Cameras and Lenses

Stanford CS348b Spring 2022

Image credit: Canon

Stanford CS348b Spring 2022

"Tangerine" (2015) Shot with iPhone 5

Today

- **Camera basics**
 - Lenses
 - **Exposure**
 - Depth of Field
 - Light field cameras

Simulating these effects in a ray tracer

Stanford CS348b Spring 2022

Rendering with lens defocus blur

Credit: Pixar

Stanford CS348b Spring 2022

Rendering with motion blur

Credit: Blender Docs

What's Happening Inside the Camera?

Cross-section of Nikon D3, 14-24mm F2.8 lens

A much simpler camera

Stanford CS348b Spring 2022

Pinholes & Lenses Form Image on Sensor

Photograph made with lens

Stanford CS348b Spring 2022

London and Upton

Shutter Exposes Sensor For Precise Duration

Stanford CS348b Spring 2022

The Slow Mo Guys, <u>https://youtu.be/CmjeCchGRQo</u>

Sensor Accumulates Irradiance During Exposure

Sensor pixels measure integral of irradiance over time

Lenses

Stanford CS348b Spring 2022

Modern Lens Designs Are Complex

Stanford CS348b Spring 2022

First: Thin Lens Approximation

Ideal Thin Lens – Focal Point

Credit: Karen Watson

Assume all parallel rays entering a lens pass through its focal point.

Keep in mind: Real Lens Elements Are Not Ideal – Aberrations

Real plano-convex lens (spherical surface shape). Lens does not converge rays to a point anywhere.

Stanford CS348b Spring 2022

Gauss' Ray Diagrams

Lenses focus light!

These are conjugate points

point or focus

on different image planes

Stanford CS348b Spring 2022

Rays from a point in object space intersect at a point in image space

Points at infinity converge at the focal

Points on different object planes focus

The position of the point of focus can be changed by changing the distance between the lens and the sensor

What is the relationship between conjugate depths z_o, z_i ?

Stanford CS348b Spring 2022

Stanford CS348b Spring 2022

 $\frac{z_o - f}{f} = \frac{f}{z_i - f}$ $(z_o - f)(z_i - f) = f^2$ $z_o z_i - (z_o + z_i)f + f^2 = f^2$ $z_o z_i = (z_o + z_i)f$ $\frac{1}{f} = \frac{1}{z_i} + \frac{1}{z_o}$

Stanford CS348b Spring 2022

Object / image heights factor out - applies to all rays

Newtonian Thin Lens Equation

Gaussian Thin Lens Equation

The Thin Lens Equation

Stanford CS348b Spring 2022

Changing the Focus Distance

- z_i and z_o are called <u>conjugate points</u>
- To focus on objects at different distances, move the sensor relative to the lens
- For z_i < z_o the object is larger than the image
- At z_i = z_o imaging
- For z_i > z_o the image is larger than the object (magnified)
- Can't focus on objects closer than the lens' focal length

Stanford CS348b Spring 2022

At z_i = z_o we have 1:1 macro

Magnification

$$m = \frac{h_i}{h_o} = \frac{z_i}{z_o}$$

Stanford CS348b Spring 2022

Magnification Example – Focus at Infinity

If focused on a distant mountain

- \blacksquare $z_o \approx \infty$, so $z_i = f$
- sensor at focal point
- **\blacksquare** magnification ≈ 0

Magnification Example – Focus at 1:1 Macro

What configuration do we need to achieve a magnification of 1 (i.e. image and object the same size, a.k.a. 1:1 macro)?

• Need $z_i = z_o$, so $z_i = z_o = 2f$ —- sensor at twice focal length

■ In 1:1 imaging, if the sensor is 36 mm wide, an object 36 mm wide will fill the frame

Relationship between focal length and field of view

Stanford CS348b Spring 2022

Effect of Focal Length on FOV

the field of view.

Stanford CS348b Spring 2022

 $FOV = 2 \arctan$

$$\left(\frac{h}{2f}\right)$$

Effect of Sensor Size on FOV

Stanford CS348b Spring 2022

Sensor Sizes

Sensor Name	Medium Format	Full Frame	APS-H	APS-C	4/3	1"	1/1.63"	1/2.3"	1/3.2"
Sensor Size	53.7 x 40.2mm	36 x 23.9mm	27.9x18.6mm	23.6x15.8mm	17.3x13mm	13.2x8.8mm	8.38x5.59mm	6.16x4.62mm	4.54x3.42mm
Sensor Area	21.59 cm²	8.6 cm²	5.19 cm²	3.73 cm²	2.25 cm²	1.16 cm²	0.47 cm²	0.28 cm ²	0.15 cm²
Crop Factor	0.64	1.0	1.29	1.52	2.0	2.7	4.3	5.62	7.61
Image									
Example		When when the second se	at a state of the					STORY 22 - 14	

Stanford CS348b Spring 2022

I.

Credit: <u>lensvid.com</u>

Maintain FOV on Smaller Sensor?

To maintain FOV, decrease focal length of lens in proportion to width/height of sensor

Focal Length v. Field of View

- For historical reasons, it is common to refer to angular field of view by focal length of a lens used on a 35mm-format film (36 x 24mm)
- Examples of focal lengths on 35mm format:
 - 17mm is wide angle 104°
 - 50mm is a "normal" lens 47°
 - 200mm is telephoto lens 12°
- Careful! When we say current cell phones have approximately 28mm "equivalent" focal length, this uses the above convention. The physical focal length is often 5-6 times shorter, because the sensor is correspondingly smaller

Focal Length v. Field of View

Stanford CS348b Spring 2022

From London and Upton, and Canon EF Lens Work III

Focal Length v. Field of View

Stanford CS348b Spring 2022

From London and Upton, and Canon EF Lens Work III
Focal Length v. Field of View

Stanford CS348b Spring 2022

Defocus Blur

Stanford CS348b Spring 2022

Defocus blur

NARDORS

Rakuten

Image credit: Gary Dineen/NBAE via Getty Images

Computing Circle of Confusion Diameter (C)

Circle of confusion is proportional to the size of the aperture

Bokeh

Photo credit: Wikimedia's The Photographer

Bokeh is the shape and quality of out-of-focus blur

For small, out-of-focus lights, bokeh takes on the shape of the lens aperture

Bokeh

Why does the bokeh vary across the image?

Stanford CS348b Spring 2022

Dino Quinzani, Leica Noctilux 50mm, f/0.95

F Number

A lens' F-number is the ratio of focal length (f) to the maximum aperture diameter (A) of the lens

Example: two lenses with the same F-number (Denoted as F/2 or F:2)

A = 50 mm

$$f=100~\mathrm{mm}$$

$$N = f/A = 2$$

A = 100 mm= 200 mmN = f/A = 2

Stanford CS348b Spring 2022

Lens's F-Number vs F-Number for Photo

- But for an individual photo, the lens aperture may be "stopped down" to a smaller size
 - E.g. 50 mm F/1.4 lens stopped down to F/4
 - Aperture is closed down with an iris to 50/4 = 12.5 mm

Stanford CS348b Spring 2022

F2 F2.8

Size of Circle of Confusion is Inversely Proportional to F-Number for Photo

$$C = A \frac{|z_s - z_i|}{z_i} = \frac{f}{N} \frac{|z_s - z_i|}{z_i}$$

Ray Tracing Ideal Thin Lenses

Stanford CS348b Spring 2022

Rendering with Lens Focus

Stanford CS348b Spring 2022

Ray Tracing for Defocus Blur (Thin Lens)

Setup:

- Choose sensor size, lens focal length and aperture size
- Choose depth of subject of interest z_o
- Calculate corresponding depth of sensor z_i from thin lens equation (focusing)

and aperture size sor z: from thin lens

Ray Tracing for Defocus Blur (Thin Lens)

Subject plane

- To compute value of pixel at position x' by Monte Carlo integration:
 - Select random points x'' on lens plane
 - Rays pass from point x' on image plane z_i through points x'' on lens
 - Each ray passes through conjugate point x''' on the plane of focus z_o Can determine x''' from Gauss' ray diagram So just trace ray from x'' to x'''
 - Estimate radiance on rays using path-tracing, and sum over all points x''

Real Compound Lenses

Modern Lens Designs Are Complex

Photographic lens cross section

Stanford CS348b Spring 2022

ilovephotography.com

Modern Lens Designs Are Complex

4 element mobile phone lens (on 24x36mm sensor)

Real Lenses vs Ideal Thin Lenses

- Real optical system
- Multiple physical elements in compound design
- Optical aberrations prevent rays from converging perfectly

- effects

Theoretical abstraction • Assume all rays refract at a plane & converge to a point • Quick and intuitive calculation of main imaging

Double Gauss

Data from W. Smith, Modern Lens Design, p 312

Radius	Thick	nd	V-no	apert
58.950	7.520	1.670	47.1	50.4
169.660	0.240			50.4
38.550	8.050	1.670	47.1	46.0
81.540	6.550	1.699	30.1	46.0
25.500	11.410			36.0
	9.000			34.2
-28.990	2.360	1.603	38.0	34.0
81.540	12.130	1.658	57.3	40.0
-40.770	0.380			40.0
874.130	6.440	1.717	48.0	40.0
-79.460	72.228			40.0

Refraction

Snell's Law

Transmitted angle depends on index of refraction of medium incident ray is in and index of refraction of medium light is entering.

 $\eta_i \sin \theta_i = \eta_t \sin \theta_t$

Stanford CS348b Spring 2022

Medium	η *
Vacuum	1.0
Air (sea level)	1.0002
Water (20°C)	9
Glass	1.333
Diamond	1.5-1.6
	2.42

* index of refraction is wavelength dependent (these are averages)

Ray Tracing Through Lenses

From Kolb, Mitchell and Hanrahan (1995)

Stanford CS348b Spring 2022

35 mm wide-angle

16 mm fisheye

Ray Tracing Through Real Lens Designs

Notice shallow depth of field (out of focus background)

Stanford CS348b Spring 2022

200 mm telephoto

Ray Tracing Through Real Lens Designs

Notice distortion in the corners (straight lines become curved)

Stanford CS348b Spring 2022

16 mm fisheye

Ray Tracing Through Real Lens Designs

Monte Carlo approach

At every sensor pixel, compute integral of rays incident on pixel area arriving from all paths through the lens

Algorithm (for a pixel)

- Choose N random positions in pixel
- For each position x', choose a random position on the back element of the lens x''
- Trace a ray through from x' to x'', trace refractions through lens elements until it misses the next element (kill ray) or exits the lens (path trace through the scene)
- Weight each ray according to radiometric calculation on next slide to estimate irradiance E(x')

Radiometry for Tracing Lens Designs

$$E(x') = \int_{x'' \in D} L(x'' \to x') \frac{\cos x'}{||x|}$$
$$= \frac{1}{Z^2} \int_{x'' \in D} L(x'' \to x') \frac{\cos x'}{||x|}$$

D = region of lens aperture

Stanford CS348b Spring 2022

Back element of lens

 $\frac{\cos\theta'\cos\theta''}{x''-x'||^2}dA''$

 $)\cos^{4}\theta dA''$

Real sensor: pixel measurement integrates irradiance over area of pixel

$$E(\text{pixel}) = \int_{x' \in P} \int_{x'' \in D} L(x'' \to x')$$

- P = region of pixel
- **D** = region of lens aperture

Stanford CS348b Spring 2022

Back element of lens

 $z')\frac{\cos\theta'\cos\theta''}{||x''-x'||^2}dA''dA'$

Exposure

Stanford CS348b Spring 2022

High-Speed Photography (short exposure)

Stanford CS348b Spring 2022

Harold Edgerton

Long exposure (a bad photo by Kayvon)

Long exposure (intentional for artistic effect)

Physical Shutter (1/25 Sec Exposure)

Stanford CS348b Spring 2022

The Slow Mo Guys, <u>https://youtu.be/CmjeCchGRQo</u>

Main Side Effect of Shutter Speed

Motion blur: handshake, subject movement **Doubling shutter time doubles motion blur**

Slow shutter speed

Fast shutter speed

Stanford CS348b Spring 2022

London

Electronic (Rolling) Shutter

- Pixel is electronically reset to start exposure
- Fills with photoelectrons as light falls on sensor
- Reading out pixel electronically "ends" exposure
- Problem: most sensors read out pixels sequentially, takes time (e.g. 1/30 sec) to read entire sensor
 - If reset all pixels at the same time, last pixel read out will have longer exposure
 - So, usually stagger reset of pixels to ensure uniform exposure time
 - Problem: rolling shutter artifact

Electronic Rolling Shutter

Can you explain these images?

https://www.bhphotovideo.com/explora/video/tips-and-solutions/rolling-shutter-versus-global-shutter

Credit: Soren Ragsdale https://flic.kr/p/5S6rKw

Exposure (Q)

Pixels integrate (time varying) irradiance over time (5D integral)

$$Q(\text{pixel}) = \int_{t \in T} E(\text{pixel}, t) dt$$
$$Q(\text{pixel}) = \int_{t \in T} \int_{x' \in P} \int_{x'' \in D} L(x'' \to x')$$

Exposure

- Exposure (Q) is an integral of irradiance over time
- Exposure time (T)
 - Controlled by shutter
- Irradiance (E)
 - Controlled by lens aperture
- Implication: can increase exposure by increasing exposure time or by increasing aperture
 - Aperture: f-stop 1 "stop" doubles Q
 - Note: Also decreases depth of field
 - Shutter: Doubling the open time doubles Q Note: Increases motion blur

Aperture vs Shutter

Constant Exposure

f/16 1/8s

f/4 1/125s

From London and Upton

Stanford CS348b Spring 2022

f/2 1/500s

Ray tracing with motion blur

Stanford CS348b Spring 2022

Ray Tracing for Defocus Blur (Thin Lens)

Bunny at t₁

To compute value of pixel at position x' by Monte Carlo integration:

- Select random time t' for ray (in addition to x'' on lens aperture)
- Trace ray through lens system (or use thin lens approximation)
- Update scene geometry to its position at t'
- Ray trace through BVH of geometry at t'

BVH traversal with motion blur

Assume: all primitives provide vertex positions at t_0 (open shutter time) and t_1 (close shutter time)

Assume vertices move linearly during shutter interval

Stanford CS348b Spring 2022

Credit: Hou et al.

BVH traversal with motion blur

BVH construction: compute triangle bbox for t_0 and t_1 . Use union($bbox_{t0}$, $bbox_{t1}$) as the triangle's bbox during regular SAHbased BVH construction.

Each BVH node stores its $bbox_{t0}$ and $bbox_{t1}$.

During traversal: given ray at time t:

- Compute bbox(n), for node n at time t via linear interpolation of $bbox(n)_{t0}$ and $bbox(n)_{t1}$.
- Intersect ray with bbox(n), as normal

Challenges

Linear motion over a frame may be insufficient to capture fast non-linear motions. (e.g, walk cycles, rotating wheels)

1 linear segment 4 segments

Solution: piecewise linear motion approximation — store multiple sets of vertex positions over shutter interval

Memory cost: must store many bboxes for each node in BVH

Stanford CS348b Spring 2022

9 segments

Challenges

Fast motion can significantly bloat primitive bounds used for SAH, resulting in inefficient BVH trees

Idea: enhance splitting algorithm to partition time as well as objects BVH nodes now have both space and time bounds. (Ray misses box if ray's t does not overlap box's time bound)

Stanford CS348b Spring 2022

See Woop et al. 2017 (STBVH)

Frame from "Turning Red" trailer

Blur due to camera motion

Stanford CS348b Spring 2022

Blur due to object motion

Light Field Cameras

Stanford CS348b Spring 2022

Lens

The Lytro Light Field Camera starts with an 8X optical zoom, f/2 aperture lens. The aperture is constant across the zoom range allowing for unheard of light capture.

From a roomful of cameras to a micro-lens array specially adhered to a standard sensor, the Lytro's Light Field Sensor captures 11 million light rays.

https://www.wired.com/2011/10/cross-section-shows-lytro-light-field-cameras-insides/ Stanford C\$348b Spring 2022

Light Field Engine 1.0

The Light Field Engine replaces the supercomputer from the lab and processes the light ray data captured by the sensor.

The Light Field Engine travels with every living picture as it is shared, letting you refocus pictures right on the camera, on your desktop and online.

PIXAR Super Lightfield Lens

Stanford CS348b Spring 2022

Each microlens (and the pixels underneath it) form a "mini" camera taking a picture of the back of the main lens

Stanford camera array

Stanford CS348b Spring 2022

Assignment 3

Part 1. Create light field image using pbrt

Stanford CS348b Spring 2022

Assignment 3

Part 1. Create light field image using pbrt

Stanford CS348b Spring 2022

Assignment 3

Part 2. Compute image I(x,y) from another viewpoint using the light field image

Stanford CS348b Spring 2022

Acknowledgments

Many thanks to Marc Levoy, Pat Hanrahan, and Ren Ng

Stanford CS348b Spring 2022