
Ray Tracing 2:
Practical Realities

Stanford CS348b Spring 2022 Lecture 3

Stanford CS348b Spring 2022

Today

￭ Discussion of many practical realities of ray tracing

￭ Building acceleration structures quickly

￭ Two-level hierarchies

￭ Refitting

￭ Incremental builds

￭ Ray tracing subdivision/tessellated surfaces

￭ Cracks

￭ Geometry instancing

Lecture 3

Stanford CS348b Spring 2022

Warm up

Lecture 3

P

Consider tracing
shadow rays through
a scene to determine if
point P is in shadow
from the two light
sources.

Do you trace rays from P to the
lights? Or from the lights to P?

Does it matter?

Stanford CS348b Spring 2022

Can afford to build a better BVH if you are
shooting many rays (can amortize cost)

The graph below plots effective ray throughput (Mrays/sec) as a
function of the number of rays traced per BVH build
- More rays = can amortize costs of BVH build across many ray trace

operations

Lecture 3

[Morton code based]
[Karras 13]

[High quality top-down
+ splitting]

HLBVH + bottom up
treelet reoptimization

Stanford CS348b Spring 2022

Real time ray tracing demo

Lecture 3

Battlefield V
(EA/DICE)

Battlefield V
(EA/DICE)

Stanford CS348b Spring 2022

Ray Tracing Dynamic Scenes

Challenge #1: scenes have millions of triangles, many
objects are in motion

Challenge #2: relatively few rays traced per frame

For real time, can allow a few ms / frame

￭ e.g. @10M tris, 60fps, need 600M tris / second

￭ pbrt BVH: ~2.5M tris / second

! Hierarchy construction efficiency really matters

Lecture 3

Stanford CS348b Spring 2022

A BVH is an intersectable primitive
It has a bounding box
It supports ray-primitive intersection
So it can be used as a primitive in another BVH.

Lecture 3

Stanford CS348b Spring 2022

Two-level Acceleration Structures

2-level hierarchy

Lecture 3

Top-level
acceleration
structure

Bottom-level
acceleration
Structures
(Primitives in
top-level BVH)

Build BVH for each object in a scene (one time, up front)

Each frame…
Build top-level BVH of BVH’s based on current object positions.

Image credit: Brennan Shacklett

Scene may contain millions of triangles, but only hundreds of objects.

Stanford CS348b Spring 2022

Refit rather than rebuild

Lecture 3

Imagine I moved a triangle in
this red leaf node.

Imagine you have a valid BVH
Now move one of the triangles in the scene to a new location
How do you adjust the BVH’s bboxes so it is a valid BVH?

Stanford CS348b Spring 2022

Refit rather than rebuild (then fix-up)

Lecture 3

[Kopta et al. 2012]

Large, complex scenes

Stanford CS348b Spring 2022 Lecture 3

15 billion primitives in scene

Consider a camera viewpoint
where only a small fraction
of the scene in visible.

Large parts of scene BVH
may never be traced.*

* Even when accounting for shadow and bounce rays.

Stanford CS348b Spring 2022

Build BVH “lazily” as needed

Lecture 3

Unbuilt:
(Contains many

primitives)

??

Build required subtree the
first time its root node is
“hit” by a ray

Stanford CS348b Spring 2022

Build BVH “lazily” as needed

Lecture 3

Build required subtree the
first time its root node is
“hit” by a ray

?? ?? ??

??

It can be efficient to evaluate complex
surfaces lazily

Stanford CS348b Spring 2022 Lecture 3

Example: Bezier bicubic patch

Stanford CS348b Spring 2022 Lecture 3

Example: Subdivision surfaces

Loop subdivision

Catmull-Clark control mesh
and limit surface

It can be efficient to evaluate complex
surfaces lazily

Stanford CS348b Spring 2022

Displaced subdivision surfaces

Lecture 3

Control cage
(Coarse triangle mesh)

Limit surface
(Renders from fine

triangle mesh)

Displaced surface

[Lee 2000]

Stanford CS348b Spring 2022

Result: high-resolution surface detail

Lecture 3

(one pixel)

Stanford CS348b Spring 2022 Lecture 3

Result: high-resolution surface detail

6M triangles after tessellation and displacement

Stanford CS348b Spring 2022

Generate high-resolution geometry lazily

￭ Store patch bounding box +
control points in memory

￭ Generate high-resolution
mesh (via subdivision,
evaluating bicubic, etc.) upon
first ray entry

￭ Modern production renderers
make different decisions
about how to cache fine-
geometry that is generated
on-the-fly

Lecture 3

?? ??

2

1

Challenge: cracks

Stanford CS348b Spring 2022 Lecture 3

2

1

(Surface parametric
domain)

Crack fixing solutions

Stanford CS348b Spring 2022 Lecture 3

Generate irregular topology 5x5 regular vertex grid
matching constraints on top
& left edge of 3 segments
(Vertices moves to create

degenerate triangles)

Key idea: Adjacent regions agree on tessellation along edge

Going further: accelerating intersections
through hair and fur?

Stanford CS348b Spring 2022 Lecture 3

Tessellate into many segments?
Directly intersect curves?

Stanford CS348b Spring 2022

Instancing

Lecture 3

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Many high complexity scenes contain many copies of the same object

Disney Moana scene

Stanford CS348b Spring 2022 Lecture 3

15 billion total primitives in scene (BVH contains 15B prims)
But only 90M unique geometric primitives

Geometry instancing

Stanford CS348b Spring 2022 Lecture 3

T1

T2 T3

T4

T5 T6

Example:
BVH containing 6 primitives that
share the same geometry.

Each instance:
- Pointer to geometry
- Transformation to position the

instance

Q. Given an instance
transform, how do we intersect
the ray with the instance?

Stanford CS348b Spring 2022

Interesting questions

What about instanced objects that are
subdivision surfaces? (One instance might be
close to camera, another is far.)

What level do we subdivide/tessellate to?

Lecture 3

Floating-Point Error

Stanford CS348b Spring 2022

Floating-point Representation

Scientific notation

￭with a fixed sized mantissa (23-bits),

￭ a limited exponent range (8-bits, e-127),

￭ sign bit

Lecture 3

±1.m⇥ 2e

2.5 = 1.25⇥ 21 = 1.01b ⇥ 21

1/3 ⇡ 1.01010101010101010101011b ⇥ 2�2

0 = ?

Stanford CS348b Spring 2022

Floating-point Representation

Lecture 3

Near the origin

Translated 1M meters from the origin

Stanford CS348b Spring 2022

Roundoff Error

Lecture 3

Stanford CS348b Spring 2022

Roundoff Error and Ray Tracing

Lecture 3

Stanford CS348b Spring 2022

Roundoff Error and Ray Tracing

Lecture 3

Stanford CS348b Spring 2022

Roundoff Error and Ray Tracing

Lecture 3

Problems This Causes

Effect of Floating-Point Roundoff Error

Stanford CS348b Spring 2022

Effect of Roundoff Error

Lecture 3

Round-off Error Remedies

Stanford CS348b Spring 2022

Problems With a Fixed Epsilon

Lecture 3

tMintMin

Stanford CS348b Spring 2022

Better: Refine Intersection, Bound Error

Lecture 3

See pbrt 3.9 for details

PBRT Overview

http://www.pbr-book.org/

Shape Interface (Simplified)

Stanford CS348b Spring 2022 Lecture 3

class Shape {
 public:
 Bounds3f ObjectBound() const;
 Bounds3f WorldBound() const;
 bool Intersect(const Ray &ray, Float *tHit,
 SurfaceInteraction *isect,
 bool testAlphaTexture) const;
 bool IntersectP(const Ray &ray,
 bool testAlphaTexture);
 Float Area() const;
 // …
};

Surface Interaction (Simplified)

Stanford CS348b Spring 2022 Lecture 3

class SurfaceInteraction {
 Point3f p;
 Normal3f n;

 Point2f uv;
 Vector3f dpdu, dpdv;
 Normal3f dndu, dndv;

 struct {
 Normal3f n;
 Vector3f dpdu, dpdv;
 Normal3f dndu, dndv;
 } shading;

 // …
};

Information about the surface point hit by a ray.

Stanford CS348b Spring 2022

Primitives in PBRT

pbrt Primitive base class

￭ Shape

￭ Material (for a later class)

Lecture 3

class Primitive {
 public:
 virtual Bounds3f WorldBound() const = 0;
 virtual bool Intersect(const Ray &r,
 SurfaceInteraction *) const = 0;
 virtual bool IntersectP(const Ray &r) const = 0;
 virtual const AreaLight *GetAreaLight() const = 0;
 virtual const Material *GetMaterial() const = 0;
 virtual void ComputeScatteringFunctions(…) const = 0;
};

Stanford CS348b Spring 2022

Primitives

Collections

￭ TransfomedPrimitive: Transformation + primitive

￭ Aggregate

￭ Treat acceleration data structures as primitives

￭ Two types of accelerators: kdtree.cpp, and bvh.cpp

￭ May nest accelerators of different types

Lecture 3

class Scene {
 // …
 bool Intersect(const Ray &ray,
 SurfaceInteraction *isect) const {
 return aggregate->Intersect(ray, isect);
 }
 std::shared_ptr<Primitive> aggregate;
};

