
Visual Computing Systems
Stanford CS348K, Spring 2021

Lecture 2:

The Camera Image
Processing Pipeline

 Stanford CS348K, Spring 2021

Theme of the next two lectures…
The pixels you see on screen are quite di!erent than the values recorded by

the sensor in a modern digital camera.

Computation is a fundamental aspect of producing high-quality pictures.

Computation

Sensor
output

(“RAW”)

Beautiful image that impresses
your Instagram friends

 Stanford CS348K, Spring 2021

Part 1: image sensing hardware
(how a digital camera measures light, and how physical

limitations of these devices place challenges on software)

 Stanford CS348K, Spring 2021

Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor
(14 bits per pixel)

 Stanford CS348K, Spring 2021

Camera cross section

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography

Sensor

 Stanford CS348K, Spring 2021

The Sensor

 Stanford CS348K, Spring 2021

Photoelectric e!ect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric e!ect"

Albert Einstein

Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

CMOS sensor

Row select
Register

ADCAmplify
Bits

…

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region
(shielded from light)

Exposed region
Photodiode

(a pixel)

Column select register

CMOS = complementary metal-oxide semiconductor

 Stanford CS348K, Spring 2021

CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

 Stanford CS348K, Spring 2021

CMOS response functions are linear
Photoelectric e!ect in silicon:

- Response function from
photons to electrons is linear

(Some nonlinearity close to 0
due to noise and when close
to pixel saturation)

Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

Quantum e"ciency
▪ Not all photons will produce an electron

- Depends on quantum e"ciency of the device

- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.g., telescope)

QE =
electrons
photons

Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

Sensing Color

 Stanford CS348K, Spring 2021

Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:

 Stanford CS348K, Spring 2021

Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)

 Stanford CS348K, Spring 2021

Simple model of a light detector

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

 Stanford CS348K, Spring 2021

Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones
(corresponding to peak response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

S =

Z

�
�(�)S(�)d�

M =

Z

�
�(�)M(�)d�

L =

Z

�
�(�)L(�)d�

wavelength (nm)

No
rm

al
ize

d r
es

po
ns

e

Response functions for S, M, and L cones

 Stanford CS348K, Spring 2021

Human eye cone cell mosaic

False color image:
red = L cones
green = M cones
blue = R cones

Image Credit: Ramkumar Sabesan Lab

 Stanford CS348K, Spring 2021

Color #lter array (Bayer mosaic)
▪ Color #lter array placed over sensor
▪ Result: di!erent pixels have di!erent spectral response (each pixel

measures red, green, or blue light)
▪ 50% of pixels are green pixels

Traditional Bayer mosaic
(other #lter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)

 Stanford CS348K, Spring 2021

Light incident on camera

 Stanford CS348K, Spring 2021

What sensor measures

 Stanford CS348K, Spring 2021

What sensor measures
(zoomed view)

Defective pixel

 Stanford CS348K, Spring 2021

CMOS Pixel Structure

 Stanford CS348K, Spring 2021

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Pixel pitch:
A few microns

Photodiodes
~50% Fill Factor

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Polysilicon
& Via 1

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Metal 1

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Metal 2

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Metal 3

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Metal 4

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Color #lter array

Courtesy R. Motta, Pixim

 Stanford CS348K, Spring 2021

Pixel #ll factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Microlens (a.k.a. lenslet) steers light
toward photo-sensitive region
(increases light-gathering capability)

Advanced question: Microlens also
serves to reduce aliasing signal. Why?

Color #lter attenuates light

 Stanford CS348K, Spring 2021

Using micro lenses to improve #ll factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 Stanford CS348K, Spring 2021

Backside illumination sensor
▪ Traditional CMOS: electronics block light

▪ Idea: move electronics underneath light gathering region
- Increases #ll factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at #xed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

 Stanford CS348K, Spring 2021

Pixel saturation and noise

 Stanford CS348K, Spring 2021

Saturated pixels

Photon count for pixels has
saturated (no detail in image)

 Stanford CS348K, Spring 2021

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels

 Stanford CS348K, Spring 2021

Bigger sensors = bigger pixels (or more pixels?)

▪ iPhone X (1.2 micron pixels, 12 MP)

▪ Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

▪ Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)

▪ Implication: very high pixel count
sensors can be built with current CMOS
technology
- Full frame sensor with iPhone X

pixel size ~ 600 MP sensor

24x16mm

36x24mm

Image credit: Wikipedia

 Stanford CS348K, Spring 2021

Measurement noise

We’ve all been frustrated by noise in
low-light photographs
(or in shadows in day time images)

 Stanford CS348K, Spring 2021

Measurement noise

Grand Teton National Park

 Stanford CS348K, Spring 2021

Measurement noise

Grand Teton National Park

 Stanford CS348K, Spring 2021

Sources of measurement noise
▪ Photon shot noise:

- Photon arrival rate takes on Poisson distribution
- Standard deviation = sqrt(N) (N = number of photon arrivals)
- Signal-to-noise ratio (SNR) = N/sqrt(N)
- Implication: brighter the signal, the higher the SNR

▪ Dark-shot noise
- Due to leakage current in sensor
- Electrons dislodged due to thermal activity (increases exponentially with

sensor temperature)

▪ Non-uniformity of pixel sensitivity (due to manufacturing defects)

▪ Read noise
- e.g., due to ampli#cation / ADC

 Stanford CS348K, Spring 2021

Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure

 Stanford CS348K, Spring 2021

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels + bright scene = large N
So, noise determined largely by photon shot noise

 Stanford CS348K, Spring 2021

Maximize light gathering capability
▪ Goal: increase signal-to-noise ratio

- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light
measurable) is determined by the noise $oor (minimum signal) and the pixel’s
full-well capacity (maximum signal)

▪ Use big pixels
- Nikon D4: 7.3 um
- iPhone X: 1.2 um

▪ Manufacture sensitive pixels
- Good materials
- High #ll factor

 Stanford CS348K, Spring 2021

Artifacts arising from lenses

 Stanford CS348K, Spring 2021

Vignetting
This is a photograph of a white wall
(Note: I contrast-enhanced the image to show e!ect more prominently)

 Stanford CS348K, Spring 2021

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique
angle is less likely to hit photosensitive region than
light incident from straight above (e.g., obscured by
electronics)

- Microlens reduces pixel vignetting

 Stanford CS348K, Spring 2021

Chromatic aberration

Image credit: Wikipedia

Di!erent wavelengths of light are refracted by di!erent amounts

 Stanford CS348K, Spring 2021

More challenges
▪ Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens
(Index of refraction depends on wavelength, so some wavelengths are more likely
to su!er from cross-talk or re$ection. Ug!)

▪ Lens distortion

Pincushion distortion

Captured Image Corrected Image

Image credit: PCWorld

 Stanford CS348K, Spring 2021

The message so far

▪ Physical constraints of image formation by a camera
create artifacts in the recorded image

▪ We are going to rely on processing to reduce / correct
for these artifacts

 Stanford CS348K, Spring 2021

A simple RAW image processing pipeline

Given the physical reality of how a lens+sensor system works,
now let’s look at how software transforms raw sensor output

into a high-quality RGB image.

 Stanford CS348K, Spring 2021

Optical clamp: remove sensor o!set bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level
(from nearby sensor pixels at time of shot)

 Stanford CS348K, Spring 2021

Correct for defective pixels
▪ Store LUT with known defective pixels

- e.g., determined on manufacturing line, during sensor calibration and test

▪ Example correction methods
- Replace defective pixel with neighbor
- Replace defective pixel with average of neighbors
- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel_xy)) ?
 average(previous_input_pixel, next_input_pixel) :
 input_pixel;

▪ Will describe solutions based only analyzing pixel values (later)

 Stanford CS348K, Spring 2021

Lens shading compensation
▪ Correct for vignetting artifacts

- Good implementations will consider wavelength-dependent vignetting (that
creates chromatic shift over the image)

▪ Possible implementations:
- Use “$at-#eld photo” stored in memory

- e.g., lower resolution bu!er, upsampled on-the-$y
- Use analytic function to model required correction

gain = upsample_compensation_gain_buffer(current_pixel_xy);
output_pixel = gain * input_pixel;

Need to invert the
vignetting e!ect

 Stanford CS348K, Spring 2021

Demosiac
▪ Produce RGB image from mosaiced input image
▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
▪ More advanced algorithms:

- Bicubic interpolation (wider #lter support region… may overblur)
- Good implementations attempt to #nd and preserve edges in photo

Image credit: Mark Levoy

 Stanford CS348K, Spring 2021

Demosaicing errors

What will
demosaiced
result look like if
this black and
white signal was
captured by the
sensor?

 Stanford CS348K, Spring 2021

Demosaicing errors

(Visualization of
signal and Bayer
pattern)

 Stanford CS348K, Spring 2021

Demosaicing errors

No red measured.

Interpolation of green
yields dark/light
pattern.

 Stanford CS348K, Spring 2021

Why color fringing? What will
demosaiced
result look like if
this black and
white signal was
captured by the
sensor?

 Stanford CS348K, Spring 2021

Why color fringing?

(Visualization of
signal and Bayer
pattern)

 Stanford CS348K, Spring 2021

Demosaicing errors
▪ Common di"cult case: #ne diagonal black and white stripes
▪ Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data
from sensor

RGB result after
demosaic

 Stanford CS348K, Spring 2021

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)
We’ll describe what this means
this later in the lecture.

Y’CbCr color space
Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

 Stanford CS348K, Spring 2021

Better demosaic
▪ Convert demosaiced RGB value to YCbCr
▪ Low-pass #lter (blur) or median #lter CbCr channels
▪ Combine #ltered CbCr with full resolution Y from sensor to get RGB

▪ Trades o! spatial resolution of hue to avoid objectionable color fringing

 Stanford CS348K, Spring 2021

White balance
▪ Adjust relative intensity of rgb values (goal: make neutral tones in scene appear

neutral in image)

▪ The same “white” object will generate di!erent sensor response when illuminated
by di!erent spectra. Camera needs to infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com

 Stanford CS348K, Spring 2021

White balance example

 Stanford CS348K, Spring 2021

White balance example

 Stanford CS348K, Spring 2021

White balance example

 Stanford CS348K, Spring 2021

White balance algorithms
▪ White balance coe"cients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray
- Brightest pixel assumption: #nd brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are
based on learning correct scaling from
examples

- Create database of images for which good
white balance settings are known (e.g.,
manually set by human)

- Learning mapping from image features to
white balance settings

- When new photo is taken, use learned model
to predict good white balance settings

Scale r,g,b values so
these pixels are (1,1,1)

 Stanford CS348K, Spring 2021

Denoising

Denoised

Original

 Stanford CS348K, Spring 2021

Denoising via downsampling

Downsample via
point sampling

(noise remains)

Downsample via averaging
(bilinear resampling)

Noise reduced

 Stanford CS348K, Spring 2021

Before talking about denoising…

Aside: image processing basics

 Stanford CS348K, Spring 2021

Review: convolution

output signal input signal#lter

It may be helpful to consider the e!ect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “blurred” version of g

-0.5 0.5

1

 Stanford CS348K, Spring 2021

Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image#lter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1 i, j 1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “#lter weights”, “#lter kernel”)

 Stanford CS348K, Spring 2021

Simple 3x3 box blur in code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

 Stanford CS348K, Spring 2021

7x7 box blur
Original

Blurred

 Stanford CS348K, Spring 2021

Gaussian blur
▪ Obtain #lter coe"cients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution
falls o! with distance)
- In practice: truncate #lter beyond certain distance for e"ciency

Note: this is a 5x5 truncated Gaussian #lter

 Stanford CS348K, Spring 2021

7x7 gaussian blur
Original

Blurred

 Stanford CS348K, Spring 2021

3x3 sharpen #lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

 Stanford CS348K, Spring 2021

What does convolution with these #lters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

 Stanford CS348K, Spring 2021

Gradient detection #lters
Horizontal gradients

Vertical gradients

Note: you can think of a #lter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the #lter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

 Stanford CS348K, Spring 2021

Sobel edge detection
▪ Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

 Stanford CS348K, Spring 2021

Data-dependent #lter (not a convolution)
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float min_value = min(min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 float max_value = max(max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
 }
}

This #lter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

 Stanford CS348K, Spring 2021

Median #lter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction #lter: unlike gaussian

blur, one bright pixel doesn’t drag up the
average for entire region

▪ Not linear, not separable
- Filter weights are 1 or 0

(depending on image content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

 Stanford CS348K, Spring 2021

Bilateral #lter

Example use of bilateral #lter: removing noise while preserving image edges

Original Processed

 Stanford CS348K, Spring 2021

▪ The bilateral #lter is an “edge preserving” #lter: down-weight contribution of pixels
on the “other side” of strong edges. f (x) de#nes what “strong edge means”

▪ Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Bilateral #lter

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di!erence.
(non-linear #lter: like the median #lter, the #lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di!erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

 Stanford CS348K, Spring 2021

Bilateral #lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi#cantly di!erent intensity
as p contribute little to #ltered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: #lter weights for pixel p Filtered output image

 Stanford CS348K, Spring 2021

Bilateral #lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral #lter

Question: describe a type of edge the bilateral #lter will not respect
(it will blur across these edges)

 Stanford CS348K, Spring 2021

Denoising using non-local means
▪ Main assumption: images have repeating texture
▪ Main idea: replace pixel with average value of nearby pixels that

have a similar surrounding region

- Np and Nq are vectors of pixel values in square window around pixels p and q
(highlighted regions in #gure)

- Di!erence between Np and Pq = “similarity” of surrounding regions (here: L2 distance)
- Cp is a normalization constant to ensure weights sum to one for pixel p.
- S is the search region (given by dotted red line in #gure)

p

q

Np

Nq

NL[I](p) =
X

q2S

w(p, q)I(q)

w(p, q) =
1

Cp
e

�kNp�Nqk2

h2

 Stanford CS348K, Spring 2021

Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p

- Intuition: “#ltered result is the average of pixels like this one”
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair above:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-

pixel kernel support window.

 Stanford CS348K, Spring 2021

End of aside on image processing basics
(back to our simple camera pipeline)

 Stanford CS348K, Spring 2021Image credit: https://www.colorexpertsbd.com/blog/how-to-#x-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure…
blur due to camera shake

 Stanford CS348K, Spring 2021

Noise vs blur tradeo!Low light photo: many regions underexposed
(short exposure) to avoid blur + some regions
overexposed

 Stanford CS348K, Spring 2021

Brightened image to see detail in dark
regions, notice noise in dark regions

 Stanford CS348K, Spring 2021

Attempt to denoise… splotchy e!ect remains

 Stanford CS348K, Spring 2021

Long exposure: walking people are blurred…

 Stanford CS348K, Spring 2021

Long exposure: walking people are blurred…

 Stanford CS348K, Spring 2021

Also: still signi#cant noise in
dark regions

 Stanford CS348K, Spring 2021

Idea: merge sequence of captures

▪ Long exposure: reduces noise (acquires more light), but introduces blur
(camera shake or scene movement)

▪ Short exposure: sharper image, but lower signal/noise ratio
▪ Idea: take sequence of short exposures, but align images in software,

then merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasino! 16]

 Stanford CS348K, Spring 2021

Align and merge algorithm
▪ For each image in burst, align to reference frame

(use sharpest photo as reference frame)
-Compute optical $ow #eld aligning image pair

▪ Simple merge algorithm: warp images according to
$ow, and sum

▪ More sophisticated techniques only merge pixels
where con#dence in alignment is high (tolerate
noisy reference pixels when alignment fails)

Image pair

Reference

Frame to align

Visualization of $ow

[Image credit: Hasino! 16]

 Stanford CS348K, Spring 2021

Results of align and merge [Hasino! 16]

[Image credit: Hasino! 16]

Reference frame Temporal mean of
images in burst

(blurry)

Temporal mean
with alignment

Robust merge with
alignment

Fu
ll i

m
ag

e
Su

cc
es

sfu
l a

lig
nm

en
t

Al
ig

nm
en

t f
ai

lu
re

 Stanford CS348K, Spring 2021

Summary: simpli#ed image processing pipeline

▪ Correct pixel defects

▪ Align and merge (to create high signal to noise ration RAW image)

▪ Correct for sensor bias (using measurements of optically black pixels)

▪ Vignetting compensation

▪ White balance

▪ Demosaic

▪ Denoise

▪ Gamma Correction (non-linear mapping)

▪ Local tone mapping

▪ Final adjustments sharpen, #x chromatic aberrations,
 hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3x10 bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

Next time

 Stanford CS348K, Spring 2021

Acknowledgements
▪ Thanks and credit for slides to Ren Ng and Marc Levoy

