Monte Carlo 2

Today

- Discrepancy and Quasi-Monte Carlo (QMC)
- Low-discrepancy constructions
 - Halton, Hammersley, Sobol’
- Randomized low-discrepancy: RQMC
- Spectral analysis of sampling patterns and MC
Warping Samples For MC Integration

\[\xi_i \in [0, 1)^2 \]

\[\theta = 2\pi \xi_1 \]

\[r = \sqrt{\xi_2} \]
Warping Samples For MC Integration

Cosine-weighted hemisphere sampling:
Three 2D Point Sets
Point Set Evaluation: Discrepancy

\[\Delta(x, y) = \frac{n(x, y)}{N} - xy \]

\[A = xy \]

\[n(x, y) \text{ number of samples in } A \]

\[D_N = \max_{x,y} |\Delta(x, y)| \]
Three 2D Point Sets
Discrepancy (Empirical)

- Independent: 0.148
- Stratified: 0.081
- Larscher-Pillichshammer: 0.041
Low-Discrepancy Definition

An (infinite) sequence of n samples in dimension d is low discrepancy if:

$$D_n = O\left(\frac{(\log n)^d}{n}\right)$$

A (finite) set of n samples in dimension d is low discrepancy if:

$$D_n = O\left(\frac{(\log n)^{d-1}}{n}\right)$$
Theorem on Total Variation

Koksma-Hlawka inequality:

\[
\frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \int f(x) \, dx \leq V(f) D_N
\]

\[
V(f) = \int \left| \frac{\delta f}{\delta x} \right| \, dx
\]
Quasi-Monte Carlo Error Bounds

Although error is bounded as $|e| \leq V(f)D_N$
not a tight bound!

Even worse, $V(f)$ is sometimes unbounded

We can use this inequality to show that QMC error converges as:

$$\sim \frac{(\log N)^d}{N}$$

(recall that MC variance goes at $O(1/N)$, so error goes at $O(1/\sqrt{N})$.)
Measured Quasi-Monte Carlo Error
Low-Discrepancy Point Sequences
The Radical Inverse

Consider the digits of a number n, expressed in base b

$$n = \sum_{i=1}^{\infty} d_i b^{(i-1)}$$

e.g. for $n = 6$ in base 2, $n=110_2$, and

$d_1 = 0, d_2 = 1, d_3 = 1, d_i = 0$

The radical inverse mirrors the digits around the decimal:

$$\Phi_2(6) = 0.011_2 = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0.375$$

$$\Phi_b(n) = \sum_{i=1}^{\infty} d_i b^{-i}$$
1D Low Discrepancy: van der Corput

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.375</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Diagram: Points at positions $\frac{k}{2^n}$ for $n = 0, 1, 2, 3, 4, 5, 6, 7$. The sequence alternates between blue, green, and red points.
Efficient Base 2 Radical Inverse

Assume a fixed number of bits (say 32):

\[\Phi_b(n) = \sum_{i=1}^{32} d_i b^{-i} \]

We have the sum:
\[d_1 2^{-1} + d_2 2^{-2} + \cdots + d_{32} 2^{-32} \]

Pull out a factor of \(2^{-32} \):
\[2^{-32} (d_1 2^{31} + d_2 2^{30} + \cdots + d_{32}) \]

Can also express in terms of bit shifts:
\[2^{-32} ((d_1 \ll 31) + (d_2 \ll 30) + \cdots + d_{32}) \]
Efficient Base 2 Radical Inverse

$$2^{-32}((d_1 << 31) + (d_2 << 30) + \cdots + d_{32})$$

We already have the digits in the bits of n

$$n = \sum_{i=1}^{\infty} d_i b^{(i-1)}$$

So

- Reverse the bits
- Multiply by 2^{-32}
uint32_t ReverseBits(uint32_t n) {

 n = (n << 16) | (n >> 16);
 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
 n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
 n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
 n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
 return n;
}
float RadicalInverse2(uint32_t v) {
 v = ReverseBits(v);
 const float Inv2To32 = 1.f / (1ull << 32);
 return v * Inv2To32;
}

uint32_t ReverseBits(uint32_t n) {
 n = (n << 16) | (n >> 16);
 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
 n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
 n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
 n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
 return n;
}
Radical Inverse Base 3

<table>
<thead>
<tr>
<th>n</th>
<th>$\Phi_3(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.333...</td>
</tr>
<tr>
<td>2</td>
<td>0.666...</td>
</tr>
<tr>
<td>3</td>
<td>0.111...</td>
</tr>
<tr>
<td>4</td>
<td>0.444...</td>
</tr>
<tr>
<td>5</td>
<td>0.777...</td>
</tr>
<tr>
<td>6</td>
<td>0.222...</td>
</tr>
<tr>
<td>7</td>
<td>0.555...</td>
</tr>
<tr>
<td>8</td>
<td>0.888...</td>
</tr>
</tbody>
</table>
The Halton Sequence

Low discrepancy sequence \((\Phi_{b_1}(n), \Phi_{b_2}(n), \Phi_{b_3}(n), \ldots)\)

- The dimensions’ bases are relatively prime
- Arbitrary number of dimensions
- Arbitrary number of points

\[
(\Phi_2(n), \Phi_3(n))
\]
The Hammersley Point Set

If the number of points \(N \) is known in advance, set one dimension to \(\frac{n}{N} \)

\[
\left(\frac{n}{N}, \Phi_{b_1}(n), \Phi_{b_2}(n), \ldots \right)
\]

Slightly lower discrepancy than Halton
Low-Dimensional Projections...

Caution: 2D projections of higher bases may not be great

■ The overall pattern remains low-discrepancy over all dimensions, though

$$(\Phi_{29}(n), \Phi_{31}(n))$$
Randomized Low Discrepancy

\[\Phi_b(n) = \sum_{i=1}^{\infty} d_i b^{-i} \]

Radical Inverse

\[\Phi'_b(n) = \sum_{i=1}^{\infty} \sigma_i(d_i) b^{-i} \]

Permuted Radical Inverse

\(\sigma_i \) are (random) permutations of the digits

- Random permutations maintain LD
Halton + Random Digit Permutations

Unscrambled

(ϕ_{29}(n), ϕ_{31}(n))

Scrambled
Owen Scrambling

Apply random digit permutations that depend on previous digits

\[\Phi'_b(n) = \sum_{i=1}^{\infty} \sigma_i(d_i) b^{-i} \]

Permuted Radical Inverse

\[\Phi'_b(n) = \sum_{i=1}^{\infty} \sigma_{\{d_1, \ldots, d_{i-1}\}}(d_i) b^{-i} \]

Owen Scrambled Radical Inverse
Error With Owen Scrambling

- Independent
- Sobol' (Owen)
- Sobol' (Digit Permute)
Sobol’ Point Sets
Generator Matrices

Given a base b and a matrix C, define:

$$c(n) = (b^{-1}, b^{-2}, \ldots, b^{-m}) C \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$$

- where d_i are the base-b digits of n
- and arithmetic is done over the ring \mathbb{Z}_b
- For our purposes, just do everything "mod b"

This generates a set of b^m points
Generator Matrices

We’ll focus only on $b=2$, which allows particularly efficient implementation.

$$c(n) = (2^{-1}, 2^{-2}, \ldots, 2^{-m}) C \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{pmatrix}$$

Quiz: what happens if $C =$?
Sobol’ Point Sets

Sobol’ showed how to find generator matrices for LD point sets in base 2

- Can scale low-discrepancy samples in 1000s of dimensions
32 2D Sobol’ Points
Elementary Intervals (1x32)
Elementary Intervals (2x16)
Elementary Intervals (4x8)
Elementary Intervals (8x4)
Elementary Intervals (16x2)
Elementary Intervals (32x1)
Independent Random Samples, n=16
MSE 1x
Stratified Samples, \(n=16 \)
MSE 1/2.41x
Sobol’ Samples, n=16
MSE 1/3.38x
Independent Random Samples, n=16
MSE 1x
Sobol’ Samples, n=16
MSE 1/3.95x
Warping Samples to a Quad Light

4x4 Stratified

16 Sobol’
Sampling Motion Blur + Defocus

- Independent
 MSE 1x

- Halton
 MSE 1/1.13x

- Sobol’
 MSE 1/1.80x
In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other.
Pixel * Light Sampling

[Diagram of pixel and light sampling]

Stanford CS348b Spring 2022 Lecture 18
Spectral Analysis of Sampling
Measuring Point Set Quality

Some problems with discrepancy:

- Anisotropic: rotating the points changes discrepancy
- Not shift-invariant: similarly for translation
- Doesn’t account for human perception

In general, can have low discrepancy yet still have points clumped together:
Ambient Occlusion: $\int_{\Omega} V(\omega) \cos \theta \, d\omega$
Blue Noise Dithering (Ulichney)
Power Spectrum of Samples

\[P_f(\omega) = F(\omega) F(\omega) \]
\[= F(\omega)^2 \quad f \text{ is even} \]
Colors of Noise

White

Blue

POWER SPECTRUM

RADIAL FREQUENCY

POWER SPECTRUM

RADIAL FREQUENCY
Ambient Occlusion, Revisited \[\int_{\Omega} V(\omega) \cos \theta \, d\omega \]

Reference Blue Noise White Noise
(0,2)-sequence

[Ahmed and Wonka 2020]
Blue Noise Sobol’

[Ahmed and Wonka 2020]
Jittered Power Spectrum
Low Discrepancy Power Spectra

Halton

Sobol'
Power Spectra and Aliasing

Jittered

Halton
Randomized LD Power Spectra

Sobol’

Owen Scrambled Sobol’
Integration Error when Sampling

Integral

\[I(f) = \int f(x) \, dx \]

Sampled integral

Given samples \(x_i \), define \(s(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i) \)

\[I_s(f) = \int f(x) s(x) \, dx = \frac{1}{N} \sum f(x_i) \]
Integration Error when Sampling

Sampled integral

\[I_s(f) = \int f(x)s(x) \, dx = \frac{1}{N} \sum f(x_i) \]

Since:

\[f(x)s(x) \leftrightarrow F(\omega) \oplus S(\omega) \]

\[I(f) = \int f(x) \, dx = F(0) \]

\[I_s(f) = \int f(x)s(x) \, dx = F(\omega) \oplus S(\omega) \big|_{\omega=0} \]

Error

\[\Delta = F(0) - F(\omega) \oplus S(\omega) \big|_{\omega=0} \]
Integration in the Frequency Domain

Primal

Dual (Fourier)

integrand f

^ f

sampling pattern S

^ S

Sampled function Sf

^ Sf

[Durand 2011]
Variance Analysis

Recall error is: \[\Delta = F(0) - F(\omega) \oplus S(\omega) \big|_{\omega=0} \]

Can show that: \[V \propto \int_{\Omega \setminus \{0\}} P_F(\omega) P_S(\omega) \, d\omega \]

where \(P_*(\omega) \) is the power spectrum of the signal
Power Spectra and Variance

Jittered

Poisson Disk

Blue Noise

[Stanford CS348b Spring 2022]

[Power spectra and variance graphs for Jittered, Poisson Disk, and Blue Noise]

[Pilleboue et al. 2015]