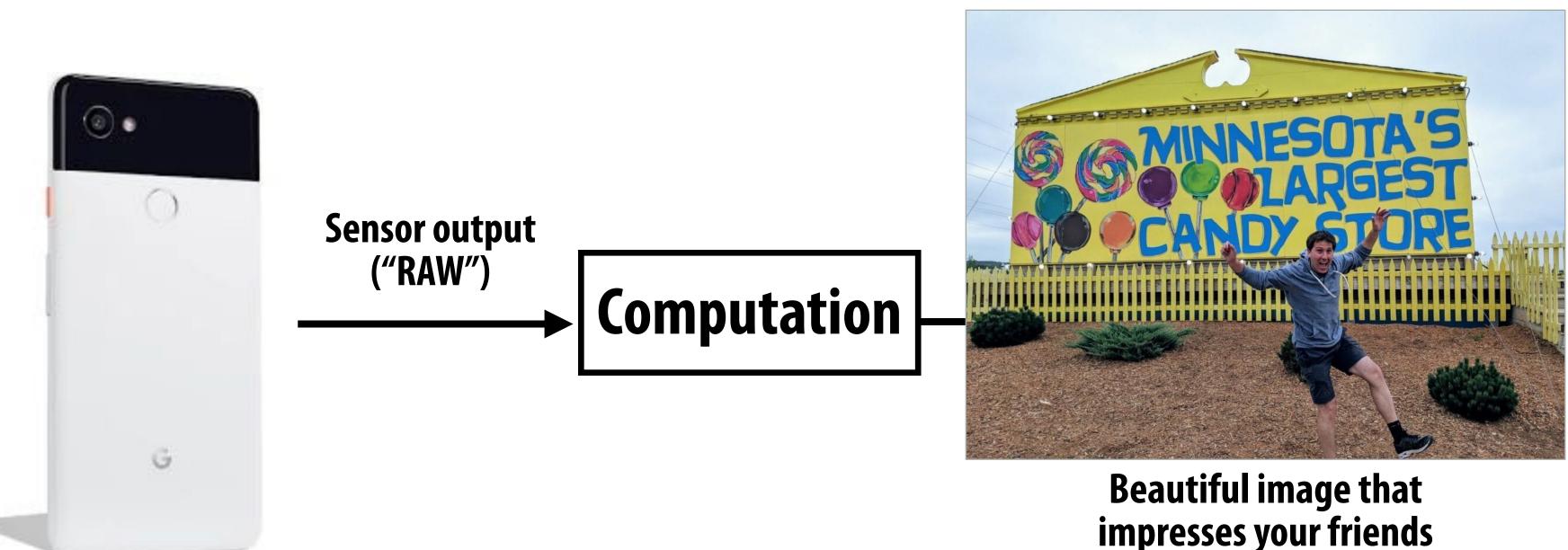
Lecture 3: **The Camera Image Processing Pipeline** (part 2: tone mapping and autofocus)

Visual Computing Systems Stanford CS348K, Spring 2021

Previous class and today...

The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing high-quality pictures.



impresses your friends on Instagram

Summary: simplified image processing pipeline

- **Correct pixel defects**
- Align and merge (to create high signal to noise ration RAW image)
- **Correct for sensor bias (using measurements of optically black pixels)**
- **Vignetting compensation**
- White balance
- Demosaic
- Denoise
- Gamma Correction (non-linear mapping)
- Local tone mapping
- Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc.

(10-12 bits per pixel) 1 intensity value per pixel **Pixel values linear in energy**

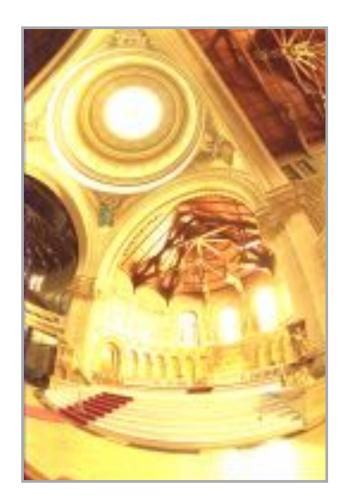
3x10 bits per pixel RGB intensity per pixel **Pixel values linear in energy**

3x8-bits per pixel **Pixel values perceptually linear**

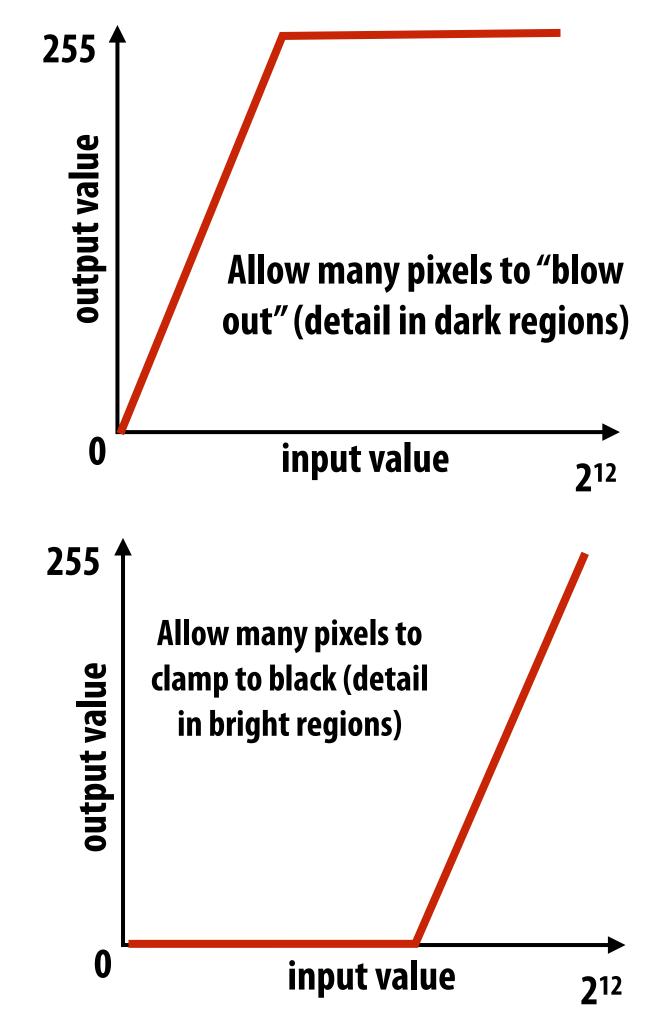
Auto Exposure and Tone Mapping

Global tone mapping

- Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel)
- How to convert 12 bit number to 8 bit number?

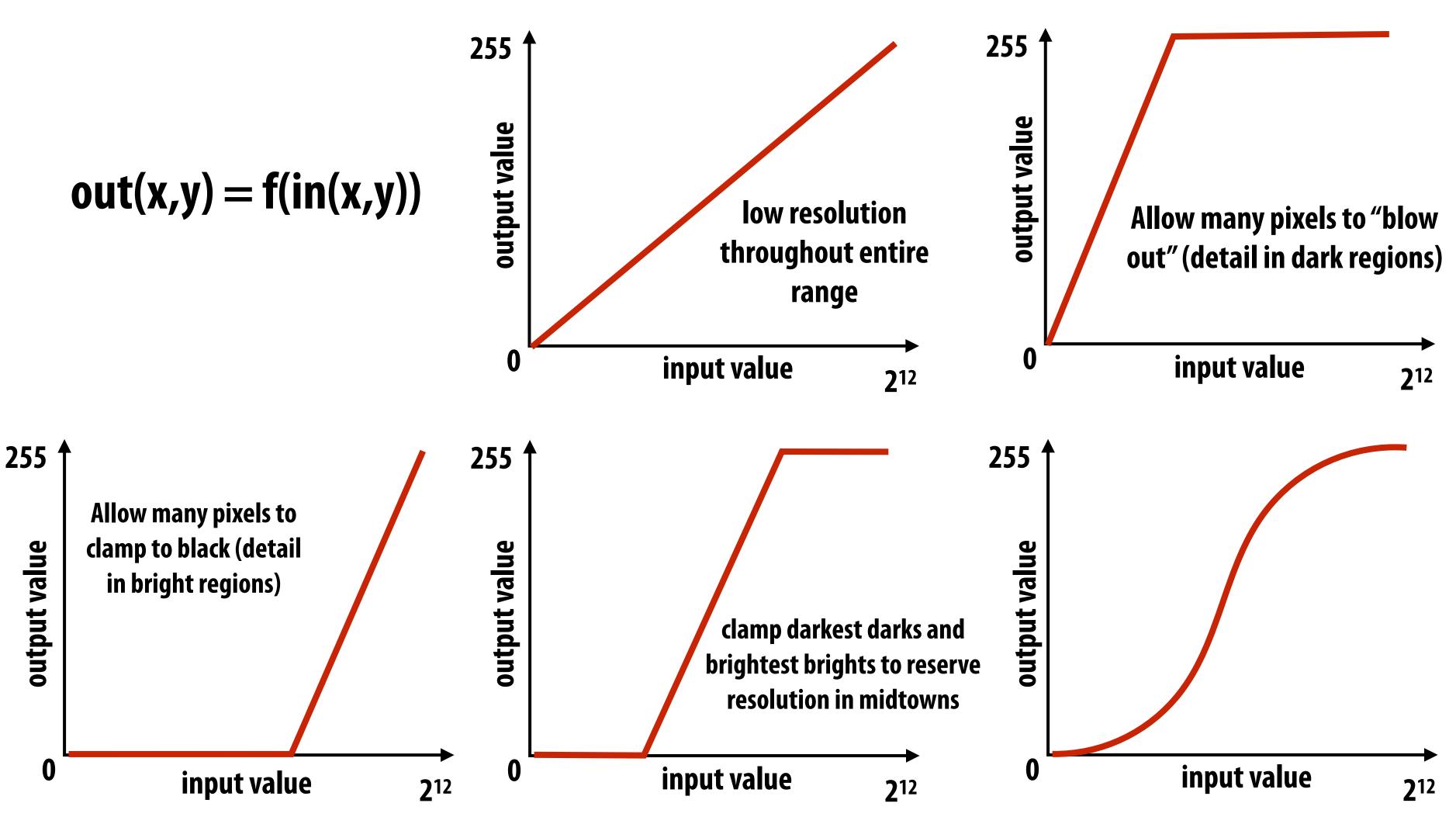




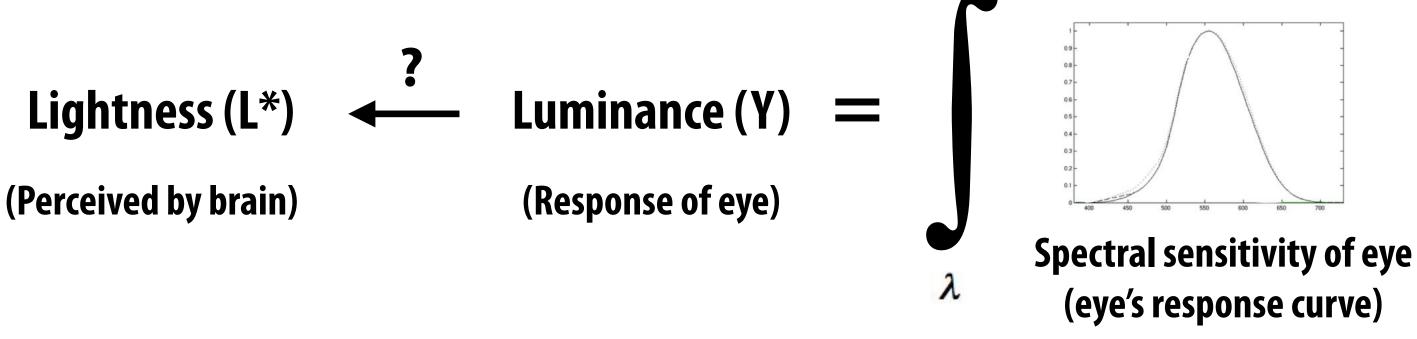


Global tone mapping

- Measured image values: 10-12 bits / pixel, but common image formats (8-bits/ pixel)
- How to convert 12 bit number to 8 bit number?



Lightness (<u>perceived</u> brightness) aka luma



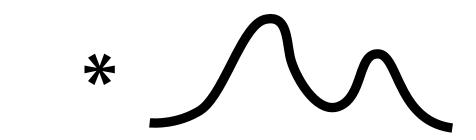
Dark adapted eye: $L^* \propto Y^{0.4}$

Bright adapted eye: $L^{*} \propto Y^{0.5}$

In a dark room, you turn on a light with luminance: Y_1 You turn on a second light that is identical to the first. Total output is now: $Y_2 = 2Y_1$

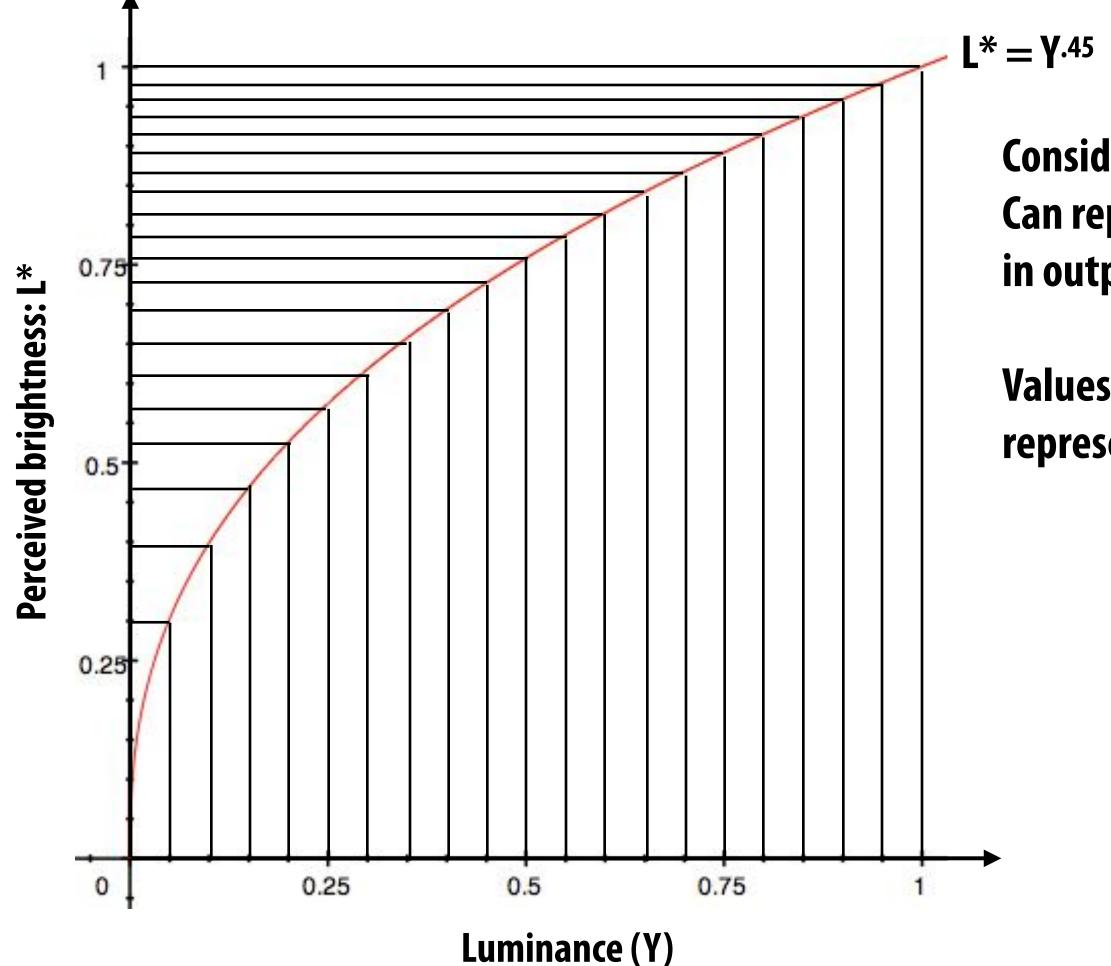
Total output appears $2^{0.4} = 1.319$ times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y')



Radiance (energy spectrum from scene)

Consider an image with pixel values encoding luminance (linear in energy hitting sensor)

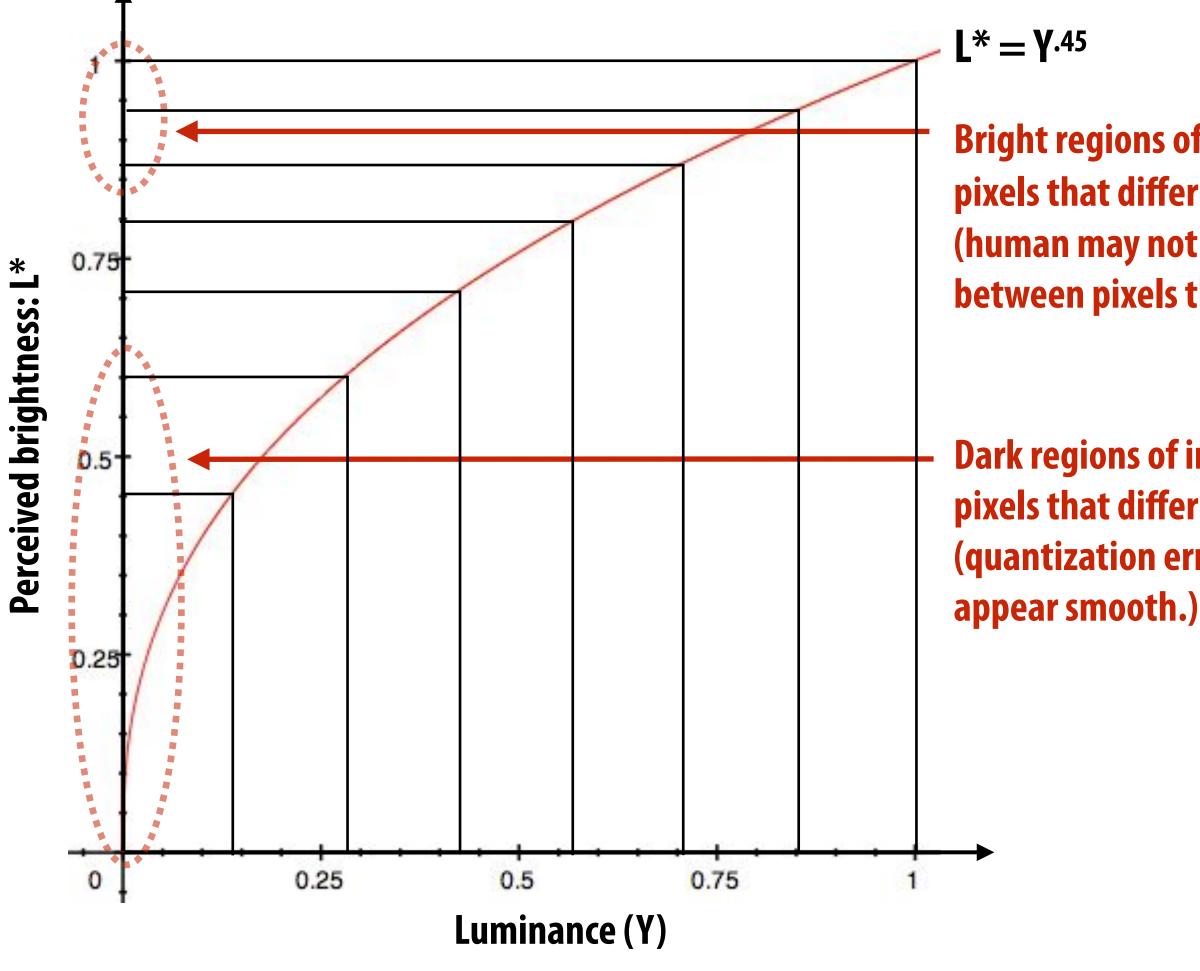


Consider 12-bit sensor pixel: Can represent 4096 unique luminance values in output image

Values are ~ linear in luminance since they represent the sensor's response

Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values) Insufficient precision to represent brightness in darker regions of image

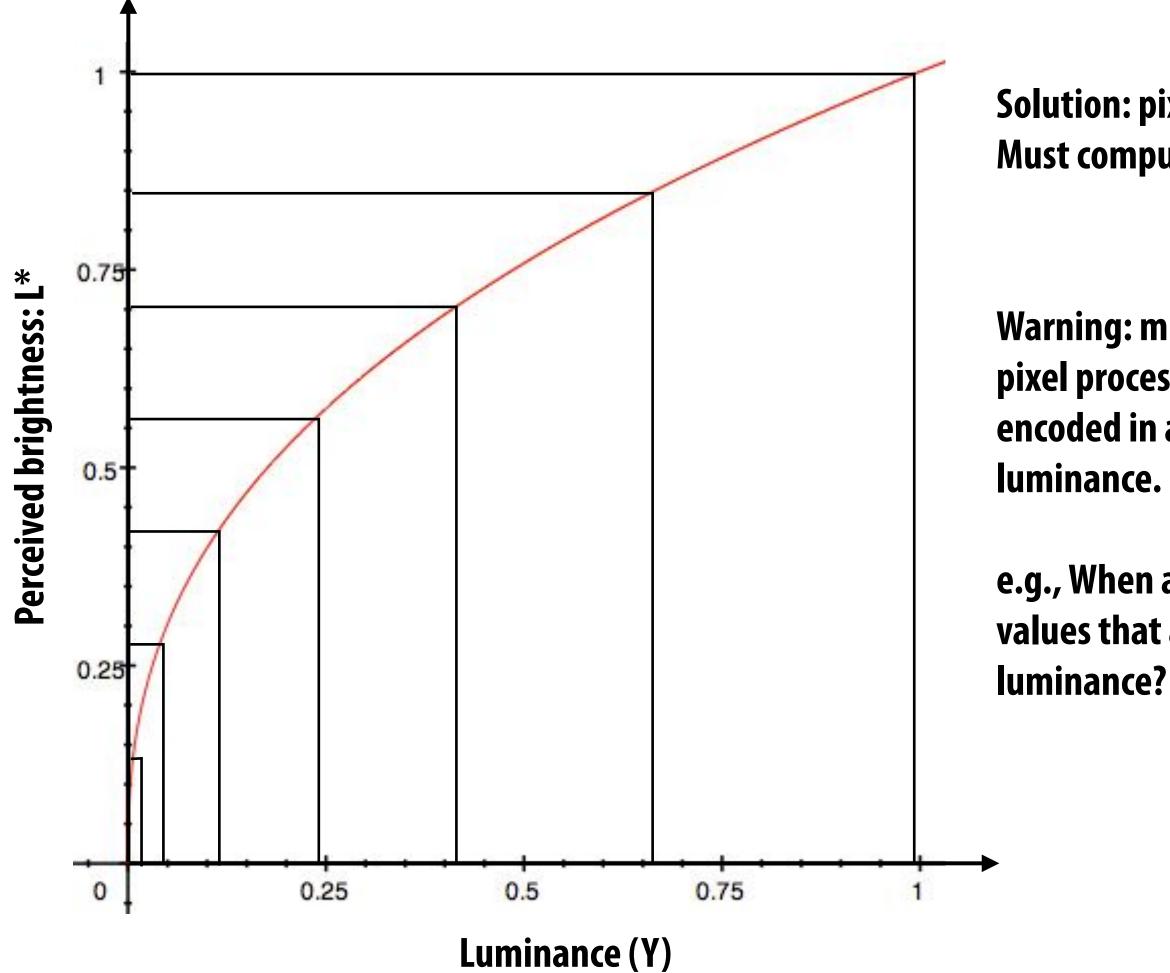


Rule of thumb: human eye cannot differentiate <1% differences in luminance

Bright regions of image: perceived difference between pixels that differ by one step in luminance is small! (human may not even be able to perceive difference between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between pixels that differ by one step in luminance is large! (quantization error: gradients in luminance will not

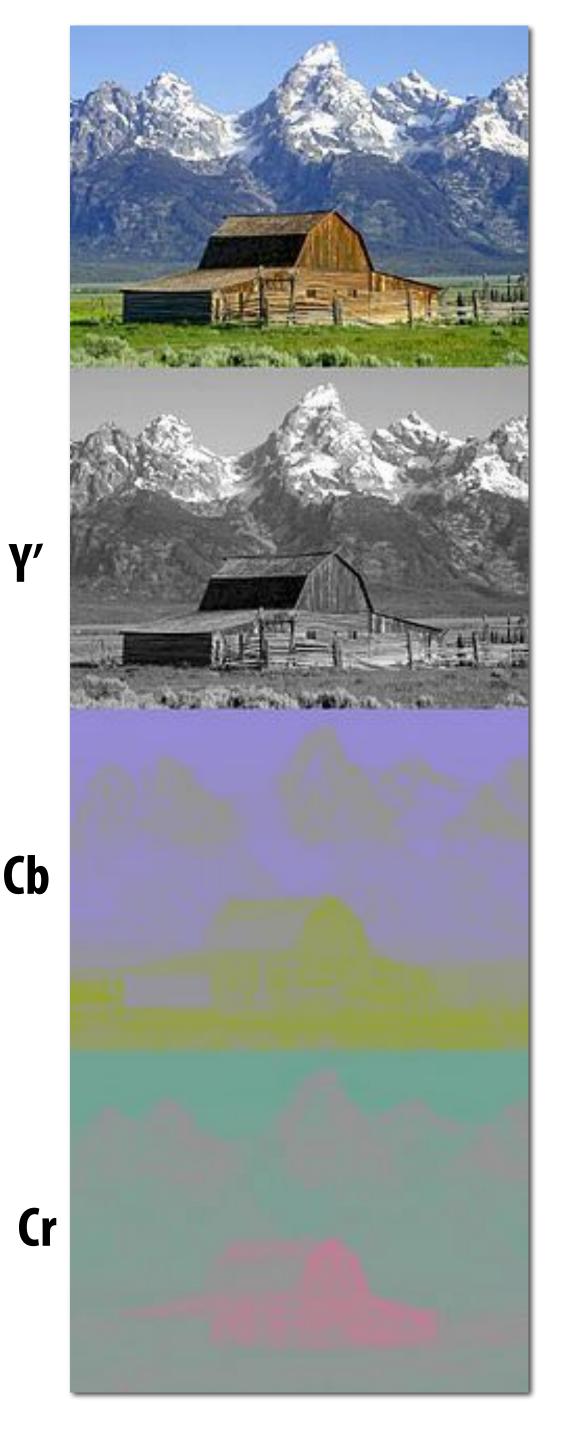
Store lightness in 8-bit value, not luminance Idea: distribute representable pixel values evenly with respect to perceived brightness, not evenly in luminance (make more efficient use of available bits)



Solution: pixel stores Y^{0.45} Must compute (pixel_value)^{2,2} prior to display on LCD

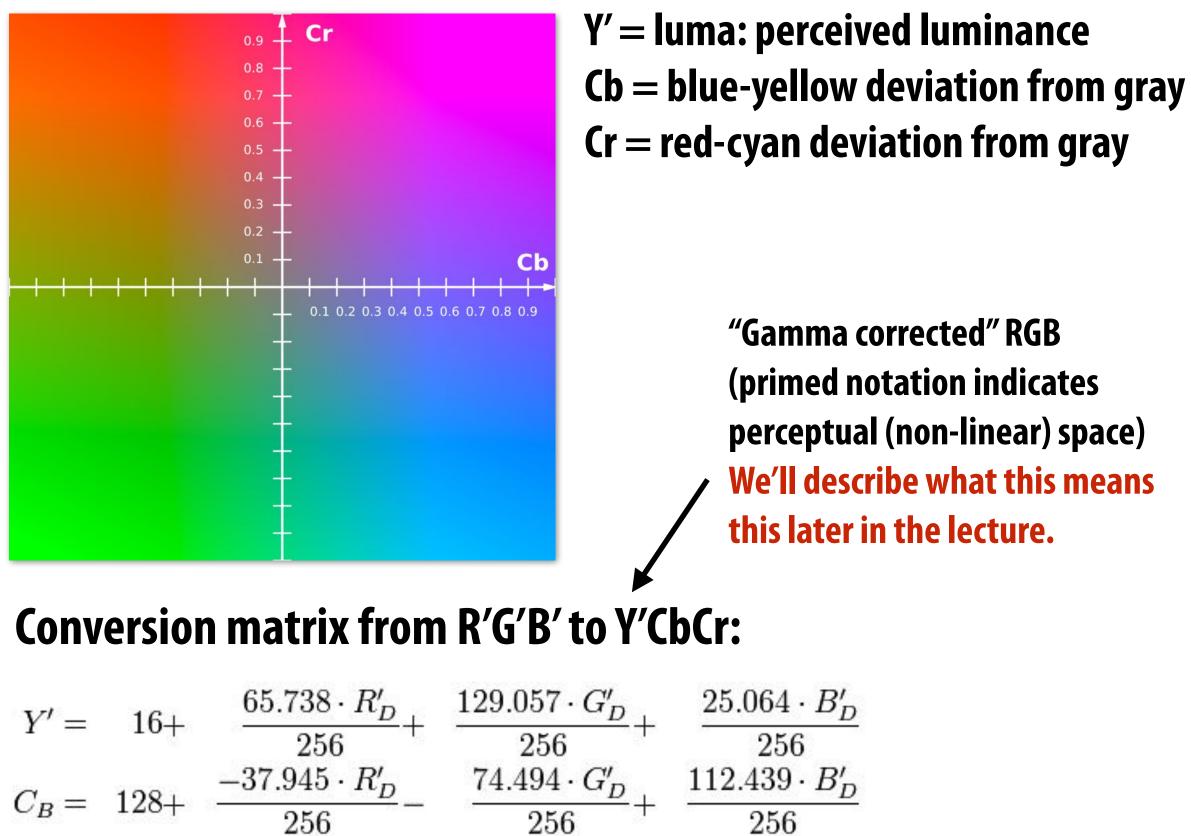
Warning: must take caution with subsequent pixel processing operations once pixels are encoded in a space that is not linear in

e.g., When adding images should you add pixel values that are encoded as lightness or as



Y'CbCr color space

Recall: colors are represented as point in 3-space



Y' =	16 +	$\frac{65.738\cdot R_D'}{256}+$	$\frac{129.057\cdot G_D'}{256}$
$C_B =$	128 +	$\frac{-37.945\cdot R_D'}{256}-$	$\frac{74.494\cdot G_D'}{256}$
$C_R =$	128 +	$\frac{112.439\cdot R_D'}{256}-$	$\frac{94.154\cdot G_D'}{256}$

Image credit: Wikipedia

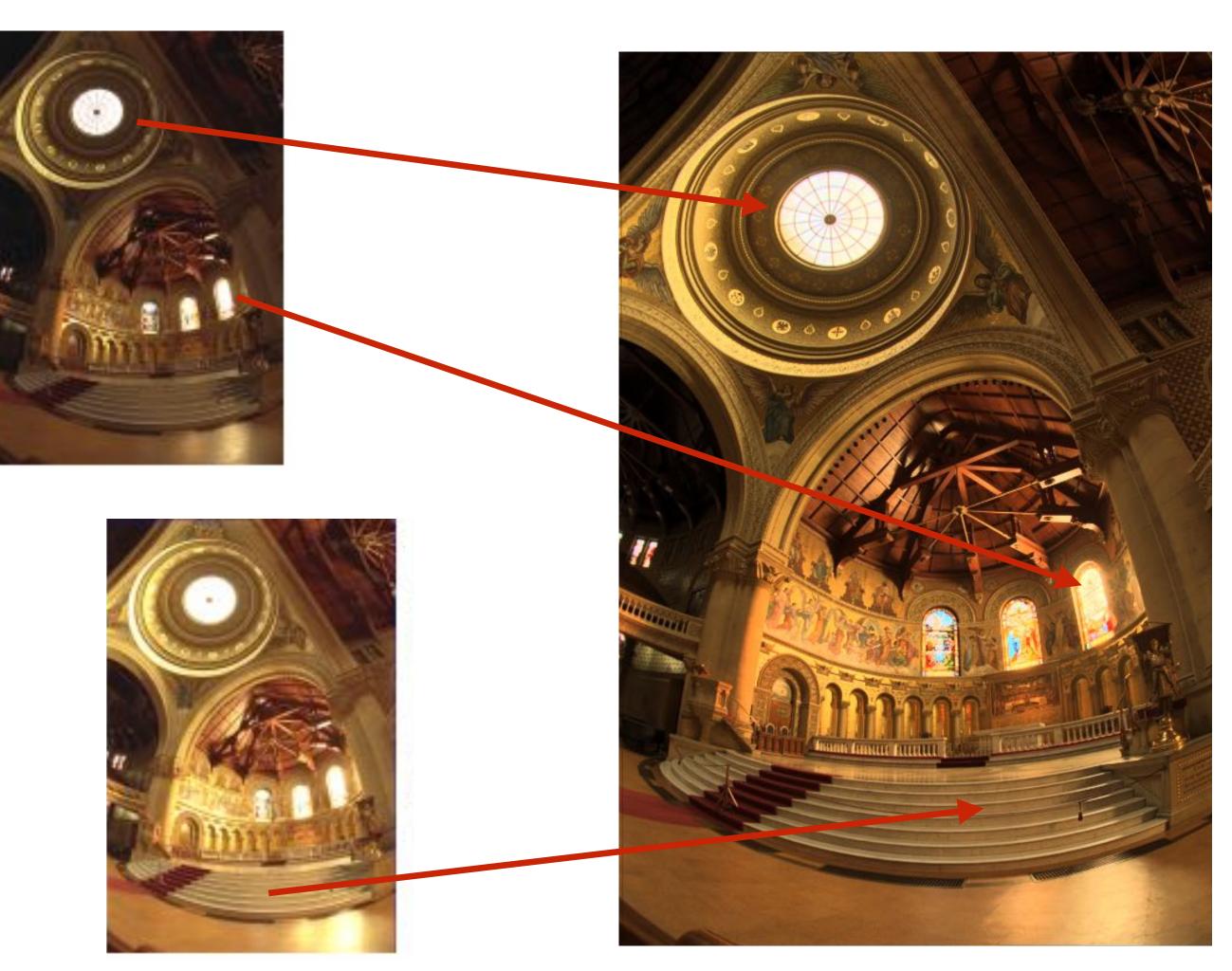
RGB is just one possible basis for representing color Y'CbCr separates luminance from hue in representation

 $18.285 \cdot B'_D$

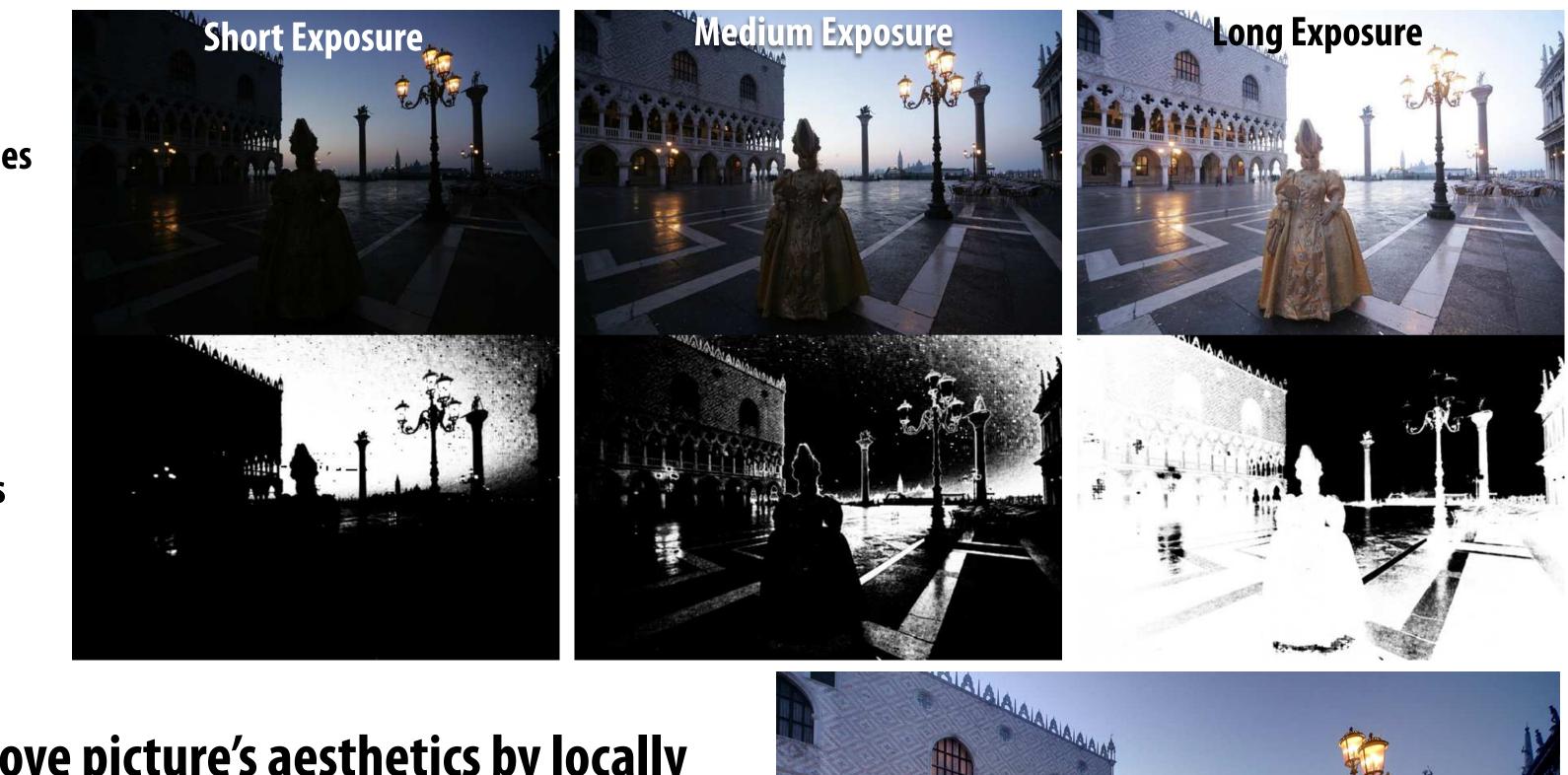
256

Local tone mapping

Different regions of the image undergo different tone mapping curves (preserve detail in both dark and bright regions)



Local tone adjustment



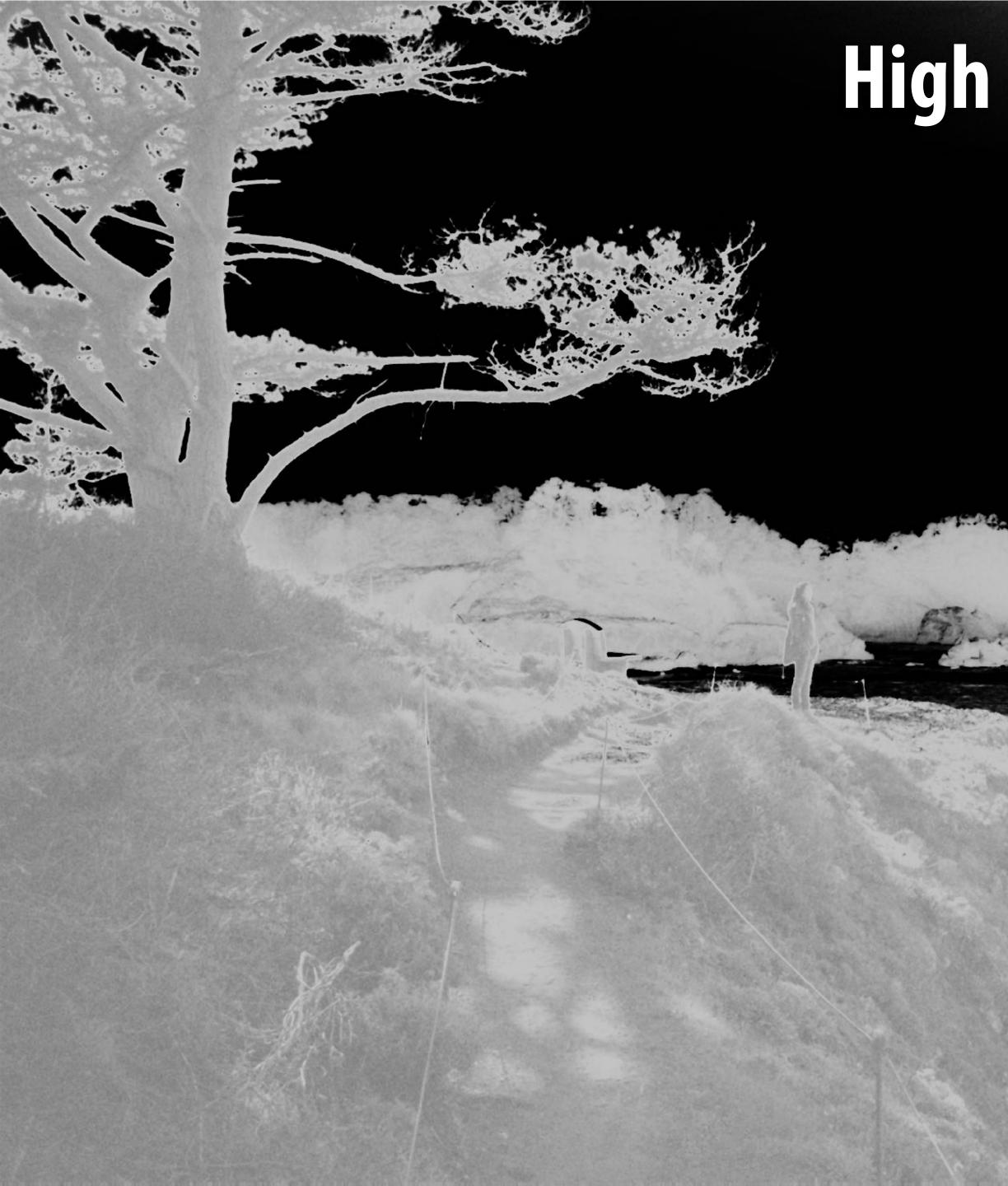
Pixel values

Weights

Improve picture's aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions (no physical basis)

> Combined image (unique weights per pixel)

High exposure image



High exposure weight

Low exposure image

Combined result

Combined result Local tone mapping was performed on lightness (luma). Now I added back in chrominance channels.

Challenge of merging images

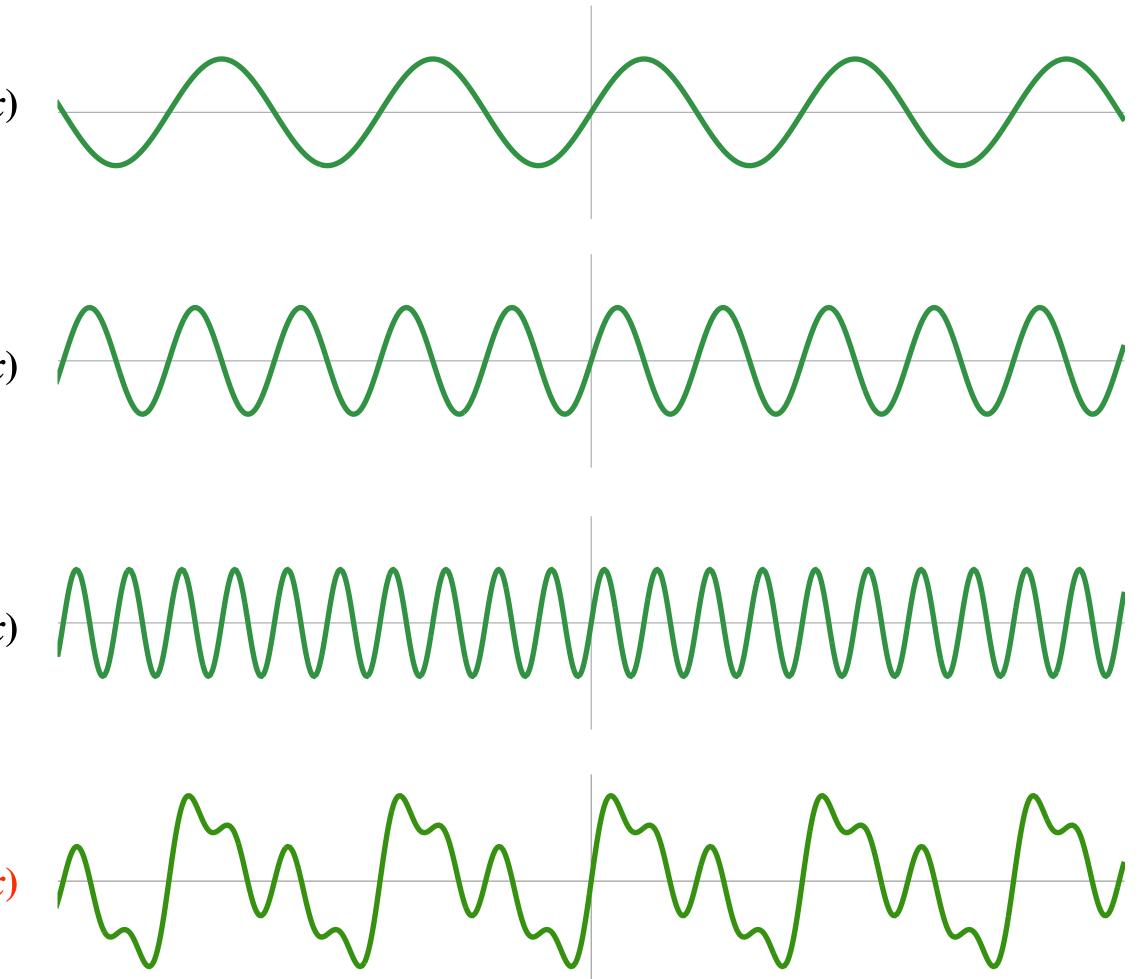
Four exposures (weights not shown)

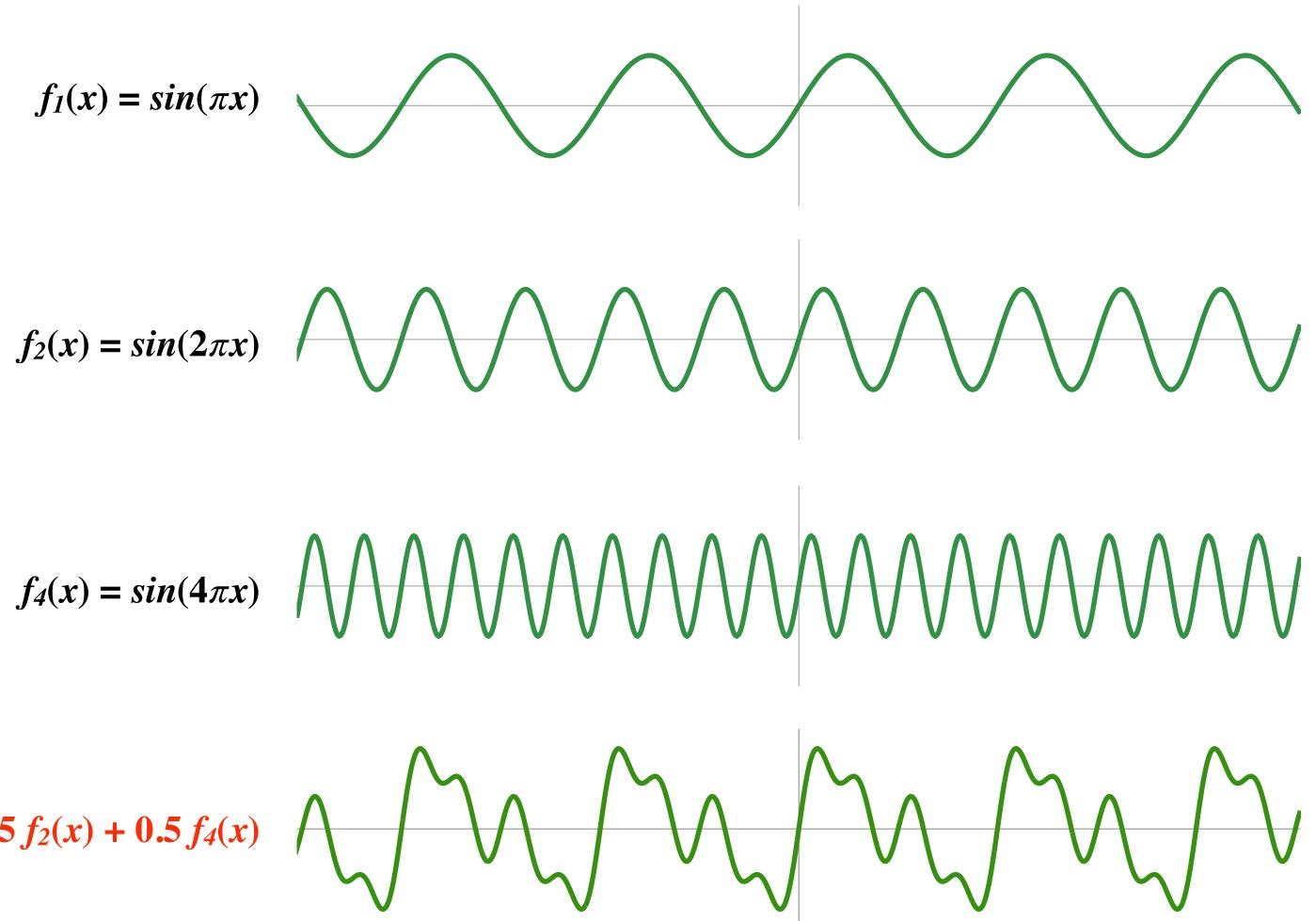
Merged result (based on weight masks) Notice heavy "banding" since absolute intensity of different exposures is different

Merged result (after blurring weight mask) Notice "halos" near edges

Review: Frequency interpretation of images

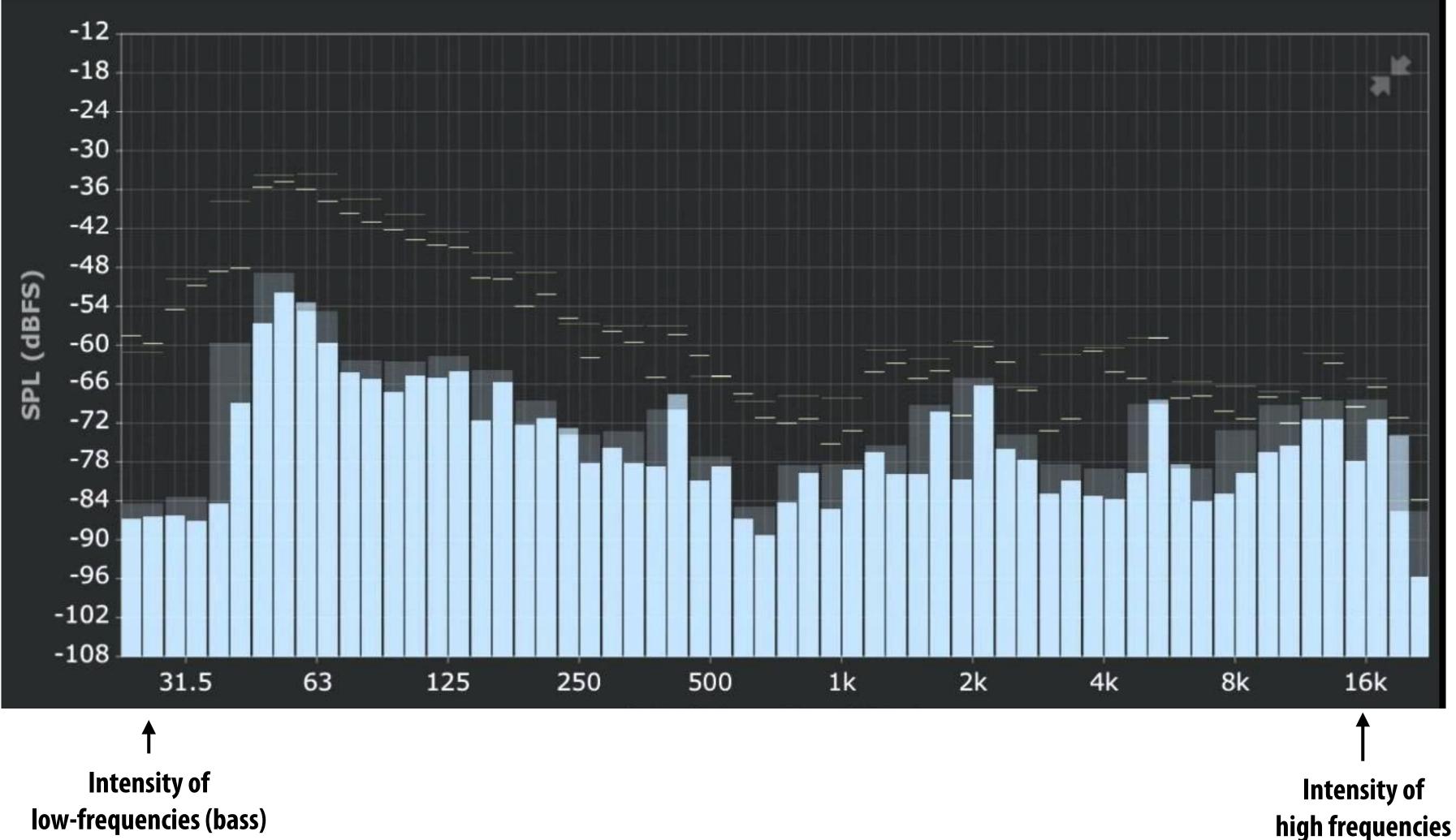
Representing sound as a superposition of frequencies





$$f(x) = f_1(x) + 0.75 f_2(x) + 0.5 f_4(x)$$

Audio spectrum analyzer: representing sound as a sum of its constituent frequencies



low-frequencies (bass)

Image credit: ONYX Apps

Fourier transform

Convert representation of signal from spatial/temporal domain to frequency domain by projecting signal into its **component frequencies**

$$f(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i x\xi} dx$$
$$= \int_{-\infty}^{\infty} f(x)(\cos(2\pi\xi x))$$

 \blacksquare 2D form:

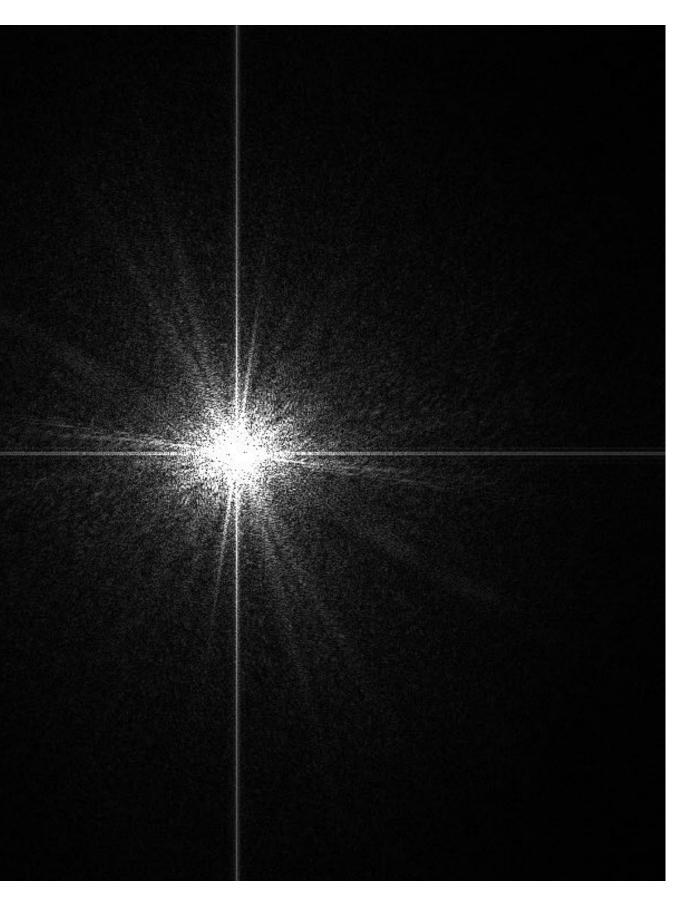
$$f(u,v) = \iint f(x,y)e^{-2\pi i}$$

$-i\sin(2\pi\xi x))dx$

(ux+vy)dxdy

Visualizing the frequency content of images

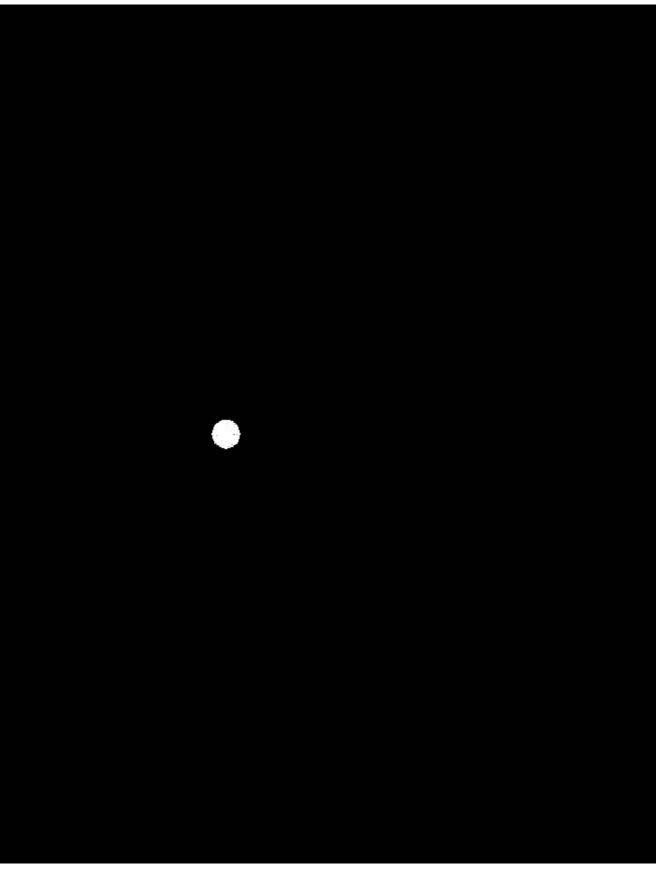
Spatial domain result



Spectrum

Low frequencies only (smooth gradients)

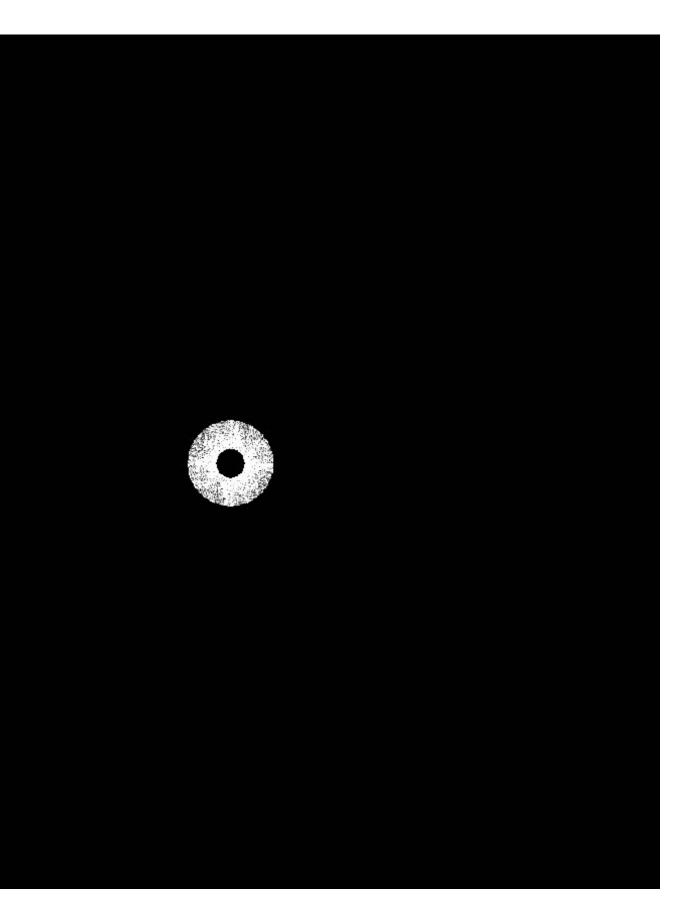
Spatial domain result



Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

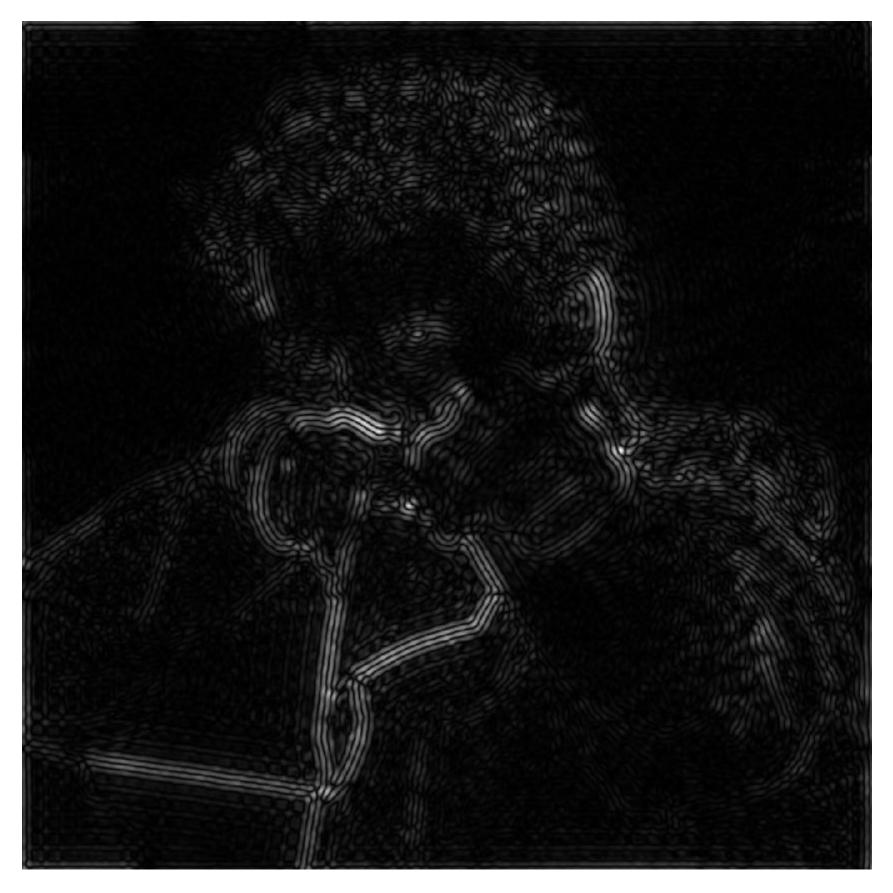
Mid-range frequencies

Spatial domain result

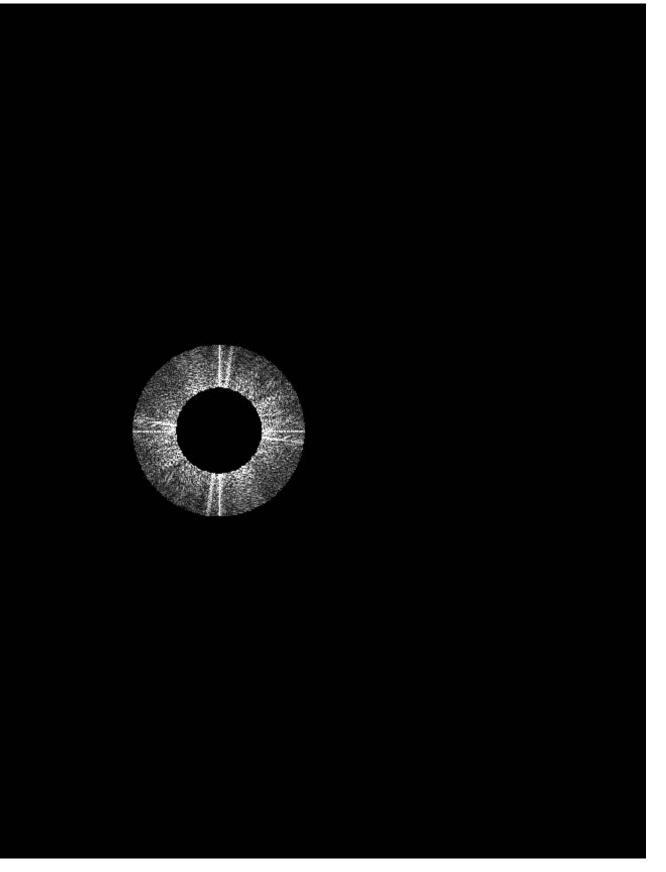


Spectrum (after band-pass filter)

Mid-range frequencies

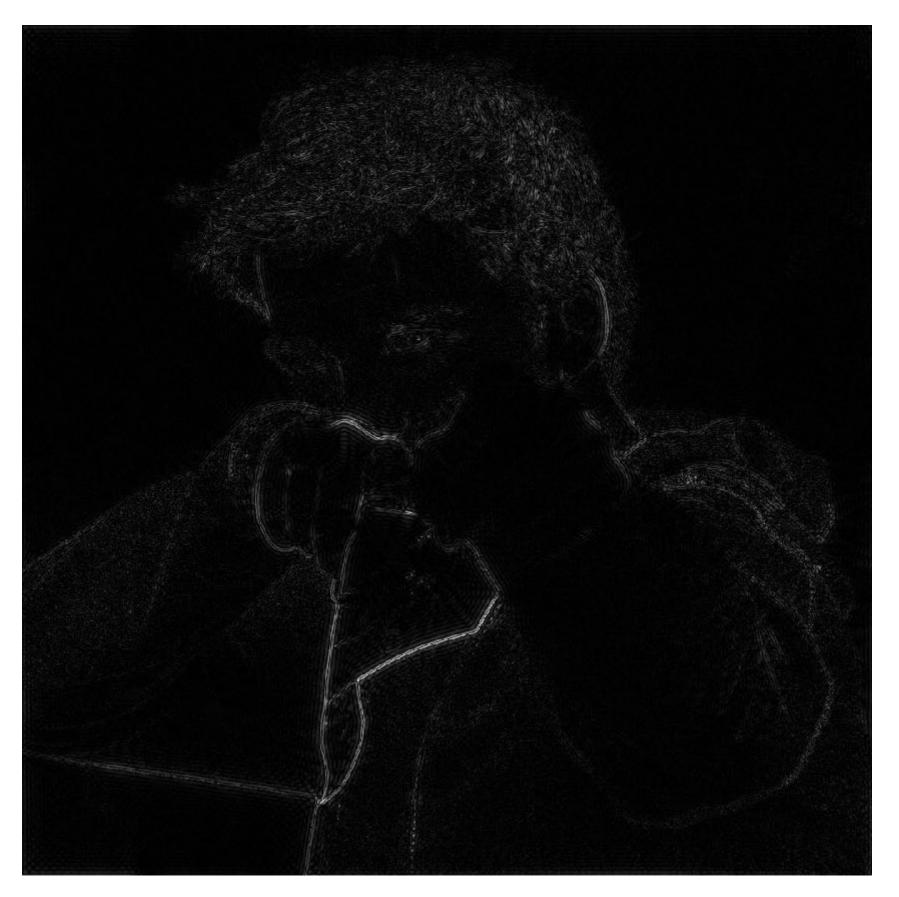


Spatial domain result

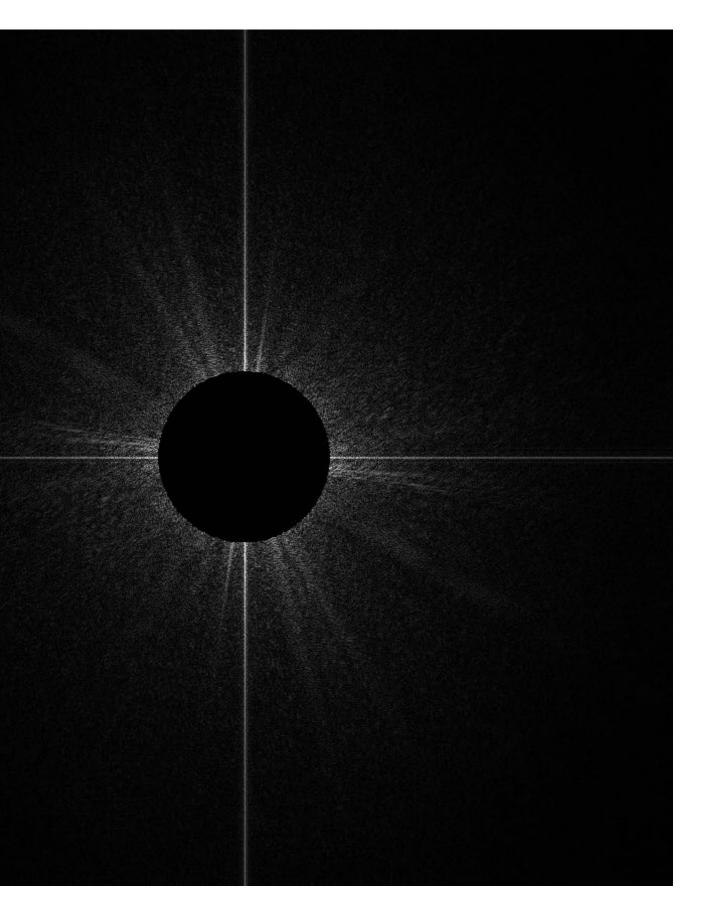


Spectrum (after band-pass filter)

High frequencies (edges)

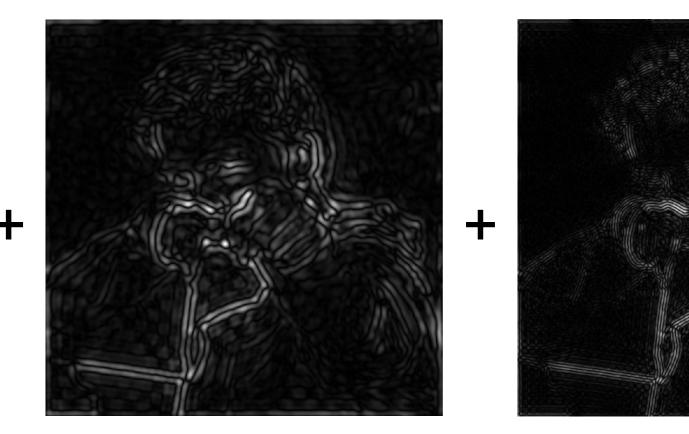


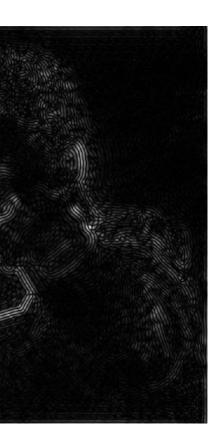
Spatial domain result (strongest edges)



Spectrum (after high-pass filter) All frequencies below threshold have 0 magnitude

An image as a sum of its frequency components



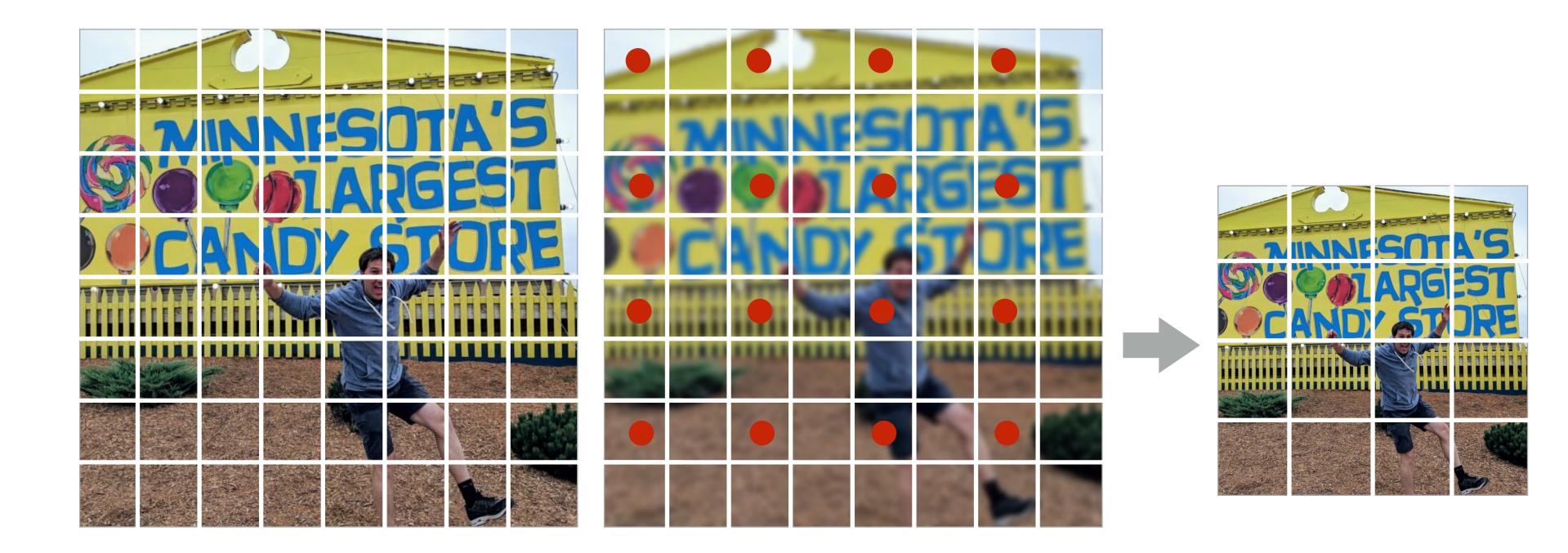


But what if we wish to localize image edits both in space and in frequency?

(Adjust certain frequency content of image, in a particular region of the image)

Downsample

- **Step 1: Remove high frequencies (aka blur)**
- Step 2: Sparsely sample pixels (in this example: every other pixel)



Downsample

- **Step 1: Remove high frequencies**
- Step 2: Sparsely sample pixels (in this example: every other pixel)

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];
```

```
float weights[] = \{1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
                  3/64, 9/64, 9/64, 3/64,
                  3/64, 9/64, 9/64, 3/64,
                  1/64, 3/64, 3/64, 1/64;
```

```
for (int j=0; j<HEIGHT/2; j++) {</pre>
   for (int i=0; i<WIDTH/2; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<4; jj++)</pre>
          for (int ii=0; ii<4; ii++)</pre>
             tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH/2 + i] = tmp;
  }
```

Upsample

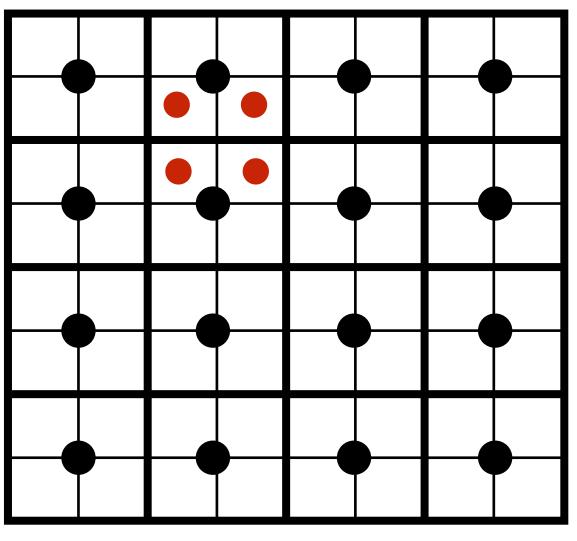
Via bilinear interpolation of samples from low resolution image

Upsample

Via bilinear interpolation of samples from low resolution image

```
float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];
```

```
for (int j=0; j<2*HEIGHT; j++) {</pre>
   for (int i=0; i<2*WIDTH; i++) {</pre>
      int row = j/2;
      int col = i/2;
      float w1 = (i\%2) ? .75f : .25f;
      float w2 = (j%2) ? .75f : .25f;
      output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
```



(1.0-w1) * w2 * input[row*WIDTH + col+1] + w1 * (1-w2) * input[(row+1)*WIDTH + col] +(1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];

Gaussian pyramid

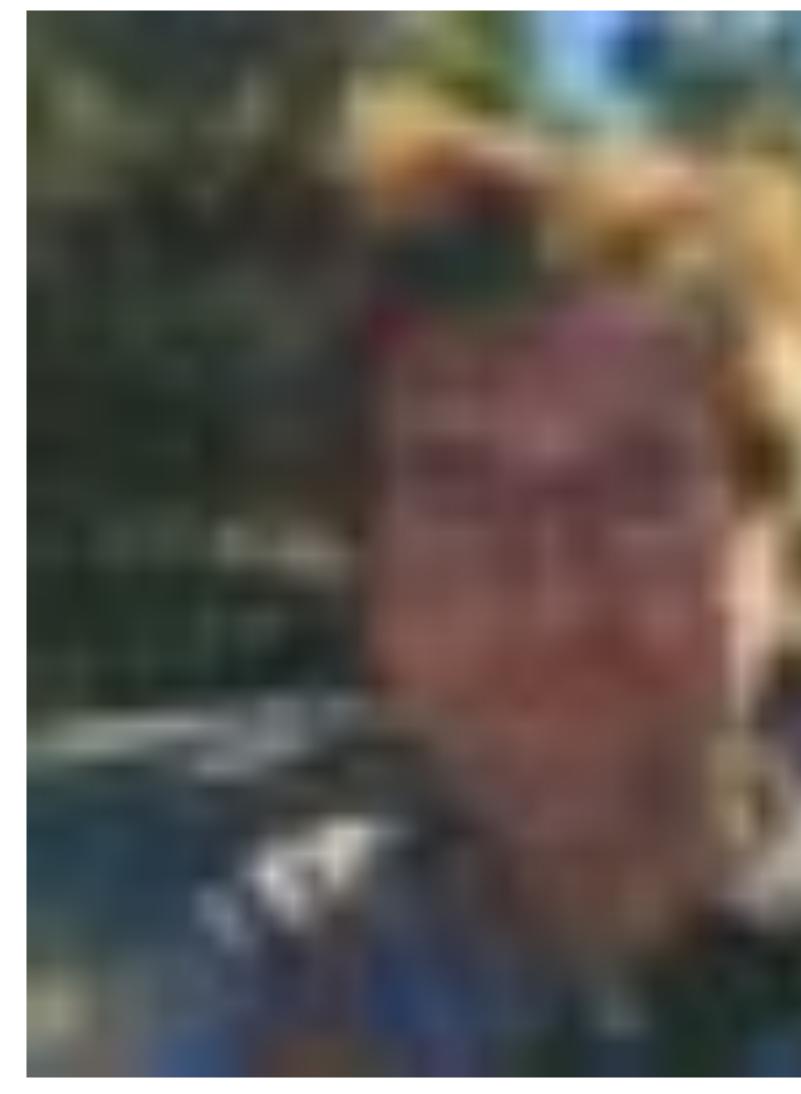
 $G_1 = down(G_0)$

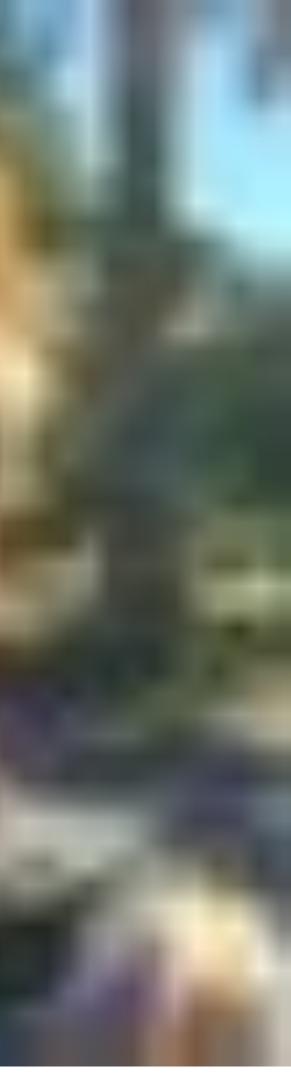
$G_0 = image$

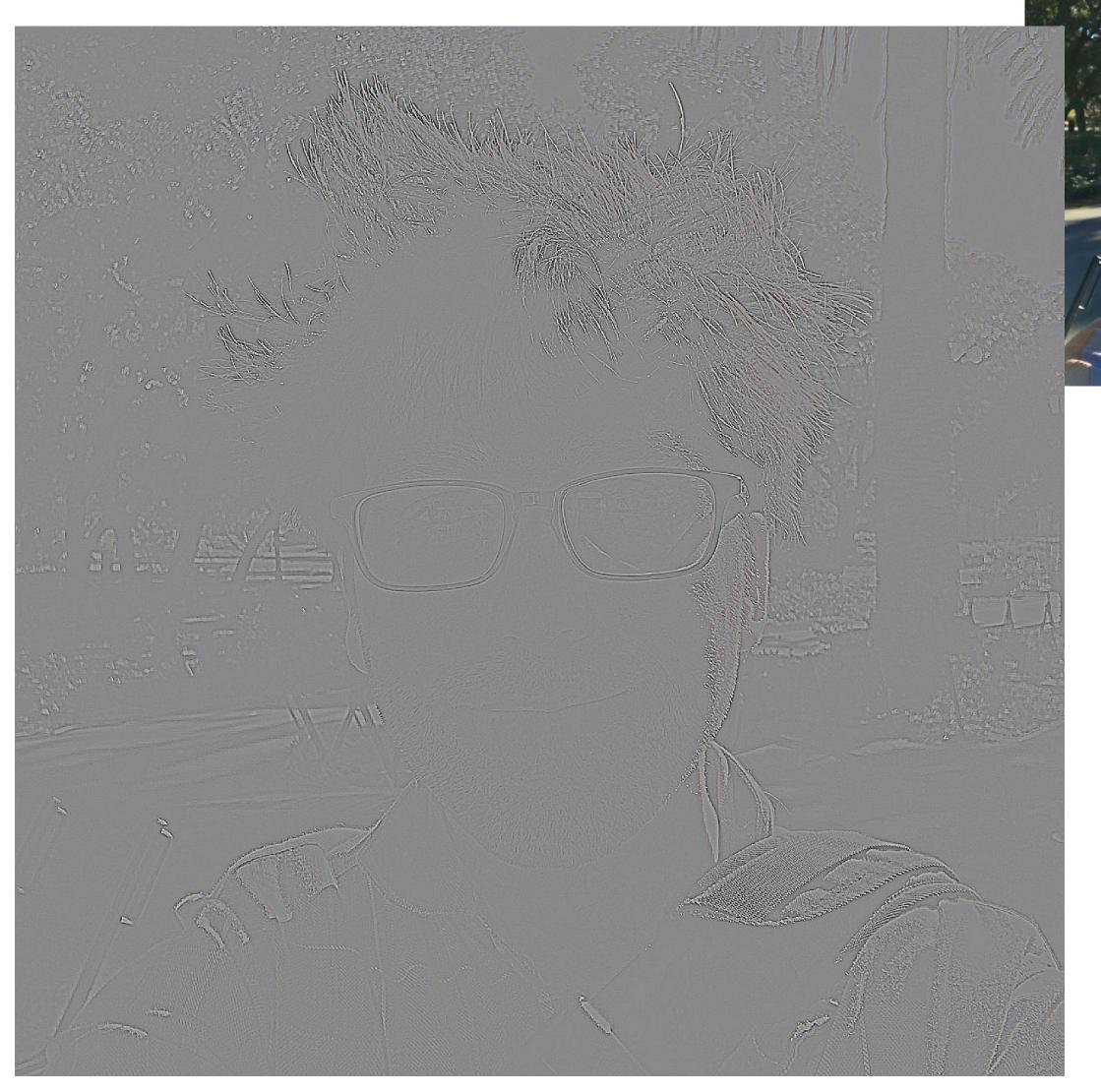
Each image in pyramid contains increasingly low-pass filtered signal

down() = downsample operation

$G_2 = down(G_1)$







[Burt and Adelson 83]

 $G_1 = down(G_0)$

G₀

Each (increasingly numbered) level in Laplacian pyramid represents a band of (increasingly lower) frequency information in the image

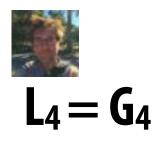
$L_0 = G_0 - up(G_1)$

$L_1 = G_1 - up(G_2)$

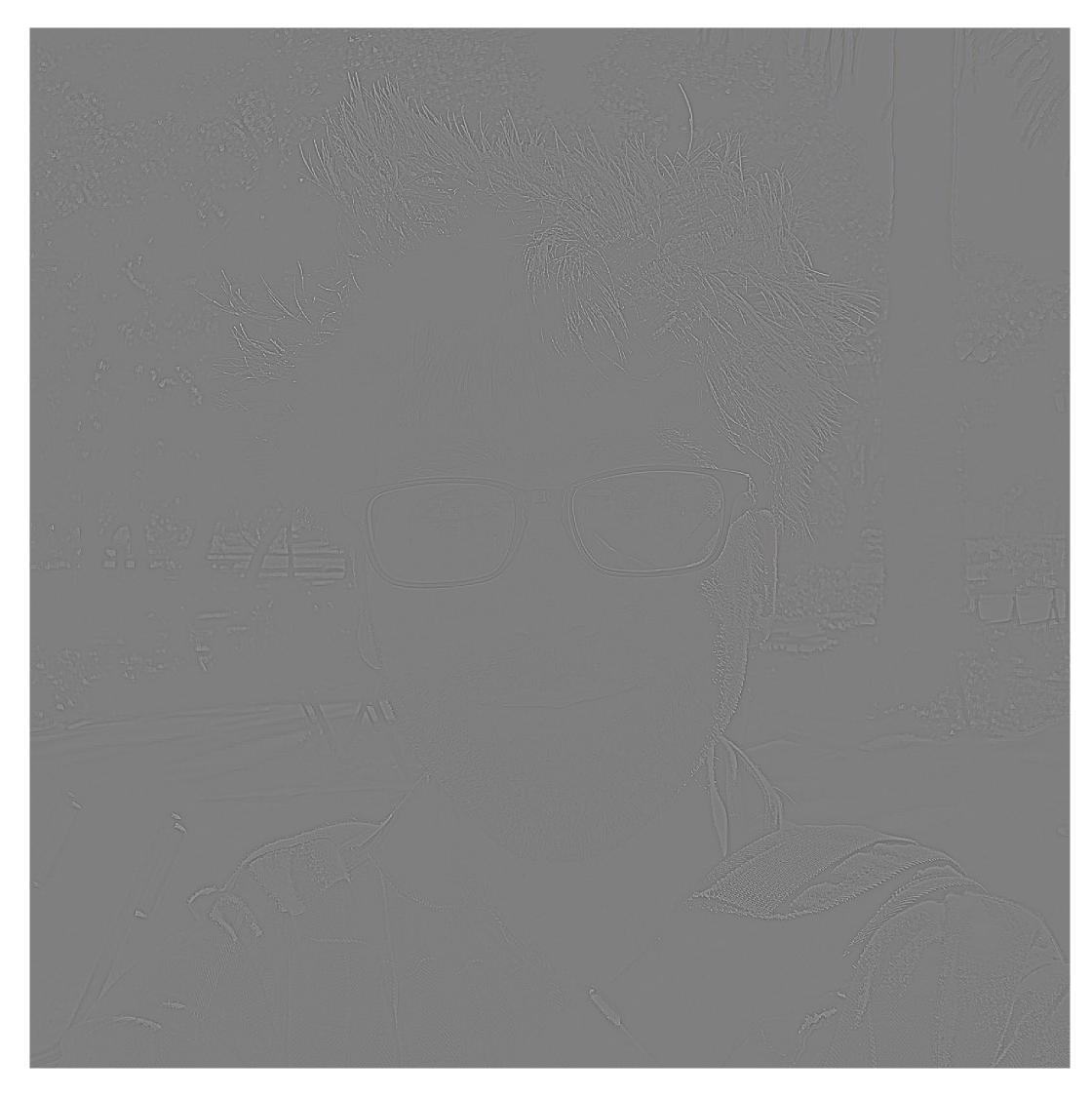
 $L_1 = G_1 - up(G_2)$

Question: how do you reconstruct original image from its Laplacian pyramid?

$L_2 = G_2 - up(G_3)$



$L_3 = G_3 - up(G_4)$



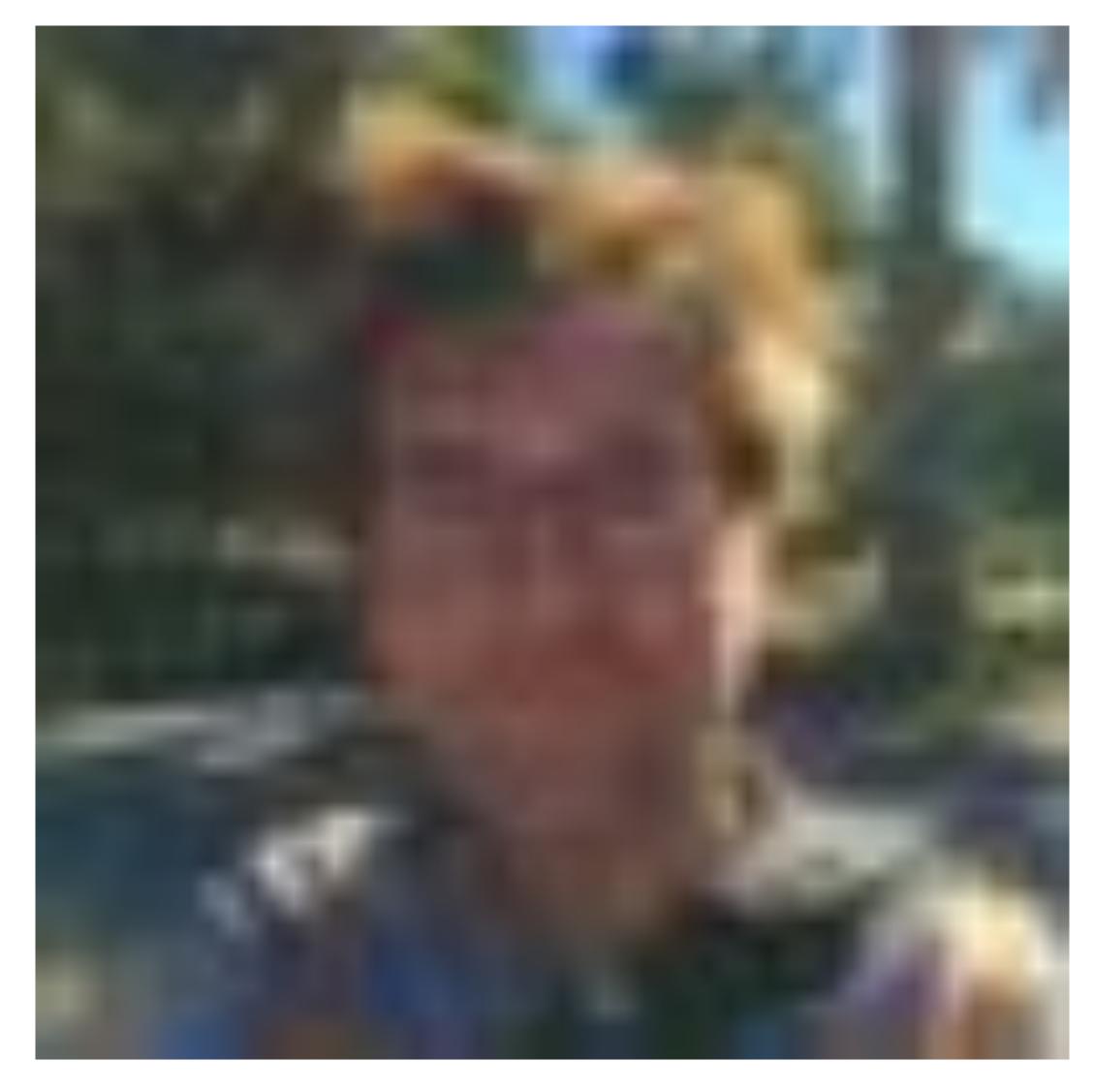
$\mathbf{L}_0 = \mathbf{G}_0 - \mathbf{up}(\mathbf{G}_1)$

$L_1 = G_1 - up(G_2)$

$L_2 = G_2 - up(G_3)$

$L_3 = G_3 - up(G_4)$

$L_4 = G_4 - up(G_5)$

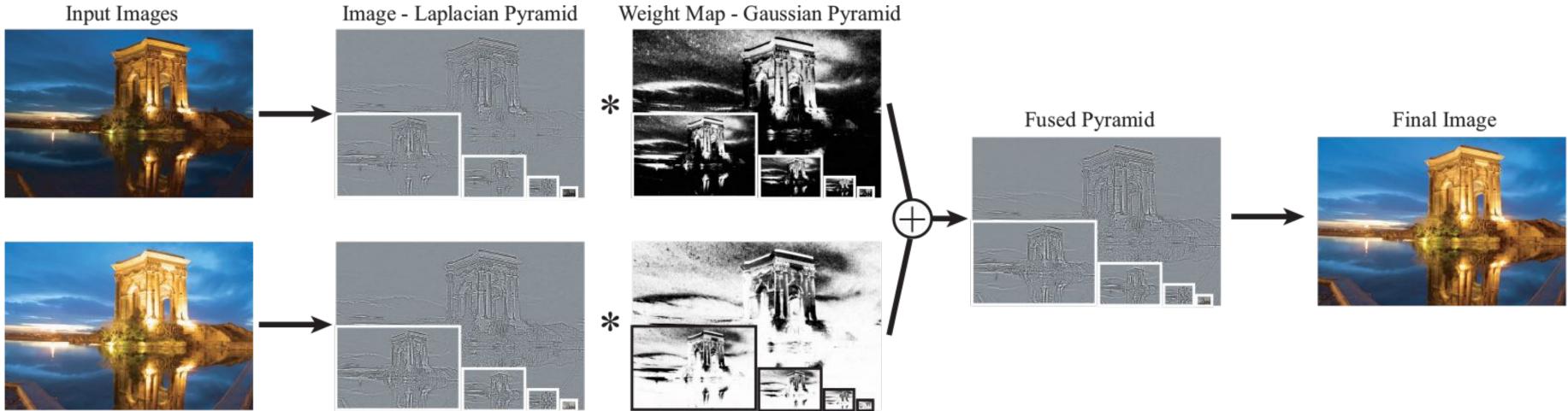


Summary

- Gaussian and Laplacian pyramids are image representations where each pixel maintains information about frequency content in a region of the image
- $G_i(x,y)$ frequencies up to limit given by *i*
- $L_i(x,y)$ frequencies added to G_{i+1} to get G_i
- Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient L_i(x,y) in Laplacian pyramid

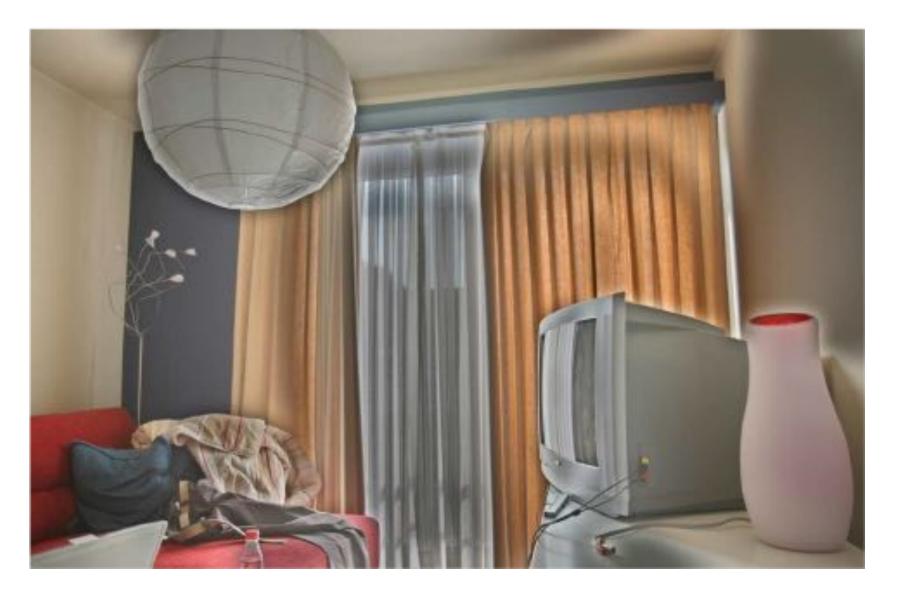
Use of Laplacian pyramid in tone mapping

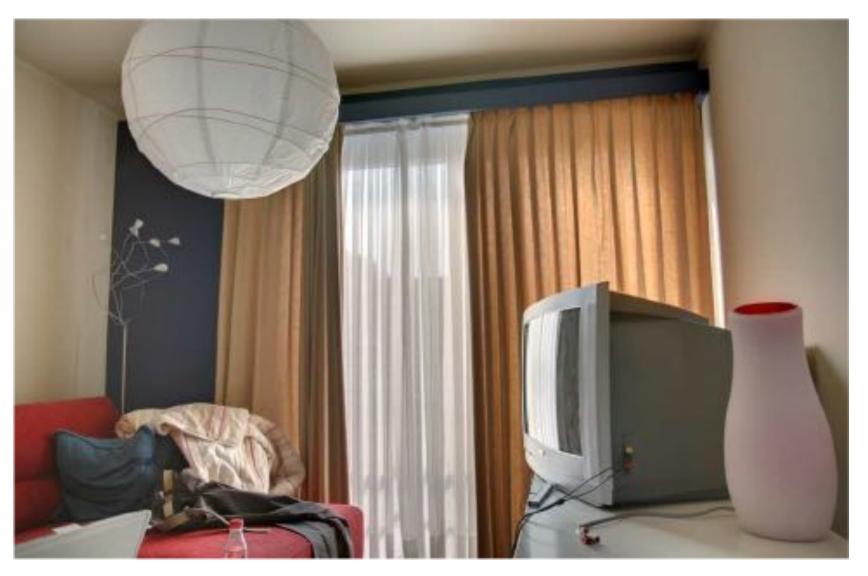
Compute weights for all Laplacian pyramid levels Merge pyramids (image features) not image pixels Then "flatten" merged pyramid to get final image



Challenges of merging images

Four exposures (weights not shown)



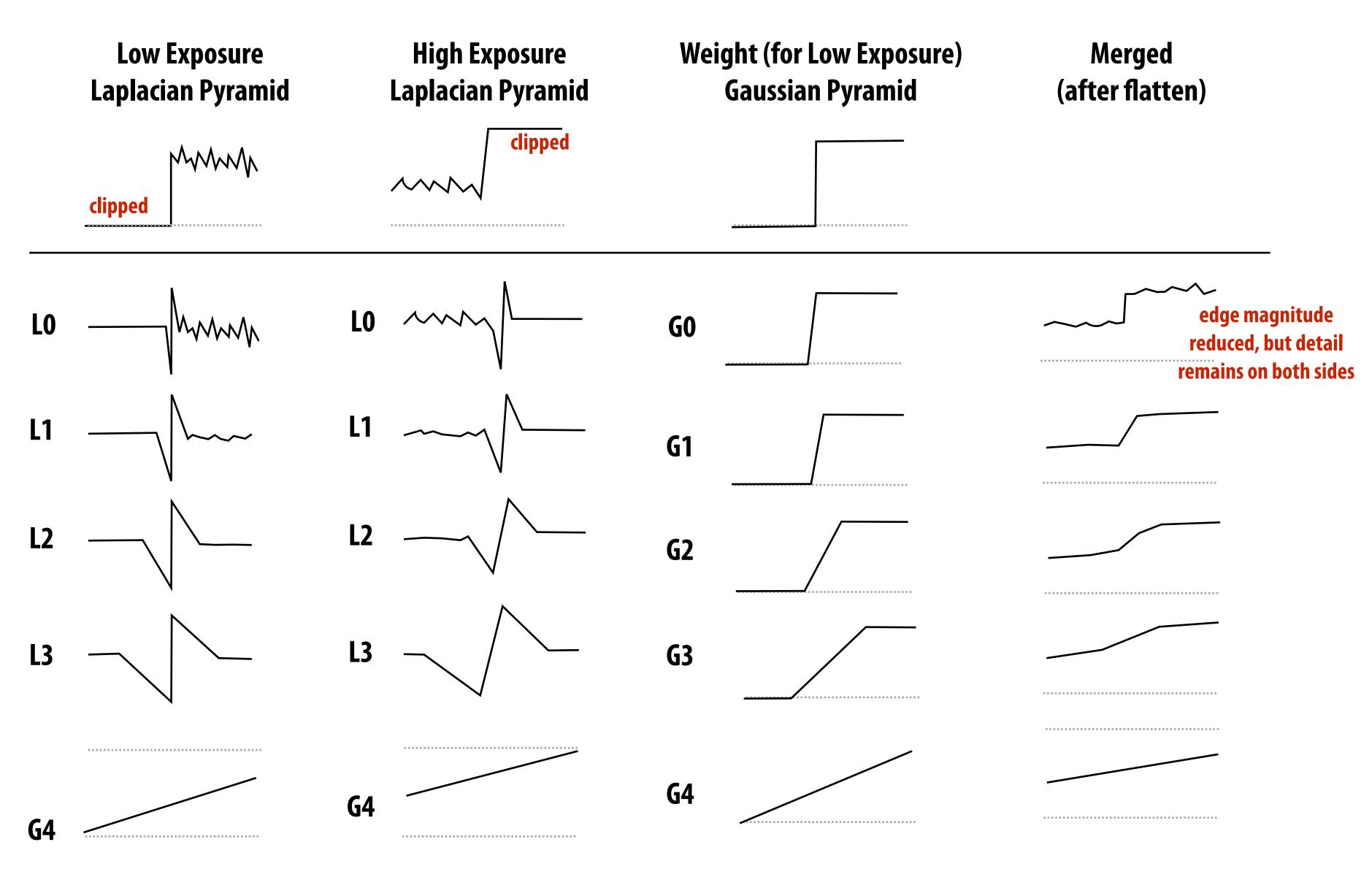


Merged result (after blurring weight mask) Notice "halos" near edges

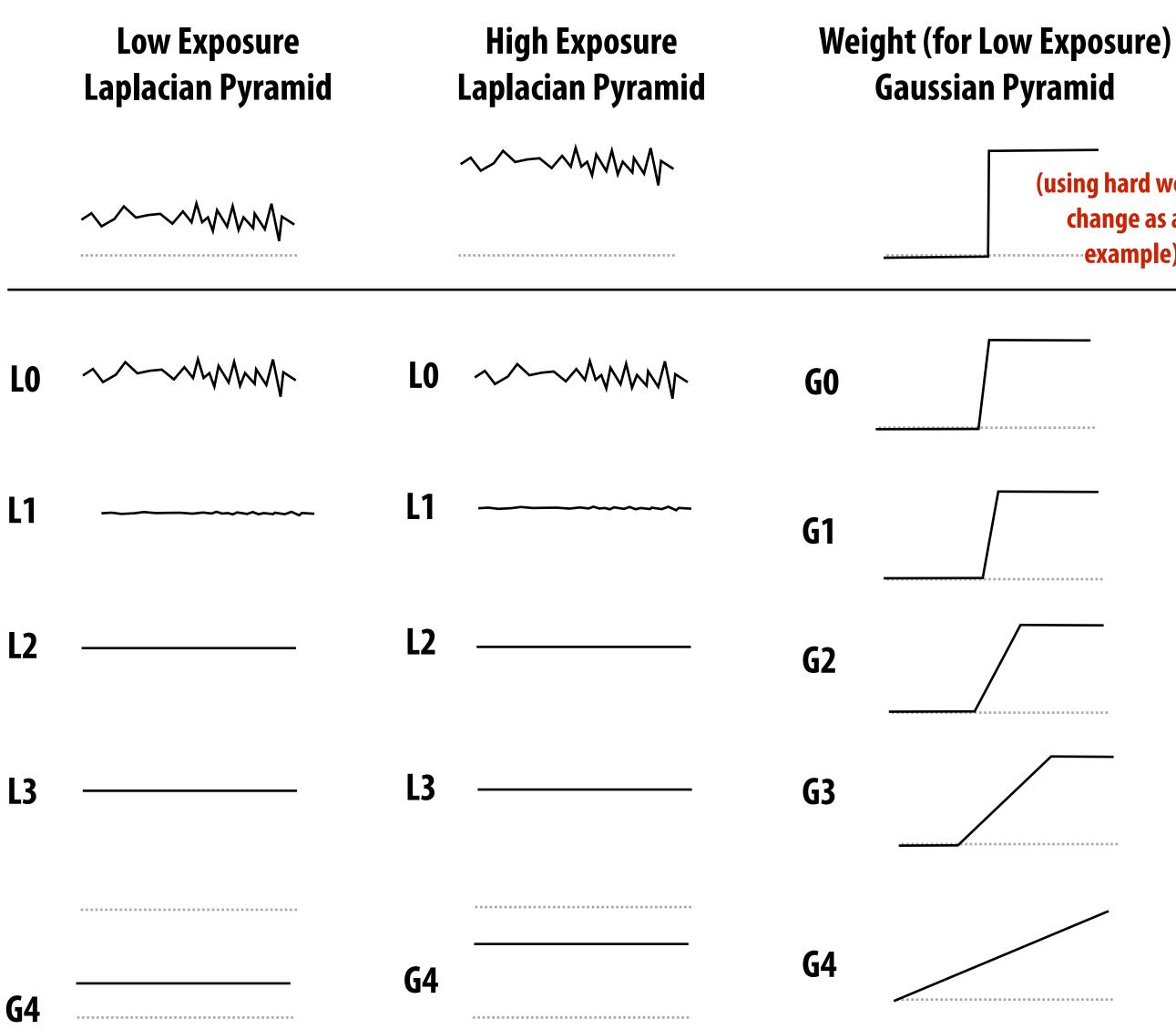
Why does merging Laplacian pyramids work better than merging image pixels?

Merged result (based on multi-resolution pyramid merge)

Consider low and high exposures of an edge



Consider low and high exposures of flat image region



Merged (after flatten)

(using hard weight change as an example)	
	smooth transition despite sharp weight change

Summary: simplified image processing pipeline

- **Correct pixel defects**
- Align and merge (to create high signal to noise ration RAW image)
- **Correct for sensor bias (using measurements of optically black pixels)**
- **Vignetting compensation**
- White balance
- Demosaic
- Denoise
- Gamma Correction (non-linear mapping)
- Local tone mapping
- Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc.

(10-12 bits per pixel) 1 intensity value per pixel **Pixel values linear in energy**

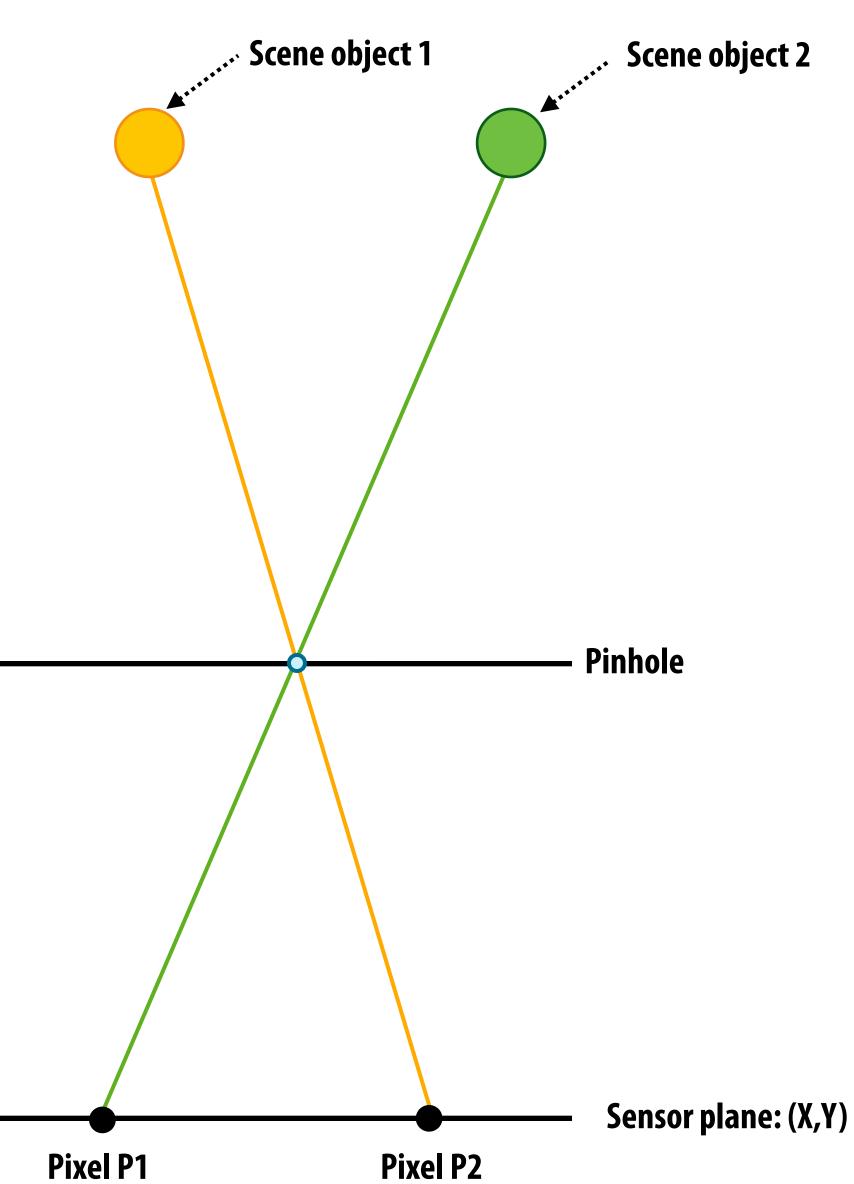
3x10 bits per pixel RGB intensity per pixel **Pixel values linear in energy**

3x8-bits per pixel **Pixel values perceptually linear**

Auto Focus

What does a lens do?

Recall: pinhole camera you may have made in science class (every pixel measures ray of light passing through pinhole and arriving at pixel)

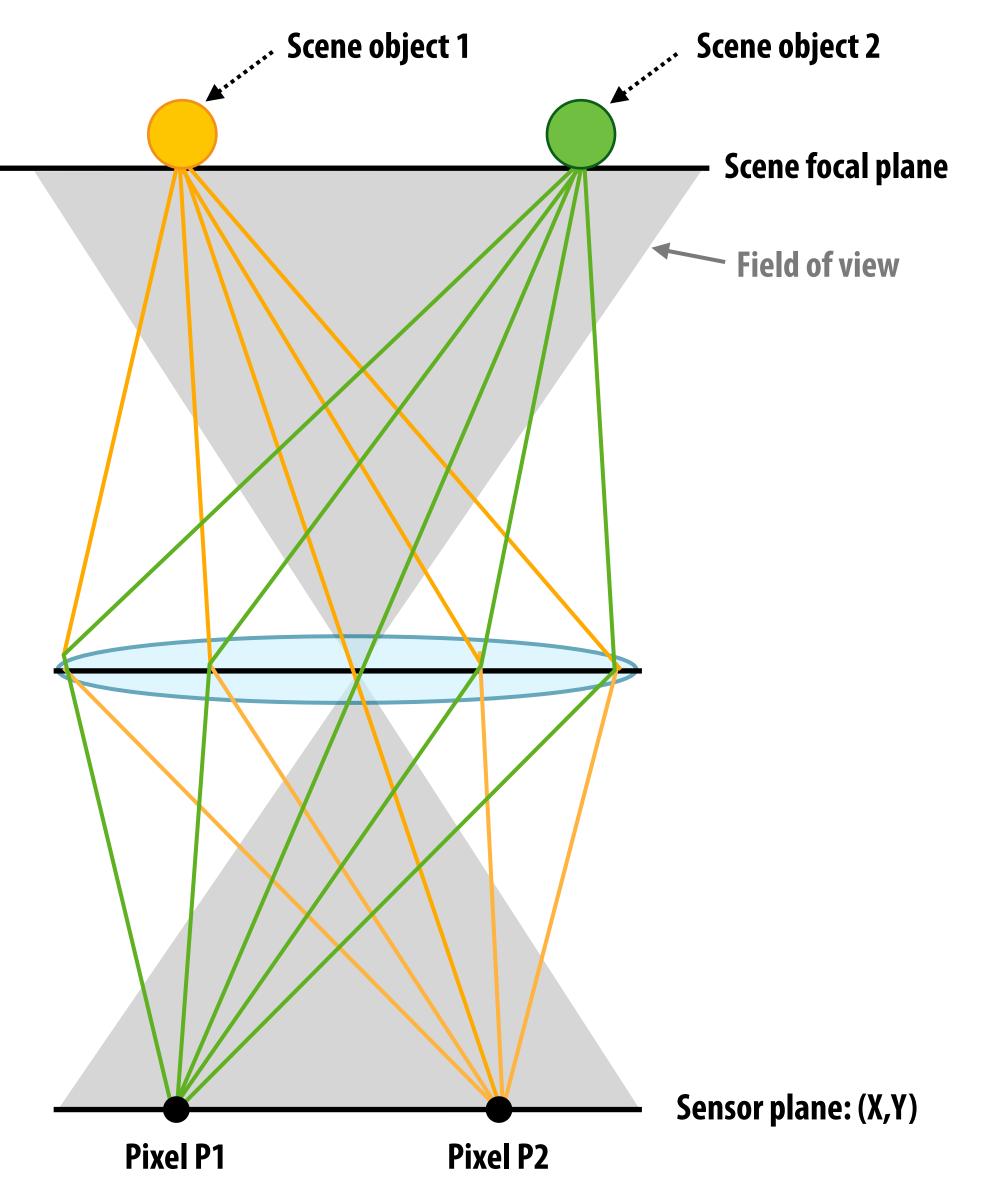


What does a lens do?

Camera with lens:

Every pixel accumulates all rays of light passing through lens aperture and refracted to location of pixel

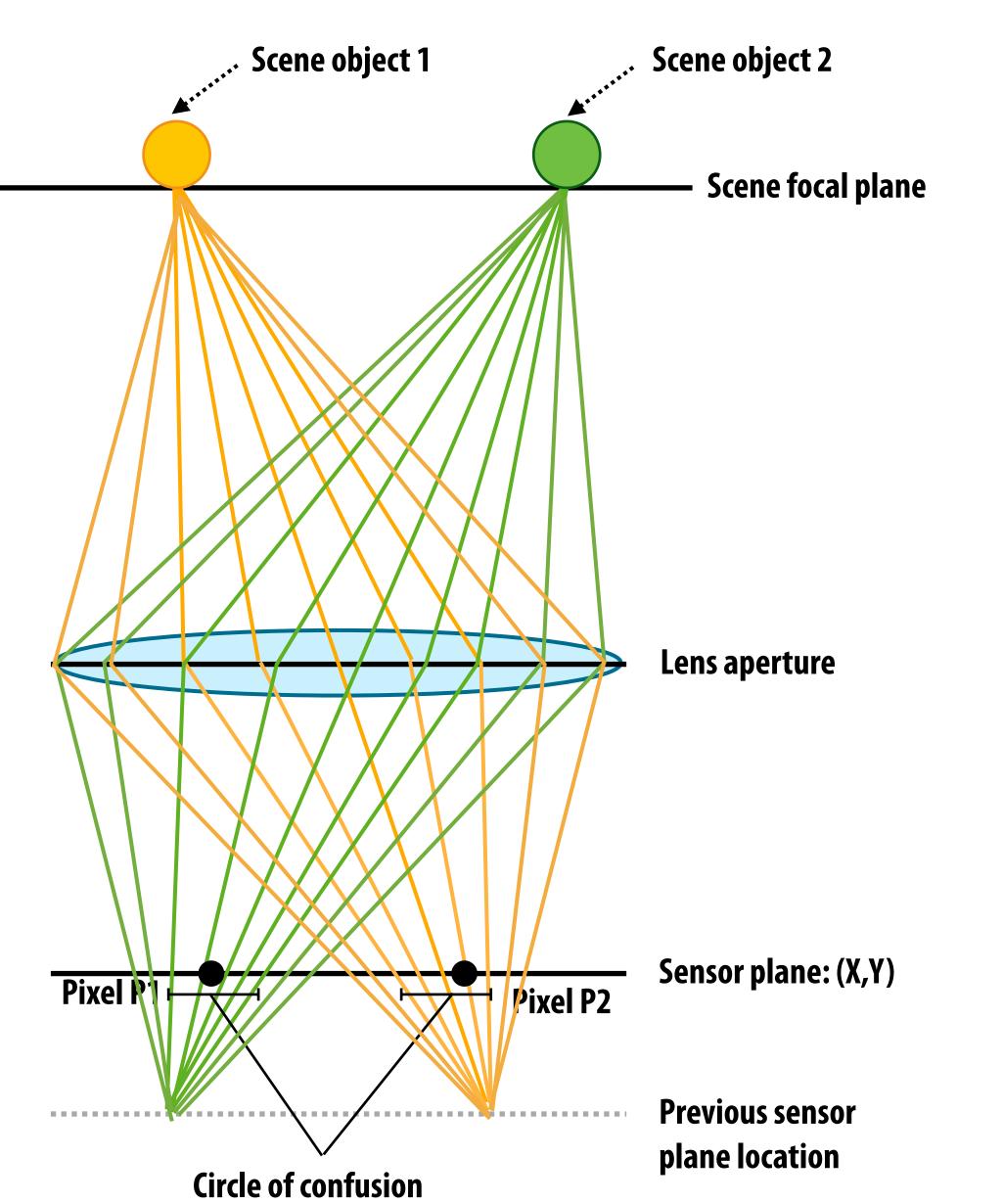
In-focus camera: all rays of light from one point in scene arrive at one point on sensor plane



Stanford CS348K, Spring 2021

Out of focus camera

Out of focus camera: rays of light from one point in scene do not converge at point on sensor

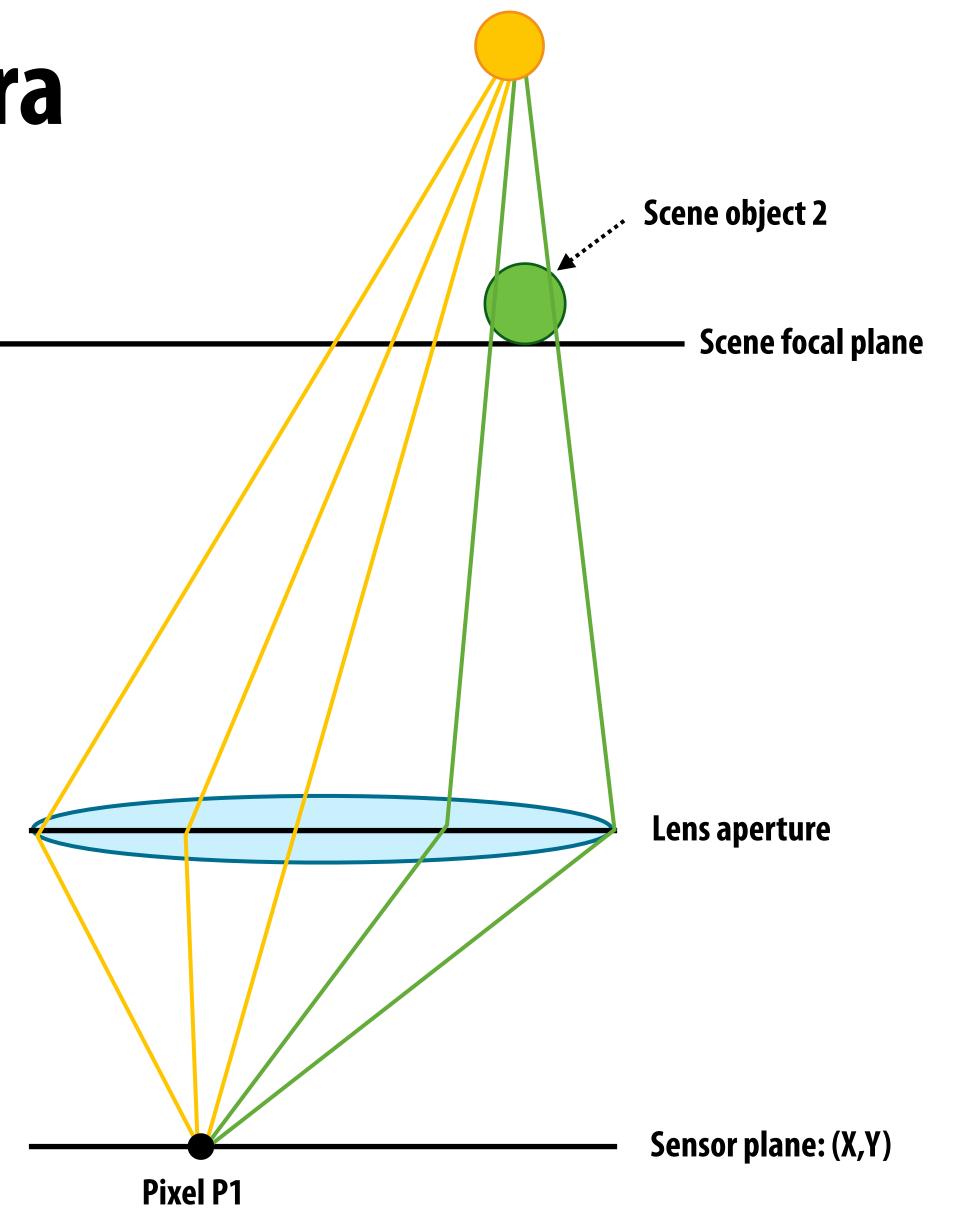


Bokeh

Out of focus camera

Out of focus camera: rays of light from one point in scene do not converge at point on sensor

Rays of light from different scene points converge at single point on sensor



Previous sensor plane location

Sharp foreground / blurry background

Cell phone camera lens(es)

Portrait mode in modern smartphones

- Smart phone cameras have small apertures
 - Good: thin. lightweight lenses, often fast focus
 - Bad: cannot physically create aesthetically please photographs with nice bokeh, blurred background
- Answer: simulate behavior of large aperture lens (hallucinate image formed by large aperture lens)

Input image /w detected face

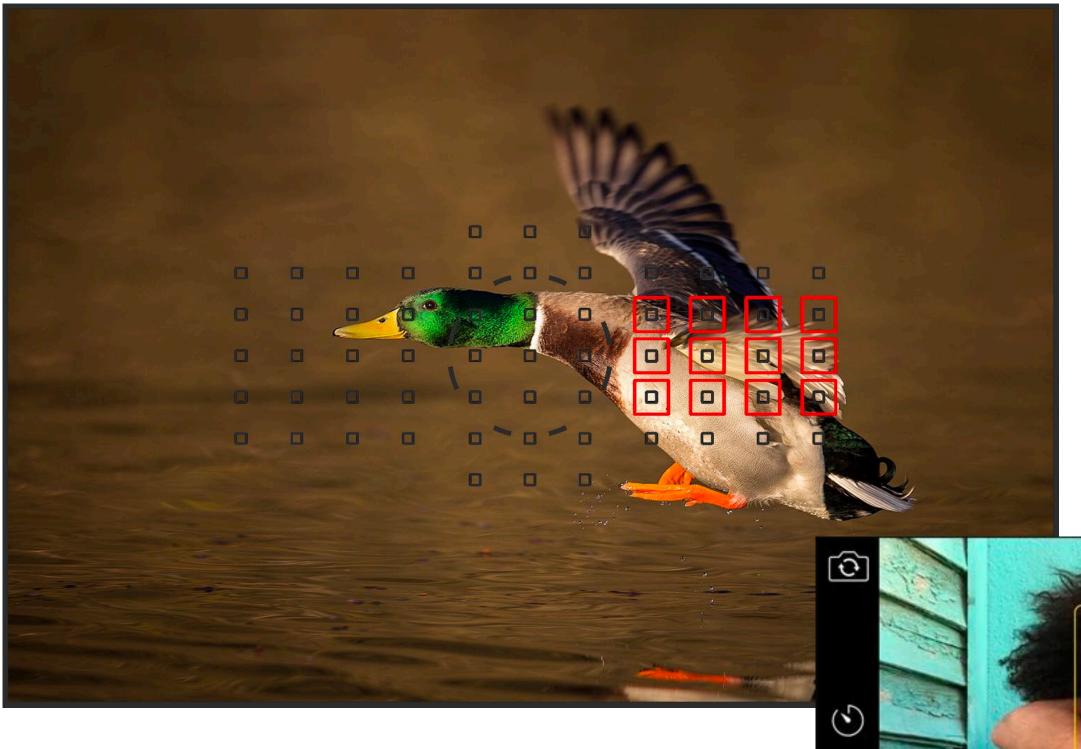
Scene Depth Estimate

Image credit: [Wadha 2018]

Generated image (note blurred background. Blur increases with depth)

Autofocus

What part of image should be in focus?



Heuristics: Focus on closest scene region Put center of image in focus **Detect faces and focus on closest/largest face**

HDR Auto 4 Auto

Image credit: DPReview: https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action

Split pixel sensor

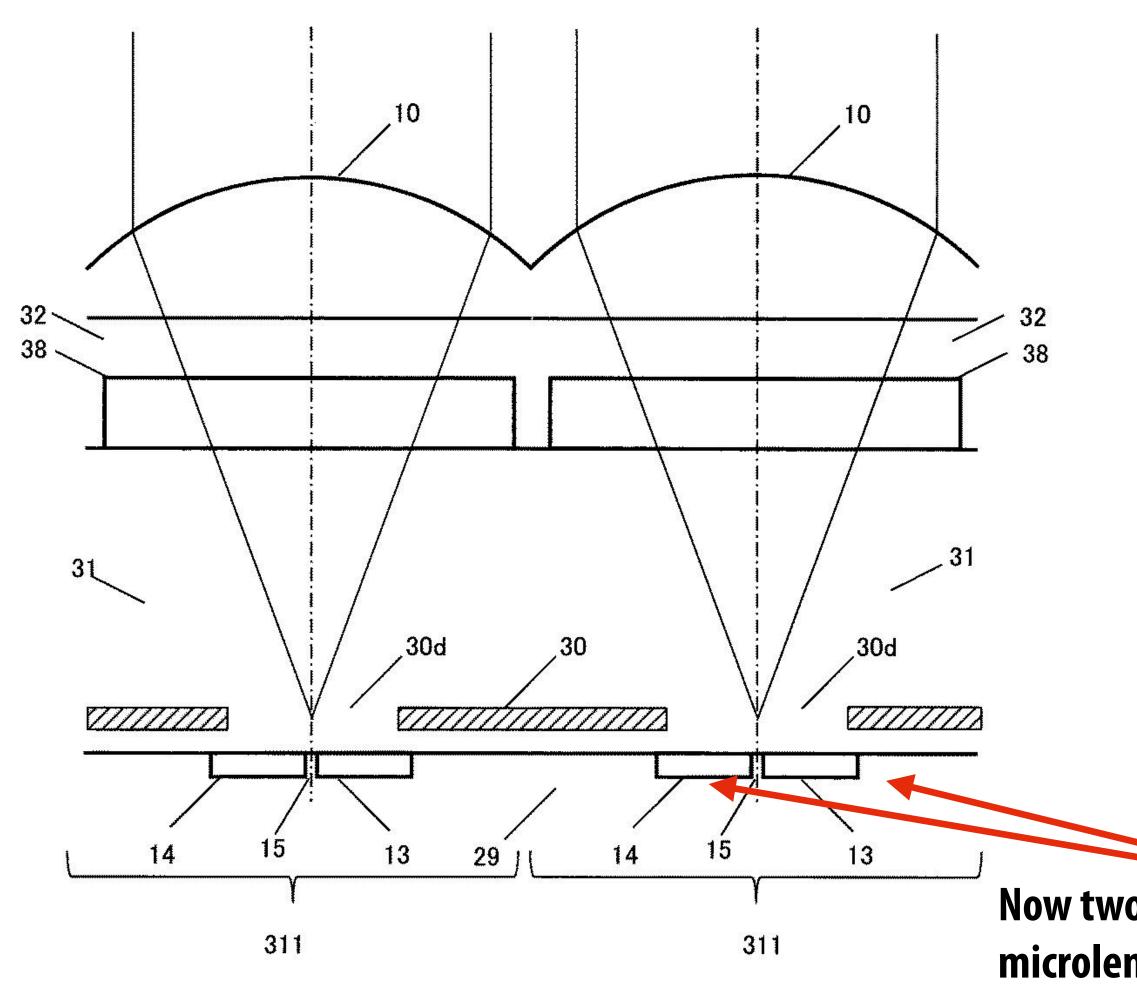


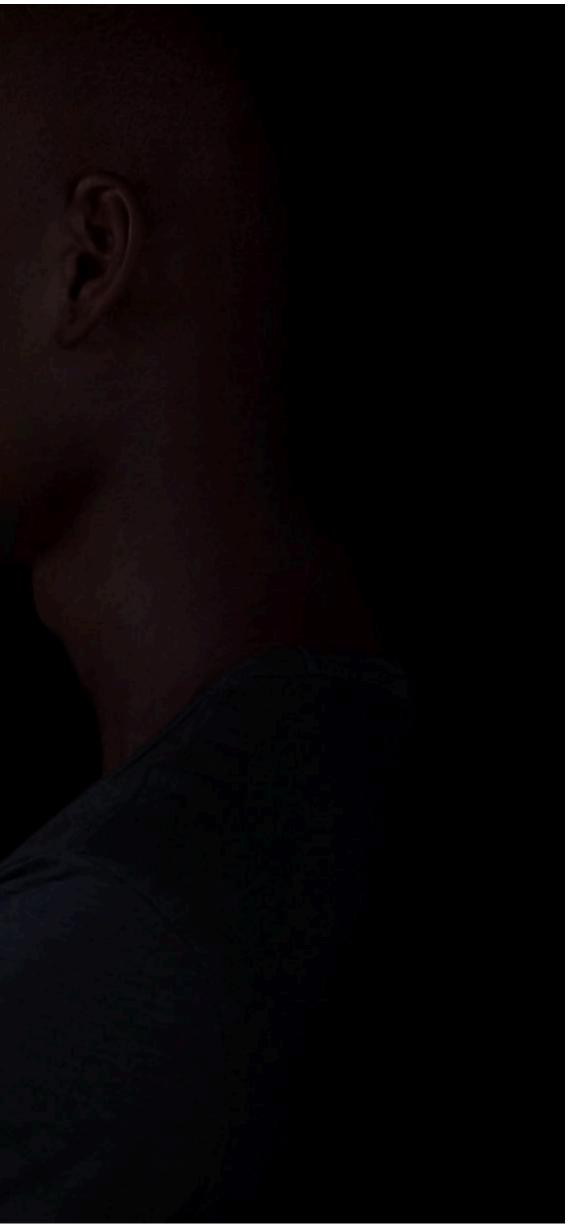
Image credit: Nikon

When both pixels have the same response, camera is in focus, why?

Now two pixels under each microlens (not one)

Additional sensing modalities

Apple's TrueDepth camera (infrared dots projected by phone, captured by infrared camera)



Additional sensing modalities

Fuse information from all modalities to obtain best estimate of depth

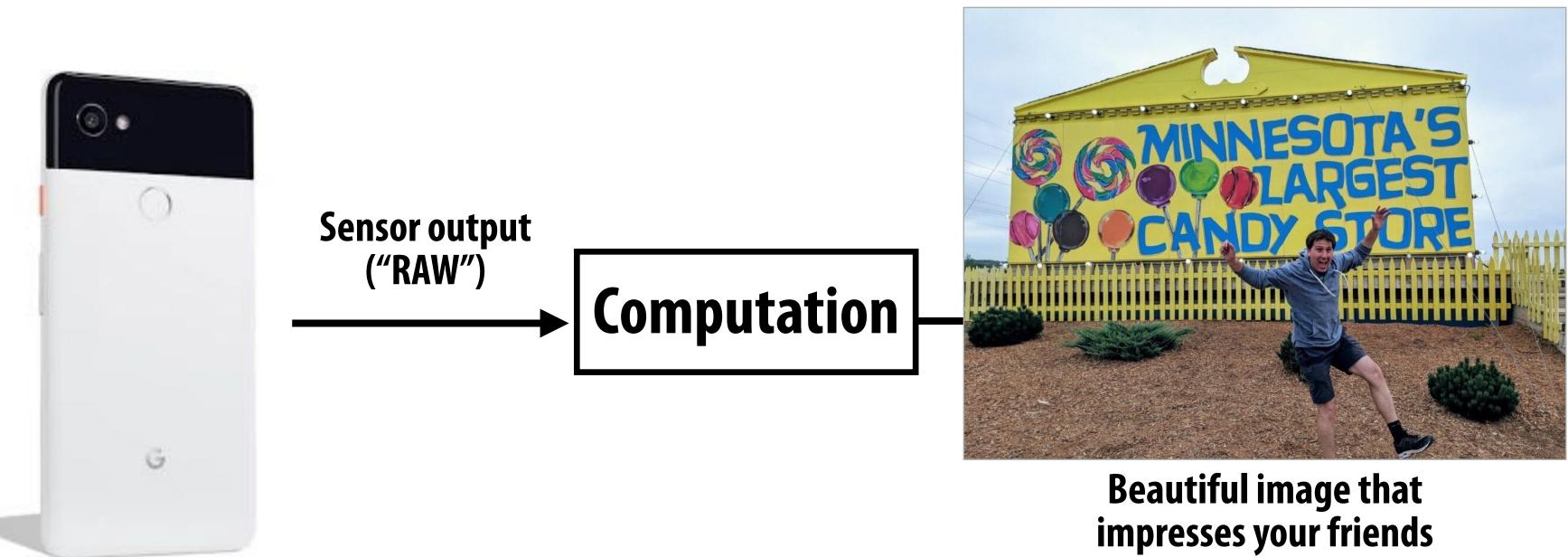
iPhone Xr depth estimate with lights ON in room

Image credit: <u>https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81</u>

iPhone Xr depth estimate with lights OFF in room

Summary

- **Computation now a fundamental part of producing a pleasing photograph**
- Used to compensate for physical constraints (demosaic, denoise, lens corrections)
- Used to analyze image to guess system parameters (focus, exposure), or scene contents (white balance, portrait mode)
- Used to make non-physically plausible images that have aesthetic merit



on Instagram

Image processing workload characteristics

- Pointwise" operations
 - output_pixel = f(input_pixel)
- "Stencil" computations (e.g., convolution, demosaic, etc.)
 - Output pixel (x,y) depends on <u>fixed-size</u> local region of input around (x,y)
- Lookup tables
 - e.g., contrast s-curve
- Multi-resolution operations (upsampling/downsampling)
- Fast-fourier transform
 - We didn't talk about Fourier domain techniques in class (but Hasinoff 16 reading has many examples)
- Long pipelines of these operations

Upcoming classes: efficiently mapping these workloads to modern processors