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The Camera Image 
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(part 2: tone mapping and autofocus)
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Previous class and today…
The pixels you see on screen are quite di!erent than the 

values recorded by the sensor in a modern digital camera. 

Computation is now a fundamental aspect of producing 
high-quality pictures.

Computation
Sensor output 

(“RAW”)

Beautiful image that 
impresses your friends 

on Instagram
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Summary: simpli"ed image processing pipeline

▪ Correct pixel defects 

▪ Align and merge (to create high signal to noise ration RAW image)  

▪ Correct for sensor bias (using measurements of optically black pixels) 

▪ Vignetting compensation 

▪ White balance  

▪ Demosaic 

▪ Denoise 

▪ Gamma Correction (non-linear mapping) 

▪ Local tone mapping 

▪ Final adjustments sharpen, "x chromatic aberrations, 
       hue adjust, etc.

(10-12 bits per pixel) 
1 intensity value per pixel 
Pixel values linear in energy

3x10 bits per pixel 
RGB intensity per pixel 
Pixel values linear in energy

3x8-bits per pixel 
Pixel values perceptually linear

Today
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Auto Exposure and Tone Mapping
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▪ Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel) 
▪ How to convert 12 bit number to 8 bit number?

Global tone mapping

0

255

212

Allow many pixels to “blow 
out” (detail in dark regions)

0

255

212

Allow many pixels to 
clamp to black (detail 

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Global tone mapping
▪ Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel) 
▪ How to convert 12 bit number to 8 bit number?

0

255

212
0

255

212

0

255

212
0

255

212

Allow many pixels to “blow 
out” (detail in dark regions)

clamp darkest darks and 
brightest brights to reserve 

resolution in midtowns 

low resolution 
throughout entire 

range

0

255

212

Allow many pixels to 
clamp to black (detail 

in bright regions)

out(x,y) = f(in(x,y))
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Lightness (perceived brightness) aka luma

Radiance 
(energy spectrum 

from scene)

*∫=Luminance (Y)Lightness (L*)
?

Spectral sensitivity of eye 
(eye’s response curve)

Dark adapted eye:     L* ∝ Y 0.4 
Bright adapted eye:   L* ∝ Y 0.5 

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the "rst. Total output is now:    Y2 = 2Y1

Total output appears                                    times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)



 Stanford CS348K, Spring 2021

Consider an image with pixel values encoding 
luminance (linear in energy hitting sensor)

Luminance (Y)

Pe
rce
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d b
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: L
*

Consider 12-bit sensor pixel: 
Can represent 4096 unique luminance values 
in output image 

Values are ~ linear in luminance since they 
represent the sensor’s response

L* = Y.45
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Problem: quantization error

Luminance (Y)
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: L
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Many common image formats store 8 bits per channel (256 unique values) 
Insu#cient precision to represent brightness in darker regions of image

Dark regions of image: perceived di!erence between 
pixels that di!er by one step in luminance is large! 
(quantization error: gradients in luminance will not 
appear smooth.)

Bright regions of image: perceived di!erence between 
pixels that di!er by one step in luminance is small! 
(human may not even be able to perceive di!erence 
between pixels that di!er by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot di!erentiate <1% di!erences in luminance
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Store lightness in 8-bit value, not luminance

Luminance (Y)
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d b

rig
ht
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: L
*

Solution: pixel stores Y0.45 

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness, 
not evenly in luminance (make more e#cient use of available bits)

Warning: must take caution with subsequent 
pixel processing operations once pixels are 
encoded in a space that is not linear in 
luminance. 
  
e.g., When adding images should you add pixel 
values that are encoded as lightness or as 
luminance?
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Y’ = luma: perceived luminance 
Cb = blue-yellow deviation from gray 
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB 
(primed notation indicates 
perceptual (non-linear) space) 
We’ll describe what this means 
this later in the lecture.

Y’CbCr color space
Recall: colors are represented as point in 3-space 
RGB is just one possible basis for representing color 
Y’CbCr separates luminance from hue in representation
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Local tone mapping
▪ Di!erent regions of the image undergo di!erent tone mapping 

curves (preserve detail in both dark and bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.
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From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Local tone adjustment

Improve picture’s aesthetics by locally 
adjusting contrast, boosting dark 
regions, decreasing bright regions 
(no physical basis)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image 
(unique weights per pixel) 

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure
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High exposure image
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High exposure weight
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Low exposure image
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Low exposure weight
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Combined result
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Combined result 
Local tone mapping was performed on lightness (luma). 

Now I added back in chrominance channels. 
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Challenge of merging images

Four exposures (weights not shown)

Merged result 
(based on weight masks) 

Notice heavy “banding” since absolute 
intensity of di!erent exposures is di!erent

Merged result 
(after blurring weight mask) 

Notice “halos” near edges
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Review: 
Frequency interpretation of images
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Representing sound as a superposition of 
frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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Audio spectrum analyzer: representing sound 
as a sum of its constituent frequencies

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies
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Fourier transform
▪ Convert representation of signal from spatial/temporal 

domain to frequency domain by projecting signal into its 
component frequencies

▪ 2D form:

f(u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

f(⇠) =

Z 1

�1
f(x)e�2⇡ix⇠dx

=

Z 1

�1
f(x)(cos(2⇡⇠x)� isin(2⇡⇠x))dx
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Visualizing the frequency content of images

SpectrumSpatial domain result
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Low frequencies only (smooth gradients)

Spectrum (after low-pass "lter) 
All frequencies above cuto! have 0 magnitude

Spatial domain result
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass "lter)
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass "lter)
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High frequencies (edges)

Spatial domain result 
(strongest edges)

Spectrum (after high-pass "lter) 
All frequencies below threshold 

have 0 magnitude
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An image as a sum of its frequency components

+ + +

=
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But what if we wish to localize image 
edits both in space and in frequency? 

(Adjust certain frequency content of image, 
in a particular region of the image)
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Downsample
▪ Step 1: Remove high frequencies (aka blur) 
▪ Step 2: Sparsely sample pixels (in this example: every other pixel)
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Downsample
▪ Step 1: Remove high frequencies 
▪ Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH/2 * HEIGHT/2]; 

float weights[] = {1/64, 3/64, 3/64, 1/64,    // 4x4 blur (approx Gaussian)  
                   3/64, 9/64, 9/64, 3/64, 
                   3/64, 9/64, 9/64, 3/64, 
                   1/64, 3/64, 3/64, 1/64}; 

for (int j=0; j<HEIGHT/2; j++) { 
   for (int i=0; i<WIDTH/2; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<4; jj++) 
         for (int ii=0; ii<4; ii++) 
            tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH/2 + i] = tmp; 
  } 
}
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Upsample
Via bilinear interpolation of samples from low resolution image
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Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT]; 
float output[2*WIDTH * 2*HEIGHT]; 

for (int j=0; j<2*HEIGHT; j++) { 
   for (int i=0; i<2*WIDTH; i++) { 
      int row = j/2; 
      int col = i/2; 
      float w1 = (i%2) ? .75f : .25f; 
      float w2 = (j%2) ? .75f : .25f; 

      output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] + 
                              (1.0-w1) * w2 * input[row*WIDTH + col+1] +  
                              w1 * (1-w2) * input[(row+1)*WIDTH + col] +  
                              (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1]; 
  } 
}
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Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass "ltered signal

down() = downsample operation
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Gaussian pyramid

G0
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Gaussian pyramid

G1
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G2

Gaussian pyramid
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Gaussian pyramid

G3
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Gaussian pyramid

G4
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Gaussian pyramid

G5
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Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in 
Laplacian pyramid represents a band 
of (increasingly lower) frequency 
information in the image
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Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)
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Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you 
reconstruct original image 
from its Laplacian pyramid?
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L0 = G0 - up(G1)

Laplacian pyramid
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L1 = G1 - up(G2)

Laplacian pyramid
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L2 = G2 - up(G3)

Laplacian pyramid
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L3 = G3 - up(G4)

Laplacian pyramid



 Stanford CS348K, Spring 2021

L4 = G4 - up(G5)

Laplacian pyramid
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L5 = G5

Laplacian pyramid
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Summary
▪ Gaussian and Laplacian pyramids are image representations 

where each pixel maintains information about frequency 
content in a region of the image 

▪ Gi(x,y) — frequencies up to limit given by i 

▪ Li(x,y) — frequencies added to Gi+1 to get Gi 

▪ Notice: to boost the band of frequencies in image around 
pixel (x,y), increase coe#cient Li(x,y) in Laplacian pyramid
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Use of Laplacian pyramid in tone mapping
▪ Compute weights for all Laplacian pyramid levels 
▪ Merge pyramids (image features) not image pixels 
▪ Then “$atten” merged pyramid to get "nal image
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Challenges of merging images

Four exposures (weights not shown)

Merged result 
(based on multi-resolution pyramid merge)

Merged result 
(after blurring weight mask) 

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?
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Consider low and high exposures of an edge
Low Exposure 

Laplacian Pyramid
High Exposure 

Laplacian Pyramid
Weight (for Low Exposure) 

Gaussian Pyramid
Merged 

(after $atten)

L3

G4

L2

L1

L0

L3

L2

L1

L0

G4 G4

G3

G2

G1

G0

clipped

clipped

edge magnitude 
reduced, but detail 

remains on both sides 
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Consider low and high exposures of $at image region
Low Exposure 

Laplacian Pyramid
High Exposure 

Laplacian Pyramid
Weight (for Low Exposure) 

Gaussian Pyramid
Merged 

(after $atten)

L3

G4

L2

L1

L0

L3

L2

L1

L0

G4 G4

G3

G2

G1

G0
smooth transition 

despite sharp 
weight change

(using hard weight 
change as an 

example)
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Summary: simpli"ed image processing pipeline

▪ Correct pixel defects 

▪ Align and merge (to create high signal to noise ration RAW image)  

▪ Correct for sensor bias (using measurements of optically black pixels) 

▪ Vignetting compensation 

▪ White balance  

▪ Demosaic 

▪ Denoise 

▪ Gamma Correction (non-linear mapping) 

▪ Local tone mapping 

▪ Final adjustments sharpen, "x chromatic aberrations, 
       hue adjust, etc.

(10-12 bits per pixel) 
1 intensity value per pixel 
Pixel values linear in energy

3x10 bits per pixel 
RGB intensity per pixel 
Pixel values linear in energy

3x8-bits per pixel 
Pixel values perceptually linear

Today
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Auto Focus
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What does a lens do?

Sensor plane: (X,Y)
Pixel P1 Pixel P2

Pinhole

Scene object 2Scene object 1

Recall: pinhole camera you 
may have made in science class  
(every pixel measures ray of 
light passing through pinhole 
and arriving at pixel)

Pinhole



 Stanford CS348K, Spring 2021

What does a lens do?

Sensor plane: (X,Y)

Scene focal plane

Pixel P1 Pixel P2

Field of view

Scene object 2Scene object 1

Camera with lens: 

Every pixel accumulates all 
rays of light passing through 
lens aperture and refracted to 
location of pixel 

In-focus camera:  all rays of 
light from one point in scene 
arrive at one point on sensor 
plane
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Out of focus camera
Scene object 2Scene object 1

Sensor plane: (X,Y)

Lens aperture

Scene focal plane

Pixel P1 Pixel P2

Circle of confusion

Previous sensor 
plane location

Out of focus camera: rays of 
light from one point in scene 
do not converge at point on 
sensor
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Bokeh
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Out of focus camera
Scene object 2

Sensor plane: (X,Y)

Lens aperture

Scene focal plane

Pixel P1

Previous sensor 
plane location

Rays of light from di!erent 
scene points converge at 
single point on sensor

Out of focus camera: rays of 
light from one point in scene 
do not converge at point on 
sensor

=
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Sharp foreground / blurry background
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Cell phone camera lens(es) 



 Stanford CS348K, Spring 2021

Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEALWADHWA, RAHULGARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,
Google Research

(a) Input image with detected face (d) Our output synthetic shallow depth-of-!eld image

(b) Person segmentation mask

(c) Mask + disparity from DP

Fig. 1. We present a system that uses a person segmentation mask (b) and a noisy depth map computed using the camera’s dual-pixel (DP) auto-focus
hardware (c) to produce a synthetic shallow depth-of-field image (d) with a depth-dependent blur on a mobile phone. Our system is marketed as “Portrait
Mode” on several Google-branded phones.

Shallow depth-of-�eld is commonly used by photographers to isolate a sub-
ject from a distracting background. However, standard cell phone cameras
cannot produce such images optically, as their short focal lengths and small
apertures capture nearly all-in-focus images. We present a system to com-
putationally synthesize shallow depth-of-�eld images with a single mobile
camera and a single button press. If the image is of a person, we use a person
segmentation network to separate the person and their accessories from the
background. If available, we also use dense dual-pixel auto-focus hardware,
e�ectively a 2-sample light �eld with an approximately 1millimeter baseline,
to compute a dense depth map. These two signals are combined and used to
render a defocused image. Our system can process a 5.4 megapixel image in
4 seconds on a mobile phone, is fully automatic, and is robust enough to be
used by non-experts. The modular nature of our system allows it to degrade
naturally in the absence of a dual-pixel sensor or a human subject.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image processing;

Additional Key Words and Phrases: depth-of-�eld, defocus, stereo, segmen-
tation

Authors’ address: Neal Wadhwa; Rahul Garg; David E. Jacobs; Bryan E. Feldman; Nori
Kanazawa; Robert Carroll; Yair Movshovitz-Attias; Jonathan T. Barron; Yael Pritch;
Marc Levoy Google Research, 1600 Amphitheater Parkway, Mountain View, CA, 94043.
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1 INTRODUCTION
Depth-of-�eld is an important aesthetic quality of photographs. It
refers to the range of depths in a scene that are imaged sharply in
focus. This range is determined primarily by the aperture of the
capturing camera’s lens: a wide aperture produces a shallow (small)
depth-of-�eld, while a narrow aperture produces a wide (large)
depth-of-�eld. Professional photographers frequently use depth-of-
�eld as a compositional tool. In portraiture, for instance, a strong
background blur and shallow depth-of-�eld allows the photographer
to isolate a subject from a cluttered, distracting background. The
hardware used by DSLR-style cameras to accomplish this e�ect also
makes these cameras expensive, inconvenient, and often di�cult
to use. Therefore, the compelling images they produce are largely
limited to professionals. Mobile phone cameras are ubiquitous, but
their lenses have apertures too small to produce the same kinds of
images optically.

Recently, mobile phone manufacturers have started computation-
ally producing shallow depth-of-�eld images. The most common
technique is to include two cameras instead of one and to apply
stereo algorithms to captured image pairs to compute a depth map.
One of the images is then blurred according to this depthmap. How-
ever, adding a second camera raises manufacturing costs, increases

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

ar
X

iv
:1

80
6.

04
17

1v
1 

 [c
s.C

V
]  

11
 Ju

n 
20

18

Portrait mode in modern smartphones
▪ Smart phone cameras have small apertures 

- Good: thin. lightweight lenses, often fast focus 
- Bad: cannot physically create aesthetically please photographs with nice 

bokeh, blurred background 

▪ Answer: simulate behavior of large aperture lens (hallucinate image formed by 
large aperture lens)

Input image /w detected face

Segmentation

Scene Depth 
Estimate

Generated image 
(note blurred background. 
Blur increases with depth)

Image credit: [Wadha 2018]
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Autofocus
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What part of image should be in focus?

Image credit: DPReview: 
https://www.dpreview.com/articles/9174241280/con"guring-your-5d-mark-iii-af-for-fast-action

Heuristics: 
Focus on closest scene region 
Put center of image in focus 
Detect faces and focus on closest/largest face
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Split pixel sensor

Now two pixels under each 
microlens (not one)

Image credit: Nikon

When both pixels have the 
same response, camera is in 
focus, why? 
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Additional sensing modalities
Apple’s TrueDepth camera  
(infrared dots projected by phone,  
captured by infrared camera)
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Additional sensing modalities

iPhone Xr depth estimate 
with lights ON in room

iPhone Xr depth estimate 
with lights OFF in room

Fuse information from all modalities to obtain best estimate of depth

Image credit: https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81 
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Summary
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Summary

Computation
Sensor output 

(“RAW”)

Beautiful image that 
impresses your friends 

on Instagram

▪ Computation now a fundamental part of producing a pleasing photograph 
▪ Used to compensate for physical constraints (demosaic, denoise, lens corrections) 
▪ Used to analyze image to guess system parameters (focus, exposure), or scene 

contents (white balance, portrait mode)  
▪ Used to make non-physically plausible images that have aesthetic merit
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Image processing workload characteristics
▪ “Pointwise" operations 

- output_pixel = f(input_pixel) 

▪ “Stencil” computations (e.g., convolution, demosaic, etc.) 
- Output pixel (x,y) depends on "xed-size local region of input around (x,y) 

▪ Lookup tables 
- e.g., contrast s-curve  

▪ Multi-resolution operations (upsampling/downsampling) 
▪ Fast-fourier transform 

- We didn’t talk about Fourier domain techniques in class (but Hasino! 16 
reading has many examples) 

▪ Long pipelines of these operations

Upcoming classes: e#ciently mapping these 
workloads to modern processors


