Ray Tracing 1:
The Basics

Stanford CS348b Spring 2022 Lecture 2

Today’s topics

B pbrt overview

® Basic algorithms e
S : S/ —
B Ray-surface intersection S — N

B Accelerating ray tracing of large numbers of
geometric primitives

B Next time: more advanced primitives,
incremental acceleration techniques, and
practical floating point issues

Stanford CS348b Spring 2022 Lecture 2

Light Rays

Three ideas about light rays
1. Light travels in straight lines (mostly)

2. Light rays do not interfere with each other
if they cross (light is invisible!)

3. Light rays travel from the light sources to
the eye (but the physics is invariant under
path reversal - reciprocity).

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing in Computer Graphics

Appel 1968 - Ray casting
1. Generate an image by casting one ray per pixel

2. Check for shadows by sending a ray to the light

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing

Image

Camera / 8 Light Source
i SRA View Ray W

\

Scene Object

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing

Shooting rays to determine what is visible to camera at
each pixel

Camera

Virtual
Sensor

Ray represented by its origin and direction:

r(t)=o+td

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing

Shooting rays to determine whether a surface is visible
from a light source.

Pinhole
Camera

Virtual
Sensor

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing in Computer Graphics

“An improved Illlumination
model for shaded display”
T. Whitted, CACM 1980

1. Always send ray
to the light source (unless glass
or mirror)

2. Recursively generate
reflected rays (mirror) and
transmitted rays (glass)

Time:

- VAX 11/780 (1979) 74m A =
- PC (2006) 65 — =
- GPU (2012) 1/30s Spheres and Checkerboard

T. Whitted, 1979

Stanford CS348b Spring 2022 Lecture 2

Ray Tracing

Shooting rays determine what light reaches a surface

Pinhole
Camera

Virtual
Sensor

Stanford CS348b Spring 2022 Lecture 2

Mirror, depth 1

Mirror, depth 2

Mirror, depth 3

Mirror, depth 10

Glass, depth 1

Glass, depth 2

Glass, depth 3

Glass, depth 10

ional paths

Bidirect

The key primitive to make the

pictures above is ray

intersection with scene
geomeftry

Let’s start with intersection of a
ray and a single simple surface

Plane
it Equation for
Implici

lane is defined by:
Plan .
B |ts normal: n

ne
int p on the pla
m A poin

ll

........

° ts pll .
I ne is c|" pII:::gonCII fo n
The p a p is or

here p
\"."4

_ 0
(p/—p)- M

.I.orS)
3-vec

this slide are
" on

P’ o

(n, P/

2
Lecture
22

48b Spring 20
CS3

ford

Stan

-
Plane Intersecti
Ray-

— 0+ tﬁ d
Ray: =0
Plane: (P — P)

ll

lane...
ts the p

he ray intersec

et

t wher

Want

ation:
: lane equ
equation into p
itute ray

Substitu

= ()
i =((o+td)-p)
() — p) n;

%
t:

»

2
Lecture
2

$348b Spring 202
dC

Stanfor

Finding The Closest Intersection

T(O) 3 Plane 1

Plane 2

Stanford CS348b Spring 2022 Lecture 2

Box
« Alianed

ing Ray-Axis-Alig
° : IN

Optimiz

lll

ll

0]
. N=[10

o =cC p|c|ne°’
tersection with x

o iIN

Consider

+ b
— APx
Px — Ox »t

_ —

T L= d,

(p—O) »

- g

the ray
d from e 2
be precom:l::_ox /dx Lectur
d b can =1/d, an
Where: ::ndenf)‘ a=1/
inde
(box in
2
5348b Spring 202
dC
Stanfor

What About Rays Parallel to a Plane?

plane

/ Px — Ox
- T =
dx

Math says: = 22X 2% _ 4

0 -

ray

9 IEEE Floating Point standard says:
1. positive num / 0 = +Inf
o negative num / 0 = -Inf

vl

T -Inf € all other floats

2. +Inf > all other floats

Stanford CS348b Spring 2022 Lecture 2

s

llllllllllllllllllllllllllllll

2
Lecture
2

$348b Spring 202

dC

Stanfor

Ray-Triangle Intersection

Ray-Triangle Intersection

1. Find ray-plane intersection point using the
methods developed previously

2. Test whether the intersection point is inside the
triangle

Stanford CS348b Spring 2022 Lecture 2

Review: Geometric Building-Blocks

The signed area of the parallelogram given by the
vectors vi = (331, yl) cmcl Vo = (332, yg) iS given by

L1 L2
Y1 Y2

= (z1y2) — (z21) ‘L

Half of this area is the area of the
triangle determined by the 3 points

Stanford CS348b Spring 2022 Lecture 2

Review: Geometric Building-Blocks

P2

.
.
.
.
.
.
.

Area of a triangle with vertices: p; = (z;,y;)

Ll 21 — 29 29— x0 1
3) — —((r1 — — — (T2 — @ —
21 y1 —vo Y2 — Yo 2((1 0)(y2 — yo) — (2 0)(¥1 — o))

Stanford CS348b Spring 2022 Lecture 2

Barycentric Coordinates

@O(p) — Area(p17p27p)
a1 (p) — Area(p27p07p)

az(p) = Area(po, p1,p) e

Define barycentric coordinates:

b = -
© Area(po, p1,p2)

<1 <
, 0< <2 -~

p is inside the triangle if 0o > 0,61 > 0,62 > 0

Stanford CS348b Spring 2022 Lecture 2

Ray-Triangle Intersection

Points on a plane: p = bypo + b1p1 + bap2

[Po P1 Pz]

1. Find ray-plane intersection point

2. Test whether that point is inside the triangle

bo

b2

bo
by
b2

Inside iff 5, > 0.0, > 0,05, >0

Stanford CS348b Spring 2022

P

bt | =| Po P1 Pzrl[P}

Lecture 2

Ray Triangle Intersection

O + tﬁ = (1 — by — b2)po + b1p1 + b2p2

3 equations, 3 unknowns (t, b1, b2)

— = =

€1 — P1 — Po

_ _ _ _ —> = —
t | @e? €2 — P2 — Po

— — — = =

b1 — S1 - S S = 0 —Po

b2 >1 €1 ?3 — 3 —

- - L P2 - S1 — X €9
S3 = S X e]

Stanford €S348b Spring 2022 [Moller and Trumbore 1997] . ..uee>

Ray-Implicit Surface Intersection

Implicit surface

flxz,y,z) =0

Substitute ray equation

r = o0, + td,
y = o, + td,
z =0, + td,

Univariate root finding

fo(t) =0

Stanford CS348b Spring 2022 Lecture 2

Acceleration Structures

Stanford CS348b Spring 2022 Lecture 2

Lecture 2

3.1B tris

w
<,
c
),
J
!
X
2
Q.
&
O
9

Stanford CS348b Spring 2022

Disney Moana scene

g e —

‘mA” —.—..N o

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives

Stanford CS348b Spring 2022 Lecture 2

Disney Moana scene

Stanford CS348b Spring 2022 Lecture 2

Disney Moana scene

»

«
s
g
i

.
-
;

Stanford CS348b Spring 2022 Lecture 2

Disney Moana scene

Stanford CS348b Spring 2022 Lecture 2

How do we find closest ray-scene intersection
without individually performing ray-primitive
intersection for all scene primitives?

Stanford CS348b Spring 2022 Lecture 2

Uniform grid

" Partition space into equal sized

D volumes (volume-elements or
D VA v

‘ /\ " Each grid cell contains primitives
b ‘ \ that overlap the voxel.

“‘ . - — Cheap to construct

‘\ ' " Walk ray through volume in order
- a - : — Efficient implementation
; A

ﬁ possible (think: 3D line

rasterization)

— Only consider intersection with
primitives in voxels the ray
intersects

Stanford CS348b Spring 2022 Lecture 2

Objects Overlapping Multiple Cells

Mistake: Output first intersection found

=\

Stanford CS348b Spring 2022 Lecture 2

Objects Overlapping Multiple Cells

Solution: Check whether intersection is inside cell

=\

Stanford CS348b Spring 2022 Lecture 2

Objects Overlapping Multiple Cells

Solution: Check whether intersection is inside cell

T =

Stanford CS348b Spring 2022 Lecture 2

Mailboxes

Solution: Check whether intersection is inside cell

Problem: Objects tested for intersection multiple times

Stanford CS348b Spring 2022 Lecture 2

Mailboxes

Solution: Check whether intersection is inside cell

Problem: Objects tested for intersection multiple times
Solution: Mailboxes
B Assign each ray an increasing number
B Primitive intersection cache (mailbox)
B Give each ray a number N
B Store intersection point and ray N w/ each primitive
B Only re-intersect if ray N is greater than last ray N
B This solution creates problems for parallel tracing.

Stanford CS348b Spring 2022 Lecture 2

What should the grid resolution be?

Too few grids cell: degenerates Too many grid cells: incur significant
to brute-force approach cost traversing through cells with
empty space

Stanford CS348b Spring 2022 Lecture 2

Grid size heuristic

Choose number of cells ~ total number of primitives

Intersection cost: (W)

D > v /\ (assuming 3D grid)
Ple|”

(yields constant prims per cell for
any scene size — assuming
uniform distribution of primitives)

Stanford CS348b Spring 2022 Lecture 2

When uniform grids work well: uniform
distribution of primitives in scene

errdin./ height fields:

‘ .

S '
(R

[Image credit: www.kevinboulanger.net/grass.himl]

Stanford CS348b Spring 2022 Lecture 2

Uniform grids cannot adapt to non-uniform
distribution of geometry in scene

/\ “Teapot in a stadium
problem”

Scene has large spatial extent.

Q Contains a high-resolution object
that has small spatial extent
(ends up in one grid cell)

Stanford CS348b Spring 2022 Lecture 2

When uniform grids do not work well:
non-uniform distribution of geometric detail

{ “ o g
dun Yon, Trgy Rendire

Stanford CS348b Spring 2022 Lecture 2

Quad-tree / octree

Quad-tree: nodes have 4 children !
(partitions 2D space) D N

Octree: nodes have 8 children
(partitions 3D space)

Like uniform grid: easy to build
(don’t have to choose partition
planes)

Has greater ability to adapt to V
location of scene geometry than
uniform grid.

But less ability than a K-D tree | 4

where partitioning planes can
adapt to location of geometry
(next slide)

Stanford CS348b Spring 2022 Lecture 2

K-D tree

B Recursively partition space via axis-aligned partitioning planes

B Interior nodes correspond to spatial splits

m Ability to put spatial splits anywhere gives greater adaptability than

e D
/\

D
N

Stanford CS348b Spring 2022 Lecture 2

Primitive-partitioning acceleration
structures vs. space-partitioning structures

/ Today so far

Space-par.ti‘tioning (e.g. gric!, octrees, K-D %Ayz v /A

tree) partitions space into disjoint regions
(primitives may be contained in multiple
regions of space) 44

Primitive partitioning (e.g, bounding
volume hierarchy): partitions primitives
into disjoint sets (but sets of primitives
may overlap in space)

Stanford CS348b Spring 2022 Lecture 2

One simple idea

“Early out” — Skip ray-primitive test if it is computationally
easy to determine that ray does not intersect primitives

E.g., A ray cannot intersect a primitive if it doesn’t intersect
the bounding box containing it!

Does not change asymptotic
complexity of ray-scene
intersection. But reduces cost
by a constant if ray is far away
from most triangles.

Stanford CS348b Spring 2022 Lecture 2

Bounding volume hierarchy (BVH)

Root —>.

Stanford CS348b Spring 2022

Bounding volume hierarchy (BVH)

Stanford CS348b Spring 2022 Lecture

Bounding volume hierarchy (BVH)

Stanford CS348b Spring 2022 Lecture

Bounding volume hierarchy (BVH)

B Leaf nodes:
B Contain small list of primitives
B Interior nodes:
B Proxy for a large subset of primitives
B Stores bounding box for all primitives in subtree

Stanford CS348b Spring 2022 Lecture 2

Ray-scene intersection using a BVH

D> node

struct Node {
bool leaf; // true if node is a leaf
BBox bbox; // min/max coords of enclosed primitives
Node* childl; // “left” child (could be NULL)
Node* child2; // “right” child (could be NULL)
Primitive* primList; // for leaves, stores primitives

child2

' { § [|

Primitive* prim; // which primitive did the ray hit?
float t; // at what t value along ray?
}i

void find closest hit(Ray* ray, Node* node, HitInfo* closest) {
HitInfo hit = ray box intersect(ray, node->bbox); // test ray against node’s bounding box

return; // don’t update the hit record

Can this occur if ray hits the

if (node->leaf) { box?
for (each primitive p in node->primList) { L. . .
hit = ray_prim_intersect(raY, p) ’ (Clssume h“'o" 1S INF |f I"dy misses bOX)

if (hit.prim != NULL && hit.t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

find _closest_hit(ray, node->childl, closest);
find_closest_hit(ray, node->child2, closest);

}
Stanford CS348b Spring 2022 Lecture 2

Improvement: “front-to-back” traversal

node

Da |
v A

New invariant compared to last slide:
assume find_closest_hit() is only called for
nodes where ray intersects bbox.

child2

void find closest hit(Ray* ray, Node* node, HitInfo* closest) ({ child1 /Z:];Efi] Zﬁ&
E5b>

if (node->leaf) {
for (each primitive p in node->primList) {
hit = ray prim intersect(ray, p);
if (hit.prim != NULL && t < closest.t) {
closest.prim = p;
closest.t = t;

}

}
} else {

HitInfo hitl = ray box intersect(ray, node->childl->bbox);
HitInfo hit2 = ray box intersect(ray, node->child2->bbox);

NVHNode* first = (hitl.t <= hit2.t) ? childl : chila2; | “Front to back” traversal.

NVHNode* second = (hitl.t <= hit2.t) ? child2 : childljl o verse to closest child node

find closest hit(ray, first, closest); first. WhY?
if (second child’s t is closer than closest.t)

find closest_hit(ray, second, closest); // why might we still need to do this?

Stanford CS348b Spring 2022 Lecture 2

Aside: another type of query: any hit

Sometimes it is useful to know if the ray hits ANY primitive
in the scene at all (don’t care about distance to first hit)

bool find any hit(Ray* ray, Node* node) {

if (!ray box intersect(ray, node->bbox))
return false;

if (node->leaf) {
for (each primitive p in node->primList) {
hit = ray prim intersect(ray, p);
if (hit.prim)
return true;
} else {
return (find closest hit(ray, node->childl, closest) ||
find _closest _hit(ray, node->child2, closest));

Interesting question of which child to enter first.
How might you make a good decision?

Stanford CS348b Spring 2022 Lecture 2

Why “any hit” queries?

Shadow
computations! ~

T o
D
QN

O

L

(& o

Stanford CS348b Spring 2022 Lecture 2

PBRT Shape Interface (Simplified)

class Shape {
public:
Bounds3f ObjectBound() const;
Bounds3f WorldBound
bool Intersect(const Ray &ray, Float *tHit,
SurfaceInteraction *isect,

bool testAlphaTexture) const;

bool IntersectP(const Ray &ray,
bool testAlphaTexture);

Float Area() const;

/] ..

}s

Stanford CS348b Spring 2022 Lecture 2

Bounding volume hierarchy (BVH)

14 Left: two different
A\ B BVH organizations
AD A of the same scene
containing 22
A primitives.
c Is one BVH better

than the other?

1,2,3 6,78, 12,13,14, 18,19,20, 1,2,3 6,7,8, 12,13,14, 18,19,20,
4,5 910,11 15,16,17 21,22 4,5 910,11 15,16,17 21,22

Stanford CS348b Spring 2022 Lecture 2

For a given set of primitives, there
are many possible BVHs

(2N ways to partition N primitives
into two groups)

D87 D7

Stanford CS348b Spring 2022 Lecture 2

How would you partition these triangles into
two groups?

‘A,' g Av 'IA

Stanford CS348b Spring 2022 Lecture 2

What about these?

Stanford CS348b Spring 2022

Intuition about a “good” partition?
| N)/ 'AA
Partition into child nodes with equal numbers of primitives

‘ $':A

Intuition: avoid bboxes with significant empty space
Stanford CS348b Spring 2022 Lecture 2

Which partition is fastest?

What is the cost of tracing a ray?

Cost(node)= C_trav
+ Prob(hit L) *Cost(L)
+ Prob(hit R) * Cost(R)
C_trav = cost of traversing a cell
Cost(L) = cost of traversing left child
Cost(R) = cost of traversing right child

Stanford CS348b Spring 2022 Lecture 2

Intuition about a “good” partition?
e

Two equal sized groups:
child costs equal but probabilities unequal

4 €
VG

Two unequal sized groups:
child costs unequal but sum of probabilities now much lower

Stanford CS348b Spring 2022 Lecture 2

Projected Area and Surface Area

The probability of ray in a given direction hitting an
object with surface area S is proportional to its
projected area A in the direction of the ray

Stanford CS348b Spring 2022 Lecture 2

Average Proj Area and Surface Area

The probability of ray in a any direction hitting an
object with surface area S is proportional to its
average projected area

A
Average projected area: A = ﬁ /A(w) dw
_ S
Crofton’s theorem: A = 1 (Convex shapes only)

Stanford CS348b Spring 2022 Lecture 2

Ray Intersection Probability

The probability of a random ray hitting a convex shape A
enclosed by another convex shape B is:

P(hitA|hit B) = E—A
B

Leads to surface area heuristic:
Cost(node) = C_trav + SA(L) *Cost(L) + SA(R) * Cost(R)

C_trav: the ratio of cost to traverse to cost to intersect (C_trav = 1:5 - 1:1.5 is typical)

Assumptions of the SAH (which may not hold in practice!):
— Rays are randomly distributed
- Rays are not occluded

Stanford CS348b Spring 2022 Lecture 2

Cost

Need the probabilities
B Proportional to surface area
Need the child cell costs

B Triangle count is a good approximation

Cost(node) = C_trav + SA(L) *TriCount(L) + SA(R) *TriCount(R)

Stanford CS348b Spring 2022 Lecture 2

Termination Criteria

When should we stop splitting?
B Bad: depth limit, number of triangles

B Good: When the split does not lower the cost

Threshold of cell size

m Absolute probability SA(node)/SA(scene) small

Stanford CS348b Spring 2022 Lecture 2

Basic Top-down SAH-based Build

Partition(list of prims) {
if (termination criteria reached) {
// make leaf node
(prim_list 1, prim_list2) = // perform SAH split
left _child = Partition(prim_list 1)

right _child = Partition(prim _list 2)

Stanford CS348b Spring 2022 Lecture 2

Finding a good partition

Constrain search for good partitions to axis-aligned spatial partitions
Choose an axis; choose a split plane on that axis
Partition primitives by the side of splitting plane their centroid lies

SAH changes only when split plane moves past triangle boundary

Have to consider large number of possible split planes... (2N possibilities)

Stanford CS348b Spring 2022 Lecture 2

Efficiently implementing partitioning

Efficient modern approximation: split spatial extent of primitives into B
buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: Xx,y,z:
initialize bucket counts to 0, per-bucket bboxes to empty
For each primitive p in node:
b = compute bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH
Use lowest cost partition found (or make node a leaf)

Stanford CS348b Spring 2022 Lecture 2

300k tris

Time: Accel 27.4%, Ray-Triangle 10.2%
Avg. 5.8 tri isect tests / ray
Memory: Accel 19 MB, Tris 21 MB

5.3M tris

Time: Accel 42.7%, Ray-Triangle 13.3%
Avg. 4.5 tri isect tests / ray
Memory: Accel 339 MB, Tris 901 MB

3.1B tris

Time: Accel 74.7%, Ray-Triangle 13.3%
Avg. 32.9 tri isect tests / ray
Memory: Accel 1.47 GB, Tris 4.58 GB

Recall Moana:

i d e OO s

s

Stanford CS348b Spring 2022 Lecture 2

Moana costs

Num ray-triangle tests

Stanford CS348b Spring 2022 Lecture 2

Another example

Stanford CS348b Spring 2022 Lecture 2

A E i\i..\. \..M.\.“N\. ..s.‘. 3

DA EAH xw

& : B .

o P T o T -
Mbias w.m.. 2o B N
s v

.l.n. £
!

g

-
0
=
2
>
)
O
-
o
Z
3
>
0

|

(e I TR Yy

CE T S

WY L

"~

-
-

P~
-3

g

-

0 AR
sue.

T8 S NTECEN ey

AT

N

hadig PV

3 e s
R TP RO

L ST
Al -g—-:&..-u.-.t

o
Q'*'.",‘”-

5

PR ML
EE
s i &

o

e
RENE

BVH # Ray-Tri Tests

Another example: diagonal geometry

Y ‘-_5‘;7 2 ,% l.'_“\:. » R
oy S AR -"”St w
N b} y
Yokl %W J&. 4 “‘aru

v) (R0 1.,,;: :__‘,}1}‘:"& : "ﬁi‘ﬁ ‘

Number of nodes visited Num ray—trlcmgle tests \

22

Stanford CS348b Spring 2022 Lecture 2

Axis-alignment and performance

Wall and its Rotated wall and its
bounding box bounding box

CS348b Lecture 3 Pat Hanrahan / Matt Pharr, Spring 2021

Original Scene

Rendering time: 27m 38s

Transformed (Rotated in World Space) Scene

' - [

c_(~N a . " J - ' "c
1$ 2l .5
A

n' . .

4,
L3
. .”

Rendering time: 1Th 55m 45s

Axis-alignment and performance

Rotated wall and its Work-around: refine
bounding box bounding boxes

Note: this introduces back the
idea of partitioning space!
(Recall octree, KD-tree)

Stanford CS348b Spring 2022 Lecture 2

Top down “greedy” build

“greedy” algorithm: not guaranteed to give
global optimum

Partition(list of prims) {

if (termination criteria reached) {
// make leaf node

Recall SAH cost estimate:
Cost(node) = C_trav +
SA(L) *TriCount(L)
SA(R) *TriCount(R)

(prim_list 1, prim_list2) = // perform SAH split

left _child = Partition(prim_list 1)
right _child = Partition(prim_list 2)

Stanford CS348b Spring 2022 Lecture 2

Modern, fast and high quality BVH
construction schemes

Combine”top-down” divide-and-conquer build with
“bottom up” construction techniques

Step 1: build low-quality BVH quickly

Step 2: Use initial BVH to accelerate construction of
high-quality BVH

Stanford CS348b Spring 2022 Lecture 2

Building a low-quality

Discretize each dimension of scene into 2B cells

Compute index of centroid of bounding box of
each primitive:(c_i, c_j, c_k)

code

Sort primitives by Morton code (primitives now
ordered with high locality in 3D space: in a
space-filling curve!)

= O(N) parallel radix sort

Leads to simple, highly parallelizable BVH build:

Partition(int i, primitives):

nhode.bbox = bbox(primitives)

(left, right) = partition prims by bit i

if there are more bits:
Partition(left, i+l1);
Partition(right, i+l1);

else:
make a leaf node

Stanford CS348b Spring 2022

Interleave bits of c_i, c_j, c_k to get 3B bit-Morton

BVH quickly

2D Morton Order
B=2

B=1
00 01

I —

10 11

Sevioge | J S

[Lauterbach 09, Pantaleoni 10]
Lecture 2

[Karras 13]

Kerras 2013 bottom up treelet-based
construction

Step 1: (top down) build low quality BVH quickly using Morton codes
Step 2: (bottom up) walk from leaves toward root forming small treeless

For each treelet, exhaustively try all possible combinations to find optimal (SAH) treelet
B Brute force search implemented using dynamic programming method

After optimization: this is the optimal
treelet for these nodes (minimal SAH cost)

Shaded region:
treelet with 7 leaf nodes

Stanford CS348b Spring 2022 Lecture 2

Can afford to build a better BVH if you are
shooting many rays (can amortize cost)

The graph below plots effective ray throughput (Mrays/sec) as a
function of the number of rays traced per BVH build

— More rays = can amortize costs of BVH build across many ray trace
operations

[High quality HLBVH + bottom up
top-down + splitting] [Morton code based] treelet reoptimization

SBVH e H[BVH sssssss [Kerras 13]

Mrays/s
450
400
350
300
250
200
150
100
50
0

1M 10M 100M 1G 10G 100G 1T
Number of rays

Stanford CS348b Spring 2022 Lecture 2

PBRT Overview

Matt Pharr, Wenzel Jakob, Greg Humphreys

=
L
7))
!
0
> S
i
=
O
® 0
> 2
T W
-

10N

e
®
N
=
D
=
e
B
£
O
oo
=
==
O
D
i =
T
=
®,
. -
LI

C
O
=
LI
d
—
L
-

MORGAN KAUFMANN

its functionality.

Base class

Shape
Aggregate
Camera
Sampler
Filter
Material
Texture
Medium
Light
Integrator

Most of pbrt is implemented in terms of 10 key abstract base
classes, listed here. Implementations of each of these can easily be added to the system to extend

Directory

shapes/
accelerators/
cameras/
samplers/
filters/
materials/
textures/
media/ |
lights/
integrators/

Section

% 7 |
4.2
6.1
Y.
7.8
9.2
10.3
11.3
12.2
1,.3.9

Sampler Camera

Sample Sample / / Ray
Ray
[Samp1 erIntegrator: :Render() ¢ ’ SamplerIntegrator::Li()
Radiance
Sample,
Radiance
.
Film

Figure 1.17: Class Relationships for the Main Rendering Loop in the SamplerIntegrator::

Render() Method in core/integrator.cpp. The Sampler provides a sequence of sample values, one
for each image sample to be taken. The Camera turns a sample into a corresponding ray from the film
plane, and the Li () method implementation computes the radiance along that ray arriving at the film.
The sample and its radiance are given to the Film, which stores their contribution in an image. This
process repeats until the Sampler has provided as many samples as are necessary to generate the

final image.

Scene
\interacuon
Ray

BSDF Surfacelnteraction::
p ’[Integrator L1()} ComputeScatteringFunctions()
Radiance
Radiance Radiance
[Light::Sample_Li()} ----------- L1ght :Sample_Li()

Figure 1.19: Class Relationships for Surface Integration. The main rendering loop in the SamplerIntegrator computes a camera
ray and passes it to the Li () method, which returns the radiance along that ray arriving at the ray’s origin. After finding the closest
intersection, it computes the material properties at the intersection point, representing them in the form of a BSDF. It then uses
the Lights in the Scene to determine the illumination there. Together, these give the information needed to compute the radiance
reflected back along the ray at the intersection point.

Shape Interface (Simplified)

class Shape {
public:
Bounds3f ObjectBound() const;
Bounds3f WorldBound const;
bool Intersect(const Ray &ray, Float *tHit,
SurfaceInteraction *isect,

bool testAlphaTexture) const;

bool IntersectP(const Ray &ray,
bool testAlphaTexture);

Float Area() const;

/] ..

}s

Stanford CS348b Spring 2022 Lecture 2

Surface Interaction (Simplified)

Information about the surface point hit by a ray.

class SurfaceInteraction {
Point3f p;
Normal3f n;

Point2f uv;
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;

struct {
Normal3f n;
Vector3f dpdu, dpdv;
Normal3f dndu, dndv;
} shading;

/] ..
}s

Stanford CS348b Spring 2022 Lecture 2

Primitives in PBRT

pbrt Primitive base class

Bl Shape

B Material (for a later class)

class Primitive {
public:

virtual Bounds3f WorldBound() const = 0;

virtual bool Intersect(const Ray &r,
SurfaceInteraction *) const

virtual bool IntersectP(const Ray &r) const = 0;

virtual const Arealight *GetArealLight() const = 0;

virtual const Material *GetMaterial() const = 0;

virtual void ComputeScatteringFunctions(..) const = 0;

li
o
we

CS348b Lecture 3 Pat Hanrahan / Matt Pharr, Spring 2021

Primitives

Collections

B TransfomedPrimitive: Transformation + primitive

B Aggregate

H Treat acceleration data structures as primitives

B Two types of accelerators: kdtree.cpp, and bvh. cpp

B May nest accelerators of different types

class Scene {

// ..

bool Intersect(const Ray &ray,
SurfacelInteraction *isect) const {
return aggregate->Intersect(ray, isect);

}

std: :shared ptr<Primitive> aggregate;

}:

CS348b Lecture 3 Pat Hanrahan / Matt Pharr, Spring 2021

Two-level Acceleration Structures

Top-level

acceleration T

structure

(e.g., BVH) PN PN

bvh

Bottom-level O
acceleration
structures

(Just primitives with boxes
and intersect() methods from
the perspective of the top
level acceleration structure)

CS348b Lecture 3 Pat Hanrahan / Matt Pharr, Spring 2021

