acceleration structures quickly 

￭ Two-level hierarchies 

￭ Refitting 

￭ Incremental builds 

￭ Ray tracing subdivision/tessellated surfaces 

￭ Cracks 

￭ Geometry instancing

Lecture 3
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Warm up

Lecture 3

P

Consider tracing 
shadow rays through 
a scene to determine if 
point P is in shadow 
from the two light 
sources.

Do you trace rays from P to the 
lights? Or from the lights to P? 

Does it matter? 
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Can afford to build a better BVH if you are 
shooting many rays (can amortize cost)

The graph below plots effective ray throughput (Mrays/sec) as a 
function of the number of rays traced per BVH build 
- More rays = can amortize costs of BVH build across many ray trace 

operations

Lecture 3

[Morton code based]
[Karras 13]

[High quality top-down 
+ splitting]

HLBVH + bottom up 
treelet reoptimization 
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Real time ray tracing demo

Lecture 3



Battlefield V 
(EA/DICE)



Battlefield V 
(EA/DICE)
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Ray Tracing Dynamic Scenes

Challenge #1: scenes have millions of triangles, many 
objects are in motion 

Challenge #2: relatively few rays traced per frame 

For real time, can allow a few ms / frame 

￭ e.g. @10M tris, 60fps, need 600M tris / second 

￭ pbrt BVH: ~2.5M tris / second  

! Hierarchy construction efficiency really matters

Lecture 3
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A BVH is an intersectable primitive
It has a bounding box 
It supports ray-primitive intersection 
So it can be used as a primitive in another BVH.

Lecture 3
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Two-level Acceleration Structures

2-level hierarchy

Lecture 3

Top-level 
acceleration 
structure

Bottom-level 
acceleration 
Structures 
(Primitives in 
top-level BVH)



Build BVH for each object in a scene (one time, up front)

Each frame… 
Build top-level BVH of BVH’s based on current object positions.

Image credit: Brennan Shacklett

Scene may contain millions of triangles, but only hundreds of objects.
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Refit rather than rebuild

Lecture 3

Imagine I moved a triangle in 
this red leaf node.

Imagine you have a valid BVH 
Now move one of the triangles in the scene to a new location 
How do you adjust the BVH’s bboxes so it is a valid BVH?
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Refit rather than rebuild (then fix-up)

Lecture 3

[Kopta et al. 2012]



Large, complex scenes
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15 billion primitives in scene

Consider a camera viewpoint 
where only a small fraction 
of the scene in visible.

Large parts of scene BVH 
may never be traced.*

* Even when accounting for shadow and bounce rays.
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Build BVH “lazily” as needed

Lecture 3

Unbuilt: 
(Contains many 

primitives)

??

Build required subtree the 
first time its root node is 
“hit” by a ray
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Build BVH “lazily” as needed

Lecture 3

Build required subtree the 
first time its root node is 
“hit” by a ray

?? ?? ??

??



It can be efficient to evaluate complex 
surfaces lazily
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Example: Bezier bicubic patch
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Example: Subdivision surfaces

Loop subdivision

Catmull-Clark control mesh 
and limit surface

It can be efficient to evaluate complex 
surfaces lazily
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Displaced subdivision surfaces

Lecture 3

Control cage 
(Coarse triangle mesh)

Limit surface 
(Renders from fine 

triangle mesh)

Displaced surface

[Lee 2000]
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Result: high-resolution surface detail

Lecture 3

(one pixel)
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Result: high-resolution surface detail

6M triangles after tessellation and displacement



Stanford CS348b Spring 2022

Generate high-resolution geometry lazily

￭ Store patch bounding box + 
control points in memory 

￭ Generate high-resolution 
mesh (via subdivision, 
evaluating bicubic, etc.) upon 
first ray entry 

￭ Modern production renderers 
make different decisions 
about how to cache fine-
geometry that is generated 
on-the-fly

Lecture 3

?? ??
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1

Challenge: cracks
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2

1

(Surface parametric 
domain)



Crack fixing solutions
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Generate irregular topology 5x5 regular vertex grid 
matching constraints on top 
& left edge of 3 segments 
(Vertices moves to create 

degenerate triangles)

Key idea: Adjacent regions agree on tessellation along edge



Going further: accelerating intersections 
through hair and fur?
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Tessellate into many segments? 
Directly intersect curves?
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Instancing

Lecture 3

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Many high complexity scenes contain many copies of the same object



Disney Moana scene
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15 billion total primitives in scene (BVH contains 15B prims) 
But only 90M unique geometric primitives



Geometry instancing
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T1

T2 T3

T4

T5 T6

Example: 
BVH containing 6 primitives that 
share the same geometry. 

Each instance: 
- Pointer to geometry 
- Transformation to position the 

instance

Q. Given an instance 
transform, how do we intersect 
the ray with the instance?
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Interesting questions

What about instanced objects that are 
subdivision surfaces? (One instance might be 
close to camera, another is far.) 

What level do we subdivide/tessellate to?

Lecture 3



Floating-Point Error
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Floating-point Representation

Scientific notation 

￭with a fixed sized mantissa (23-bits), 

￭ a limited exponent range (8-bits, e-127), 

￭ sign bit

Lecture 3

±1.m⇥ 2e

2.5 = 1.25⇥ 21 = 1.01b ⇥ 21

1/3 ⇡ 1.01010101010101010101011b ⇥ 2�2

0 = ?
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Floating-point Representation

Lecture 3



Near the origin



Translated 1M meters from the origin
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Roundoff Error

Lecture 3
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Roundoff Error and Ray Tracing

Lecture 3



Stanford CS348b Spring 2022

Roundoff Error and Ray Tracing

Lecture 3
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Roundoff Error and Ray Tracing

Lecture 3



Problems This Causes

Effect of Floating-Point Roundoff Error
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Effect of Roundoff Error

Lecture 3



Round-off Error Remedies
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Problems With a Fixed Epsilon

Lecture 3

tMintMin
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Better: Refine Intersection, Bound Error

Lecture 3

See pbrt 3.9 for details



PBRT Overview



http://www.pbr-book.org/









Shape Interface (Simplified)
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class Shape { 
  public: 
    Bounds3f ObjectBound() const; 
    Bounds3f WorldBound() const; 
    bool Intersect(const Ray &ray, Float *tHit, 
                   SurfaceInteraction *isect, 
                   bool testAlphaTexture) const; 
    bool IntersectP(const Ray &ray, 
                    bool testAlphaTexture); 
    Float Area() const; 
    // … 
};



Surface Interaction (Simplified)
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class SurfaceInteraction { 
    Point3f p; 
    Normal3f n; 

    Point2f uv; 
    Vector3f dpdu, dpdv; 
    Normal3f dndu, dndv; 

    struct { 
        Normal3f n; 
        Vector3f dpdu, dpdv; 
        Normal3f dndu, dndv; 
    } shading; 

    // … 
};

Information about the surface point hit by a ray. 
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Primitives in PBRT

pbrt Primitive base class 

￭ Shape 

￭ Material (for a later class)

Lecture 3

class Primitive {
  public:
    virtual Bounds3f WorldBound() const = 0;
    virtual bool Intersect(const Ray &r,
                           SurfaceInteraction *) const = 0;
    virtual bool IntersectP(const Ray &r) const = 0;
    virtual const AreaLight *GetAreaLight() const = 0;
    virtual const Material *GetMaterial() const = 0;
    virtual void ComputeScatteringFunctions(…) const = 0;
};
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Primitives

Collections 

￭ TransfomedPrimitive: Transformation + primitive 

￭ Aggregate 

￭ Treat acceleration data structures as primitives 

￭ Two types of accelerators: kdtree.cpp, and bvh.cpp 

￭ May nest accelerators of different types

Lecture 3

class Scene {
   // …
   bool Intersect(const Ray &ray,
                  SurfaceInteraction *isect) const {
       return aggregate->Intersect(ray, isect);
   }
   std::shared_ptr<Primitive> aggregate;
};


