Lecture 3:

The Camera Image
Processing Pipeline

(part 2: tone mapping and autofocus)

Visual Computing Systems
Stanford C5348K, Spring 2021



Previous class and today...

The pixels you see on screen are quite different than the
values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing
high-quality pictures.
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Summary: simplified image processing pipeline

m (Correct pixel defects
B Align and merge (to create high signal to noise ration RAW image)

m (Correct for sensor bias (using measurements of optically black pixels)

B Vignetting compensation (10-12 bits per pixel)

. 1 intensity value per pixel
B White balance Pixel values linear in energy
B Demosaic 3x10 bits per pixel

RGB intensity per pixel

B Denoise Pixel values linear in energy

Gamma Correction (non-linear mapping)

Local tone mapping 3x8-bits per pixel

Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear
hue adjust, etc.

Today
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Auto Exposure and Tone Mapping
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Global tone mapping

B Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel)
B How to convert 12 bit number to 8 bit number?

Allow many pixels to “blow
out” (detail in dark regions)

output value
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Allow many pixels to
E clamp to black (detail
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Global tone mapping

B Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel)
B How to convert 12 bit number to 8 bit number?
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Lightness (perceived brightness) aka luma

Lightness (L*) <«—— Luminance(Y) = % /\j\

(Perceived by brain) (Response of eye) bt
Spectral sensitivity of eye Radiance
A (eye’s response curve) (energy spectrum
from scene)

Dark adapted eye: L* x Y 04
Bright adapted eye: L% o Y05

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: v, = 2Y;

Total output appears 2°-* = 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’')
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Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

A
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—=1" Consider 12-bit sensor pixel:
e Can represent 4096 unique luminance values
%, 075 : in output image
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Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image
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Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

Rule of thumb: human eye cannot differentiate <1% differences in luminance

Stanford C5348K, Spring 2021



Store lightness in 8-bit value, not luminance

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

1 I

0.751

Perceived brightness: L*

0.28f /

/

P

/

...........

Luminance (Y)

Solution: pixel stores Y045
Must compute (pixel_value)2-2 prior to display on LCD

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel

values that are encoded as lightness or as
luminance?
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Y'ChCr color space

Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y'ChCr separates luminance from hue in representation

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)

We'll describe what this means
/ this later in the lecture.

Conversion matrix from R'G'B" to Y'Ch(Cr:

65.738 - R, 129.057 - G, 25.064 - B,

vi= 16 o056 T 056 56

_37.945. R! 74.494. ¢ 112439. B!

Cg= 128+ . ZeaB &
256 956 556

112.439. R’ 04154 . ¢ 18.985 - B!

Cr— 198 D_ D_ D
R 23 256 256 256
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Local tone mapping

m Different regions of the image undergo different tone mapping
curves (preserve detail in both dark and bright regions)
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Local tone adjustment

Short‘ Exposure -

s 10
Pixel values eyt 8 ‘5'

Weights

Improve picture’s aesthetics by locally
adjusting contrast, boosting dark
regions, decreasing bright regions

(no physical basis)

Combined image
(unique weights per pixel) & -
Image credit: Mertens 2007 Stanford (S348K, Spring 2021




High exposure image
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Challenge of merging images
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Merged result Merged result
(based on weight masks) (after blurring weight mask)
Notice heavy “banding” since absolute Notice “halos” near edges
intensity of different exposures is different
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Review:
Frequency interpretation of images
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Representing sound as a superposition of
frequencies

=i \ /NSNS NSNS

f2(x) = sin(2xx)

fa(x) = sin(4drx)

£x) = fi(x) + 075 fo(x) + 0.5 fux) [ v A |\ / ;
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Audio spectrum analyzer: representing sound
as a sum of its constituent frequencies
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Fourier transform

m (Convert representation of signal from spatial/temporal
domain to frequency domain by projecting signal into its
component frequencies

1€ = [ r@emetaa

— /_OO f(x)(cos(2méx) — isin(2nw&x))dx

m 2D form:

F(u, v) = / / F (2, y)e 20 dpgy
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es

Visualizing the frequency content of ima

Spatial domain result Spectrum
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Low frequencies only (smooth gradients)

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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High frequencies (edges)

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude
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An image as a sum of its frequency components
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But what if we wish to localize image
edits both in space and in frequency?

(Adjust certain frequency content of image,
in a particular region of the image)
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Downsample

m  Step 1: Remove high frequencies (aka blur)
B Step 2: Sparsely sample pixels (in this example: every other pixel)
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Downsample

m  Step 1: Remove high frequencies
B Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
3/64, 9/64, 9/64, 3/64,
3/64, 9/64, 9/64, 3/64,
1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
for (int i=0; i<WIDTH/2; i++) {
float tmp = 0.°;
for (int jj=0; jj<4; jj++)
for (int 11=0; 1i1<4; 1i++)
tmp += input[(2%j+jj)*(WIDTH+2) + (2xi+ii)] * weights[jj*3 + ii];
output[j*WIDTH/2 + 1] = tmp;
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Upsample

Via bilinear interpolation of samples from low resolution image
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Upsample

Via bilinear interpolation of samples from low resolution image

float input[WIDTH x HEIGHT];
float output[2xWIDTH * 2*%HEIGHT];

for (int j=0; j<2*xHEIGHT; j++) {
for (int i=0; i<2xWIDTH; i++) {
int row = j/2;
int col = i/2;
float wl = (1%2) ? .75f : .25f;
float w2 = (j%2) ? .75f : .25f;

output[j*2*xWIDTH + 1] = wl *x w2 *x input[rowxWIDTH + col] +
(1.0-wl) *x w2 * input[rowxWIDTH + col+l] +
wl % (1-w2) % input[(row+1)*WIDTH + col] +
(1.0-wl)*(1.0-w2) x input[(row+l)*WIDTH + col+1l];
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Gaussian pyrami

Go = image

Each image in pyramid contains increasingly low-pass filtered signal

down() = downsample operation
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Gaussian pyramid
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Gaussian pyramid
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Gaussian pyramid
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Gaussian pyramid
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Gaussian pyramid
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Gaussian pyramid

-
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Each (increasingly numbered) level in
Laplacian pyramid represents a band
of (increasingly lower) frequency
information in the image

[Burt and Adelson 83] Stanford (348K, Spring 2021




Laplacian pyramid
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Question: how do you
reconstruct original image
from its Laplacian pyramid?
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Laplacian pyramid

Lo= Go- up(G1)
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Laplacian pyramid

L1=Gq- up(Gy)
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Laplacian pyramid

L, = Gz - up(Gs)
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Laplacian pyramid
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Laplacian pyramid

Ls= Ga- up(Gs)
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Laplacian pyramid

-
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Summary

m Gaussian and Laplacian pyramids are image representations
where each pixel maintains information about frequency
content in a region of the image

B Gij(x,y) — frequencies up to limit given by i
m Li(x,y) — frequencies added to Gi.1 to get G;

m Notice: to boost the band of frequencies in image around
pixel (x,y), increase coefficient Li(x,y) in Laplacian pyramid
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Use of Laplacian pyramid in tone mapping

B Compute weights for all Laplacian pyramid levels
B Merge pyramids (image features) not image pixels
B Then“flatten” merged pyramid to get final image

Input Images Image - Laplacian Pyramid Weight Map - Gaussian Pyramid

(g3 .
> L
T —-/
C TR e L -
9 ) .- »

Fused Pyramid Final Image
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Challenges of merging images

Merged result Merged result

(after blurring weight mask) (based on multi-resolution pyramid merge)
Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?
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Consider low and high exposures of an edge

Low Exposure High Exposure Weight (for Low Exposure) Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)

clipped

:

clipped

,\\/\,~J~/\dﬁ~/:;gelnagnnude

reduced, but detail
remains on both sides

LO L0 GO

L1 L1

/
@ |
</

L2

L3
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\ 2244
VAN

G3 —/—
G4
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Consider low and high exposures of flat image region

Low Exposure High Exposure Weight (for Low Exposure) Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)
/\/\’\N\WW\/\’\ (using hard weight
/\/\’\N\\NW\/\,\ change as an
example)
W smooth transition
10~ MWW L0~ M GO / despite sharp
weight change
—
11 — 1 — ‘A /
—
L2 L2 ) /
—
13 13 63 _/—
—
G4
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Summary: simplified image processing pipeline

m (Correct pixel defects
B Align and merge (to create high signal to noise ration RAW image)

m (Correct for sensor bias (using measurements of optically black pixels)

B Vignetting compensation (10-12 bits per pixel)

. 1 intensity value per pixel
B White balance Pixel values linear in energy
B Demosaic 3x10 bits per pixel

RGB intensity per pixel

B Denoise Pixel values linear in energy

Gamma Correction (non-linear mapping)

Local tone mapping 3x8-bits per pixel

Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear
hue adjust, etc.

Today
Stanford (5348K, Spring 2021



Auto Focus
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What does a lens do?

Scene object 2

Recall: pinhole camera you
may have made in science class
(every pixel measures ray of
light passing through pinhole
and arriving at pixel)

S Pinhole

Sensor plane: (X,Y)

Pixel P1 Pixel P2
Pinhole Stanford (S348K, Spring 2021



What does a lens do?

. Scene object 1
““ “

Camera with lens: — S 4 Scene focal plane

¥~ Field of view

Scene object 2

‘Q
*
*
‘Q
*

Every pixel accumulates all
rays of light passing through
lens aperture and refracted to
location of pixel

. G . . V A . N

In-focus camera: all rays of
light from one point in scene
arrive at one point on sensor

plane

—_———@——— Sensorplane: (X,Y)
Pixel P1 Pixel P2
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Out of focus camera

* .
“ "
* .
o *
* “

Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor

Sensor plane: (X,Y)

Pixel R l—v |7—| Pixel P2

\ / Previous sensor
plane location

Circle of confusion
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Out of focus camera

Scene object 2

‘Q
*
*
‘Q
*

Scene focal plane

Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor

Rays of light from different ————————>——— lensaperture
scene points converge at
single point on sensor

—e———————— Sensorplane: (X,Y)
Pixel P1

Previous sensor
plane location
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Cell phone camera lens(es)
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Portrait mode in modern smartphones

B Smart phone cameras have small apertures
- Good: thin. lightweight lenses, often fast focus

- Bad: cannot physically create aesthetically please photographs with nice
bokeh, blurred background

®  Answer: simulate behavior of large aperture lens (hallucinate image formed by
large aperture lens)
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Segmentation

Input image /w detected face Scene Depth
Estimate (note blurred background.

Blur increases with depth)
Stanford C5348K, Spring 2021

Image credit: [Wadha 2018]



Autofocus
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What part of image should be in focus?

SQUARE

PHOTO

Heuristics:

Focus on closest scene region

Put center of image in focus

Detect faces and focus on closest/largest face

VIDEO

!

Image credit: DPReview:

https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action .
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Split pixel sensor

Vil e When both pixels have the
/( | w\/( ‘ w\ same response, camera s in
.,  focus, why?
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Image credit: Nikon
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Additional sensing modalities

Apple’s TrueDepth camera
(infrared dots projected by phone,
captured by infrared camera)

A\

)
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Additional sensing modalities

Fuse information from all modalities to obtain best estimate of depth

iPhone Xr depth estimate iPhone Xr depth estimate
with lights ON in room with lights OFF in room

Image credit: https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81 Stanford (S348K, Spring 2021




Summary
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Summary

®  Computation now a fundamental part of producing a pleasing photograph
B Used to compensate for physical constraints (demosaic, denoise, lens corrections)

B Used to analyze image to guess system parameters (focus, exposure), or scene
contents (white balance, portrait mode)

®  Used to make non-physically plausible images that have aesthetic merit

\
;

Sensor output

‘ by
WY computation L ILHHT
- ComPUtatlon _

Beautiful image that
impresses your friends
on Instagram
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Image processing workload characteristics

m “Pointwise" operations
- output_pixel = f(input_pixel)

m “Stencil” computations (e.g., convolution, demosaic, etc.)
- Output pixel (x,y) depends on fixed-size local region of input around (x,y)

m Lookup tables
- e ., contrast s-curve

®m  Multi-resolution operations (upsampling/downsampling)

m Fast-fourier transform

- We didn't talk about Fourier domain techniques in class (but Hasinoff 16
reading has many examples)

m Long pipelines of these operations

Upcoming classes: efficiently mapping these
workloads to modern processors
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