Monte Carlo 2

Today

- Discrepancy and Quasi-Monte Carlo (QMC)
- Low-discrepancy constructions
 - Halton, Hammersley, Sobol'
- Randomized low-discrepancy: RQMC
- Spectral analysis of sampling patterns and MC

Warping Samples For MC Integration

$$\xi_i \in [0,1)^2$$

Stanford CS348b Spring 2022

- $\theta = 2\pi\xi_1$
- $r = \sqrt{\xi_2}$

Warping Samples For MC Integration

Cosine-weighted hemisphere sampling:

Three 2D Point Sets

Stanford CS348b Spring 2022

Point Set Evaluation: Discrepancy

Stanford CS348b Spring 2022

 $\Delta(x, y) = \frac{n(x, y)}{N} - xy$

 $D_N = \max_{x,y} \left| \Delta(x,y) \right|$

Three 2D Point Sets

Stanford CS348b Spring 2022

Discrepancy (Empirical)

IndependentStratified0.1480.081

Stanford CS348b Spring 2022

Larscher-Pillichshammer 0.041

Low-Discrepancy Definition

An (infinite) sequence of n samples in dimension d is low discrepancy if:

$$D_n = O\left(\frac{(\log n)^d}{n}\right)$$

A (finite) set of n samples in dimension d is low discrepancy if:

$$D_n = O\left(\frac{(\log n)^{d-1}}{n}\right)$$

Stanford CS348b Spring 2022

Theorem on Total Variation

Koksma-Hlawka inequality:

 $\left|\frac{1}{N}\sum_{i=0}^{N-1}f(X_i) - \int f(x)dx\right| \leq V(f)D_N$

Stanford CS348b Spring 2022

 $V(f) = \int \left| \frac{\delta f}{\delta x} \right| \, dx$

Quasi-Monte Carlo Error Bounds

Although error is bounded as $|e| \leq V(f)D_N$ not a tight bound!

Even worse, V(f) is sometimes unbounded

We can use this inequality to show that QMC error converges as:

$$\sim \frac{(\log N)^d}{N}$$

(recall that MC variance goes at O(1/N), so error goes at $O(1/\sqrt{N})$.)

Stanford CS348b Spring 2022

Measured Quasi-Monte Carlo Error

Stanford CS348b Spring 2022

- Independent
- Stratified
- Halton

- Independent
- Stratified
- Halton

Low-Discrepancy Point Sequences

The Radical Inverse

Consider the digits of a number n, expressed in base b $n = \sum d \cdot h^{(i-1)}$

$$i = \sum_{i=1}^{n} d_i b^{(i-1)}$$

e.g. for n = 6 in base 2, $n=110_2$, and $d_1 = 0, d_2 = 1, d_3 = 1, d_i = 0$

The radical inverse mirrors the digits around the decimal:

 $\Phi_2(6) = 0.011_2 = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0.375$

$$\Phi_b(n) = \sum_{i=1}^{\infty} d_i \, b^{-i}$$

Stanford CS348b Spring 2022

1D Low Discrepancy: van der Corput

n	$\Phi_2(n)$
0	0
1	0.5
2	0.25
3	0.75
4	0.125
5	0.625
6	0.375
7	0.875
•••	•••

Efficient Base 2 Radical Inverse

Assume a fixed number of bits (say 32):

$$\Phi_b(n) = \sum_{i=1}^{52} d_i \, b^{-i}$$

29

We have the sum: $d_1 2^{-1} + d_2 2^{-2} + \cdots + d_{32} 2^{-32}$

Pull out a factor of 2^{-32} : $2^{-32}(d_1 2^{31} + d_2 2^{30} + \cdots + d_{32})$

Can also express in terms of bit shifts:

 $2^{-32}((d_1 << 31) + (d_2 << 30) + \dots + d_{32})$

Stanford CS348b Spring 2022

Efficient Base 2 Radical Inverse

$$2^{-32}((d_1 << 31) + (d_2 << 30)$$

We already have the digits in the bits of n

$$n = \sum_{i=1}^{\infty} d_i b^{(i-1)}$$

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

So

Reverse the bits Multiply by 2^{-32}

Stanford CS348b Spring 2022

$+\cdots + d_{32})$

Reversing Bits in Parallel

ui

nt32	2 t	: Re	vei	rseI	Bit	s (u	int	32 1	tn)	{		32	31 30	29	28	27	26	25	24	23	22	21	20	19	18
		1		1.0				1.0		•															
n	=	(n	<<	10)		(п	. >>	το));			16	15 14	13	12	11	10	9	8	7	6	5	4	3	2
												16	15 14	13	12	11	10	9	8	7	6	5	4	3	2
n	=	((n	. &	0x0)0f	£00	ff)	<<	8)	I	((n	& 8	0xf 7 6	f0	0f 4	£0 3	0) 2	> 1	>> 16	8 15); 14	13	12	11	1(
												8	7 6	5	4	3	2	1	16	15	14	13	12	11	1(
																	•								
n	=	((n	L &	0x0)±0	±0±	: 0 £)	<<	4)	I	((n	& 4				0 ±	0) 6	>	•>	4);	9	16	15	14
												4	3 2	1	8	7	6	5	12	11	10	9	16	15	14
n	=	((n	. &	0x 3	333	333	33)	<<	2)	I	((n	&	0xc	CC	cc	cc	c)	>	·>	2));				
												2	1 4	3	6	5	8	7	10	9	12	11	14	13	16
												2	1 4	3	6	5	8	7	10	9	12	11	14	13	16
n re	= etu	((n 	n;	0x5	555	555	55)	<<	1)	Ι	((n	&	0xa	aa	aa	aa	a)	>	>	1);				
												1	2 3	4	5	6	7	8	9	10	11	12	13	14	15

Efficient van Der Corput

```
uint32 t ReverseBits(uint32 t n) {
  n = (n << 16) | (n >> 16);
   n = ((n \& 0x00ff00ff) << 8) | ((n \& 0xff00ff00) >> 8);
  n = ((n \& 0x0f0f0f0f) << 4) | ((n \& 0xf0f0f0f0) >> 4);
   n = ((n \& 0x3333333) << 2) | ((n \& 0xccccccc) >> 2);
   n = ((n \& 0x5555555) << 1) | ((n \& 0xaaaaaaaa) >> 1);
   return n;
```

```
float RadicalInverse2(uint32 t v) {
v = ReverseBits(v);
const float Inv2To32 = 1.f / (1ull << 32);
return v * Inv2To32;
```

Stanford CS348b Spring 2022

Radical Inverse Base 3

n	$\Phi_3(n)$
0	0
	0.333
2	0.666
3	0.111
4	0.444
5	0.777
6	0.222
7	0.555
8	0.888

Stanford CS348b Spring 2022

The Halton Sequence

Low discrepancy sequence $(\Phi_{b_1}(n), \Phi_{b_2}(n), \Phi_{b_3}(n), \ldots)$ The dimensions' bases are relatively prime Arbitrary number of dimensions Arbitrary number of points

Stanford CS348b Spring 2022

The Hammersley Point Set

If the number of points N is known in advance, set one dimension to n/N

Slightly lower discrepancy than Halton

Stanford CS348b Spring 2022

Low-Dimensional Projections...

Caution: 2D projections of higher bases may not be great

The overall pattern remains low-discrepancy over all dimensions, though

 $(\Phi_{29}(n), \Phi_{31}(n))$

Stanford CS348b Spring 2022

Randomized Low Discrepancy

$$\Phi_b(n) = \sum_{i=1}^{\infty} d_i b^{-i} \qquad \Phi'_b(n)$$

Radical Inverse

σ_i are (random) permutations of the digits Random permutations maintain LD

Stanford CS348b Spring 2022

 $=\sum \sigma_i(d_i)b^{-i}$ i=1

Permuted Radical Inverse

Halton + Random Digit Permutations

Unscrambled

 $(\Phi_{29}(n), \Phi_{31}(n))$

Scrambled

Owen Scrambling

Apply random digit permutations that depend on previous digits

$$\Phi'_b(n) = \sum_{i=1}^{\infty} \sigma_i(d_i) b^{-i}$$

Permuted Radical Inverse

Stanford CS348b Spring 2022

Error With Owen Scrambling

Stanford CS348b Spring 2022

- Independent
- Sobol' (Owen)
- Sobol' (Digit Permute)

- Independent
- Sobol' (Owen)
- Sobol' (Digit Permute)

Sobol' Point Sets

Generator Matrices

Given a base b and a matrix C, define:

• where d_i are the base-b digits of n \blacksquare and arithmetic is done over the ring \mathbb{Z}_b For our purposes, just do everything "mod b" This generates a set of b^m points

Generator Matrices

We'll focus only on b=2, which allows particularly efficient implementation

$$c(n) = (2^{-1}, 2^{-2}, \dots, 2^{-m})$$

Sobol' Point Sets

Sobol' showed how to find generator matrices for LD point sets in base 2

Can scale low-discrepancy samples in 1000s of dimensions

Stanford CS348b Spring 2022

 $\bullet \bullet \bullet$

32 2D Sobol' Points

Stanford CS348b Spring 2022

Elementary Intervals (1x32)

Stanford CS348b Spring 2022

Elementary Intervals (2x16)

Stanford CS348b Spring 2022

Elementary Intervals (4x8)

Stanford CS348b Spring 2022

Elementary Intervals (8x4)

Stanford CS348b Spring 2022

Elementary Intervals (16x2)

Stanford CS348b Spring 2022

Elementary Intervals (32x1)

Stanford CS348b Spring 2022

Independent Random Samples, n=16 MSE 1x

Stratified Samples, n=16 MSE 1/2.41x

Sobol' Samples, n=16 MSE 1/3.38x

Independent Random Samples, n=16 MSE 1x

Stratified Samples, n=16 MSE 1/2.12x

Sobol' Samples, n=16 MSE 1/3.95x

Warping Samples to a Quad Light

4x4 Stratified

16 Sobol'

Stanford CS348b Spring 2022

Sampling Motion Blur + Defocus

Halton MSE 1/1.13x

Independent MSE 1x

Stanford CS348b Spring 2022

Sobol' MSE 1/1.80x

(0,2)-sequences

In addition to satisfying general stratification properties, power-of-two length subsequences are well-distributed with respect to each other

Pixel * Light Sampling

Stanford CS348b Spring 2022

Spectral Analysis of Sampling

Measuring Point Set Quality

- Some problems with discrepancy:
 - Anisotropic: rotating the points changes discrepancy
 - Not shift-invariant: similarly for translation
 - Doesn't account for human perception
- In general, can have low discrepancy yet still have points clumped together:

Ambient Occlusion: $\int_{\Omega} V(\omega) \cos \theta \, d\omega$

Reference

Random A

Stanford CS348b Spring 2022

Random B

Blue Noise Dithering (Ulichney)

White

Stanford CS348b Spring 2022

Blue

Power Spectrum of Samples

Samples

Fourier Transform

 $P_f(\omega) = F(\omega)F(\omega)$ $= F(\omega)^2$

Stanford CS348b Spring 2022

Radial Power Spectrum

is even

Colors of Noise

White

Stanford CS348b Spring 2022

ER SPECTRUM

РОМ

Ambient Occlusion, Revisited $\int_{\Omega} V(\omega) \cos \theta \, d\omega$

Reference

Blue Noise

Stanford CS348b Spring 2022

White Noise

(0,2)-sequence

Blue Noise Sobol'

Jittered Power Spectrum

Stanford CS348b Spring 2022

Low Discrepancy Power Spectra

Halton

Stanford CS348b Spring 2022

Power Spectra and Aliasing

Halton

Stanford CS348b Spring 2022

Randomized LD Power Spectra

Sobol'

Stanford CS348b Spring 2022

Owen Scrambled Sobol'

Integration Error when Sampling

Integral

$$I(f) = \int f(x) \, dx$$

Sampled integral

Given samples x_i , define $s(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$

$$I_s(f) = \int f(x)s(x) \, dx = \frac{1}{N} \sum f(x_i)$$

Stanford CS348b Spring 2022

Integration Error when Sampling

Sampled integral

$$I_s(f) = \int f(x)s(x) \, dx = \frac{1}{N} \sum f(x_i)$$

Since:

$$f(x)s(x) \leftrightarrow F(\omega) \oplus S(\omega)$$

$$I(f) = \int f(x) \, dx = F(0)$$

$$I_s(f) = \int f(x)s(x) \, dx = F(\omega) \oplus S(\omega)$$

Error

 $\Delta = F(0) - F(\omega) \oplus S(\omega)|_{\omega=0}$

Stanford CS348b Spring 2022

Integration in the Frequency Domain

Stanford CS348b Spring 2022

[Durand 2011]

Variance Analysis

Recall error is: $\Delta = F(0) - F(\omega) \oplus S(\omega)|_{\omega=0}$

Can show that: $V \propto \int_{\Omega - \{0\}} P_F(\omega) P_S(\omega) \,\mathrm{d}\omega$

where $P_*(\omega)$ is the power spectrum of the signal

Stanford CS348b Spring 2022

Power Spectra and Variance

Stanford CS348b Spring 2022

Lecture 18

[Pilleboue et al. 2015]