Participating Media and Volume Rendering

Applications:

- Clouds, smoke, water, ...
- Subsurface scattering: paint, skin, ...
- **Topics:**
 - Absorption and emission
 - Scattering and phase functions
 - The volume rendering equation

Null scattering and sampling for **Monte Carlo integration**

Participating Media

Jim Price

Participating Media

Absorption

$$\frac{L(\mathbf{p},\omega)}{\left| -\mathbf{d}s - \mathbf{d}s \right|} -$$

 $dL(\mathbf{p},\omega) = -\sigma_a(\mathbf{p}) L(\mathbf{p},\omega) ds$

Absorption cross section: $\sigma_a(p)$ Probability of being absorbed per unit length Units: 1/distance

Stanford CS348b Spring 2022

L + dL

Absorption: Lower Density

Walt Disney Animation Studios

Absorption: Higher Density

Walt Disney Animation Studios

Transmittance

$$dL(\mathbf{p}, \omega) = -\sigma_a(\mathbf{p}) L(\mathbf{p}, \omega) ds$$
$$dL(\mathbf{p}, \omega)$$

$$\frac{\mathrm{d}L(\mathbf{p},\omega)}{L(\mathbf{p},\omega)} = -\sigma_a(\mathbf{p})\,\mathrm{d}s$$

$$\log L(\mathbf{p} + s\omega, \omega) - \log L(\mathbf{p}, \omega) = -\int_{0}^{s} L(\mathbf{p} + s\omega, \omega) ds' L(\mathbf{p} + s\omega, \omega) ds$$

Transmittance: $T(s) = e^{-\int_0^s \sigma_a(p+s'\omega,\omega) ds'}$

Stanford CS348b Spring 2022

 $\int^{s} \sigma_{a}(\mathbf{p} + s'\omega, \omega) \,\mathrm{d}s'$ $\mathbf{p}, \omega) = T(s) L(\mathbf{p}, \omega)$

Optical Thickness and Beer's Law

Optical distance (depth): $\tau(s) = \int_0^s \sigma_a(\mathbf{p}') \, \mathrm{d}s'$

Homogeneous medium-constant σ_a : $\tau(s) = \sigma_a s$

Beer's Law: $T(s) = e^{-\tau(s)} = e^{-\sigma_a s}$

Stanford CS348b Spring 2022

$\mathbf{p}' = \mathbf{p} + s'\omega$

Out-Scattering

 $dL(p, \omega) = -\sigma_s(p) L(p, \omega) ds$

Scattering cross-section: σ_s Probability of being scattered per unit length

Stanford CS348b Spring 2022

Extinction

Total cross section: $\sigma_t = \sigma_a + \sigma_s$ **Albedo:** $W = \frac{\sigma_s}{\sigma_t} = \frac{\sigma_s}{\sigma_a + \sigma_s}$

Optical distance from absorption and scattering: ſS $\tau(s) = \int_{0}^{t} \sigma_{t}(\mathbf{p}') \, \mathrm{d}s'$

Stanford CS348b Spring 2022

Ray Marching to Compute Transmittance

$$\tau(s) = \int_0^s \sigma_t(\mathbf{p} + s'\omega) \,\mathrm{d}s$$

$$T(s) = e^{-\tau(s)}$$

Riemann sum:

$$\tau(s) \approx \frac{s}{N} \sum_{i}^{N} \sigma_t(x_i)$$
$$x_i = x + \frac{i+0.5}{N} \omega$$

Stanford CS348b Spring 2022

Emission

 $L(\mathrm{p},\omega)$ $-\mathrm{d}s$

 $dL(\mathbf{p},\omega) = \sigma_a(\mathbf{p})L_e(\mathbf{p},\omega)\,ds$

Stanford CS348b Spring 2022

L + dL

Jim Price

Jim Price

In-Scattering

$$S(\mathbf{p},\omega) = \sigma_s(\mathbf{p}) \int_{S^2} p(\omega' \to \omega)$$

Phase function: $p(\omega' \rightarrow \omega)$ **Reciprocity:** $p(\omega' \to \omega) = p(\omega \to \omega')$ Energy conservation: $\int_{\infty} p(\omega' \to \omega) d\omega' = 1$ J_{S^2}

Stanford CS348b Spring 2022

ω) $L(\mathbf{p}, \omega') d\omega'$

Scattering: Lower Density

Walt Disney Animation Studios

Scattering: Higher Density

Walt Disney Animation Studios

Phase Functions

Phase angle $\cos \theta = \omega \cdot \omega'$ **Phase functions Isotropic:** $p(\cos \theta) = \frac{1}{4\pi}$

Rayleigh: $p(\cos\theta) = \frac{3}{4}(1 + \cos^2\theta)$ with $\sigma_s \propto \frac{1}{\lambda^4}$

[Philip Laven]

Stanford CS348b Spring 2022

Rayleigh Scattering: Blue Sky, Red Sunset

From Greenler: Rainbows, Halos, and Glories

Stanford CS348b Spring 2022

Henyey-Greenstein Phase Function

Empirical phase function

$$p(\cos\theta) = \frac{1}{4\pi} \frac{1-g}{(1+g^2-2g)}$$

Average phase angle g:

$$g = 2\pi \int_0^{2\pi} p(\cos\theta) \, \cos\theta \, s$$

Stanford CS348b Spring 2022

 $\frac{g^2}{(\cos\theta)^{3/2}}$

$\sin\theta\,\mathrm{d} heta$

More Backward Scattering

More Forward Scattering

Direct Illumination in a Volume

 $S_{\rm d}({\rm p}',\omega) = \sigma_s({\rm p}') \int_{S^2} p(\omega' \to \omega) L_{\rm d}({\rm p}',\omega') d\omega'$

- **Can treat like direct** illumination at a surface
 - Sample from phase function's distribution
 - Sample from light source distributions
 - Weight using multiple importance sampling

Stanford CS348b Spring 2022

Direct Illumination in a Volume

$$S_{\rm d}({\rm p}',\omega) = \sigma_s({\rm p}') \int_{S^2} p(\omega' \to \omega)$$

Estimator: $\sigma_s(\mathbf{p}') \frac{1}{N} \sum_{i=1}^{N} \frac{p(\omega_i \to \omega) L_d(\mathbf{p}', \omega_i)}{p(\omega_i)}$

Computing direct lighting, L_d can be expensive Not just a shadow rayneed to compute transmittance

Stanford CS348b Spring 2022

 $\nu) L_{\rm d}({\rm p}',\omega') \, {
m d}\omega'$

Single-Scattering

Minneart: Color and Light In The Open Air

Stanford CS348b Spring 2022

Stanford CS348b Spring 2022

Single Scattering

The Volume Rendering Equation

Integro-differential equation:

Source: in-scattering and emission

Volumetric Path Tracing

Integro-integral equation:

$$L(\mathbf{p},\omega) = \int_0^\infty T(\mathbf{p}') S(\mathbf{p}')$$

Monte Carlo integration: sample $s' \sim p(s)$

Estimator:

$$\frac{T(\mathbf{p'})S(\mathbf{p'},\omega)}{p(s')}$$

Stanford CS348b Spring 2022

 $\mathrm{p}',\omega)\,\mathrm{d}s'$

Evaluating the Estimator: S

Include indirect illumination in the source term:

$$L_{\rm e}({\rm p}) + \sigma_s({\rm p}') \int_{S^2} p(\omega' \to \omega) I$$

- Compute direct lighting as before Sample incident direction from the phase function's distribution, trace a ray recursively...

$$L_{\rm i}({\rm p},\omega') \approx \frac{p(\omega'' \to \omega') I}{p(\omega'')}$$

 $L(\mathrm{p}',\omega')\,\mathrm{d}\omega'$

$L(\mathbf{p}, \omega') = L_{d}(\mathbf{p}, \omega') + L_{i}(\mathbf{p}, \omega')$

 $L(\mathrm{p},\omega'')$

The Fermiac

Stanford CS348b Spring 2022

Linear Sampling of T

We want samples along a finite ray [0,t_{max}].

Stanford CS348b Spring 2022

Exact Sampling of Uniform T

We want samples along a finite ray [0,t_{max}], $p(t) \propto e^{-\sigma t}$

Normalize to find PDF:

$$\int_0^{t_{\max}} e^{-\sigma t} dt = -\frac{1}{\sigma} (e^{-\sigma t_{\max}} - 1) = c$$

Invert to find t for a random sample: $\xi = \int_0^t p(t) \, \mathrm{d}t$ $t = -\frac{1}{\sigma} \log(1 - \xi(1 - e^{-\sigma t_{\max}}))$

Stanford CS348b Spring 2022

$p(t) = c \mathrm{e}^{-\sigma t}$

Linear

Exponential

Volumetric Path Tracing

Integro-integral equation:

$$L(\mathbf{p},\omega) = \int_0^\infty T(\mathbf{p}') S(\mathbf{p}')$$

Monte Carlo integration: sample $s' \sim p(s)$

Estimator:
$$\frac{T(\mathbf{p}')S(\mathbf{p}',\omega)}{p(s')}$$

We "just" need to be able to evaluate T(p')and to sample $s' \sim p(s)$

Stanford CS348b Spring 2022

 $\mathbf{p}', \omega) \,\mathrm{d}s'$

We would like an unbiased estimator of

$$T(s) = e^{-\int_0^s \sigma_t (p+s'\omega)}$$

However, using MC to estimate $X = \int_0^{s'} \sigma_t(\mathbf{p} + s''\omega) \, \mathrm{d}s'' \approx \frac{\sigma_t(\mathbf{p}')}{p(\mathbf{p}')}$

and then taking e^{-X} is biased: $E[e^X] \neq e^{E[X]}$

Systemically underestimates transmittance(!)

Stanford CS348b Spring 2022

 $(\omega,\omega)\,\mathrm{d}s'$

Want to integrate $L(\mathbf{p}, \omega) = \int_{0}^{\infty} T(\mathbf{p}') S(\mathbf{p}', \omega) ds'$

Would like to draw samples from $e^{-\int_0^{s'} \sigma_t (p+s''\omega) ds''}$ for arbitrary σ_t .

Then T(p')/p(s') is a constant.

Idea: introduce fictitious "null scattering" particles that make the density uniform.

Stanford CS348b Spring 2022

Delta Tracking

[Novák et al. 2014]

Stanford CS348b Spring 2022

Delta Tracking

Compute majorant $\hat{\sigma}_t \geq \sigma_t(\mathbf{p}) \ \forall \mathbf{p}$ While (still in the volume)

Sample: $s' = -\frac{1}{\hat{\sigma}_{\star}} \log(1-\xi)$

Accept with probability: $\frac{\sigma_t(\mathbf{p} + s'\omega)}{\hat{\sigma}_t}$

Otherwise, restart at s'

Samples exactly according to $e^{-\int_0^{s'} \sigma_t (p+s''\omega) ds''}$!

Stanford CS348b Spring 2022

Null-Collision Volume LTE

Before:

 $\frac{\partial L(\mathbf{p},\omega)}{\partial s} = -\sigma_t L(\mathbf{p},\omega) + S(\mathbf{p},\omega)$

$$-\sigma_n(\mathbf{p})L(\mathbf{p},\omega) + \sigma_n(\mathbf{p})\int \delta(\omega - \omega)$$

Now:

$$\frac{\partial L(\mathbf{p},\omega)}{\partial s} = -\sigma_t(\mathbf{p})L(\mathbf{p},\omega) + -\sigma_r$$

$$S(\mathbf{p},\omega) + \sigma_n(\mathbf{p}) \int \delta(\omega)$$

Stanford CS348b Spring 2022

$\omega')L(\mathbf{p},\omega')\,\mathrm{d}\omega'=0$

$_{n}(\mathbf{p})L(\mathbf{p},\omega)+$

 $\omega - \omega') L(\mathbf{p}, \omega') \,\mathrm{d}\omega'$

Null-Collision Volume LTE

Stanford CS348b Spring 2022

Null-scattering compensation

(Same old source term)

Null-collision Volume LTE

$$L(\mathbf{p},\omega) = \int_0^\infty T_n(\mathbf{p}') \left(S(\mathbf{p}',\omega) + \right)$$

Monte Carlo integration:

Define
$$\sigma_n(\mathbf{p}) = \hat{\sigma}_t - \sigma_t(\mathbf{p})$$

Now $T_n(\mathbf{p}') = e^{-\int_0^{t'} \hat{\sigma}_t \, \mathrm{d}t''}$

Easy to sample from & T_n is analytic!

Stanford CS348b Spring 2022

 $\sigma_n(\mathbf{p}')L(\mathbf{p}',\omega))\mathrm{d}s'$

Single Scattering

Multiple Scattering

A States

Non-Exponential Media

Stanford CS348b Spring 2022

[Bitterli et al. 2018]

Exponential

Stanford CS348b Spring 2022

[Bitterli et al. 2018]

Non-Exponential

Stanford CS348b Spring 2022

[Bitterli et al. 2018]