Ray Tracing 1:
The Basics
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Today’s topics

B pbrt overview

® Basic algorithms e
S : S/ —
B Ray-surface intersection S — N

B Accelerating ray tracing of large numbers of
geometric primitives

B Next time: more advanced primitives,
incremental acceleration techniques, and
practical floating point issues
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Light Rays

Three ideas about light rays
1. Light travels in straight lines (mostly)

2. Light rays do not interfere with each other
if they cross (light is invisible!)

3. Light rays travel from the light sources to
the eye (but the physics is invariant under
path reversal - reciprocity).
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Ray Tracing in Computer Graphics

Appel 1968 - Ray casting
1. Generate an image by casting one ray per pixel

2. Check for shadows by sending a ray to the light
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Ray Tracing

Image

Camera / 8 Light Source
i SRA View Ray W

\

Scene Object
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Ray Tracing

Shooting rays to determine what is visible to camera at
each pixel

Camera

Virtual
Sensor

Ray represented by its origin and direction:

r(t)=o+td
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Ray Tracing

Shooting rays to determine whether a surface is visible
from a light source.

Pinhole
Camera

Virtual
Sensor
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Ray Tracing in Computer Graphics

“An improved Illlumination
model for shaded display”
T. Whitted, CACM 1980

1. Always send ray
to the light source (unless glass
or mirror)

2. Recursively generate
reflected rays (mirror) and
transmitted rays (glass)

Time:

- VAX 11/780 (1979) 74m A =
- PC (2006) 65 — =
- GPU (2012) 1/30s Spheres and Checkerboard

T. Whitted, 1979
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Ray Tracing

Shooting rays determine what light reaches a surface

Pinhole
Camera

Virtual
Sensor
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Mirror, depth 1




Mirror, depth 2




Mirror, depth 3




Mirror, depth 10




Glass, depth 1




Glass, depth 2




Glass, depth 3




Glass, depth 10




ional paths

Bidirect




The key primitive to make the

pictures above is ray

intersection with scene
geomeftry

Let’s start with intersection of a
ray and a single simple surface
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Finding The Closest Intersection

T(O) 3 Plane 1

Plane 2
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What About Rays Parallel to a Plane?

plane

/ Px — Ox
- T =
dx

Math says: = 22X 2% _ 4

0 -

ray

9 IEEE Floating Point standard says:
1. positive num / 0 = +Inf
o negative num / 0 = -Inf

vl

T -Inf € all other floats

2. +Inf > all other floats
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Ray-Triangle Intersection



Ray-Triangle Intersection

1. Find ray-plane intersection point using the
methods developed previously

2. Test whether the intersection point is inside the
triangle
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Review: Geometric Building-Blocks

The signed area of the parallelogram given by the
vectors vi = (331, yl) cmcl Vo = (332, yg) iS given by

L1 L2
Y1 Y2

= (z1y2) — (z21) ‘L

Half of this area is the area of the
triangle determined by the 3 points
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Review: Geometric Building-Blocks

P2

.
.
.
.
.
.
.

Area of a triangle with vertices: p; = (z;,y;)

Ll 21 — 29 29— x0 1
3 ) — —((r1 — — — (T2 — @ —
21 y1 —vo Y2 — Yo 2(( 1 0)(y2 — yo) — (2 0)(¥1 — o))
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Barycentric Coordinates

@O(p) — Area(p17p27p)
a1 (p) — Area(p27p07p)

az(p) = Area(po, p1,p) e

Define barycentric coordinates:

b = -
© Area(po, p1,p2)

<1 <
, 0< <2 -~

p is inside the triangle if 0o > 0,61 > 0,62 > 0
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Ray-Triangle Intersection

Points on a plane: p = bypo + b1p1 + bap2

[Po P1 Pz]

1. Find ray-plane intersection point

2. Test whether that point is inside the triangle

bo

b2

bo
by
b2

Inside iff 5, > 0.0, > 0,05, >0

Stanford CS348b Spring 2022
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Ray Triangle Intersection

O + tﬁ = (1 — by — b2)po + b1p1 + b2p2

3 equations, 3 unknowns (t, b1, b2)

— = =

€1 — P1 — Po

_ _ _ _ —> = —
t | @e? €2 — P2 — Po

— — — = =

b1 — S1 - S S = 0 —Po

b2 >1 €1 ?3 — 3 —

- - L P2 - S1 — X €9
S3 = S X e]

Stanford €S348b Spring 2022 [Moller and Trumbore 1997] . ..uee>



Ray-Implicit Surface Intersection

Implicit surface

flxz,y,z) =0

Substitute ray equation

r = o0, + td,
y = o, + td,
z =0, + td,

Univariate root finding

fo(t) =0
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Acceleration Structures
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Disney Moana scene

g e —

‘mA” —.—..N o

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives
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Disney Moana scene
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Disney Moana scene
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Disney Moana scene
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How do we find closest ray-scene intersection
without individually performing ray-primitive
intersection for all scene primitives?
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Uniform grid

" Partition space into equal sized

D volumes (volume-elements or
D VA v

‘ /\ " Each grid cell contains primitives
b ‘ \ that overlap the voxel.

“‘ . - — Cheap to construct

‘\ ' " Walk ray through volume in order
- a - : — Efficient implementation
; A

ﬁ possible (think: 3D line

rasterization)

— Only consider intersection with
primitives in voxels the ray
intersects
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Objects Overlapping Multiple Cells

Mistake: Output first intersection found

=\
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Objects Overlapping Multiple Cells

Solution: Check whether intersection is inside cell

=\
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Objects Overlapping Multiple Cells

Solution: Check whether intersection is inside cell

T =
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Mailboxes

Solution: Check whether intersection is inside cell

Problem: Objects tested for intersection multiple times
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Mailboxes

Solution: Check whether intersection is inside cell

Problem: Objects tested for intersection multiple times
Solution: Mailboxes
B Assign each ray an increasing number
B Primitive intersection cache (mailbox)
B Give each ray a number N
B Store intersection point and ray N w/ each primitive
B Only re-intersect if ray N is greater than last ray N
B This solution creates problems for parallel tracing.
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What should the grid resolution be?

Too few grids cell: degenerates Too many grid cells: incur significant
to brute-force approach cost traversing through cells with
empty space

Stanford CS348b Spring 2022 Lecture 2



Grid size heuristic

Choose number of cells ~ total number of primitives

Intersection cost: (W )

D > v /\ (assuming 3D grid)
Ple|”

(yields constant prims per cell for
any scene size — assuming
uniform distribution of primitives)
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When uniform grids work well: uniform
distribution of primitives in scene

errdin./ height fields:

‘ .

S '
(R

[Image credit: www.kevinboulanger.net/grass.himl]

Stanford CS348b Spring 2022 Lecture 2




Uniform grids cannot adapt to non-uniform
distribution of geometry in scene

/\ “Teapot in a stadium
problem”

Scene has large spatial extent.

Q Contains a high-resolution object
that has small spatial extent
(ends up in one grid cell)
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When uniform grids do not work well:
non-uniform distribution of geometric detail

{ “ o g
dun Yon, Trgy Rendire
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Quad-tree / octree

Quad-tree: nodes have 4 children !
(partitions 2D space) D N

Octree: nodes have 8 children
(partitions 3D space)

Like uniform grid: easy to build
(don’t have to choose partition
planes)

Has greater ability to adapt to V
location of scene geometry than
uniform grid.

But less ability than a K-D tree | 4

where partitioning planes can
adapt to location of geometry
(next slide)
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K-D tree

B Recursively partition space via axis-aligned partitioning planes

B Interior nodes correspond to spatial splits

m Ability to put spatial splits anywhere gives greater adaptability than

e D
/\

D
N
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Primitive-partitioning acceleration
structures vs. space-partitioning structures

/ Today so far

Space-par.ti‘tioning (e.g. gric!, octrees, K-D %Ayz v /A

tree) partitions space into disjoint regions
(primitives may be contained in multiple
regions of space) 44

Primitive partitioning (e.g, bounding
volume hierarchy): partitions primitives
into disjoint sets (but sets of primitives
may overlap in space)

Stanford CS348b Spring 2022 Lecture 2



One simple idea

“Early out” — Skip ray-primitive test if it is computationally
easy to determine that ray does not intersect primitives

E.g., A ray cannot intersect a primitive if it doesn’t intersect
the bounding box containing it!

Does not change asymptotic
complexity of ray-scene
intersection. But reduces cost
by a constant if ray is far away
from most triangles.
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Bounding volume hierarchy (BVH)

Root —>.
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Bounding volume hierarchy (BVH)
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Bounding volume hierarchy (BVH)
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Bounding volume hierarchy (BVH)

B Leaf nodes:
B Contain small list of primitives
B Interior nodes:
B Proxy for a large subset of primitives
B Stores bounding box for all primitives in subtree
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Ray-scene intersection using a BVH

D> node

struct Node {
bool leaf; // true if node is a leaf
BBox bbox; // min/max coords of enclosed primitives
Node* childl; // “left” child (could be NULL)
Node* child2; // “right” child (could be NULL)
Primitive* primList; // for leaves, stores primitives

child2

' { § [ |

Primitive* prim; // which primitive did the ray hit?
float t; // at what t value along ray?
}i

void find closest hit(Ray* ray, Node* node, HitInfo* closest) {
HitInfo hit = ray box intersect(ray, node->bbox); // test ray against node’s bounding box

return; // don’t update the hit record

Can this occur if ray hits the

if (node->leaf) { box?
for (each primitive p in node->primList) { L. . .
hit = ray_prim_intersect(raY, p) ’ (Clssume h“'o" 1S INF |f I"dy misses bOX)

if (hit.prim != NULL && hit.t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

find _closest_hit(ray, node->childl, closest);
find_closest_hit(ray, node->child2, closest);

}
Stanford CS348b Spring 2022 Lecture 2



Improvement: “front-to-back” traversal

node

Da |
v A

New invariant compared to last slide:
assume find_closest_hit() is only called for
nodes where ray intersects bbox.

child2

void find closest hit(Ray* ray, Node* node, HitInfo* closest) ({ child1 /Z:];Efi] Zﬁ&
E5b>

if (node->leaf) {
for (each primitive p in node->primList) {
hit = ray prim intersect(ray, p);
if (hit.prim != NULL && t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

HitInfo hitl = ray box intersect(ray, node->childl->bbox);
HitInfo hit2 = ray box intersect(ray, node->child2->bbox);

NVHNode* first = (hitl.t <= hit2.t) ? childl : chila2; | “Front to back” traversal.

NVHNode* second = (hitl.t <= hit2.t) ? child2 : childljl o verse to closest child node

find closest hit(ray, first, closest); first. WhY?
if (second child’s t is closer than closest.t)

find closest_hit(ray, second, closest); // why might we still need to do this?
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Aside: another type of query: any hit

Sometimes it is useful to know if the ray hits ANY primitive
in the scene at all (don’t care about distance to first hit)

bool find any hit(Ray* ray, Node* node) {

if (!ray box intersect(ray, node->bbox))
return false;

if (node->leaf) {
for (each primitive p in node->primList) {
hit = ray prim intersect(ray, p);
if (hit.prim)
return true;
} else {
return ( find closest hit(ray, node->childl, closest) ||
find _closest _hit(ray, node->child2, closest) );

Interesting question of which child to enter first.
How might you make a good decision?

Stanford CS348b Spring 2022 Lecture 2



Why “any hit” queries?

Shadow
computations! ~

T o
D
QN

O

L

(& o
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PBRT Shape Interface (Simplified)

class Shape {
public:
Bounds3f ObjectBound() const;
Bounds3f WorldBound
bool Intersect(const Ray &ray, Float *tHit,
SurfaceInteraction *isect,

bool testAlphaTexture) const;

bool IntersectP(const Ray &ray,
bool testAlphaTexture);

Float Area() const;

/] ..

}s
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Bounding volume hierarchy (BVH)

14 Left: two different
A\ B BVH organizations
AD A of the same scene
containing 22
A primitives.
c Is one BVH better

than the other?

1,2,3 6,78, 12,13,14, 18,19,20, 1,2,3 6,7,8, 12,13,14, 18,19,20,
4,5 910,11 15,16,17 21,22 4,5 910,11 15,16,17 21,22
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For a given set of primitives, there
are many possible BVHs

(2N ways to partition N primitives
into two groups)

D87 D7
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How would you partition these triangles into
two groups?

‘A,' g Av 'IA
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What about these?

Stanford CS348b Spring 2022



Intuition about a “good” partition?
| N )/ 'AA
Partition into child nodes with equal numbers of primitives

‘ $':A

Intuition: avoid bboxes with significant empty space
Stanford CS348b Spring 2022 Lecture 2




Which partition is fastest?

What is the cost of tracing a ray?

Cost(node)= C_trav
+ Prob(hit L) *Cost(L)
+ Prob(hit R) * Cost(R)
C_trav = cost of traversing a cell
Cost(L) = cost of traversing left child
Cost(R) = cost of traversing right child
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Intuition about a “good” partition?
e

Two equal sized groups:
child costs equal but probabilities unequal

4 €
VG

Two unequal sized groups:
child costs unequal but sum of probabilities now much lower
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Projected Area and Surface Area

The probability of ray in a given direction hitting an
object with surface area S is proportional to its
projected area A in the direction of the ray
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Average Proj Area and Surface Area

The probability of ray in a any direction hitting an
object with surface area S is proportional to its
average projected area

A
Average projected area: A = ﬁ /A(w) dw
_ S
Crofton’s theorem: A = 1 (Convex shapes only)
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Ray Intersection Probability

The probability of a random ray hitting a convex shape A
enclosed by another convex shape B is:

P(hitA|hit B) = E—A
B

Leads to surface area heuristic:
Cost(node) = C_trav + SA(L) *Cost(L) + SA(R) * Cost(R)

C_trav: the ratio of cost to traverse to cost to intersect (C_trav = 1:5 - 1:1.5 is typical)

Assumptions of the SAH (which may not hold in practice!):
— Rays are randomly distributed
- Rays are not occluded
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Cost

Need the probabilities
B Proportional to surface area
Need the child cell costs

B Triangle count is a good approximation

Cost(node) = C_trav + SA(L) *TriCount(L) + SA(R) *TriCount(R)
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Termination Criteria

When should we stop splitting?
B Bad: depth limit, number of triangles

B Good: When the split does not lower the cost

Threshold of cell size

m Absolute probability SA(node)/SA(scene) small
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Basic Top-down SAH-based Build

Partition(list of prims) {
if (termination criteria reached) {
// make leaf node
(prim_list 1, prim_list2) = // perform SAH split
left _child = Partition(prim_list 1)

right _child = Partition(prim _list 2)
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Finding a good partition

Constrain search for good partitions to axis-aligned spatial partitions
Choose an axis; choose a split plane on that axis
Partition primitives by the side of splitting plane their centroid lies

SAH changes only when split plane moves past triangle boundary

Have to consider large number of possible split planes... (2N possibilities)
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Efficiently implementing partitioning

Efficient modern approximation: split spatial extent of primitives into B
buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: Xx,y,z:
initialize bucket counts to 0, per-bucket bboxes to empty
For each primitive p in node:
b = compute bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH
Use lowest cost partition found (or make node a leaf)
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300k tris

Time: Accel 27.4%, Ray-Triangle 10.2%
Avg. 5.8 tri isect tests / ray
Memory: Accel 19 MB, Tris 21 MB



5.3M tris

Time: Accel 42.7%, Ray-Triangle 13.3%
Avg. 4.5 tri isect tests / ray
Memory: Accel 339 MB, Tris 901 MB



3.1B tris

Time: Accel 74.7%, Ray-Triangle 13.3%
Avg. 32.9 tri isect tests / ray
Memory: Accel 1.47 GB, Tris 4.58 GB




Recall Moana:

i d e OO s

s
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Moana costs

Num ray-triangle tests
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Another example
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Another example: diagonal geometry

Y ‘-_5‘;7 2 ,% l.'_“\:. » R
oy S AR -"”St w
N b} y
Yokl %W J&. 4 “‘aru

v ) (R0 1.,,;: :\__‘,}1}‘:"& : "ﬁi‘ﬁ ‘

Number of nodes visited Num ray—trlcmgle tests \

22
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Axis-alignment and performance

Wall and its Rotated wall and its
bounding box bounding box

CS348b Lecture 3 Pat Hanrahan / Matt Pharr, Spring 2021



Original Scene

Rendering time: 27m 38s




Transformed (Rotated in World Space) Scene

' - [

c_( ~N a . " J - ' "c
1$ 2l .5
A

n' . .

4,
L3
. .”

Rendering time: 1Th 55m 45s




Axis-alignment and performance

Rotated wall and its Work-around: refine
bounding box bounding boxes

Note: this introduces back the
idea of partitioning space!
(Recall octree, KD-tree)
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Top down “greedy” build

“greedy” algorithm: not guaranteed to give
global optimum

Partition(list of prims) {

if (termination criteria reached) {
// make leaf node

Recall SAH cost estimate:
Cost(node) = C_trav +
SA(L) *TriCount(L)
SA(R) *TriCount(R)

(prim_list 1, prim_list2) = // perform SAH split

left _child = Partition(prim_list 1)
right _child = Partition(prim_list 2)
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Modern, fast and high quality BVH
construction schemes

Combine”top-down” divide-and-conquer build with
“bottom up” construction techniques

Step 1: build low-quality BVH quickly

Step 2: Use initial BVH to accelerate construction of
high-quality BVH
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Building a low-quality

Discretize each dimension of scene into 2B cells

Compute index of centroid of bounding box of
each primitive:(c_i, c_j, c_k)

code

Sort primitives by Morton code (primitives now
ordered with high locality in 3D space: in a
space-filling curve!)

= O(N) parallel radix sort

Leads to simple, highly parallelizable BVH build:

Partition(int i, primitives):

nhode.bbox = bbox(primitives)

(left, right) = partition prims by bit i

if there are more bits:
Partition(left, i+l1);
Partition(right, i+l1);

else:
make a leaf node

Stanford CS348b Spring 2022

Interleave bits of c_i, c_j, c_k to get 3B bit-Morton

BVH quickly

2D Morton Order
B=2

B=1
00 01

I —

10 11

Sevioge | J S

[Lauterbach 09, Pantaleoni 10]
Lecture 2



[Karras 13]

Kerras 2013 bottom up treelet-based
construction

Step 1: (top down) build low quality BVH quickly using Morton codes
Step 2: (bottom up) walk from leaves toward root forming small treeless

For each treelet, exhaustively try all possible combinations to find optimal (SAH) treelet
B Brute force search implemented using dynamic programming method

After optimization: this is the optimal
treelet for these nodes (minimal SAH cost)

Shaded region:
treelet with 7 leaf nodes
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Can afford to build a better BVH if you are
shooting many rays (can amortize cost)

The graph below plots effective ray throughput (Mrays/sec) as a
function of the number of rays traced per BVH build

— More rays = can amortize costs of BVH build across many ray trace
operations

[High quality HLBVH + bottom up
top-down + splitting] [Morton code based] treelet reoptimization

SBVH e H[BVH  sssssss [Kerras 13]

Mrays/s
450
400
350
300
250
200
150
100
50
0

1M 10M 100M 1G 10G 100G 1T
Number of rays
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PBRT Overview




Matt Pharr, Wenzel Jakob, Greg Humphreys
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its functionality.

Base class

Shape
Aggregate
Camera
Sampler
Filter
Material
Texture
Medium
Light
Integrator

Most of pbrt is implemented in terms of 10 key abstract base
classes, listed here. Implementations of each of these can easily be added to the system to extend

Directory

shapes/
accelerators/
cameras/
samplers/
filters/
materials/
textures/
media/ |
lights/
integrators/

Section

% 7 |
4.2
6.1
Y.
7.8
9.2
10.3
11.3
12.2
1,.3.9




Sampler Camera

Sample Sample / / Ray
Ray
[Samp1 erIntegrator: :Render() ¢ ’ SamplerIntegrator::Li()
Radiance
Sample,
Radiance
.
Film

Figure 1.17: Class Relationships for the Main Rendering Loop in the SamplerIntegrator::

Render() Method in core/integrator.cpp. The Sampler provides a sequence of sample values, one
for each image sample to be taken. The Camera turns a sample into a corresponding ray from the film
plane, and the Li () method implementation computes the radiance along that ray arriving at the film.
The sample and its radiance are given to the Film, which stores their contribution in an image. This
process repeats until the Sampler has provided as many samples as are necessary to generate the

final image.




Scene
\interacuon
Ray

BSDF Surfacelnteraction::
p ’[Integrator L1()} ComputeScatteringFunctions()
Radiance
Radiance Radiance
[Light::Sample_Li()} ----------- L1ght :Sample_Li()

Figure 1.19: Class Relationships for Surface Integration. The main rendering loop in the SamplerIntegrator computes a camera
ray and passes it to the Li () method, which returns the radiance along that ray arriving at the ray’s origin. After finding the closest
intersection, it computes the material properties at the intersection point, representing them in the form of a BSDF. It then uses
the Lights in the Scene to determine the illumination there. Together, these give the information needed to compute the radiance
reflected back along the ray at the intersection point.




Shape Interface (Simplified)

class Shape {
public:
Bounds3f ObjectBound() const;
Bounds3f WorldBound const;
bool Intersect(const Ray &ray, Float *tHit,
SurfaceInteraction *isect,

bool testAlphaTexture) const;

bool IntersectP(const Ray &ray,
bool testAlphaTexture);

Float Area() const;

/] ..

}s
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Surface Interaction (Simplified)

Information about the surface point hit by a ray.

class SurfaceInteraction {
Point3f p;
Normal3f n;

Point2f uv;
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;

struct {
Normal3f n;
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;
} shading;

/] ..
}s
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Primitives in PBRT

pbrt Primitive base class

Bl Shape

B Material (for a later class)

class Primitive {
public:

virtual Bounds3f WorldBound() const = 0;

virtual bool Intersect(const Ray &r,
SurfaceInteraction *) const

virtual bool IntersectP(const Ray &r) const = 0;

virtual const Arealight *GetArealLight() const = 0;

virtual const Material *GetMaterial() const = 0;

virtual void ComputeScatteringFunctions(..) const = 0;

li
o
we
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Primitives

Collections

B TransfomedPrimitive: Transformation + primitive

B Aggregate

H Treat acceleration data structures as primitives

B Two types of accelerators: kdtree.cpp, and bvh. cpp

B May nest accelerators of different types

class Scene {

// ..

bool Intersect(const Ray &ray,
SurfacelInteraction *isect) const {
return aggregate->Intersect(ray, isect);

}

std: :shared ptr<Primitive> aggregate;

}:
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Two-level Acceleration Structures

Top-level

acceleration T

structure

(e.g., BVH) PN PN

bvh

Bottom-level O
acceleration
structures

(Just primitives with boxes
and intersect() methods from
the perspective of the top
level acceleration structure)
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